三相异步电动机功率的计算

合集下载

(完整版)三相异步电动机电磁计算

(完整版)三相异步电动机电磁计算

三相电机额定电压U=380V,f=50HZ,机座号Y132,输出P2=8KW, p=4极1.型号:Y132M2.输出功率:P N=8KW3.相数:m1=34.接法:5.相电压:Uφ=380V6.功电流:I w=P2×103m1UΦ=8×1033×380=7.018A7.极对数:p=28.定子槽数:Z1=369.转子槽数:Z2=3210.定子每极每相槽数:Qp1=Z12pm1=362×2×3=311.定子外径:D1=21cm定子内径:D i1=13.6cm气隙长度:δ=0.4mm转子外径:D2=13.52cm 13.6-0.04*2=13.52cm转子内径:D i2=4.8cm定子槽型:半闭口圆底槽定子槽尺寸:b o1=0.35cm b1=0.67cm h o1=0.08cm R1=0.44cm h12=1.45cm转子槽形:梯形槽转子槽尺寸:b o2=0.1cm b r1=0.55cm b r2=0.3cm h o2=0.05cm h r12=2.3cm12.极距:τ=πD i12p =3.1415×13.64=10.681cm13.定子齿距:t1=πD i1Z1=3.1415×13.636=1.187cm14.转子齿距:t2=πD2Z2=3.1415×13.5232=1.327cm15.气隙长度:δ=0.04cm16.转子斜槽距:b sk=t1=1.187cm17.铁芯长度:l=16cm18.铁芯有效长度:无径向通风道:l ef=l+2δ=16.08cm19.净铁芯长:无径向通风道:l Fe=K Fe l=0.95*16=15.2cmK Fe=0.95(不涂漆)20.绕组型式:单层交叉式21.并联支路数:a1=122.节距:1-9,2-10,11-1823.每槽导线数:由后面计算的数据根据公式计算为:每极磁通φ1=0.00784wb波幅系数:K A=1.46绕组系数:K dp1=0.96每相串联有效导线数:Nφ1K dp1=K z′U1×10−2K Aφ1×50f1=1.21×380×10−2 1.46×0.00784×5050=401.70 K’z取1.21每相串联导线数:Nφ1=Nφ1K dp1K dp1=401.700.96=418每槽导线数:N1‘=41812=34.83取整数:N1=3524.线规:导线并饶根数与截面积之积(式中的值由其后的公式算得):N1’A1′=I1a1J1=9.16271×5.19=1.7655mm2由此可通过查表知线规为:2-1.06(N-φ)25.每根导线截面积:A cl=0.00882cm226.槽有效面积:A e=A s-A i=1.1444cm2A s=2R+b s12×(h s′−h)+πR22A i=C i(2h s12+πR)C i-绝缘厚度 h-槽楔厚度 C i=0.08mm27.槽满率:k s=N s1N cl d2A e ×100%=2×35×0.0131.1444=79.5%d-绝缘导线外径 d=1.14mm28. 每相串联导线数:N φ1=Z 1N s1ma 1=35×363=42029. 绕组分布系数:K d1=sin (α2q 1)q 1sin (α2)=0.96q 1=Z 12pm=364×3=3α=2pπZ 1=2×2×180°36=20°30. 绕组短距系数:K p1=sin (β×90°)=1 β=y mq 131. 绕组系数:K dp1=K d1K p1=0.96二.磁路计算32. 每极磁通:∅1=K E U ∅2.22fN ∅1K dp1=0.00784Wb =380×0.9232.22×50×420×0.96K E =0.923 K E 范围0.85-0.95 33. 定子齿截面积:A t1=b t1l Fe Z 12p =76.05cm 2 34. 转子齿截面积:A t2=b t2l Fe Z 22p=75.95cm 2b t1,b t2-定,转子齿宽35. 定子轭部截面积:A j1=h j ′l Fe =1.877×15.2=28.53cm 2 h j ′=D 1−D i12−h s +13R =3.7−(0.08+1.45+0.44)+0.443=1.87736. 转子轭部截面积:A j2=h j2′l Fe =30.65cm 2 h j2′=D 2−D i22−h R −23d k =2.016因无通风孔d k =037. 空气隙面积:A δ=τl ef =10.681×16.08=171.8cm 2 38. 波幅系数:K A =1.46 K S =1.276K A 由饱和系数K S 查得,开始计算时先假定K S39. 定子齿磁密:B t1=K A∅1A t1×104=1.46×0.0078476.05×104=1.505T40. 转子齿磁密:B t2=K A∅1A t2×104=1.46×0.0078475.95×104=1.507T41. 定子轭磁密:B j1=12×∅1A j1×104=12×0.0078428.53×104=1.37T 42. 转子轭磁密:B j2=12×∅1A j2×104=12×0.0078430.65×104=1.28T43. 气隙磁密:B δ=K A∅1A δ×104=1.46×0.00784171.8×104=0.666T44. 定子齿磁场强度:H T1=20.58A/cm (查表硅钢片磁化曲线) 45. 转子齿磁场强度:H t2=20.79A/cm (查表硅钢片磁化曲线) 46. 定子轭磁场强度:H j1=11.44A/cm (查表硅钢片磁化曲线) 47. 转子轭磁场强度:H j2=8.43A/cm (查表硅钢片磁化曲线) 48. 定子齿磁路计算长度:h T1′=h s1+h s2+R3=1.597cm49. 转子齿磁路计算长度:h T2′=h R1+h R2=2.3cm 50. 定子轭磁路计算长度:l j1′=π(D i1−h j1′)4p=7.51cm 51.转子轭部磁路计算长度:l j2′=π(D i2+h j2′)4p=2.67cm52. 气隙磁路计算长度:δe =δK c1K c2=0.4×1.308×1.031÷10=0.05393cmK c1=t1t1−r1δK c2=t2t2−r2δt-齿距 b0-槽口宽53.定子齿磁位降:F t1=H t1×h t1′=32.86A54.转子齿磁位降:F t2=H t2×h t2′=47.81A55.定子轭部磁位降:F j1=C1H j1l j1′=43.31AC1=0.504 定子轭部磁路校正系数56.转子轭部磁位降:F j2=C2H j2l j2′=9.23AC2=0.41 转子轭部磁路校正系数57.气隙磁位降:Fδ=0.8Bδδe×104=0.8×0.666×0.05393×104=287.34A58.饱和系数:K s=F t1+F t2+FδFδ=32.86+47.81+287.34287.34=1.28与38项比对59.总磁位降:F=F t1+F t2+F j1+F j2+Fδ=32.86+47.81+43.31+9.23+287.34=420.55A60.励磁电流:I m=4.44pFmN∅1K dp1=4.44×2×420.553×420×0.96=3.087A61.励磁电流标幺值:I m∗=I mI w =3.0877.018=0.439962.励磁电抗标幺值:X m∗=1I m∗=10.4399=2.2732三.参数计算63.线圈平均半匝长度:l c1=l e+2(d+l E′)=31.22cmd=1.5cm(直线部分伸出长) l E′=kτck对2,4极取0.58 τc-平均节距τc=10.54cm64. 线圈端部平均长度:l E =2(l E ′+d )=15.22cm 65. 线圈端部轴向投影长度:f d =l E ′sin α=3.77cm 66. 阻抗折算系数:K z =m 1(N ∅1K dp1)2m 2(N ∅2K dp2)2=15241式中:对笼型转子m 2=Z 2,N ∅2=1,K dp2=1 67. 定子相电阻:R 1=ρ1N ∅1lc1a 1N c1A c1=1.61Ω ρ1-导线电阻率标幺值:R 1∗=R 1I w U ∅=0.029768. 转子导条电阻:R B =K zK B ρB l B A B=1.1407Ω式中:K B =1.04(对铸铝转子) ρB -导条电阻率 l B =16cm(转子导条长度) A B =0.965cm 2(每根导条截面积) 标幺值:R B ∗=R B ×I 2U ∅=1.1407×7.018380=0.021169. 转子端环电阻:R R =K zρR Z z D R2πp 2A R =0.3467ΩρR-端环电阻系数 D R-端环平均直径(10.7cm) A R-端环截面积(2.6cm2)标幺值:R R∗=R R I wU∅=0.3467×7.018380=0.00670.转子电阻标幺值:R2∗=R B∗+R R∗=0.0211+0.006=0.027171.漏抗系数:C x=0.4π2fl ef(N∅12pq1)(I wU∅)×10−5=0.4×3.14152×50×16.08×(42022×3)(7.018380)×10−8=0.0172372.定子槽漏磁导:λs1=K U1λU1+K c1λc1=1.2431K U1=1 K c1=1 λU1=0.4097 λc1=0.833473.定子槽漏抗:X s1∗=(lσ1l ef )λc1C x=(1616.08)×0.8334×0.01723=0.01429lσ1=l1(对无径向通风道)74.定子谐波漏磁导:λd1=0.0129对60°相带整数槽绕组,且23≤β≤1λd1=π218×[(5q12+1)−(14cq1+23c2−14c3q1)3q12]−K dp12式中:c-短距槽数,c=8q1(1-p)75.定子谐波漏抗:x d1∗=m1q1τπ2δef K sλd1C x=1.8243×0.01723=0.0314376.定子端部漏磁导:λE1=0.67(l E-0.64τc)=5.677877.定子端部漏抗:X E1∗=(q1l ef )λE1C x=(316.08)×5.6778×0.01723=0.0182578. 定子漏抗标幺值:X 1∗=X s1∗+X d1∗+X E1∗=0.01429+0.03142+0.01825=0.0639779. 转子槽漏磁导:λs2=λU2+λc2=2.1754 λU2=h R0b 02=0.5(槽上部漏磁导)λL2=1.6754(槽下部漏磁导)80. 转子槽漏抗:X s2∗=(lσ2l ef)K dp12(Z1Z 2)λs2C x =0.03862=2.2413×0.01723 l σ2=l 281. 转子谐波漏磁导:对笼型转子:λd2=∑1(k Z 2p ±1)2=0.013K=1,2,3 82.转子谐波漏抗:X d2∗=m 1q 1τK dp12π2δef K sλd2C x =1.6757×0.01723=0.0288783. 转子端部漏磁导:λE2=0.757(l B−l 21.13+D R 2p)=2.025(对笼型转子)84. 转子端部漏抗:X E2∗=q 1l efK dp12λE2C x =0.3478×0.01723=0.00599 85.转子斜槽漏抗:X sk∗=0.5(b sk t 2)2X d2∗=0.5×(1.1871.327)2×0.02887=0.0115586. 转子漏抗标幺值:X 2∗=X s2∗+X d2∗+X E2∗+X sk ∗=0.08503 87. 运行总漏抗:X ∗=X 1∗+X 2∗=0.06397+0.08503=0.149四.运行性能计算88.满载电流有功分量:I p∗=1η=10.88=1.136设η=0.88 η−效率89.满载电抗电流:I x∗=σ1X∗I p∗2[1+(σ1X∗I p∗)2]=1.0281×0.149×1.1362×[1+(1.0281×0.149×1.136)2]=0.2037式中:σ1=1+I m∗X1∗=1+0.4399×0.06397=1.0281 90.满载电流无功分量:I Q∗=I m∗+I x∗=0.4399+0.2037=0.643691.满载电动势比值:K E=1−(I p∗R1∗+I Q∗X1∗)=1−(1.136×0.0297+0.6436×0.06397)=0.925与32项进行比对92.定子电流:I1∗=√I p∗2+I Q∗2=√1.1362+0.64362=1.3056I1=I1∗I w=1.3056×7.018=9.1627A93.转子导条电流:I2∗=√I p∗2+I x∗2=√1.1362+0.20372=1.154I2=I2∗I w K1=1.154×7.018×37.8=306.13AK1-电流折算系数K1=m1N∅1K dp1Z2=3×420×0.9632=37.894.转子端环电流:I R=Z22πp I2=322×3.1415×2×306.13=779.58A95.定子电密:J1=I1a1N c1A c1×102=9.16271×1.76423=5.19A/mm296.线负荷:A1=m1Z∅1I1πD i1=3×420×9.16273.1415×13.6=270.22Acm97.热负荷:AJ1=A1J1=1402.4498.转子导条电密:J B=I2A B×102=306.130.965×102=3.17A/mm299.转子端环电密:J R=I RA R×102=779.582.6×100=2.998A/mm2100.空载电动势比值:K E0=1−I m∗X1∗=1−0.4399×0.06397=0.9719101.空载定子齿磁密:B t10=K E0K E B t1=0.97190.925×1.505=1.5813T102.空载定子轭磁密:B j10=K E0K E B j1=0.97190.925×1.37=1.4395T103.定子齿单位铁损耗:p t1由B t10查表得44.02×10−3W/cm3 104.定子轭单位铁损耗:p j1由B j10查表的36.7×10−3W/cm3 105.定子齿体积:V t1=2pA t1h t1′=485.68cm3106.定子轭体积:V j1=4pA j1l j1′=1713.73cm3107.铁损耗:P Fe=k1pt1V t1+k2pj1V j1对半闭口槽:k1=2.5,k2=2P Fe=(2.5×44.02×485.68+2×36.7×1713.73)×10−3= 179.24W标幺值:P Fe∗=P FeP N×103=0.0224108.基本铁耗:P Fe1∗=pt1V t1+pj1V j1 P N×103=44.02×10−3×485.68+36.7×10−3×1713.738000=0.01053109.定子电阻损耗:P cu1∗=I1∗2R1∗=1.30562×0.0297=0.0506P cu1=P cu1∗P N ×103=0.0506×8000=404.8W110. 转子电阻损耗:P cu2∗=I 2∗2R 2∗=1.1542×0.0271=0.0361 P cu2=P cu2∗P N ×103=288.8W 111. 风摩损耗:P fv *参考试验值确定为0.01 P fv =P fv ∗P N ×103=0.01×8000=80W 112. 杂散损耗:P s *对铸铝转子可取0.02P s =P s ∗P N ×103=0.02×8000=160W113. 总损耗:∑P ∗=P cu1∗+P cu2∗+P Fe ∗+P fv ∗+P s ∗=0.0506+0.0361+0.0224+0.01+0.02=0.1391 114. 输入功率:P 1∗=1+∑P ∗=1.1391 115. 满载效率:η=1−∑P ∗P 1∗=1−0.13911.1391=0.878η−η′η=0.878−0.880.878=−0.0023>−0.005与88项假定值比对116. 功率因数:cos φ=1I 1∗η=11.3056×0.878=0.872117. 满载转差率:S N =P cu2∗P em∗=0.03611.07797=0.0335P em *-气隙电磁功率P em ∗=P 1∗−P cu1∗−P Fe1∗=1.07797118. 额定转速:n N =60f (1−S N )p=60×50×(1−0.0335)2=1449.75r/min119. 最大转矩倍数: T max ∗=N2×(R 1+√R 1+X ∗2)=2×(0.0297+√0.02972+0.1492)=2.66五.起动性能计算I st =(2.5~3.5)T max ∗×I w =61.8A120. 起动时槽磁动势: F st =0.707I stN ∅1a 1×(K V1+K dp1K d1Z1Z2)√K E0=3071.09A121. 虚拟磁密:B L =F st ×10−41.6δβc=5.0241TβL =0.64+2.5√δt 1+t 2=0.955122. 起动漏磁饱和系数:K as =0.418123. 定子槽口宽增大:∆b 01=(t 1−b 01)(1−k as )=0.4874 124. 转子槽口宽增大:∆b 02=(t 2−b 02)(1−k as )=0.7141 125. 定子槽上部漏磁导减少:∆λU1=h r0−0.58h r1b 01(∆b 01∆b 01+1.5b 01)=0.1836126. 转子槽上部漏磁导减少:∆λU2=h R0b 02(∆b 02∆b 02+b 02)=0.4397127. 起动定子槽漏磁导:λs1st =K U1(λU1−∆λU1)+K c1λc1=1.0596 128. 起动定子槽漏抗标幺值:X s1st ∗=λs1st λs1X s1∗=1.05961.2431×0.01429=0.01218129. 起动定子谐波漏抗标幺值:X d1st ∗=k as X d1∗=0.01218 130. 定子起动漏抗标幺值:X 1st ∗=X s1st ∗+X d1st ∗+X E1∗=0.01218+0.01313+0.01825=0.04356131. 挤流转子导条相对高度:ε=2πh B √b Bb s fρB ×109=1.551h B -转子导条高度(cm ) b Rb S-转子导条宽与槽宽之比,对铸铝转子为1ρB -转子导条电阻率 h B =2.35cm 132. 导条电阻等效高度:h ρR =h B φ(ε)k a=2.351.45×1=1.621133. 槽漏抗等效高度:h ρx =h B ψ(ε)k a =2.35×0.78×1=1.833 134. 挤流电阻增大系数:K R =(1+a )φ2(ε)1+a [2φ(ε)−1]=1.308a =b 1b 2135. 挤流漏抗减少系数:K x =b 2(1+a )2ψ(ε)b px(1+a ′)2(K r1′K r1)=0.888a ′=b 1b pxb px =b 1+(b 2⋯⋯b 1)ψ(ε)136. 起动转子槽下部漏磁导:λL2st =K x λL2=K X ×2h 1b 0+b 1+λL =1.4875 λL =4β(1+α)2k τ1137. 起动转子槽漏磁导:λs2(st )=(λU2−∆λU2)+λL2st =1.5478 138. 起动转子槽漏抗标幺值:X s2st ∗=λs2st λs2×X s2∗=0.0275139. 起动转子谐波漏抗标幺值:X d2st ∗=k as X d2∗=0.01207 140. 起动转子斜槽漏抗标幺值:X skst ∗=k as X sk ∗=0.0048 141. 转子起动漏抗标幺值:X 2st ∗=X s2st ∗+X d2st ∗+X E2∗+X skst ∗=0.05036 142. 起动总漏抗标幺值:X st ∗=X 1st ∗+X 2st ∗=0.04356+0.05036=0.09392143. R Bst ∗=[k R(l ef−N V2b 02l B)+l B −(l f −N V2b 02)l B]×R B ∗=0.0276144. 转子起动电阻标幺值:R 2st ∗=R Bst ∗+R R ∗=0.0276+0.006=0.0336 145. 起动总电阻标幺值:R st ∗=R 1∗+R 2st ∗=0.0297+0.0336=0.0633 146. 起动总阻抗:Z st ∗=√R st ∗2+X st ∗2=0.1133147. 起动电流:I st =I KwZ st∗=7.0180.1133=61.94A61.94−61.861.94=0.0023<0.005148. 起动电流倍数:I st ∗=61.949.1627=6.76 149. 起动转矩倍数:T st ∗=R 2(st )∗Z st ∗2(1−S N )=0.03360.11332×(1−0.0335)=2.53。

三相异步电动机耗电量计算公式

三相异步电动机耗电量计算公式

三相异步电动机耗电量计算公式题目:深度探讨三相异步电动机耗电量计算公式一、引言在工业生产中,三相异步电动机是一种常见的电动机类型,其在各种机械设备中广泛应用。

对于工厂和企业来说,了解三相异步电动机的耗电量计算公式至关重要,可以帮助他们有效控制能源成本,提高生产效率。

二、什么是三相异步电动机三相异步电动机又称为感应电动机,是一种通过感应电磁力产生转矩的电动机。

其结构简单、运行可靠,因此被广泛应用于工业生产中。

三、三相异步电动机的耗电量计算方式1. 计算方法三相异步电动机的耗电量计算公式主要取决于其额定功率和运行时间,可以通过以下公式来计算:耗电量 = 三相异步电动机的额定功率× 使用时间× 电力因数其中,三相异步电动机的额定功率以千瓦(kW)为单位,使用时间以小时为单位,电力因数一般为0.8到0.9之间。

2. 实例分析比如一台额定功率为10kW的三相异步电动机,在工作8小时,电力因数为0.8的情况下,其耗电量计算公式为:耗电量= 10kW × 8h × 0.8 = 80kWh四、关于电力因数的说明1. 什么是电力因数电力因数是指实际有用功与视在功的比值,是电动机运行时的一个重要参数。

电力因数越接近1,表示三相异步电动机的效率越高。

2. 如何提高电力因数为了降低三相异步电动机的耗电量,可以通过提高电力因数来提高效率。

具体方法包括优化电动机的设计、选择高效的电动机等。

五、个人观点三相异步电动机的耗电量计算公式对于企业的能源管理至关重要,它直接关系到企业的生产成本和环保形象。

企业在选型和使用三相异步电动机时,应该注重其电力因数,选择合适的型号和规格,以降低耗电量,提高生产效率。

六、总结通过本文的介绍,我们了解了三相异步电动机的耗电量计算公式,以及电力因数的重要性。

企业在实际使用中,应该根据实际情况,选择合适的三相异步电动机,从而降低耗电量,提高生产效率。

结语三相异步电动机的选型和使用对于企业的能源管理至关重要,希望本文的介绍可以帮助读者更好地了解和应用三相异步电动机的耗电量计算公式。

三相异步电动机功率的计算(完整资料).doc

三相异步电动机功率的计算(完整资料).doc

【最新整理,下载后即可编辑】现场找不到功率表,要求以钳式电流表代替。

即用电流表套住一根主电缆,测量其交流电流值,并换算为功率。

※工人师傅的经验公式为:P=0.5*I 其中:P为电机有功功率,单位千瓦;I为实测电流,单位安培。

然则问题是,何以证明此经验公式?三、问题的研究电机是普通三相异步电动机,Y型接法。

额定电压380V,额定功率7.5KW,额定电流15.2A。

通过经验可知,三相电机总功率等于3乘以每相的功率,即p=3*u*i,其中:p为三相电机总功率,单位瓦u为相电压,单位伏i为相电流,单位安注:暂用字母大小写区分相电压与线电压又查阅资料知,线电压等于1.732倍相电压,线电流等于相电流,即p=3*(U/1.732)*I,其中:p为三相电机总功率,单位瓦U为线电压,即380伏I为线电流,即钳式电流表实测电流,单位安故:得到公式p=1.732*U*I四、问题的解决综上,P=1.732*U*I*cosφ/1000,其中:P为三相电机有功功率,单位千瓦U为线电压,即380伏I为线电流,即钳式电流表实测电流,单位安cosφ为功率因数,针对电机通常取0.8故:P=0.52*I≈0.5*I(KW),公式得证。

五、问题的补充1 三相四线制三相四线制供电方式,即国际电工委员会(IEC)规定的TN-C方式,是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示。

故三根相线、一根中性线。

三相五线制供电方式,即国际电工委员会(IEC)规定的TN-S方式,是把工作零线N和专用保护线PE严格分开的供电系统。

故三根相线、一根工作零线、一根保护零线。

单相三线制是三相五线制的一部分,即根据国际电工委员会(IEC)标准和国家标准而定的TN—S系统,在配电中出现了N线和PE线。

故相线、零线、接地线。

三相三线制一般常用于电力输送和工厂强力电源供电,它不是国际电工委员会(IEC)规定的方式。

2 Y型接法采用三相三线制的三角形接法,为三组线圈头尾相接,适用于4.5KW以下电动机采用三相四线制的Y形接法又称星形接法,为三组线圈的三个尾相接,形成一个Y形,适用于4.5KW以上电动机3 线电压,线电流相电压是指一相负载对地的电压,在三相四线制中,也就是相线与中性线之间的电压。

三相异步电动机设计计算程序简版

三相异步电动机设计计算程序简版

三相异步电动机设计计算程序三相异步电动机设计计算程序1. 引言在电机控制和应用领域,三相异步电动机是最常用的电动机类型之一。

它们具有结构简单、维护成本低和效率高等优点,广泛应用于工业和家庭电器设备中。

在本文档中,我们将介绍一个用于设计和计算三相异步电动机的程序,帮助工程师和研究人员快速准确地进行电机设计和性能计算。

2. 功能概述该程序具有以下主要功能:- 输入电机参数:用户可以通过程序界面输入电机的额定功率、额定电流、额定转速、电机效率等参数。

- 计算电机参数:程序根据输入的电机参数,计算电机的电阻、反电动势和机械特性参数等。

- 显示计算结果:程序将计算得到的电机参数和性能指标输出到程序界面上,方便用户进行查看和分析。

- 保存计算结果:用户可以将计算得到的电机参数和性能指标保存为文本文件,以便日后查阅和使用。

3. 程序流程下面是程序的主要流程:1. 用户打开程序并进入电机参数输入界面。

2. 用户依次输入电机的额定功率、额定电流、额定转速、电机效率等参数。

3. 程序根据用户输入的参数,计算得到电机的电阻、反电动势和机械特性参数等。

4. 程序将计算得到的结果显示在程序界面上,包括电机参数和性能指标。

5. 用户可以选择保存计算结果为文本文件。

4. 程序界面示例--三相异步电动机设计计算程序--请输入电机的额定功率(单位:千瓦):4.2请输入电机的额定电流(单位:安培):8.5请输入电机的额定转速(单位:转/分钟):1450请输入电机的效率(单位:百分比):92--计算结果--电机额定功率:4.2 kW电机额定电流:8.5 A电机额定转速:1450 rpm电机效率:92%电机电阻:6.706 Ω电机反电动势:406.612 V电机机械特性参数:--是否保存计算结果为文本文件?(是/否):是请输入保存文件路径和文件名:C:\\Users\\Documents\\motor_results.txt--保存成功--计算结果已成功保存为文本文件:C:\\Users\\Documents\\motor_results.txt--程序结束--5. 程序实现技术该程序可以使用各种编程语言和技术来实现,例如Python、Java或C++等。

电机功率的计算公式

电机功率的计算公式

电机功率的计算公式扬程40米,流量45L/S也就是每秒要将45L的水提升40米假设管径是100MM,水的流速是(45*10^-3)/(π/4*10^-2)=5.732M/S 水每秒获得的能量是动能+势能动能E1=0.5*45*5.732^2=4237J势能E2=45*9.8*40=17640J总能量E=E1+E2=21877J所需功率=21877W=21.877KW假设加压泵的效率η=0.8则电机所需功率P=21.877/0.8=27KW1、三相交流异步电动机的效率:η=P/(√3*U*I*COSφ)其中,P—是电动机轴输出功率U—是电动机电源输入的线电压I—是电动机电源输入的线电流COSφ—是电动机的功率因数2、电动机的输出功率:指的是电动机轴输出的机械功率3、输入功率指的是:电源给电动机输入的有功功率:P=√3*U*I*COSφ(KW)其时,这个问题有些含糊,按说电动机的输入功率应该指的是电源输入的视在功率:S==√3*U*I 这个视在功率包括有功功率(电动机的机械损耗、铜损、铁损等)、无功功率。

皮带输送机电机功率计算公式p=(kLv+kLQ+_0.00273QH)K KW其中第一个K为空载运行功率系数,第二个K为水平满载系数,第三个K为附加功率系数。

L为输送机的水平投影长度。

Q为输送能力T/H.向上输送取加号向下取负号。

有功功率=I*U*cosφ 即额定电压乘额定电流再乘功率因数单位为瓦或千瓦无功功率=I*U*sinφ,单位为乏或千乏.I*U 为容量,单位为伏安或千伏安.无功功率降低或升高时,有功功率不变.但无功功率降低时,电流要降低,线路损耗降低,反之,线路损耗要升高.功率因数的角度怎么预算?许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。

为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的"无功"并不是"无用"的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。

三相异步电动机的的额定电流算法

三相异步电动机的的额定电流算法

三相异步电动机的的额定电流算法
1.确定额定功率(P)和额定电压(V):首先需要确定异步电动机的
额定功率和额定电压。

额定功率是指电动机能持续运行的功率,通常以千
瓦(kW)为单位。

额定电压是指电动机设计的工作电压,通常以伏特(V)为单位。

2. 计算额定功率因素(Power Factor):功率因素是电动机额定功
率的cosθ值,其中θ是电流与电压之间的相角。

功率因素是衡量电动
机效能的重要参数,通常需要根据实际情况进行估算。

在实际应用中,通
常采用0.8到0.9之间的功率因素。

3.计算额定电流(I):额定电流可以通过以下公式计算:
I = P / (sqrt(3) * V * PF)
其中,sqrt(3)是三相电压的倍数,即1.732
4.举例计算:假设一个三相异步电动机的额定功率为10kW,额定电
压为380V,功率因素为0.85、那么,计算过程如下:
-计算额定电流:
I=10/(1.732*380*0.85)
≈17A
因此,这个三相异步电动机的额定电流为大约17安培。

请注意,这
只是一个示例,实际计算中需要根据具体的电机参数和要求进行计算。

总结起来,三相异步电动机的额定电流可以通过确定额定功率和额定
电压,计算功率因素,然后利用公式进行计算。

这个算法可以帮助工程师
和技术人员确定电动机的额定电流,从而为电动机的设计和应用提供指导。

三相异步电动机功率计算

三相异步电动机功率计算

三相异步电动机功率计算1.输入功率计算:输入功率实际上就是电动机的电功率,由电压、电流和功率因数决定。

对于三相异步电动机,输入功率的计算公式为:P = √3 × U × I × cosφ其中,P为输入功率(单位为瓦特),U为线电压(单位为伏特),I为电流(单位为安培),cosφ为功率因数。

2.输出功率计算:输出功率是指电动机转换的机械功率,也就是电动机输出的轴功率。

输出功率的计算公式为:P_out = T × n / 1000其中,P_out为输出功率(单位为千瓦),T为扭矩(单位为牛·米),n为转速(单位为转/分)。

计算输出功率之前,我们需要先计算电机的输出扭矩。

输出扭矩可以通过电机的滑差来求得,滑差的计算公式为:S=(Ns-N)/Ns其中,S为滑差,Ns为电机的同步速度,N为电机的实际速度。

电机的同步速度可以通过输入频率和电机的极数来计算Ns=120×f/P其中,Ns为同步速度(单位为转/分),f为电源频率(单位为赫兹),P为电机极数。

至此,我们可以根据电机的输出扭矩和转速来计算输出功率。

三相异步电动机的功率计算非常简单,只需要根据上述公式进行一系列计算即可。

需要注意的是,电机的输入功率和输出功率之间存在一定的损耗,称为电机的损耗或损耗功率。

损耗功率可以通过输入功率减去输出功率来计算,损耗功率的计算公式为:P_loss = P - P_out通过对三相异步电动机的功率计算,我们可以根据实际需求合理选择电动机,并确定电动机的运行条件,以提高电机的工作效率和使用寿命。

第22讲 三相异步电动机的功率和电磁转矩

第22讲 三相异步电动机的功率和电磁转矩
,这时 I 2 0
。定
I1 I 0 子电流特性曲线如图。
三相异步电动机的工作特性
三、功率因数特性 cos1 f (P2 )
异步电动机运行时需要从电网吸收 无功电流进行励磁,所以I1电流总是滞后 电源电压U1,功率因数 cos1 1 。空载时 ,定子电流为I0,基本为励磁电流,此时 功率因数为 cos1 0.1--0.2 左右。当负载 P2增大时,励磁电流I0保持不变,有功 电流随着P2的增大而增大,使 cos1 增大,接近额定负载时,功 cos1 0.76 0.9 左右。如超过额定功率后负载进一步 率因数最高, 增大,转速下降速度加快,s上升较快,使 R/s 下降较快,转 子电流有功分量所占比例下降,使定子电流有功分量比例也下 降,从而使 cos1反而减小,曲线如图。
T f (P2 ) 也为一直线。电磁转矩特性曲线如图。
R/s2
三相异步电动机的工作特性
五、效率特性 f (P2 )
根据效率公式,有
p P2 P1 p 1 P1 P1 P2 p
当P2变化时,效率η的变化取决于损耗 p的变化。而 损耗:
p p
Cu1
pCu1 pFe pCu2
pm+ps P2
P1
PM
Pm
异步电动机功率平衡流程图
二、三相异步电动机的转矩关系
异步电动机传输给转轴的总机械功率Pm就是电磁转矩T与 转轴机械角速度Ω的乘积,即
Pm T T
同时还可以表示为: T Pm Pm
Pm

2 n 60
Pm PM 2 n1 1 (1 s ) 60
2 ) P1k 3 I1k ( R1 R2
从而可求得:短路阻抗:

三相异步电动机功率因数计算

三相异步电动机功率因数计算

三相异步电动机功率因数计算《三相异步电动机功率因数计算,没那么难!》嘿,大家好呀!我今天想跟你们讲讲三相异步电动机功率因数计算这个事儿。

你们可别一听就觉得头疼,其实可有意思啦。

我呀,先给你们说说我们学校的一件趣事。

我们科学课上有个小实验角,里面放着好多小电器的模型。

有一次,老师拿出一个三相异步电动机的小模型,那时候我就特别好奇,这个小小的东西怎么就能转起来,而且还跟功率因数这些复杂的东西有关呢。

我们班上有个特别聪明的同学,叫小明。

我就跑去问他:“小明啊,你知道这个三相异步电动机的功率因数咋计算不?”小明眼睛一亮,说:“这可有点复杂,不过我可以给你讲讲大概。

”那什么是功率因数呢?我就想啊,这就好比是我们在接力比赛的时候,每个队员都有自己的任务。

功率因数就像是一个小队长,它负责协调电能在电动机里的各种工作。

如果功率因数高呢,就像是小队长把队伍带得特别好,电能的利用效率就高;要是功率因数低呀,就像小队长没组织好,电能就浪费了好多。

对于三相异步电动机来说,计算功率因数可不像1 + 1 = 2那么简单。

我们要先知道一些数据。

比如说电动机的有功功率,这就好比是真正干活的能量。

还有视在功率,这就像是总的能量资源。

功率因数就是有功功率和视在功率的比值。

这就像我们分蛋糕一样,有功功率是我们真正吃到肚子里的那部分蛋糕,视在功率是整个蛋糕的大小,功率因数就是吃到的蛋糕占整个蛋糕的比例。

我又去问老师:“老师,那怎么才能知道有功功率和视在功率呢?”老师笑着说:“这就得用一些仪器去测量啦。

”我就想象着那些精密的仪器,就像一个个小侦探,在电动机周围寻找着这些能量的秘密。

老师还说,有功功率可以通过测量电动机输出的机械功率来得到一些参考。

这就好比我们看一个人干了多少活,就大概能知道他真正用了多少力气。

而视在功率呢,和电动机的电压、电流有关系。

这就像一个大水桶,电压和电流就像往水桶里加水的两个水管,它们共同决定了这个水桶能装多少水,也就是视在功率的大小。

三相异步电动机功率的计算

三相异步电动机功率的计算

三相异步电动机功率的计算一、理论计算方法理论计算方法是根据电动机的额定参数和公式计算出功率。

三相异步电动机的功率计算公式包括两种情况:转矩和转速已知情况下的功率计算和电压电流已知情况下的功率计算。

1.转矩和转速已知情况下的功率计算当电动机的转矩和转速已知时,可以根据以下公式计算功率:P=T*ω其中P为电动机的功率,单位为瓦特(W);T为电动机的转矩,单位为牛顿米(Nm);ω为电动机的角速度,单位为弧度每秒(rad/s)。

2.电压电流已知情况下的功率计算当电动机的电压和电流已知时,可以根据以下公式计算功率:P = √3 * U * I * cosθ其中P为电动机的功率,单位为瓦特(W);√3为根号3;U为电动机的线电压,单位为伏特(V);I为电动机的线电流,单位为安培(A);cosθ为电动机的功率因数。

二、实测计算方法实测计算方法是通过对电动机的电压、电流和转速进行实际测量,然后根据公式计算功率。

1.功率的测量电动机的功率可以通过使用功率计进行测量。

功率计会同时测量电压和电流,并据此计算出功率。

2.记录测量值使用功率计进行测量时,需要记录下测得的电压、电流和功率值。

可以连续记录一段时间,然后取平均值。

3.计算功率根据测得的电压和电流值,可以根据以下公式计算功率:P = U * I * cosθ其中P为电动机的功率,单位为瓦特(W);U为测得的电压值,单位为伏特(V);I为测得的电流值,单位为安培(A);cosθ为功率因数。

需要注意的是,实测计算方法虽然可以更准确地计算电动机的功率,但需要进行复杂的测量过程,并且实际测量中可能存在一些误差。

综上所述,三相异步电动机功率的计算可以通过理论计算和实测计算两种方法实现。

理论计算方法根据电动机的额定参数和公式计算功率,适用于转矩和转速已知或电压电流已知的情况;实测计算方法通过对电动机的电压、电流和转速进行实际测量,然后根据公式计算功率,适用于需要更准确的功率值的情况。

电机学第6章 三相异步电机的功率、转矩和运行性能

电机学第6章 三相异步电机的功率、转矩和运行性能
用 化不大时,可以认为是常数。pFe+pad0可 使 以近似认为与磁密的平方成正比,因而 习 可近似认为与电压的平方成正比。故p'0 学 与U12的关系曲线近似为一直线。 供 其延长线与纵轴交点即为机械损耗pmec。空载附加损耗相对较小,可 仅 以用其它试验将之与铁耗分离,也可根据统计值估计pad0,从而得到铁
习 TN为额定负载转矩
TN=PN/ΩN
供学 ③ 起动点:s=1 ,n=0,转子 仅 静止,Tem= Tst 。
sm
R2
R12 X1σ X 2σ 2
Tmax
4f1 R1
m1 pU12
R12
X1σ
X
2 σ
2
2014/11/11
10
起动转矩的几个重要结论
用 Tst
2πf1[(R1
pm1U 12 R2' R2' )2 ( X1σ
很低;

使 • 随着负载电流增大,输入电流中的有功分量也增大,功率因数逐渐升
高;
习 • 在额定功率附近,功率因数达到
最大值。

供 • 如果负载继续增大,则导致转子
漏电抗增大(漏电抗与频率成正比
仅 ),从而引起功率因数下降。
2014/11/11
16
五、效率特性
P2
用 P2 pcu1 pcu 2 pFe p pad
供学习使 Tem
Pem 1
m1 pU12
R2 s
2f1
R1
R2 s
2
X1σ
X
2 σ
2
仅 1. Tem与U12成正比。
2. f1↑→ Tem ↓。
3. 漏电抗Xk↑→ Tem↓。

第四节三相异步电动机的功率与电磁转矩

第四节三相异步电动机的功率与电磁转矩

式中
U1——相电压; I1——相电流; R1——相定子绕组电阻;Rm—T=T2+T0
三、电磁转矩
1. 物理表达式
T=CTΦmI2 cosφ2
2. 参数表达式 (1)旋转磁场对定子绕组的作用
E1=4.44k1N1f1Φ m
U1≈E1=4.44k1N1f1Φ m
第四节 三相异步电动机的功率与电磁转矩
1.理解三相异步电动机功率的转换过程。 2. 掌握三相异步电动机的功率平衡方程式、转矩平衡方程 式以及电磁转矩的表达式。
一、三相异步电动机的功率
1.功率转换过程
功率传递的变化过程
2.功率平衡方程式
P1=Pem+Pcu1+PFe Pem = PΩ+PCu2
PΩ= P2+Pω+Ps
(2)旋转磁场对转子绕组的作用
1)转子绕组感应电动势及电流的频率
p(n1 n) p(n1 n)n1 f2 sf1 60 60n1
2)转子绕组感应电动势的大小
E2=4.44k2N2f2Φm=4.44k2N2sf1Φm=sE20 E20=4.44k2N2f1Φm
3)转子的电抗和阻抗
X2=2πf2L2
(3)转子电流和功率因数
I2 E2 Z2 sE20
2 R2 (sX 20 )2
2 2 2 Z 2 R2 X2 R2 ( sX 20 ) 2
(4)转矩的参数表达式
CsR2U12 T 2 2 f1 R ( sX ) 20 1

三相异步电动机的有功功率和额定功率的区别和联系(精)

三相异步电动机的有功功率和额定功率的区别和联系(精)

三相异步电动机的有功功率和额定功率的区别和联系:额定功率是电机运行在额定点输出的机械功率。

额定功率=sqrt(3)*额定电压*额定电流*功率因数*效率。

这是特指额定点。

视在功率=sqrt(3)*电压*电流。

有功功率=sqrt(3)*电压*电流*功率因数,这个有功功率是电机输入的电功率,它不同于视在功率是交流电压电流的相交差造成的,或者说是电机中的储能元件电感造成的。

效率是电机中的定转子铜损,铁损和机械损耗造成的,完全不同的概念。

无功功率没有功率损耗,只是有能量以磁场的形式储存在储能元件中,没有传递到机械功率输出,而效率的损耗全部转化成了热能,会使电机产生温升。

电动机从电网上吸收电能经过电磁感应定律的规定,变成电动机转子旋转,带动负载机械做功,这样就将电能转化成机械能。

电动机输出的能量为电动机的额定功率。

电动机运行时因线圈发热、轴承摩擦等很多损耗为电动机损耗。

将额定功率和所有的损耗加起来,就为电动机从电网中吸收的有功功率。

电动机将电能转化成机械能是离不开磁场的,磁场的建立就是靠电动机线圈通电形成的,那么形成磁场也需要能量,这部分的能量并没有转化成机械能和热能,相当于媒介,此部分能量为电动机的无功功率。

有功功率+无功功率=视在功率,注意:这可是矢量相加哟。

效率=额定功率÷有功功率×100%永远小于1一、有功功率、无功功率、视在功率、功率因数及峰值因子的概念1.有功功率:可以转化成其他形式能量(热、光、动能)的能量。

以P 来表示,单位为W。

一般来说,有功功率是相对于纯阻性负载来说的。

2.无功功率:功率从能量源传递到负载并能反映功率交换情况的功率就是无功功率。

以Q来表示,单位为Var。

它的产生是由于感性负载、容性负载、以及电压和电流的失真。

这种功率可导致额外的电流损失。

3.视在功率:有功功率和无功功率的几何之和(即平方和的均方根),它用来表示电气设备的容量。

以S来表示,单位为VA。

4.功率因数:正弦交流电压与电流的相位差称为功率因数角,以Φ来表示,没有单位,而这个功率因数角的余弦值称为功率因数。

(完整版)三相异步电动机电磁计算

(完整版)三相异步电动机电磁计算

(完整版)三相异步电动机电磁计算三相电机额定电压U=380V,f=50HZ,机座号Y132,输出P2=8KW, p=4极1.型号:Y132M2.输出功率:P N=8KW3.相数:m1=34.接法:5.相电压:Uφ=380V6.功电流:I w=P2×103m1UΦ=8×1033×380=7.018A7.极对数:p=28.定⼦槽数:Z1=369.转⼦槽数:Z2=3210.定⼦每极每相槽数:Qp1=Z12pm1=362×2×3=311.定⼦外径:D1=21cm定⼦内径:D i1=13.6cm⽓隙长度:δ=0.4mm转⼦外径:D2=13.52cm 13.6-0.04*2=13.52cm转⼦内径:D i2=4.8cm定⼦槽型:半闭⼝圆底槽定⼦槽尺⼨:b o1=0.35cm b1=0.67cm h o1=0.08cm R1=0.44cm h12=1.45cm转⼦槽形:梯形槽转⼦槽尺⼨:b o2=0.1cm b r1=0.55cm b r2=0.3cm h o2=0.05cm h r12=2.3cm12.极距:τ=πD i12p =3.1415×13.64=10.681cm13.定⼦齿距:t1=πD i1Z1=3.1415×13.636=1.187cm14.转⼦齿距:t2=πD2Z2=3.1415×13.5232=1.327cm15.⽓隙长度:δ=0.04cm16.转⼦斜槽距:b sk=t1=1.187cm17.铁芯长度:l=16cm18.铁芯有效长度:⽆径向通风道:l ef=l+2δ=16.08cm19.净铁芯长:⽆径向通风道:l Fe=K Fe l=0.95*16=15.2cmK Fe=0.95(不涂漆)20.绕组型式:单层交叉式21.并联⽀路数:a1=122.节距:1-9,2-10,11-1823.每槽导线数:由后⾯计算的数据根据公式计算为:每极磁通φ1=0.00784wb波幅系数:K A=1.46绕组系数:K dp1=0.96每相串联有效导线数:Nφ1K dp1=K z′U1×10?2K Aφ1×50f1=1.21×380×10?2 1.46×0.00784×5050=401.70 K’z取1.21每相串联导线数:Nφ1=Nφ1K dp1K dp1=401.700.96=418每槽导线数:N1‘=41812=34.83取整数:N1=3524.线规:导线并饶根数与截⾯积之积(式中的值由其后的公式算得):N1’A1′=I1a1J1=9.16271×5.19=1.7655mm2由此可通过查表知线规为:2-1.06(N-φ)25.每根导线截⾯积:A cl=0.00882cm226.槽有效⾯积:A e=A s-A i=1.1444cm2A s=2R+b s12×(h s′?h)+πR22A i=C i(2h s12+πR)C i-绝缘厚度 h-槽楔厚度 C i=0.08mm27.槽满率:k s=N s1N cl d2A e ×100%=2×35×0.0131.1444=79.5%d-绝缘导线外径 d=1.14mm28. 每相串联导线数:N φ1=Z 1N s1ma 1=35×363=42029. 绕组分布系数:K d1=sin (α2q 1)q 1sin (α2)=0.96q 1=Z 12pm=364×3=3α=2pπZ 1=2×2×180°36=20°30. 绕组短距系数:K p1=sin (β×90°)=1 β=y mq 131. 绕组系数:K dp1=K d1K p1=0.96⼆.磁路计算32. 每极磁通:?1=K E U ?2.22fN ?1K dp1=0.00784Wb =380×0.9232.22×50×420×0.96K E =0.923 K E 范围0.85-0.95 33. 定⼦齿截⾯积:A t1= b t1l Fe Z 12p =76.05cm 2 34. 转⼦齿截⾯积:A t2=b t2l Fe Z 22p=75.95cm 2b t1,b t2-定,转⼦齿宽35. 定⼦轭部截⾯积:A j1=h j ′l Fe =1.877×15.2=28.53cm 2 h j ′=D 1D i12h s +13R =3.7?(0.08+1.45+0.44)+0.443=1.87736. 转⼦轭部截⾯积:A j2=h j2′l Fe =30.65cm 2 h j2′=D 2?D i22h R 23d k =2.016因⽆通风孔d k =037. 空⽓隙⾯积:A δ=τl ef =10.681×16.08=171.8cm 2 38. 波幅系数:K A =1.46 K S =1.276 K A 由饱和系数K S 查得,开始计算时先假定K S39. 定⼦齿磁密:B t1=K A1A t1×104=1.46×0.0078476.05×104=1.505T40. 转⼦齿磁密:B t2=K A1A t2×104=1.46×0.0078475.95×104=1.507T41. 定⼦轭磁密:B j1=12×?1A j1×104=12×0.0078428.53×104=1.37T 42. 转⼦轭磁密:B j2=12×?1A j2×104=12×0.0078430.65×104=1.28T43. ⽓隙磁密:B δ=K A1A δ×104=1.46×0.00784171.8×104=0.666T44. 定⼦齿磁场强度:H T1=20.58A/cm (查表硅钢⽚磁化曲线) 45. 转⼦齿磁场强度:H t2=20.79A/cm (查表硅钢⽚磁化曲线) 46. 定⼦轭磁场强度:H j1=11.44A/cm (查表硅钢⽚磁化曲线) 47. 转⼦轭磁场强度:H j2=8.43A/cm (查表硅钢⽚磁化曲线) 48. 定⼦齿磁路计算长度:h T1′=h s1+h s2+R3=1.597cm49. 转⼦齿磁路计算长度:h T2′=h R1+h R2=2.3cm 50. 定⼦轭磁路计算长度:l j1′=π(D i1?h j1′)4p=7.51cm 51.转⼦轭部磁路计算长度:l j2′=π(D i2+h j2′)4p=2.67cm52. ⽓隙磁路计算长度:δe =δK c1K c2=0.4×1.308×1.031÷10=0.05393cm K c1=t1t1?r1δK c2=t2t2?r2δt-齿距 b0-槽⼝宽53.定⼦齿磁位降:F t1=H t1×h t1′=32.86A54.转⼦齿磁位降:F t2=H t2×h t2′=47.81A55.定⼦轭部磁位降:F j1=C1H j1l j1′=43.31AC1=0.504 定⼦轭部磁路校正系数56.转⼦轭部磁位降:F j2=C2H j2l j2′=9.23AC2=0.41 转⼦轭部磁路校正系数57.⽓隙磁位降:Fδ=0.8Bδδe×104=0.8×0.666×0.05393×104=287.34A58.饱和系数:K s=F t1+F t2+FδFδ=32.86+47.81+287.34287.34=1.28与38项⽐对59.总磁位降:F=F t1+F t2+F j1+F j2+Fδ=32.86+47.81+43.31+9.23+287.34=420.55A60.励磁电流:I m=4.44pFmN?1K dp1=4.44×2×420.553×420×0.96=3.087A61.励磁电流标⼳值:I m?=I mI w =3.0877.018=0.439962.励磁电抗标⼳值:X m?=1I m?=10.4399=2.2732三.参数计算63.线圈平均半匝长度:l c1=l e+2(d+l E′)=31.22cmd=1.5cm(直线部分伸出长) l E′=kτck对2,4极取0.58 τc-平均节距τc=10.54cm64. 线圈端部平均长度:l E =2(l E ′+d )=15.22cm 65. 线圈端部轴向投影长度:f d =l E ′sin α=3.77cm 66. 阻抗折算系数:K z =m 1(N ?1K dp1)2m 2(N ?2K dp2)2=15241式中:对笼型转⼦m 2=Z 2,N ?2=1,K dp2=1 67. 定⼦相电阻:R 1=ρ1N ?1lc1a 1N c1A c1=1.61Ωρ1-导线电阻率标⼳值:R 1?=R 1I w U ?=0.029768. 转⼦导条电阻:R B =K zK B ρB l B A B=1.1407Ω式中:K B =1.04(对铸铝转⼦) ρB -导条电阻率 l B =16cm(转⼦导条长度) A B =0.965cm 2(每根导条截⾯积) 标⼳值:R B ?=R B ×I 2U ?=1.1407×7.018380=0.021169. 转⼦端环电阻:R R =K zρR Z z D R2πp 2A R =0.3467ΩρR-端环电阻系数 D R-端环平均直径(10.7cm) A R-端环截⾯积(2.6cm2)标⼳值:R R?=R R I wU?=0.3467×7.018380=0.00670.转⼦电阻标⼳值:R2?=R B?+R R?=0.0211+0.006=0.027171.漏抗系数:C x=0.4π2fl ef(N?12pq1)(I wU?)×10?5=0.4×3.14152×50×16.08×(42022×3)(7.018380)×10?8=0.0172372.定⼦槽漏磁导:λs1=K U1λU1+K c1λc1=1.2431K U1=1 K c1=1 λU1=0.4097 λc1=0.833473.定⼦槽漏抗:X s1?=(lσ1l ef )λc1C x=(1616.08)×0.8334×0.01723=0.01429lσ1=l1(对⽆径向通风道)74.定⼦谐波漏磁导:λd1=0.0129对60°相带整数槽绕组,且23≤β≤1λd1=π218×[(5q12+1)?(14cq1+23c2?14c3q1)3q12]?K dp12式中:c-短距槽数,c=8q1(1-p)75.定⼦谐波漏抗:x d1?=m1q1τπ2δef K sλd1C x=1.8243×0.01723=0.0314376.定⼦端部漏磁导:λE1=0.67(l E-0.64τc)=5.677877.定⼦端部漏抗:X E1?=(q1l ef )λE1C x=(316.08)×5.6778×0.01723=0.0182578. 定⼦漏抗标⼳值:X 1?=X s1?+X d1?+X E1? =0.01429+0.03142+0.01825=0.0639779. 转⼦槽漏磁导:λs2=λU2+λc2=2.1754 λU2=h R0b 02=0.5(槽上部漏磁导)λL2=1.6754(槽下部漏磁导)80. 转⼦槽漏抗:X s2?=(lσ2l ef)K dp12(Z1Z 2)λs2C x =0.03862=2.2413×0.01723 l σ2=l 281. 转⼦谐波漏磁导:对笼型转⼦:λd2=∑1(k Z 2p ±1)2=0.013K=1,2,3 82.转⼦谐波漏抗:X d2=m 1q 1τK dp12πδef K sλd2C x =1.6757×0.01723=0.0288783. 转⼦端部漏磁导:λE2=0.757(l Bl 21.13+D R 2p)=2.025(对笼型转⼦)84. 转⼦端部漏抗:X E2?=q 1l efK dp12λE2C x =0.3478×0.01723=0.00599 85.转⼦斜槽漏抗:X sk=0.5(b sk t 2)2X d2=0.5×(1.1871.327)2×0.02887=0.0115586. 转⼦漏抗标⼳值:X 2?=X s2?+X d2?+X E2?+X sk ?=0.08503 87. 运⾏总漏抗:X ?=X 1?+X 2?=0.06397+0.08503=0.149四.运⾏性能计算88.满载电流有功分量:I p?=1η=10.88=1.136设η=0.88 η?效率89.满载电抗电流:I x?=σ1X?I p?2[1+(σ1X?I p?)2]=1.0281×0.149×1.1362×[1+(1.0281×0.149×1.136)2]=0.2037式中:σ1=1+I m?X1?=1+0.4399×0.06397=1.0281 90.满载电流⽆功分量:I Q?=I m?+I x?=0.4399+0.2037= 0.643691.满载电动势⽐值:K E=1?(I p?R1?+I Q?X1?)=1?(1.136×0.0297+0.6436×0.06397)=0.925与32项进⾏⽐对92.定⼦电流:I1?=√I p?2+I Q?2=√1.1362+0.64362=1.3056I1=I1?I w=1.3056×7.018=9.1627A93.转⼦导条电流:I2?=√I p?2+I x?2=√1.1362+0.20372=1.154I2=I2?I w K1=1.154×7.018×37.8=306.13AK1-电流折算系数K1=m1N?1K dp1Z2=3×420×0.9632=37.894.转⼦端环电流:I R=Z22πp I2=322×3.1415×2×306.13=779.58A95.定⼦电密:J1=I1a1N c1A c1×102=9.16271×1.76423=5.19A/mm296.线负荷:A1=m1Z?1I1πD i1=3×420×9.16273.1415×13.6=270.22Acm97.热负荷:AJ1=A1J1=1402.4498.转⼦导条电密:J B=I2A B×102=306.130.965×102=3.17A/mm299.转⼦端环电密:J R=I RA R×102=779.582.6×100=2.998A/mm2100.空载电动势⽐值:K E0=1?I m?X1?=1?0.4399×0.06397=0.9719101.空载定⼦齿磁密:B t10=K E0K E B t1=0.97190.925×1.505=1.5813T102.空载定⼦轭磁密:B j10=K E0K E B j1=0.97190.925×1.37=1.4395T103.定⼦齿单位铁损耗:p t1由B t10查表得44.02×10?3W/cm3 104.定⼦轭单位铁损耗:p j1由B j10查表的36.7×10?3W/cm3 105.定⼦齿体积:V t1=2pA t1h t1′=485.68cm3106.定⼦轭体积:V j1=4pA j1l j1′=1713.73cm3107.铁损耗:P Fe=k1pt1V t1+k2pj1V j1对半闭⼝槽:k1=2.5,k2=2P Fe=(2.5×44.02×485.68+2×36.7×1713.73)×10?3= 179.24W标⼳值:P Fe?=P FeP N×103=0.0224108.基本铁耗:P Fe1?=pt1V t1+pj1V j1 P N×10=44.02×10?3×485.68+36.7×10?3×1713.738000=0.01053109.定⼦电阻损耗:P cu1?=I1?2R1?=1.30562×0.0297=0.0506P cu1=P cu1?P N ×103=0.0506×8000=404.8W110. 转⼦电阻损耗:P cu2?=I 2?2R 2=1.1542×0.0271=0.0361 P cu2=P cu2P N ×103=288.8W 111. 风摩损耗:P fv *参考试验值确定为0.01 P fv =P fv ?P N ×103=0.01×8000=80W 112. 杂散损耗:P s *对铸铝转⼦可取0.02P s =P s ?P N ×103=0.02×8000=160W113. 总损耗:∑P ?=P cu1?+P cu2?+P Fe ?+P fv ?+P s ?=0.0506+0.0361+0.0224+0.01+0.02=0.1391 114. 输⼊功率:P 1 =1+∑P =1.1391 115. 满载效率:η=1?∑P ?P 1=10.13911.1391=0.878η?η′η=0.878?0.880.878=?0.0023>?0.005与88项假定值⽐对116. 功率因数:cos φ=1I 1?η=11.3056×0.878=0.872117. 满载转差率:S N =P cu2?P em=0.03611.07797=0.0335P em *-⽓隙电磁功率P em ?=P 1??P cu1??P Fe1?=1.07797118. 额定转速:n N =60f (1?S N )p=60×50×(1?0.0335)2=1449.75r/min119. 最⼤转矩倍数: T max ?=N2×(R 1+√R 1+X ?2)=2×(0.0297+√0.02972+0.1492)=2.66五.起动性能计算I st =(2.5~3.5)T max ?×I w =61.8A120. 起动时槽磁动势: F st =0.707I stN ?1a 1×(K V1+K dp1K d1Z1Z2)√K E0=3071.09A121. 虚拟磁密:B L =F st ×10?41.6δβc=5.0241TβL =0.64+2.5√δt 1+t 2=0.955122. 起动漏磁饱和系数:K as =0.418123. 定⼦槽⼝宽增⼤:?b 01=(t 1?b 01)(1?k as )=0.4874 124. 转⼦槽⼝宽增⼤:?b 02=(t 2?b 02)(1?k as )=0.7141 125. 定⼦槽上部漏磁导减少:?λU1=h r0?0.58h r1b 01(b 01b 01+1.5b 01)=0.1836126. 转⼦槽上部漏磁导减少:?λU2=h R0b 02(b 02b 02+b 02)=0.4397127. 起动定⼦槽漏磁导:λs1st =K U1(λU1??λU1)+K c1λc1=1.0596 128. 起动定⼦槽漏抗标⼳值:X s1st ?=λs1st λs1X s1?=1.05961.2431×0.01429=0.01218129. 起动定⼦谐波漏抗标⼳值:X d1st ?=k as X d1?=0.01218 130. 定⼦起动漏抗标⼳值:X 1st ?=X s1st ?+X d1st ?+X E1? =0.01218+0.01313+0.01825=0.04356131. 挤流转⼦导条相对⾼度:ε=2πh B √b Bb s fρB ×109=1.551h B -转⼦导条⾼度(cm ) b Rb S-转⼦导条宽与槽宽之⽐,对铸铝转⼦为1ρB -转⼦导条电阻率 h B =2.35cm 132. 导条电阻等效⾼度:h ρR =h B φ(ε)k a=2.351.45×1=1.621133. 槽漏抗等效⾼度:h ρx =h B ψ(ε)k a =2.35×0.78×1=1.833 134. 挤流电阻增⼤系数:K R =(1+a )φ2(ε)1+a [2φ(ε)?1]=1.308a =b 1b 2135. 挤流漏抗减少系数:K x =b 2(1+a )2ψ(ε)b px(1+a ′)2(K r1′K r1)=0.888a ′=b 1b pxb px =b 1+(b 2??b 1)ψ(ε)136. 起动转⼦槽下部漏磁导:λL2st =K x λL2=K X ×2h 1b 0+b 1+λL =1.4875 λL =4β(1+α)k τ1137. 起动转⼦槽漏磁导:λs2(st )=(λU2??λU2)+λL2st =1.5478 138. 起动转⼦槽漏抗标⼳值:X s2st ?=λs2st λs2×X s2?=0.0275139. 起动转⼦谐波漏抗标⼳值:X d2st ?=k as X d2?=0.01207 140. 起动转⼦斜槽漏抗标⼳值:X skst ?=k as X sk ?=0.0048 141. 转⼦起动漏抗标⼳值:X 2st ?=X s2st ?+X d2st ?+X E2?+X skst ?=0.05036 142. 起动总漏抗标⼳值:X st ?=X 1st ?+X 2st ?=0.04356+0.05036=0.09392143. R Bst ?=[k R(l efN V2b 02l B)+l B ?(l f ?N V2b 02)l B]×R B ?=0.0276144. 转⼦起动电阻标⼳值:R 2st ?=R Bst ?+R R ?=0.0276+0.006=0.0336 145. 起动总电阻标⼳值:R st ?=R 1?+R 2st ?=0.0297+0.0336=0.0633 146. 起动总阻抗:Z st ?=√R st ?2+X st ?2=0.1133147. 起动电流:I st =I KwZ st=7.0180.1133=61.94A61.94?61.861.94=0.0023<0.005148. 起动电流倍数:I st ?=61.949.1627=6.76 149. 起动转矩倍数:T st ?=R 2(st )Z st ?2(1?S N )=0.03360.11332×(1?0.0335)=2.53。

电机功率的计算公式

电机功率的计算公式

电机功率的计算公式扬程40米,流量45L/S 也就是每秒要将45L的水提升40米假设管径是100MM,水的流速是(45*10^-3)/(π/4*10^-2)=5.732M/S 水每秒获得的能量是动能+势能动能E1=0.5*45*5.732^2=4237J 势能E2=45*9.8*40=17640J 总能量E=E1+E2=21877J 所需功率=21877W=21.877KW 假设加压泵的效率η=0.8 则电机所需功率P=21.877/0.8=27KW1、三相交流异步电动机的效率:η=P/(√3*U*I*COSφ)其中,P—是电动机轴输出功率U—是电动机电源输入的线电压I—是电动机电源输入的线电流COSφ—是电动机的功率因数2、电动机的输出功率:指的是电动机轴输出的机械功率3、输入功率指的是:电源给电动机输入的有功功率:P=√3*U*I*COSφ(KW)其时,这个问题有些含糊,按说电动机的输入功率应该指的是电源输入的视在功率:S==√3*U*I 这个视在功率包括有功功率(电动机的机械损耗、铜损、铁损等)、无功功率。

历史老照片不能说的秘密慈禧军阀明末清初文革晚清皮带输送机电机功率计算公式p=(kLv+kLQ+_0.00273QH)K KW 其中第一个K为空载运行功率系数,第二个K为水平满载系数,第三个K为附加功率系数。

L为输送机的水平投影长度。

Q为输送能力T/H.向上输送取加号向下取负号。

有功功率=I*U*cosφ即额定电压乘额定电流再乘功率因数单位为瓦或千瓦无功功率=I*U*sinφ,单位为乏或千乏. I*U 为容量,单位为伏安或千伏安. 无功功率降低或升高时,有功功率不变.但无功功率降低时,电流要降低,线路损耗降低,反之,线路损耗要升高. 功率因数的角度怎么预算?许多用电设备均是根据电磁感应原理工作的,如配电变压器、电动机等,它们都是依靠建立交变磁场才能进行能量的转换和传递。

为建立交变磁场和感应磁通而需要的电功率称为无功功率,因此,所谓的"无功"并不是"无用"的电功率,只不过它的功率并不转化为机械能、热能而已;因此在供用电系统中除了需要有功电源外,还需要无功电源,两者缺一不可。

三相异步电动机输出功率公式

三相异步电动机输出功率公式

三相异步电动机输出功率公式说到三相异步电动机,大家可能会想:“这玩意儿跟我有什么关系?”其实啊,别小看这个机器,它可是咱们生活中无处不在的小帮手。

无论是在工厂里轰鸣的机械,还是家里那个咕噜咕噜转的洗衣机,没它可真不行。

哎呀,你瞧,电动机的输出功率可不是随便说说的,它可是个讲究,咱们今天就来聊聊它的输出功率公式,保证让你听得明明白白的。

说起输出功率,这里头可有个大学问。

你想啊,电动机工作的时候可不能只靠电,就像咱们吃饭得有米,电动机要想“活”得好,它得有功率。

功率,简单说就是它能干多少活儿。

就像咱们上班,如果工资不高,工作积极性肯定低嘛。

电动机也是,功率高了,干的活儿就多,运转得也顺畅。

这输出功率的公式可真不是随便来的,它有个精妙的计算法,听着就让人觉得科学感满满。

这里有个公式,咱们可以简单聊聊,电动机的输出功率等于电流乘以电压,再乘以一个效率系数。

哎,听起来是不是有点复杂?别担心,我来给你拆开说。

电流就像是河里的水,流得越多,动力越足;电压则像是水的高度,水位高,冲劲儿更猛。

你看,这两者结合起来,就像是把力量和速度都调动起来了。

然后,这个效率系数呢,基本上就是告诉你,电动机能把多少电能转化为机械能。

就好比咱们做事,得用对劲儿,效率才高嘛。

再说了,三相异步电动机最有趣的地方在于它的运行原理。

它的运转就像是一个旋转的舞蹈,三相电源供电,电动机的转子在电磁场的作用下不断旋转,发出那种嗡嗡的声音,听着就让人觉得有点儿科技感。

哎,真的是“运转如飞”,跟过山车似的,刺激又让人心跳加速。

可别小看这声音,里面可蕴藏着不少知识呢,像是输出功率的提升,跟电动机的设计、材料都有关系,真是“天时地利人和”齐全了。

提到输出功率,咱也不能忽视电动机的负载情况。

负载就像你背的书包,重了就得用更多力气,电动机也是一样。

负载重,功率自然得上去;负载轻,功率也得适当调低。

你说这不是因势利导嘛,电动机就跟咱们一样,得看情况而定。

不过,别忘了,电动机还得保持一定的运行效率,才能不被“拖累”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三相异步电动机功率的计算
2008-4-29 0:40:40
现场找不到功率表,要求以钳式电流表代替。

即用电流表套住一根主电缆,测量其交流电流值,并换算为功率。

※工人师傅的经验公式为:P=0.5*I 其中:P为电机有功功率,单位千瓦;I为实测电流,单位安培。

然则问题是,何以证明此经验公式?
三、问题的研究
电机是普通三相异步电动机,Y型接法。

额定电压380V,额定功率7.5KW,额定电流15.2A。

通过经验可知,三相电机总功率等于3乘以每相的功率,即p=3*u*i,其中:
p为三相电机总功率,单位瓦
u为相电压,单位伏
i为相电流,单位安注:暂用字母大小写区分相电压与线电压
又查阅资料知,线电压等于1.732倍相电压,线电流等于相电流,即p=3*(U/1.732)*I,其中:
p为三相电机总功率,单位瓦
U为线电压,即380伏
I为线电流,即钳式电流表实测电流,单位安
故:得到公式p=1.732*U*I
四、问题的解决
综上,P=1.732*U*I*cosφ/1000,其中:
P为三相电机有功功率,单位千瓦
U为线电压,即380伏
I为线电流,即钳式电流表实测电流,单位安
cosφ为功率因数,针对电机通常取0.8
故:P=0.52*I≈0.5*I(KW),公式得证。

五、问题的补充
1 三相四线制
三相四线制供电方式,即国际电工委员会(IEC)规定的TN-C方式,是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE表示。

故三根相线、一根中性线。

三相五线制供电方式,即国际电工委员会(IEC)规定的TN-S方式,是把工作零线N和专用保护线PE严格分开的供电系统。

故三根相线、一根工作零线、一根保护零线。

单相三线制是三相五线制的一部分,即根据国际电工委员会(IEC)标准和国家标准而定的TN—S系统,在配电中出现了N线和PE线。

故相线、零线、接地线。

三相三线制一般常用于电力输送和工厂强力电源供电,它不是国际电工委员会(IEC)规定的方式。

2 Y型接法
采用三相三线制的三角形接法,为三组线圈头尾相接,适用于4.5KW以下电动机
采用三相四线制的Y形接法又称星形接法,为三组线圈的三个尾相接,形成一个Y形,适用于4.5KW以上电动机
3 线电压,线电流
相电压是指一相负载对地的电压,在三相四线制中,也就是相线与中性线之间的电压。

线电压是相与相的电压,在三相四线制中,也就是各相线之间的电压。

故在采用三相四线制的Y形接法中,线电压等于1.732倍相电压,线电流等于相电流。

另外,在采用三相三线制的三角形接法中,线电压等于相电压,线电流等于1.732倍相电流。

4 功率因数
电感性负载的电压和电流的相量间存在着一个相位差,通常用相位角φ表示,而功率因数就是cosφ。

空载时,定子电流基本上用来产生主磁通,有功功率很小,功率因数也很低;
随着负载电流增大,输入电流中的有功分量也增大,功率因数逐渐升高;
在额定功率附近,功率因数达到最大值。

针对三相电机取0.8。

如果负载继续增大,则导致转子漏电抗增大(漏电抗与频率正比),从而引起功率因数下降
5 满功率
计算切宽*切深*进给,单位立方厘米/分钟。

相关文档
最新文档