数轴 相反数 绝对值 习题及答案

合集下载

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

七年级数学上册数学 2.4.2 绝对值与相反数-绝对值(六大题型)(解析版)

2.4.2绝对值与相反数——绝对值分层练习考察题型一求一个数的绝对值1.下列各对数中,互为相反数的是()A .(5)-+与(5)+-B .12-与(0.5)-+C .|0.01|--与1(100--D .13-与0.3【详解】解:A .(5)5-+=-,(5)5+-=-,不合题意;B .(0.5)0.5-+=-,与12-相等,不合题意;C .|0.01|0.01--=-,11()0.01100100--==,0.01-与0.01互为相反数,符合题意;D .13-与0.3不是相反数,不合题意.故本题选:C .2.若m 、n 互为相反数,则|5|m n -+=.【详解】解:m 、n 互为相反数,|5||5|5m n -+=-=.故本题答案为:5.3.比较大小:3(15--)| 1.35|--.(填“<”、“>”或“=”)【详解】解:3(1) 1.65--=,| 1.35| 1.35--=-,因为1.6 1.35>-,所以3(15--)| 1.35|>--.故本题答案为:>.考察题型二绝对值的代数意义1.最大的负整数是,绝对值最小的数是.【详解】解:最大的负整数是1-,绝对值最小的数是0.故本题答案为:1-,0.2.如果|2|2a a -=-,则a 的取值范围是()A .0a >B .0aC .0aD .0a <【详解】解:|2|2a a -=- ,20a ∴-,解得:0a .故本题选:C .3.如果一个数的绝对值是它的相反数,则这个数是()A .正数B .负数C .正数或零D .负数或零【详解】解: 一个数的绝对值是它的相反数,设这个绝对值是a ,则||0a a =-,0a ∴.故本题选:D .4.已知实数满足|3|3x x -=-,则x 不可能是()A .1-B .0C .4D .3【详解】解:|3|3x x -=- ,30x ∴-,即3x .故本题选:C .5.下列判断正确的是()A .若||||a b =,则a b=B .若||||a b =,则a b =-C .若a b =,则||||a b =D .若a b =-,则||||a b =-【详解】解:若||||a b =,则a b =-或a b =,所以A ,B 选项错误;若a b =,则||||a b =,所以C 选项正确;若a b =-,则||||a b =,所以D 选项错误.故本题选:C .6.在数轴上有A 、B 两点,点A 在原点左侧,点B 在原点右侧,点A 对应整数a ,点B 对应整数b ,若||2022a b -=,当a 取最大值时,b 值是()A .2023B .2021C .1011D .1【详解】解: 点A 在点B 左侧,0a b ∴-<,||2022a b b a ∴-=-=,a 为负整数,则最大值为1-,此时(1)2022b --=,则2021b =.故本题选:B .7.若x 为有理数,||x x -表示的数是()A .正数B .非正数C .负数D .非负数【详解】解:(1)若0x 时,||0x x x x -=-=;(2)若0x <时,||20x x x x x -=+=<;由(1)(2)可得:||x x -表示的数是非正数.故本题选:B .8.如果||||||m n m n +=+,则()A .m 、n 同号B .m 、n 异号C .m 、n 为任意有理数D .m 、n 同号或m 、n 中至少一个为零【详解】解:当m 、n 同号时,有两种情况:①0m >,0n >,此时||m n m n +=+,||||m n m n +=+,故||||||m n m n +=+成立;②0m <,0n <,此时||m n m n +=--,||||m n m n +=--,故||||||m n m n +=+成立;∴当m 、n 同号时,||||||m n m n +=+成立;当m 、n 异号时,则:||||||m n m n +<+,故||||||m n m n +=+不成立;当m 、n 中至少一个为零时,||||||m n m n +=+成立;综上,如果||||||m n m n +=+,则m 、n 同号或m 、n 中至少一个为零.故本题选:D .考察题型三解方程:()0x a a =>,x a =±;0x =,0x =1.若|| 3.2a -=-,则a 是()A .3.2B . 3.2-C . 3.2±D .以上都不对【详解】解:|| 3.2a -=- ,|| 3.2a ∴=,3.2a ∴=±.故本题选:C .2.若0a <,且||4a =,则1a +=.【详解】解:若0a <,且||4a =,所以4a =-,13a +=-.故本题答案为:3-.3.已知||4x =,||5y =且x y >,则2x y -的值为()A .13-B .13+C .3-或13+D .3+或13-【详解】解:||4x = ,||5y =且x y >,y ∴必小于0,5y =-,当4x =或4-时,均大于y ,①当4x =时,5y =-,代入224513x y -=⨯+=;②当4x =-时,5y =-,代入22(4)53x y -=⨯-+=-;综上,23x y -=-或2x y -=13+.故本题选:C .4.已知||4m =,||6n =,且||m n m n +=+,则m n -的值是()A .10-B .2-C .2-或10-D .2【详解】解:||m n m n +=+ ,||4m =,||6n =,4m ∴=,6n =或4m =-,6n =,462m n ∴-=-=-或4610m n -=--=-.故本题选:C .5.若|2|1x -=,则x 等于.【详解】解:根据题意可得:21x -=±,当21x -=时,解得:3x =;当21x -=-时,解得:1x =;综上,3x =或1x =.故本题答案为:1或3.6.小明做这样一道题“计算|2-★|”,其中★表示被墨水染黑看不清的一个数,他翻开后面的答案得知该题的结果为6,那么★表示的数是.【详解】解:设这个数为x ,则|2|6x -=,所以26x -=或26x -=-,①26x -=,62x -=-,4x -=,4x =-;②26x -=-,62x -=--,8x -=-,8x =;综上,4x =-或8.故本题答案为:4-或8.考察题型四绝对值的化简1.若1a <,|1||3|a a -+-=.【详解】解:1a < ,10a ∴->,30a ->,∴原式1342a a a =-+-=-.故本题答案为:42a -.2.若|||4|8x x +-=,则x 的值为.【详解】解:|||4|8x x +-= ,∴当4x >时,48x x +-=,解得:6x =;当0x <时,48x x -+-=,解得:2x =-.故本题选:2-或6.3.已知20212022x =,则|2||1||||1||2|x x x x x ---+++-+的值是.【详解】解:20212022x = ,即01x <<,20x ∴-<,10x -<,10x +>,20x +>,|2||1||||1||2|x x x x x ∴---+++-+2(1)12x x x x x =---+++--2112x x x x x =--++++--x =20212022=.故本题答案为:20212022.4.若a 、b 、c 均为整数,且||||1a b c a -+-=,则||||||a c c b b a -+-+-的值为()A .1B .2C .3D .4【详解】解:a ,b ,c 均为整数,且||||1a b c a -+-=,||1a b ∴-=,||0c a -=或||0a b -=,||1c a -=,①当||1a b -=,||0c a -=时,c a =,1a b =±,所以||||||||||||0112a c c b b a a c a b b a -+-+-=-+-+-=++=;②当||0a b -=,||1c a -=时,a b =,所以||||||||||||1102a c c b b a a c c a b a -+-+-=-+-+-=++=;综上,||||||a c c b b a -+-+-的值为2.故本题选:B .5.用abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,当||||||a b b c c a -+-+-取得最大值时,这个三位数的最小值是.【详解】解:abc 表示一个三位数,已知这个三位数的低位上的数字不大于高位上的数字,a b c ∴,||||||a b b c c a ∴-+-+-a b b c a c =-+-+-22a c =-2()a c =-,当||||||a b b c c a -+-+-取得最大值时,即a c -取得最大值,而a 、b 、c 是自然数,9a ∴=,0c =,∴这个三位数的最小值为900.故本题答案为:900.【根据数轴上的点的位置化简绝对值】6.已知a 、b 、c 的大致位置如图所示:化简||||a c a b +-+的结果是()A .2a b c ++B .b c -C .c b -D .2a b c--【详解】解:由题意得:0b a c <<<,且||||c a >.0a c ∴+>,0a b +<,∴原式()a c a b =+---a c a b =+++2a b c =++.故本题选:A .7.已知a ,b ,c 的位置如图所示,则||||||a a b c b ++--=.【详解】解:由数轴可知:0b a c <<<,且||||||b c a >>,0a b ∴+<,0c b ->,||||||a abc b ∴++--()()a abc b =--+--a a b c b=----+2a c =--.故本题答案为:2a c --.8.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c -0,a b +0,c a -0.(2)化简:||||||b c a b c a -++--.【详解】解:(1)由图可知:0a <,0b >,0c >且||||||b a c <<,所以0b c -<,0a b +<,0c a ->,故本题答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a=----+2b =-.【当0a >,1||aa =,当0a <时,1||aa =-】9.已知0ab ≠,则||||a b a b +的值不可能的是()A .0B .1C .2D .2-【详解】解:①当a 、b 同为正数时,原式112=+=;②当a 、b 同为负数时,原式112=--=-;③当a 、b 异号时,原式110=-+=.故本题选:B .10.已知a ,b 为有理数,0ab ≠,且2||3||a bM a b =+.当a ,b 取不同的值时,M 的值等于()A .5±B .0或1±C .0或5±D .1±或5±【详解】解:由于a ,b 为有理数,0ab ≠,当0a >、0b >时,且2||3235||a b M a b =+=+=;当0a >、0b <时,且2||3231||a b M a b =+=-=-;当0a <、0b >时,且2||3231||a b M a b =+=-+=;当0a <、0b <时,且2||3235||a b M a b =+=--=-.故本题选:D .11.已知a ,b ,c 为非零有理数,则||||||a b c a b c ++的值不可能为()A .0B .3-C .1-D .3【详解】解:当a 、b 、c 没有负数时,原式1113=++=;当a 、b 、c 有一个负数时,原式1111=-++=;当a 、b 、c 有两个负数时,原式1111=--+=-;当a 、b 、c 有三个负数时,原式1113=---=-;原式的值不可能为0.故本题选:A .12.若||||||a b ab x a b ab =++,则x 的最大值与最小值的和为()A .0B .1C .2D .3【详解】解:当a 、b 都是正数时,1113x =++=;当a 、b 都是负数时,1111x =--+=-;当a 、b 异号时,1111x =--=-;则x 的最大值与最小值的和为:3(1)2+-=.故本题选:C .13.已知:||2||3||a b b c c a m c a b+++=++,且0abc >,0a b c ++=.则m 共有x 个不同的值,若在这些不同的m 值中,最大的值为y ,则(x y +=)A .4B .3C .2D .1【详解】解:0abc > ,0a b c ++=,a ∴、b 、c 为两个负数,一个正数,a b c +=-,b c a +=-,c a b +=-,∴||2||3||c a b m c a b---=++,∴分三种情况说明:当0a <,0b <,0c >时,1234m =--=-,当0a <,0c <,0b >时,1230m =--+=,当0a >,0b <,0c <时,1232m =-+-=-,m ∴共有3个不同的值,4-,0,2-,最大的值为0,3x ∴=,0y =,3x y ∴+=.故本题选:B .14.已知||1abc abc =,那么||||||a b c a b c++=.【详解】解:1abcabc =,0abc ∴>,a ∴、b 、c 均为正数或一个正数两个负数,①当a 、b 、c 均为正数时,1113ab c ab c ++=++=;②a 、b 、c 中有一个正数两个负数时,不妨设a 为正数,b 、c 为负数,1111ab c a b c++=--=-;综上,3ab c++=或1-.故本题答案为:3或1-.考察题型五绝对值的非负性1.任何一个有理数的绝对值一定()A .大于0B .小于0C .不大于0D .不小于0【详解】解:由绝对值的定义可知:任何一个有理数的绝对值一定大于等于0.故本题选:D .2.对于任意有理数a ,下列结论正确的是()A .||a 是正数B .a -是负数C .||a -是负数D .||a -不是正数【详解】解:A 、0a =时||0a =,既不是正数也不是负数,故本选项错误;B 、a 是负数时,a -是正数,故本选项错误;C 、0a =时,||0a -=,既不是正数也不是负数,故本选项错误;D 、||a -不是正数,故本选项正确.故本题选:D .3.式子|1|3x --取最小值时,x 等于()A .1B .2C .3D .4【详解】解:|1|0x - ,∴当10x -=,即1x =时,|1|3x --取最小值.故本题选:A .4.当a =时,|1|2a -+会有最小值,且最小值是.【详解】解:|1|0a - ,|1|22a ∴-+,∴当10a -=,即1a =,此时|1|2a -+取得最小值2.故本题答案为:1,2.5.已知|2022||2023|0x y -++=,则x y +=.【详解】解:|2022|x - ,|2023|0y +,20220x ∴-=,20230y +=,2022x ∴=,2023y =-,202220231x y ∴+=-=-.故本题答案为:1-.6.如果|3||24|y x +=--,那么(x y -=)A .1-B .5C .5-D .1【详解】解:|3||24|y x +=-- ,|3||24|0y x ∴++-=,30y ∴+=,240x -=,解得:2x =,3y =-,235x y ∴-=+=.故本题选:B .7.若|2|2|3|3|5|0x y z -+++-=.计算:(1)x ,y ,z 的值.(2)求||||||x y z +-的值.【详解】解:(1)由题意得:203050x y z -=⎧⎪+=⎨⎪-=⎩,解得:235x y z =⎧⎪=-⎨⎪=⎩,即2x =,3y =-,5z =;(2)当2x =,3y =-,5z =时,|||||||2||3||5|2350x y z +-=+--=+-=.8.若a 、b 都是有理数,且|2||1|0ab a -+-=,求1111(1)(1)(2)(2)(2022)(2022)ab a b a b a b +++⋯⋯+++++++的值.【详解】解:由题意可得:20ab -=,10a -=,1a ∴=,2b =,原式1111 (12233420232024)=+++⨯⨯⨯⨯111111112233420232024=-+-+-++-112024=-20232024=.考察题型六绝对值的几何意义1.绝对值相等的两个数在数轴上对应的两点距离为6,则这两个数是()A .6,6-B .0,6C .0,6-D .3,3-【详解】解: 绝对值相等的两个数在数轴上对应的两个点间的距离是6,∴这两个数到原点的距离都等于3,∴这两个数分别为3和3-.故本题选:D .2.绝对值不大于π的所有整数为.【详解】绝对值不大于π的所有整数为0,1±,2±,3±.故本题答案为:0,1±,2±,3±.3.绝对值小于4的所有负整数之和是.【详解】解: 绝对值小于4的所有整数是3-,2-,1-,0,1,2,3,∴符合条件的负整数是3-,2-,1-,∴其和为:3216---=-.故本题答案为:6-.4.大家知道|5||50|=-,它在数轴上的意义是表示5的点与原点(即表示0的点)之间的距离,又如式子|63|-,它在数轴上的意义是表示6的点与表示3的点之间的距离,类似地,式子|5|a +在数轴上的意义是.【详解】解:|5|a +在数轴上的意义是表示数a 的点与表示5-的点之间的距离.故本题答案为:表示数a 的点与表示5-的点之间的距离.5.计算|1||2|x x -++的最小值为()A .0B .1C .2D .3【详解】解:|1||2||1||(2)|x x x x -++=-+-- ,|1||2|x x ∴-++表示在数轴上点x 与1和2-之间的距离的和,∴当21x -时|1||2|x x -++有最小值3.故本题选:D .6.当a =时,|1||5||4|a a a -+++-的值最小,最小值是.【详解】解:当4a 时,原式5143a a a a =++-+-=,这时的最小值为3412⨯=,当14a <时,原式5148a a a a =++--+=+,这时的最小值为189+=,当51a -<时,原式51410a a a a =+-+-+=-+,这时的最小值接近为189+=,当5a -时,原式5143a a a a =---+-+=-,这时的最小值为3(5)15-⨯-=,综上,当1a =时,式子的最小值为9.故本题答案为:1,9.7.已知式子|1||2||3||4|10x x y y ++-+++-=,则x y +的最小值是.【详解】解:令12x x a ++-=,34y y b ++-=,根据绝对值几何意义:a 表示x 到1-与2两点之间的距离之和,b 表示y 到3-与4两点之间的距离之和, 当12x -,34y -时,正好有10a b +=,∴当1x =-,3y =-时,x y +的最小值为:1(3)4-+-=-.故本题答案为:4-.8.若不等式|2||3||1||1|x x x x a -+++-++对一切数x 都成立,则a 的取值范围是.【详解】解:数形结合:绝对值的几何意义:||x y -表示数轴上两点x ,y 之间的距离.画数轴易知:|2||3||1||1|x x x x -+++-++表示x 到3-,1-,1,2这四个点的距离之和.令|2||3||1||1|y x x x x =-+++-++,3x =-时,11y =,1x =-时,7y =,1x =时,7y =,2x =时,9y =,可以观察知:当11x -时,由于四点分列在x 两边,恒有7y =,当31x -<-时,711y <,当3x <-时,11y >,当12x <时,79y <,当2x 时,9y ,综上,7y ,即|2||3||1||1|7x x x x -+++-++对一切实数x 恒成立.∴a 的取值范围为7a .9.设|1|a x =+,|1|b x =-,|3|c x =+,则2a b c ++的最小值为.【详解】解:|1|2|1||3|x x x ++-++表示x 到1-、3-的距离以及到1的距离的2倍之和,当x 在1-和1之间时,它们的距离之和最小,此时26a b c ++=.故本题答案为:6.10.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.(2)如果|1|3x +=,那么x =;(3)若|3|2a -=,|2|1b +=,且数a 、b 在数轴上表示的数分别是点A 、点B ,则A 、B 两点间的最大距离是,最小距离是.(4)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-=.【详解】解:(1)数轴上表示4和1的两点之间的距离是:413-=,表示3--=,-和2两点之间的距离是:2(3)5故本题答案为:3,5;(2)|1|3x+=,x+=-,x+=或1313x=或4x=-,2故本题答案为:2或4-;(3)|3|2b+=,,|2|1a-=b=-或3b=-,∴=或1,1a5当5b=-时,则A、B两点间的最大距离是8,a=,3当1b=-时,则A、B两点间的最小距离是2,a=,1则A、B两点间的最大距离是8,最小距离是2,故本题答案为:8,2;(4)若数轴上表示数a的点位于4-与2之间,++-=++-=.a a a a|4||2|(4)(2)6故本题答案为:6.11.同学们都知道,|5(2)|--表示5与2-之差的绝对值,实际上也可理解为5与2-两数在数轴上所对的两点之间的距离.试探索(1)求|5(2)|--=;(2)同样道理|1008||1005|x x+=-表示数轴上有理数x所对点到1008-和1005所对的两点距离相等,则x=;(3)类似的|5||2|++-表示数轴上有理数x所对点到5x x-和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|5||2|7x x++-=,这样的整数是.(4)由以上探索猜想对于任何有理数x,|3||6|-+-是否有最小值?如果有,写出最小值;如果没有,x x说明理由.【详解】解:(1)|5(2)|7--=,故本题答案为:7;(2)(10081005)2 1.5-+÷=-,故本题答案为: 1.5-;(3)式子|5||2|7++-=理解为:在数轴上,某点到5x x-所对应的点的距离和到2所对应的点的距离之和为7,所以满足条件的整数x 可为5-,4-,3-,2-,1-,0,1,2,故本题答案为:5-,4-,3-,2-,1-,0,1,2;(4)有,最小值为3(6)3---=.12.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示3-和2两点之间的距离是;一般地,数轴上表示数m 和数n 的两点之间的距离等于||m n -.如果表示数a 和1-的两点之间的距离是3,那么a =.(2)若数轴上表示数a 的点位于4-与2之间,则|4||2|a a ++-的值为;(3)利用数轴找出所有符合条件的整数点x ,使得|2||5|7x x ++-=,这些点表示的数的和是.(4)当a =时,|3||1||4|a a a ++-+-的值最小,最小值是.【详解】解:(1)|14|3-=,|32|5--=,|(1)|3a --=,13a +=或13a +=-,解得:4a =-或2a =,故本题答案为:3,5,4-或2;(2) 表示数a 的点位于4-与2之间,40a ∴+>,20a -<,|4||2|(4)[(2)]426a a a a a a ∴++-=++--=+-+=,故本题答案为:6;(3)使得|2||5|7x x ++-=的整数点有2-,1-,0,1,2,3,4,5,2101234512--++++++=,故本题答案为:12;(4)1a =有最小值,最小值|13||11||14|4037=++-+-=++=,故本题答案为:7.1.将2,4,6,8,⋯,200这100个偶数,任意分为50组,每组两个数,现将每组的两个数中任意数值记作a ,另一个记作b ,代入代数式1(||)2a b a b -++中进行计算,求出其结果,50组数代入后可求得50个值,则这50个值的和的最大值是.【详解】解:当a b >时,11(||)()22a b a b a b a b a -++=-++=,当a b <时,11(||)()22a b a b b a a b b -++=-++=,1021041062007550∴+++⋯⋯+=,∴这50个值的和的最大值是7550.故本题答案为:7550.2.39121239||||||||a a a aa a a a +++⋯+的不同的值共有()个.A .10B .7C .4D .3【详解】解:当0a >,1||a a =,当0a <时,1||aa =-,按此分类讨论:当1a 、2a 、3a 、⋯、9a 均为正数时,391212399||||||||a a a aa a a a +++⋯+=;当1a 、2a 、3a 、⋯、9a 有八个为正数,一个为负数时,39121239817||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有七个为正数,两个为负数时39121239725||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有六个为正数,三个为负数时,39121239633||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有五个为正数,四个为负数时,39121239541||||||||a a a aa a a a +++⋯+=-=;当1a 、2a 、3a 、⋯、9a 有四个为正数,五个为负数时,39121239451||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有三个为正数,六个为负数时,39121239363||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有两个为正数,七个为负数时,39121239275||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 有一个为正数,八个为负数时,39121239187||||||||a a a aa a a a +++⋯+=-=-;当1a 、2a 、3a 、⋯、9a 均为负数时,391212399||||||||a a a aa a a a +++⋯+=-;所以共有10个值.故本题选:A .3.若x 是有理数,则|2||4||6||8||2022|x x x x x -+-+-+-+⋯+-的最小值是.【详解】解:当1012x =时,算式|2||4||6||2022|x x x x -+-+-+⋯+-的值最小,最小值=2|2|2|4|2|6|2|1012|x x x x -+-+-+⋯+-2020201620120=+++⋯+(20200)5062=+⨯÷20205062=⨯÷511060=.故本题答案为:511060.4.对于有理数x ,y ,a ,t ,若||||x a y a t -+-=,则称x 和y 关于a 的“美好关联数”为t ,例如,|21||31|3-+-=,则2和3关于1的“美好关联数”为3.(1)3-和5关于2的“美好关联数”为;(2)若x 和2关于3的“美好关联数”为4,求x 的值;(3)若0x 和1x 关于1的“美好关联数”为1,1x 和2x 关于2的“美好关联数”为1,2x 和3x 关于3的“美好关联数”为1,⋯,40x 和41x 关于41的“美好关联数”为1,⋯.①01x x +的最小值为;②12340x x x x +++⋯⋯+的最小值为.【详解】解:(1)|32||52|8--+-=,故本题答案为:8;(2)x 和2关于3的“美好关联数”为4,|3||23|4x ∴-+-=,|3|3x ∴-=,解得:6x =或0x =;(3)①0x 和1x 关于1的“美好关联数”为1,01|1||1|1x x ∴-+-=,∴在数轴上可以看作数0x 到1的距离与数1x 到1的距离和为1,∴只有当00x =,11x =时,01x x +有最小值1,故本题答案为:1;②由题意可知:12|2||2|1x x -+-=,12x x +的最小值123+=,34|4||4|1x x -+-=,34x x +的最小值347+=,56|6||6|1x x -+-=,56x x +的最小值5611+=,78|8||8|1x x -+-=,78x x +的最小值7815+=,......,3940|40||40|1x x -+-=,3940x x +的最小值394079+=,12340x x x x ∴+++⋯⋯+的最小值:371115...79+++++(379)202+⨯=820=,故本题答案为:820.。

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案

人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案满分:100分时间:90分钟一、选择题(每小题3分共36分)1.(2022春•沙依巴克区校级期中)下列各数中是负数的为()A.﹣1B.0C.0.2D.【答案】A【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.(2022春•明水县期末)一种食品包装袋上标着:净含量200g(±3g)表示这种食品的标准质量是200g这种食品净含量最少()g为合格.A.200B.198C.197D.196【答案】C【解答】解:∵200﹣3=197(g)∴这种食品净含量最少197g为合格故选:C.3.(2022•牡丹区三模)中国人很早开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数学史上首次正式引入负数用正、负数来表示具有相反意义的量.一次数学测试以80分为基准简记90分记作+10分那么70分应记作()A.+10分B.0分C.﹣10分D.﹣20分【答案】C【解答】解:以80分为基准简记90分记作+10分那么70分应记作:70﹣80=﹣10分故选:C.4.(2022春•朝阳区期中)某机器零件的实物图如图所示在数轴上表示该零件长度(L)合格尺寸正确的是()A.B.C.D.【答案】C【解答】解:已知图可知L的取值范围是9.8≤L≤10.2A选项表示的是L≤9.8 不正确;B选项表示的是L≥10.2 不正确;C选项表示的是9.8≤L≤10.2 正确;D选项表示的是L≥10.2或L≤9.8 不正确;故选:C.5.(2022春•杨浦区校级期中)下列说法正确的是()A.有理数都可以化成有限小数B.若a+b=0 则a与b互为相反数C.在数轴上表示数的点离原点越远这个数越大D.两个数中较大的那个数的绝对值较大【答案】B【解答】解:A、有理数是有限小数和无限循环小数所以此选项错误;B、a+b=0 两个数的和为零则这两个数互为相反数此选项正确;C、在数轴上右边的数离原点越远这个数越大左边的数离原点越远这个数越小此选项错误;D、特殊值法2>﹣3 但|2|<|﹣3| 此选项错误.故选:B.6.(2021秋•荷塘区期末)有理数a在数轴上的位置如图所示则|a﹣5|=()A.a﹣5B.5﹣a C.a+5D.﹣a﹣5【答案】B【解答】解:∵a<5∴|a﹣5|=﹣(a﹣5)=5﹣a.故选:B.7.(2022•玉屏县二模)数轴上表示数m和m+2的点到原点的距离相等则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|∴m=m+2或m=﹣(m+2)∴m=﹣1.故选:D.8.(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解答】解:∵|a﹣1|与|b﹣2|互为相反数∴|a﹣1|+|b﹣2|=0又∵|a﹣1|≥0 |b﹣2|≥0∴a﹣1=0 b﹣2=0解得a=1 b=2a+b=1+2=3.故选:A.9.(2021秋•房县期末)已知:有理数a b满足ab≠0 则的值为()A.±2B.±1C.±2或0D.±1或0【答案】C【解答】解:∵ab≠0∴a>0 b<0 此时原式=1﹣1=0;a>0 b>0 此时原式=1+1=2;a<0 b<0 此时原式=﹣1﹣1=﹣2;a<0 b>0 此时原式=﹣1+1=0故选:C.10.(2021秋•镇平县校级期末)若|a|=8 |b|=5 且a>0 b<0 a﹣b的值是()A.3B.﹣3C.13D.﹣13【答案】C【解答】解:∵|a|=8 |b|=5 且a>0 b<0∴a=8 b=﹣5∴a﹣b=13故选:C.11.有理数a b在数轴上的对应点的位置如图所示.把﹣a b0按照从小到大的顺序排列正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【答案】A【解答】解:由数轴可知a<0<b|a|<|b|∴0<﹣a<b故选:A.12.(2021秋•勃利县期末)有理数a b在数轴上的对应点如图所示则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解答】解:∵从数轴可知:b<0<a|b|>|a|∴①正确;②错误∵a>0 b<0∴ab<0 ∴③错误;∵b<0<a|b|>|a|∴a﹣b>0 a+b<0∴a﹣b>a+b∴④正确;即正确的有①④故选:B.二、填空题(每小题2分共10分)13.(2022春•南岗区校级期中)如果向东走6米记作+6米那么向西走5米记作米.【答案】-5【解答】解:向东走6米记作+6米则向西走5米记作﹣5米故答案为:﹣5.14.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉发现包装袋上标有这样一段字样:“净重800±5克”请说明这段字样的含义.【答案】一袋洗衣粉的重量在795克与805克之间.【解答】解:“净重800±5克”意思是标准为800克最多为800+5=805克最少为800﹣5=795克.故答案为一袋洗衣粉的重量在795克与805克之间.15.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度则A点表示的数为.【答案】﹣5或1【解答】解:设A点表示的数为x则|x﹣(﹣2)|=3∴x+2=±3∴x=﹣5或x=1.故答案为:﹣5或1.16.(2021秋•许昌期末)如果a的相反数是2 那么(a+1)2022的值为.【答案】1【解答】解:∵a的相反数是2∴a=﹣2∴(a+1)2022=(﹣2+1)2022=1.故答案为:1.17.(2022•宽城县一模)如图在数轴原点O的右侧一质点P从距原点10个单位的点A处向原点方向跳动第一次跳动到OA的中点A1处则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处第三次从A2点跳动到OA2的中点A3处如此跳动下去则第四次跳动后该质点到原点O的距离为.【答案】5;.【解答】解:根据题意A1是OA的中点而OA=10所以A1表示的数是10×=5;A2表示的数是10××=10×;A3表示的数是10×;A4表示的数是10×=10×=;故答案为:5;.三.解答题(共54分)18.(8分)(2021秋•荣成市期中)把下列各数填在相应的集合中:15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 π﹣1..正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.【解答】解:正数集合{15 0.81 171 3.14 π…};负分数集合{﹣﹣3.1 ﹣1.…};非负整数集合{15 171 0…};有理数集合{15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1.…}.故答案为:15 0.81 171 3.14 π;﹣﹣3.1 ﹣1.;15 171 0;15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1..19.(8分)(昌平区校级期中)画出数轴并把这四个数﹣2 4 0 在数轴上表示出来.【解答】解:在数轴上表示出来如下:20.(8分)(2021秋•太康县期末)已知|x|=3 |y|=7.(1)若x<y求x+y的值;(2)若xy<0 求x﹣y的值.【解答】解:由题意知:x=±3 y=±7(1)∵x<y∴x=±3 y=7∴x+y=10或4(2)∵xy<0∴x=3 y=﹣7或x=﹣3 y=7∴x﹣y=±1021.(10分)(2021秋•安居区期末)小虫从某点O出发在一直线上来回爬行假定向右爬行路程记为正向左爬行的路程记为负爬过的路程依次为(单位:厘米):+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中如果每爬行1厘米奖励一粒芝麻则小虫共可得到多少粒芝麻?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0所以小虫最后能回到出发点O;(2)根据记录小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm所以小虫离开出发点的O最远为12cm;(3)根据记录小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm)所以小虫共可得到54粒芝麻.22.(10分)(2021秋•常宁市期末)超市购进8筐白菜以每筐25kg为准超过的千克数记作正数不足的千克数记作负数称后的记录如下:1.5 ﹣3 2 ﹣0.5 1 ﹣2 ﹣2 ﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售为促销超市决定打九折销售求这8筐白菜现价比原价便宜了多少钱?【解答】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)答:以每筐25千克为标准这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)25×8﹣5.5=194.5(千克)答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元)583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.23.(10分)(2021秋•高新区校级期末)新华文具用品店最近购进了一批钢笔进价为每支6元为了合理定价在销售前五天试行机动价格卖出时每支以10元为标准超过10元的部分记为正不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况如表所示:第1天第2天第3天第4天第5天每支价格相对标准价格(元)+3+2+1﹣1﹣2售出支数(支)712153234(1)这五天中赚钱最多的是第天这天赚钱元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?【解答】解:(1)第1天到第5天的每支钢笔的相对标准价格(元)分别为+3 +2 +1﹣1 ﹣2则每支钢笔的实际价格(元)分别为13 12 11 9 8第1天的利润为:(13﹣6)×7=49(元);第2天的利润为:(12﹣6)×12=72(元);第3天的利润为:(11﹣6)×15=75(元);第4天的利润为:(9﹣6)×32=96(元);第5天的利润为:(8﹣6)×34=68(元);49<68<72<75<96故这五天中赚钱最多的是第4天这天赚钱96元.(2)49+72+75+96+68=360(元)故新华文具用品店这五天出售这种钢笔一共赚了360元钱.。

数轴、相反数、绝对值及综合练习

数轴、相反数、绝对值及综合练习

数轴、相反数和绝对值的综合练习一、选择题(每小题3分, 共24分)1.如图, 数轴上点A表示数a, 则-a表示的数是( )A. -1B. 0C. 1D. 22. 在0, 1, -, -1四个数中, 最小的数是( )A. 0B. 1C. -D. -13. 如图, 若|a|=|b|, 则该数轴的原点可能为( )A. A点B. B点C. C点D. D点4. 下列各对数中, 相等的是( )A. -(-)和-0.75B. +(-0.2)和-(+)C. -(+)和-(-0.01)D. -(-)和-(+)5. 一个数的相反数比它的本身小, 则这个数是( )A. 正数B. 负数C. 正数和零D. 负数和零6. 下列说法正确的是( )A. 绝对值等于3的数是-3B. 绝对值小于2的数有±2, ±1, 0C.若|a|=-a, 则a≤0D. 一个数的绝对值一定大于这个数的相反数7. 有理数m, n在数轴上的对应点如图所示, 则下列各式子正确的是( )A. m>nB. -n>|m|C. -m>|n|D. |m|<|n|8. 若a, b是两个有理数, 则下列结论: ①如果a=b, 那么|a|=|b|;②如果|a|=|b|, 那么a=b;③如果a≠b, 那么|a|≠|b|;④如果|a|≠|b|, 那么a≠b.其中一定正确的有( )A. 1个B. 2个C. 3个D. 4个二、填空题(每小题4分, 共32分)9. 计算: |-20|=.10. 若a+=0, 则a=.11. 数轴上点A表示-1, 点B表示2, 则A.B两点间的距离是.12. 将-3, -|+2|, -, -1按从小到大的顺序, 用“<”连接应当是.13. 一只小虫在数轴上先向右爬3个单位, 再向左爬7个单位, 正好停在-2的位置, 则小虫的起始位置所表示的数是.14.如图, 在数轴上点B表示的数是, 那么点A表示的数是.15. 当a=时, |a-1|+5的值最小, 最小值为.16.在数轴上点A对应的数为-2, 点B是数轴上的一个动点, 当动点B到原点的距离与到点A的距离之和为6时, 则点B对应的数为.三、解答题(共44分)17. (6分)根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数A: ,B: ;(2分)(2)观察数轴, 与点A的距离为4的点表示的数是;(4分)(3)若将数轴折叠, 使得A点与-3对应的点重合, 则B点与数对应的点重合.(6分)18. (8分)把下列各数表示在数轴上, 并用“<”连接起来:, -(-5), -0.5, 0, -|-3|, , -(+2).19. (8分)如图, 图中数轴的单位长度为1.请回答下列问题:(1)如果点A.B表示的数是互为相反数, 那么点C.D表示的数是多少?(2)如果点D.B表示的数是互为相反数, 那么点C.D表示的数分别是多少?20. (10分)(1)已知|a|=8, |b|=5, 且a<b, 试求a, b的值;(2)已知|a-3|+|2b-6|=0, 试求a-b的值.21. (12分)随着网购的快速发展, 相关的快递送达范围也越来越广泛, 惠及乡村. 某快递公司快递员骑摩托车从某快递点出发, 先向东骑行2 km到达A村, 继续向东骑行3 km到达B村, 然后向西骑行9 km到C村, 最后回到快递点.(1)以该快递点为原点, 以向东方向为正方向, 用1个单位长度表示1 km画数轴, 并在该数轴上表示出A、B、C三个村庄的位置;(2)C村离A村有多远?(3)已知摩托车行驶100 km耗油2.5升, 完成此次任务, 摩托车耗油多少升?数轴、相反数和绝对值的六种常见题型1. 在-1, , 0.618, 0, -5%, 2 021, 0.5中, 整数有________个, 分数有________个.2.有五个有理数(不能重复), 同时满足下列三个条件:(1)其中三个数是非正数;(2)其中三个数是非负数;(3)必须有质数和分数.请写出这五个数.3. 下列说法正确的是()A. 有理数是指整数、分数、正有理数、零、负有理数这五类数B. 有理数不是正数就是负数C. 有理数不是整数就是分数D. 有理数不是正数就是分数4. 把下列各数填在相应的大括号里:15, -, 0.81, -3, , -3.1, -2 022, 171, 0, 3.14.正数: { …};负数: { …};正整数: { …};负整数: { …};有理数: {…}.5. 下列说法正确的是()A. 所有的有理数都可以用数轴上的点来表示B. 数轴上的点都用来表示有理数C.正数可用原点右边的点表示, 负数可用原点左边的点表示, 零不能在数轴上表示D. 数轴上一个点可以表示不止一个有理数6. 根据如图所示的数轴, 解答下面的问题:(1)请你根据图中A, B两点的位置, 分别写出它们所表示的有理数: ____________;(2)观察数轴, 写出与点A的距离为4的点表示的数:______________;(3)若将数轴折叠, 使得点A与数-3对应的点重合, 则点B与数________对应的点重合;(4)若数轴上M, N两点间的距离为2 022(M在N的左侧), 且M, N两点经过(3)中折叠后互相重合, 求M, N两点表示的数.7. 如图, 已知A, B, C, D四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数, 则原点为点________;(2)若点B和点D表示的数互为相反数, 则原点为点________;(3)若点A和点D表示的数互为相反数, 请在数轴上标出原点O的位置.8. 如图, 一个单位长度表示2, 观察图形, 回答问题:(1)若B与D所表示的数互为相反数, 则点D所表示的数为多少?(2)若A与D所表示的数互为相反数, 则点D所表示的数为多少?(3)若B与F所表示的数互为相反数, 则点D所表示的数的相反数为多少?9. 下列说法不正确的有()①互为相反数的两个数一定不相等;②如果两个数的绝对值相等, 那么这两个数必定相等;③有理数的绝对值一定大于0;④有理数的绝对值不是负数.A. 1个B. 2个C. 3个D. 4个10. 如图, 数轴的单位长度为1, 请回答下列问题:(1)如果点A, B表示的数互为相反数, 那么点C表示的数是多少?(2)如果点D, B表示的数互为相反数, 那么点C表示的数是正数还是负数?图中所示的5个点中, 哪一个点表示的数的绝对值最小, 最小的绝对值是多少?11. 如图, A, B为数轴上的两个点, A点表示的数为-10, B点表示的数为90.(1)请写出与A, B两点距离相等的M点表示的数;(2)电子蚂蚁P从B点出发, 以3个单位长度/s的速度向左运动, 同时另一只电子蚂蚁Q从A点出发, 以2个单位长度/s的速度向右运动, 经过多长时间这两只电子蚂蚁在数轴上相距35个单位长度?12. 情境问题某工厂负责生产一批螺帽, 根据产品质量要求, 螺帽的内径可以有0.02 mm的误差.抽查5个螺帽, 超过规定内径的毫米数记作正数, 不足规定内径的毫米数记作负数, 检查结果如下表:螺帽编号①②③④⑤内径/mm +0.030 -0.018 +0.026 -0.025 +0.015(1)指出哪些产品是合乎要求的(即在误差范围内);(2)指出合乎要求的产品中哪个质量好一些(即最接近标准);拓展延伸:(3)如果对两个螺帽进行上述检查, 检查的结果分别为a和b, 请利用学过的绝对值知识指出哪个螺帽的质量好一些.。

《数轴、相反数、绝对值》专题练习(含答案)

《数轴、相反数、绝对值》专题练习(含答案)

《数轴、相反数、绝对值》专题练习(时间:90分钟 满分:100分)一、选择题(每小题3分,共30分)1.-5的绝对值为 ( )A .-5B .5C .-15D .152.-18的相反数是 ( )A .-8B .18 C .0.8 D .83.在下面所画的数轴中,你认为正确的数轴是 ( )4.下列说法正确的是 ( )A .正数与负数互为相反数B .符号不同的两个数互为相反数C .数轴上原点两旁的两个点所表示的数互为相反数D .任何一个有理数都有它的相反数5.数轴上的点A ,B 位置如图所示,则线段AB 的长度为 ( )A .-3B .5C .6D .76.若a =7,b =5,则a -b 的值为 ( )A .2B .12C .2或12D .2或12或-12或-27.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .44-=B .1122= C .00= D . 1.5 1.5-=-9.如果有理数a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,d是倒数等于它本身的数,那么式子a-b+c2-d的值是( )A.-2 B.-1 C.0 D.110.如果abcd<0,a+b=0,cd>0,那么这四个数中的负因数至少有( )A.4个B.3个C.2个D.1个二、填空题(每小题3分,共24分)11.数轴上最靠近-2且比-2大的负整数是______.12.-112的相反数是______;-2是______的相反数;_______与110互为倒数.13.数轴上表示-2的点离原点的距离是______个单位长度;表示+2的点离原点的距离是______个单位长度;数轴上与原点的距离是2个单位长度的点有______个,它们表示的数分别是______.14.绝对值小于π的非负整数是_______.15.数轴上,若A,B表示互为相反数的两个点,并且这两点的距离为8,则这两点所表示的数分别是______和_______.16.写出一个x的值,使1x =x-1成立,你写出的x的值是______.17.若x,y是两个负数,且x<y,那么x_______y.18.如图,数轴上的A,B,C三点所表示的数分别是a,b,c,其中AB=BC,若a>b>c,则该数轴的原点O的位置应该在______.三、解答题(共46分)19.(5分)分别写出下列各数的绝对值:-135,-(+6.3),+(-32),12,312.20.(5分)(1)如图,根据数轴上各点的位置,写出它们所表示的数:(2)用数轴上的点表示下列各数,并用“<”号把下列各数连接起来.-132,4,2.5,0,1,-(-7),-5,-112.21.(6分)七(4)班在一次联欢活动中,把全班分成5个队参加活动,游戏结束后,5个队的得分如下:A队:-50分;B队:150分;C队:-300分;D队:0分;E队:100分.(1)将5个队按由低分到高分的顺序排序;(2)把每个队的得分标在数轴上,并标上代表该队的字母;(3)从数轴上看A队与B队相差多少分?C队与E队呢?22.(6分)如图是一个长方体纸盒的展开图,请把-5,3,5,-1,-3,1分别填入六个长方形中,使得按虚线折成长方体后,相对面上的两数互为相反数.23.(8分)在数轴上,表示数x 的点与表示数1的点的距离等于1,其几何意义可表示为:1x -=1,这样的数x 可以是0或2.(1)等式2x -=2的几何意义可仿上解释为:在数轴上____________________________,其中x 的值可以是______________.(2)等式3x +=2的几何意义可仿上解释为:在数轴上____________________________,其中x 的值可以是______________.(3)在数轴上,表示数x 的点与表示数5的点的距离等于6,其中x 的值可以是_______,其几何意义可以表示为_______.24.(8分)(1)5的相反数是-5,-5的相反数是5,那么-x 的相反数是_______,m +12n 的相反数是_______.(2)数轴上到点2和点6距离相等的点表示的数是4,有这样的关系4=12(2+6),那么到点100和到点999距离相等的点表示的数是_______;到点m 和点-n 距离相等的点表示的数是_______.(3)数轴上点4和点9之间的距离为5个单位,有这样的关系5=9-4,那么点10和点-3之间的距离是_______;点m 和点n 之间的距离是_______.25.(6分)设0a b c ++=,0abc >,求b c c a a b a b c+++++的值。

数轴、相反数、绝对值 (讲义及答案)

数轴、相反数、绝对值   (讲义及答案)

数轴、相反数、绝对值(讲义)➢课前预习1.为了表示相反意义的量,我们可以把其中一个量规定为正的,用正数来表示,而把与这个量意义相反的量规定为负的,用负数来表示.请根据上述内容回答问题:(1)如果规定向东为正,那么向东走5 m可记作+5 m,向西走8 m可记作_____m.(2)一种袋装食品标准净重为200 g,质监工作人员为了了解该种食品每袋的净重与标准的误差,把食品净重205 g记为+5 g,那么食品净重197 g就记为_____g.2.正数可分为正整数和正分数,那么负数也可以分为负整数和负分数.比如:-2,-5等都是负整数,而-1.5,12-都是负分数.请将下列各数进行分类:3,-2.5,3.14,32-,-9,100,0.其中属于整数的有:__________________________________;其中属于分数的有:__________________________________;其中属于正数的有:__________________________________;其中属于负数的有:__________________________________.3.如图,点A表示小明的家,动物园在小明家西边500米,书店在小明家东边500米,车站在书店东边200米,小明从动物园出发向东走1 000米,到达_________;动物园和书店到小明家的距离都是_______米;小明从家出发,走了500米,可以到达_________________;动物园和车站之间的距离为__________米.DCA1. _______与_______统称为有理数.2. 有理数的分类:有理数_________________________________________________⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎨⎪⎧⎪⎨⎪⎩⎪⎩_________________________________________________有理数⎧⎧⎨⎪⎩⎪⎪⎪⎨⎪⎪⎪⎧⎨⎪⎩⎩ 3. 非正数:_________________;非负数:________________. 非正整数:_______________;非负整数:______________. 4. 数轴的定义:规定了_______、________、_________的一条数轴.任何一个______都可以用数轴上的一个点来表示.5.数轴的作用:__________________、___________________、___________________________.6. 利用数轴比较大小:数轴上两个点表示的数,越往右数越____,越往左数越_____,右边的总比左边的______.正数_____0,负数_______0,正数________负数.7. 相反数的定义:__________________的两个数,互为相反数.特别地,____________________. 互为相反数的两个数,和为0.8. 绝对值的定义:在________上,一个数所对应的点与原点的__________叫做这个数的绝对值. 9. 绝对值法则:正数的绝对值是_________;___________________________;___________________________.1. 若上升5 m 记作+5 m ,则-8 m 表示__________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作+5℃,那么零下2℃记作___________;太平洋中的马里亚纳海沟深达11 034 m ,可记作海拔-11 034 m (即低于海平面11 034 m ),则比海平面高50 m 的地方,它的高度记作海拔___________,比海平面低30 m 的地方,它的高度记作海拔___________. 2. 选出下列不具有相反意义的量( )A .气温升高4℃与气温为12℃B .胜3局与负4局C .转盘逆时针转4圈与顺时针转6圈D .支出5万元与收入3万元3. 有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A .+2B .-3C .+3D .+44. 如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:mm ),其中不合格的是( ) A .Φ45.02B .Φ44.9C .Φ44.98D .Φ45.015. 把下列各数填入它所在的集合里:-2,7,32-,0,2 020,0.618,3.14,-1.732,-5,+3.①正数集合:{__________________________________…};②负数集合:{__________________________________…}; ③整数集合:{__________________________________…}; ④非正数集合:{________________________________…}; ⑤非负整数集合:{______________________________…}; ⑥有理数集合:{________________________________…}.6.7. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b0aA .0<a <bB .a <0<bC .b <0<aD .a <b <08. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.9. 在数轴上大于-4.12的负整数有______________________.10. 到原点的距离等于3的数是____________.11. 数轴上,将表示-2的点向左移动两个单位后得到点A ,与点A 距离为3个单位的点对应的数是_________.12. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米13. 填空: 13+的相反数是_____;-3.5的相反数是_____;(1)--的相反数是_____;(2)+-的相反数是_____;0的相反数是_____. 14. A ,B 是数轴上两点,线段AB 上的点表示的数中,有互为相反数的是( )A .B AB .B AC .B AD .B A15. 下列各组数中,互为相反数的两个数是( )A .-3和+2B .5和15C .-6和6D .13-和1216. 下列化简不正确的是( )A .( 4.9) 4.9--=+B .( 4.9) 4.9-+=-C .[]( 4.9) 4.9-+-=+D .[]( 4.9) 4.9+-+=+ 17. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数18. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b按照从小到大的顺序排列正确的是( )aA .b a a b -<-<<B .b a b a >->->C .b a a b -<<-<D .b b a a -<<-<19. 填空:5.3-=______;21+=_______;5--=_______;若x <0,则x =_______,x -=_______; 若m <n ,则m n -=________. 20. 下列各数:-2,31+,3-,0,2-+,-(-2),2--,其中是正数的有_______________________________. 21. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数22. 下列说法正确的是( )A .一个数的绝对值一定大于它本身B .只有正数的绝对值等于它本身C .负数的绝对值是它的相反数D .一个数的绝对值是它的相反数,则这个数一定是负数 23. 下列说法正确的是( )A .所有的有理数都可以用数轴上的点来表示B .绝对值等于它相反数的数是负数C .如果两个数的绝对值相等,那么这两个数相等D .相反数等于它本身的数是非负数24. 请判断下列说法的正误.(对的打“√”,错的打“×”)(1)所有的有理数都能用数轴上的点表示 ( )(2)符号不同的两个数互为相反数 ( ) (3)有理数分为正数和负数 ( ) (4)最小的正数是1 ( ) (5)最大的负整数是-1 ( ) (6)绝对值最小的数是0 ( ) (7)绝对值等于它本身的数是0和1 ( ) (8)相反数等于它本身的数是0和1 ( )25. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____; (3)53++-=____+____=____; (4)22--+=|_____-_____|=_____; (5)3 6.2-⨯=____×____=_____; (6)21433-÷-=____÷____=____×____=_____.【参考答案】 ➢ 课前预习1. (1)-8 (2)-3.2. 其中属于整数的有:3,-9,100,0;其中属于分数的有:-2.5,3.14,32-;其中属于正数的有:3,3.14,100;其中属于负数的有:-2.5,32-,-9.3. 书店,500,动物园或书店,1 200.➢ 知识点睛1. 整数、分数2.⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩正整数整数0负整数有理数正分数分数负分数 ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎪⎪⎩正整数正有理数正分数有理数0负整数负有理数负分数3. 负数和0;正数和0;负整数和0;正整数和04. 原点、单位长度、正方向、直线; 有理数.5. 表示数 比较大小 表示距离6. 大,小;大;大于,小于,大于7. 只有符号不同.0的相反数为0.8. 数轴,距离9.它本身;负数的绝对值是它的相反数;0的绝对值是0(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩右侧框内答案 框2:图略框3:-a ,a ,-a +b框4:正数和0,负数和0➢ 精讲精练1. 下降8 m 收入50元 -2℃+50 m -30 m2. A3. A4.B5.①7,2 019,0.618,3.14,+3;②-2,23-,-1.732,-5③-2,7,0,2 019,-5,+3;④-2,23-,0,-1.732,-5⑤7,0,2 019,+3;⑥-2,7,23-,0,2 020,0.618,3.14,-1.732,-5,+36.212101332-3.5<-<-<<<+图略;7. B8.999.-4,-3,-2,-110.±311.-7或-112.B13.13-;3.5,-1,2,014.D15.C16.D17.B18.C19.3.5 12-5 -x -x-m +n20.13+,3-,-(-2)21.C22.C23.A24.(1)√(2)×(3)×(4)×(5)√(6)√(7)×(8)×25.(1)113 -;(2)4.2 4.2 0;(3)3 5 8;(4)2 2 0;(5)3 6.2 18.6;(6)231432331417.。

2022-2023人教版七年级数学上册第一单元 数轴、相反数与绝对值 常考易错习题检测 (带答案)

2022-2023人教版七年级数学上册第一单元 数轴、相反数与绝对值 常考易错习题检测 (带答案)

2022-2023人教版七年级数学上册第一单元数轴、相反数与绝对值常考易错习题检测(带答案)一.选择题(共10小题)1.在数轴上表示下列四个数中,离原点最近的是()A.﹣2B.1.3C.﹣0.4D.0.62.如图,在数轴上,点A、B分别表示数a、b,且a+b=0,若AB=8,则点A表示的数为()A.﹣4B.0C.4D.83.如图,在数轴上,若点A,B表示的数分别是﹣2和10,点M到点A,B距离相等,则M表示的数为()A.10B.8C.6D.44.﹣2022的相反数是()A.2022B.﹣2022C.D.5.在3、0、﹣4、﹣2四个数中最小的数是()A.3B.0C.﹣4D.26.﹣的绝对值是()A.﹣B.﹣C.D.7.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9则沸点最低的液体是()A.液态氧B.液态氢C.液态氮D.液态氦8.若a为有理数且|a﹣1|=4,则a的取值是()A.5B.±5C.5或﹣3D.±39.有理数a,b在数轴上的对应点的位置如图所示.把﹣a,b,0按照从小到大的顺序排列,正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<010.有理数a在数轴上的位置如图所示,下列各数中,在0到1之间的是()①﹣a﹣1,②|a+1|,③2﹣|a|,④|a|.A.②③④B.①③④C.①②③D.①②③④二.填空题(共7小题)11.如图所示,直径为单位1的圆从表示﹣1的点沿着数轴无滑动的向右滚动一周到达A点,则A点表示的数是.12.点A、B在数轴上对应的数分别为﹣3和2,则线段AB的长度为.13.如图,已知A,B两点在数轴上,点A表示的数为﹣10,点B表示的数为30,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动,其中点M、点N 同时出发,经过秒,点M、点N分别到原点O的距离相等.14.数轴上A点表示﹣3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是.15.绝对值不大于3的所有整数有个,它们的和是.16.若|a|=2,|b|=4,且|a﹣b|=b﹣a,则a+b=.17.请你将32,(﹣2)3,0,|﹣|,﹣这五个数按从大到小排列:.三.解答题(共6小题)18.画出数轴,并解答下列问题:(1)在数轴上表示下列各数:5,3.5,﹣2,﹣1;(2)在数轴上标出表示﹣1的点A,写出将点A沿数轴平移4个单位长度后得到的数.19.如图所示,在一条不完整的数轴上从左到右有点A、B、C,其中点A到点B的距离为3,点B到点C的距离为8,设点A、B、C所对应的数的和是m.(1)若以A为原点,则数轴上点B所表示的数是;若以B为原点,则m=;(2)若原点O在图中数轴上,且点B到原点O的距离为4,求m的值.20.化简下列各数:①+(﹣3);②﹣(+5);③﹣(﹣3.4);④﹣[+(﹣8)];⑤﹣[﹣(﹣9)].21.先画数轴并在数轴上表示﹣3、﹣|﹣2|、﹣(﹣1)、0、+4、|﹣3|各数的点,再用“<”把这些数连接起来.22.若|x+3|与|y+2|互为相反数,求x+y的值.23.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,b﹣a0,c﹣a0.(2)化简:|b﹣c|+|b﹣a|﹣|c﹣a|.参考答案与试题解析一.选择题(共10小题)1.【解答】解:∵|﹣2|=2,|1.3|=1.3,|﹣0.4|=0.4,|0.6|=0.6,又∵2>1.3>0.6>0.4,∴离原点最近的是﹣0.4,故选:C.2.【解答】解:∵a+b=0,∴b=﹣a,又∵AB=8,∴b﹣a=8.∴﹣a﹣a=8.∴a=﹣4,即点A表示的数为﹣4.故选:A.3.【解答】解:由题意得:AB=10﹣(﹣2)=10+2=12,∵点M到点A,B距离相等∴MB=12÷2=6,∴10﹣6=4,∴点M表示的数是:4,故选:D.4.【解答】解:﹣2022的相反数是2022,故选:A.5.【解答】解:根据有理数比较大小的方法,可得﹣4<﹣2<0<3,∴在﹣、0、﹣4、﹣2四个数中,最小的数为﹣4.故选:C.6.【解答】解:根据绝对值的定义,得=.故选:C.7.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183,所以沸点最低的液体是液态氦.故选:D.8.【解答】解:∵|a﹣1|=4,∴a﹣1=4或a﹣1=﹣4,解得:a=5或a=﹣3.故选:C.9.【解答】解:由数轴可知,a<0<b,|a|<|b|,∴0<﹣a<b,故选:A.10.【解答】解:①根据数轴可以知道:﹣2<a<﹣1,∴1<﹣a<2,∴0<﹣a﹣1<1,符合题意;②∵﹣2<a<﹣1,∴﹣1<a+1<0,∴0<|a+1|<1,符合题意;③∵﹣2<a<﹣1,∴1<|a|<2,∴﹣2<﹣|a|<﹣1,∴0<2﹣|a|<1,符合题意;④∵1<|a|<2,∴<|a|<1,符合题意.故选:D.二.填空题(共7小题)11.【解答】解:由直径为单位1的圆从数轴上表示﹣1的点沿着数轴无滑动的向右滚动一周到达A点,得:A点与﹣1之间的距离是π.由两点间的距离是大数减小数,得:A点表示的数是π﹣1,故答案为:π﹣1.12.【解答】解:∵点A、B在数轴上对应的数分别为﹣3和2,∴AB=2﹣(3)=5.故答案为:5.13.【解答】解:设经过t秒,点M、点N分别到原点O的距离相等,则点M所表示的数为(﹣10+3t),点N所表示的数为2t,①当点O是MN的中点时,有2t=0﹣(﹣10+3t),解得,t=2,②当点M与点N重合时,有2t=﹣10+3t,解得,t=10,因此,t=2或t=10,故答案为:2或10.14.【解答】解:∵点B到点A的距离是2,∴点B表示的数为﹣1或﹣5,∵B、C两点表示的数互为相反数,∴点C表示的数应该是1或5.故答案为1或5.15.【解答】解:绝对值不大于3的所有整数有±3±2±10,共7个,和为:(+3)+(﹣3)+(+2)+(﹣2)+(+1)+(﹣1)+0=0,故答案为:7,0.16.【解答】解:∵|a|=2,|b|=4,∴a=±2,b=±4,∵|a﹣b|=b﹣a,∴或,∴a+b=6或2,故答案为:6或2.17.【解答】解:如图所示,故32>|﹣|>0>﹣>(﹣2)3.故答案为:32>|﹣|>0>﹣>(﹣2)3.三.解答题(共6小题)18.【解答】解:(1)如图所示,(2)如图所示:将点A平移4个单位长度后得到的数是3或﹣5.19.【解答】解:(1)∵点A到点B的距离为3,A为原点,∴数轴上点B所表示的数是3,B为原点,∴数轴上点B所表示的数是0,点A表示的数是﹣3,点C表示的数是8,∴m=﹣3+0+8=5,故答案为:3,5;(2)∵点A到点B的距离为3,点B到点C的距离为8,点B到原点O的距离为4,∴当O在B的左边时,A、B、C三点在数轴上所对应的数分别为1、4、12,∴m=1+4+12=17,当O在B的右边时,A、B、C三点在数轴上所对应的数分别为﹣7、﹣4、4,∴m=﹣7﹣4+4=﹣7,综上所述:m的值为﹣7或17.20.【解答】解:①+(﹣3)=﹣3;②﹣(+5)=﹣5;③﹣(﹣3.4)=3.4;④﹣[+(﹣8)]=﹣(﹣8)=8;⑤﹣[﹣(﹣9)]=﹣(+9)=﹣9.21.【解答】解:﹣|﹣2|=﹣2,﹣(﹣1)=1,+4=4,|﹣3|=3,在数轴上表示各数,如图:排列为:﹣3<﹣|﹣2|<0<﹣(﹣1)<|﹣3|<+4.22.【解答】解:∵|x+3|与|y+2|互为相反数,∴|x+3|+|y+2|=0,∴|x+3|=0,|y+2|=0,即x+3=0,y+2=0,∴x=﹣3,y=﹣2.∴x+y=﹣3+(﹣2)=﹣5,即x+y的值是﹣5.23.【解答】解:(1)观察数轴可知:a<0<b<c,∴b﹣c<0,b﹣a>0,c﹣a>0.故答案为:<;>;>.(2)∵b﹣c<0,b﹣a>0,c﹣a>0,∴|b﹣c|+|b﹣a|﹣|c﹣a|=c﹣b+b﹣a﹣c+a=0。

(完整版)相反数和绝对值经典练习题

(完整版)相反数和绝对值经典练习题

(完整版)相反数和绝对值经典练习题1. 计算以下数的相反数:-12 ______________25 _______________-3 ________________0 ________________2. 计算以下数的绝对值:-10 ______________15 _______________-2 _______________0 ________________3. 求以下数的相反数和绝对值:-8 _______________-18 ______________23 _______________0 _______________4. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。

相反数:______________绝对值:______________5. 如果一个数的相反数比它本身的绝对值大6,求这个数是多少。

这个数是:____________6. 如果一个数的绝对值比它本身的相反数大3,求这个数是多少。

这个数是:____________7. 如果一个数的相反数比它本身的绝对值小4,求这个数是多少。

这个数是:____________8. 如果一个数的绝对值比它本身的相反数小2,求这个数是多少。

这个数是:____________9. 小明的体重是x公斤,小红的体重是x的绝对值的两倍加1公斤。

如果x = -5,请计算小明和小红的体重。

小明的体重:____________小红的体重:____________10. 已知一个数的相反数比它本身大9,求这个数。

这个数是:____________参考答案如下:(完整版)相反数和绝对值经典练题1. 计算以下数的相反数:-12 1225 -25-3 30 02. 计算以下数的绝对值:-10 1015 15-2 20 03. 求以下数的相反数和绝对值:-8 8-18 1823 -230 04. 现给定一个数x,如x = -6,请计算x的相反数和绝对值。

_ 2020—2021学年七年级数学上册 2.2--2.3 数轴、相反数、绝对值 同步练习

_ 2020—2021学年七年级数学上册 2.2--2.3   数轴、相反数、绝对值  同步练习

2.2数轴、相反数、绝对值同步练习一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣12.下列数轴表示正确的是()A.B.C.D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣34.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣25.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣16.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.107.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣58.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:;点B表示的数是:.(2)A,B两点间的距离是个单位,线段AB中点表示的数是.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.616.﹣3的相反数是()A.3B.C.﹣3D.﹣17.的相反数是()A.﹣2017B.2017C.D.18.若m是﹣6的相反数,则m的值是.19.﹣8的相反数是.如果﹣a=2,则a=.20.已知m﹣2的相反数是5,那么m3的值等于.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣22.|﹣2|等于()A.2B.﹣2C.D.0 23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3 24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3 26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a 27.当x<1时,化简:|x﹣1|=.28.若|x﹣2|=2,则x﹣1=.29.如果|x﹣3|=5,那么x=.30.如果b与5互为相反数,则|b+2|=.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.32.已知a是2的相反数,计算|a﹣2|的值.33.已知|a﹣1|=2,求﹣3+|1+a|值.2.2数轴、相反数、绝对值同步练习参考答案与试题解析一.数轴(共14小题)1.数轴上表示数m和m+2的点到原点的距离相等,则m为()A.﹣2B.2C.1D.﹣1【解答】解:由题意得:|m|=|m+2|,∴m=m+2或m=﹣(m+2),∴m=﹣1.故选:C.2.下列数轴表示正确的是()A.B.C.D.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.3.在数轴上,点M,N在原点O的两侧,分别表示数m,2,将点M向右平移1个单位长度,得到点P,若PO=NO,则m的值为()A.1B.﹣1C.﹣2D.﹣3【解答】解:∵点M表示数m,将点M向右平移1个单位长度得到点P,∴平移后P表示的数是m+1,∵N表示数2,PO=NO,∴m+1与2互为相反数,即m+1=﹣2,∴m=﹣3,故选:D.4.如图,在数轴上,点A表示的数是﹣2,将点A沿数轴正方向向右移动4个单位长度得到点P,则点P表示的数是()A.4B.3C.2D.﹣2【解答】解:点P表示的数是﹣2+4=2.故选:C.5.如图,如果数轴上A,B两点之间的距离是3,且点B在原点左侧,那么点B表示的数是()A.3B.﹣3C.1D.﹣1【解答】解:因为点A到原点的距离大于点B到原点的距离,且B在原点左边,故A、C错误;B选项为﹣3,大于A的绝对值,故B错误;故选:D.6.数轴上表示﹣6和4的点分别是A和B,则线段AB的长度是()A.﹣2B.2C.﹣10D.10【解答】解:AB=4﹣(﹣6)=10.故选:D.7.如图,点A表示的数是a,点B表示的数是b,点O表示的数是0,如果点O是线段AB的中点,并且AB=20,则a的值为()A.10B.5C.﹣10D.﹣5【解答】解:∵点O是线段AB的中点,∴AO=BO,∵AB=20,∴AO=BO=AB=10,根据距离公式|0﹣a|=10,∴a=﹣10,故选:C.8.如图,在一条可以折叠的数轴上,A和B表示的数分别是﹣10和4,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,则C点表示的数是﹣2.【解答】解:设点C表示的数为x,则AC=x﹣(﹣10)=x+10,BC=4﹣x.∵以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=2,∴AC﹣BC=2.即:x+10﹣(4﹣x)=2.解得:x=﹣2.故答案为:﹣2.9.数轴上表示数﹣5和表示数﹣11的两点之间的距离是6.【解答】解:表示数﹣5和表示数﹣11的两点之间的距离是:|(﹣5)﹣(﹣11)|=6,故答案为:6.10.在数轴上点A表示的数是﹣2,则距离点A4个单位的B表示的数是2,﹣6.【解答】解:数轴上点A表示的数为﹣2,距离点A4个单位长度的点有两个,它们分别是﹣2+4=2,﹣2﹣4=﹣6,故答案为:2,﹣6.11.数轴上A、B两点间的距离为5,点A表示的数为3,则点B表示的数为8或﹣2.【解答】解:设B点表示的数为b,则|b﹣3|=5,∴b﹣3=5或b﹣3=﹣5,∴b=8或b=﹣2.故答案为:8或﹣2.12.已知数轴上点A,B,C所表示的数分别是﹣3、+7、x,若AC=4,点M是AB的中点,则线段CM的长为1或9.【解答】解:∵点A表示﹣3,AC=4,∴C表示的数是﹣3+4=1或﹣3﹣4=﹣7,即x=1或x=﹣7,∵A,B所表示的数分别是﹣3、+7,点M是AB的中点,∴M表示的数是(﹣3+7)÷2=2,∴CM=|1﹣2|=1或CM=|﹣7﹣2|=9,故答案为:1或9.13.已知A,B是数轴上两点,点A在原点左侧且距原点20个单位,点B在原点右侧且距原点100个单位.(1)点A表示的数是:﹣20;点B表示的数是:100.(2)A,B两点间的距离是120个单位,线段AB中点表示的数是40.(3)现有一只电子蚂蚁P从点B出发以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发以4个单位/秒的速度向右运动.设两只电子蚂蚁在数轴上的点C处相遇,求点C表示的数.【解答】解:(1)∵点A在原点左侧且距原点20个单位,∴点A表示的数是﹣20,∵点B在原点右侧且距原点100个单位,∴点B表示的数是100,故答案为:﹣20;100.(2)∵点A表示的数是﹣20,点B表示的数是100,∴A、B两点间的距离为100﹣(﹣20)=120,线段AB中点表示的数是100﹣120÷2=40,故答案为:120;40.(3)设两只蚂蚁经过x秒相遇,4x+6x=120,解得:x=12,﹣20+4x=28,∴点C表示的数是28.14.如图,在数轴上有三个点A,B,C,回答下列问题:(1)若将点B向右移动5个单位长度后,三个点所表示的数中最小的数是多少?(2)在数轴上找一点D,使点D到A,C两点的距离相等,写出点D表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E表示的数.【解答】解:(1)点B向右移动5个单位长度后,点B表示的数为1;三个点所表示的数中最小的数是是点A,为﹣1.(2)点D到A,C两点的距离相等;故点D为AC的中点.D表示的数为:0.5.(3)当点E在A、B时,EA=2EB,从图上可以看出点E为﹣3,∴点E表示的数为﹣3;当点E在点B的左侧时,根据题意可知点B是AE的中点,∴点E表示的数是﹣7.综上:点E表示的数为﹣3或﹣7.二.相反数(共6小题)15.6的相反数是()A.﹣B.C.﹣6D.6【解答】解:相反数指的是两个数符号不同但绝对值相同,所以6的相反数为﹣6.故选:C.16.﹣3的相反数是()A.3B.C.﹣3D.﹣【解答】解:∵互为相反数的两个数相加等于0,∴﹣3的相反数是3.故选:A.17.的相反数是()A.﹣2017B.2017C.D.【解答】解:﹣的相反数为,故选:D.18.若m是﹣6的相反数,则m的值是6.【解答】解:∵m是﹣6的相反数,∴m=6.故答案为:6.19.﹣8的相反数是8.如果﹣a=2,则a=﹣2.【解答】解:﹣8的相反数是8.如果﹣a=2,则a=﹣2.故答案为:8,﹣2.20.已知m﹣2的相反数是5,那么m3的值等于﹣27.【解答】解:∵m﹣2的相反数是5,∴m﹣2=﹣5,解得:m=﹣3,∴m3=(﹣3)3=﹣27.故答案为:﹣27.三.绝对值(共13小题)21.﹣9的绝对值是()A.9B.﹣9C.D.﹣【解答】解:﹣9的绝对值是9,故选:A.22.|﹣2|等于()A.2B.﹣2C.D.0【解答】解:|﹣2|等于2,故选:A.23.当2<a<3时,代数式|a﹣3|+|2﹣a|的值是()A.﹣1B.1C.3D.﹣3【解答】解:∵2<a<3,∴a﹣3<0,2﹣a<0,∴原式=3﹣a+a﹣2=1.故选:B.24.|﹣|的相反数等于()A.﹣2B.﹣C.2D.【解答】解:|﹣|=,的相反数是﹣.故选:B.25.若|x|=5,|y|=2且x<0,y>0,则x+y=()A.7B.﹣7C.3D.﹣3【解答】解:∵|x|=5,|y|=2,∴x=±5,y=±2,∵x<0,y>0,∴x=﹣5,y=2,∴x+y=﹣3.故选:D.26.下列数中一定比|a|小的是()A.﹣1B.0C.1D.a【解答】解:任何数的绝对值都是非负数,所以|a|≥0.故选:A.27.当x<1时,化简:|x﹣1|=1﹣x.【解答】解:∵x<1,∴x﹣1<0,∴原式=﹣(x﹣1)=1﹣x.28.若|x﹣2|=2,则x﹣1=3或﹣1.【解答】解:∵|x﹣2|=2,∴x﹣2=+2,或x﹣2=﹣2,∴x=4或x=0,当x=4时,x﹣1=4﹣1=3,当x=0时,x﹣1=0﹣1=﹣1.故答案为:3或﹣1.29.如果|x﹣3|=5,那么x=8或﹣2.【解答】解:∵|x﹣3|=5,∴x﹣3=±5,解得x=8或﹣2.故答案为:8或﹣2.30.如果b与5互为相反数,则|b+2|=3.【解答】解:∵b与5互为相反数,∴b=﹣5,∴|b+2|=|﹣5+2|=|﹣3|=3.故答案为:3.31.解答下列问题:(1)已知x是5的相反数,y比x小﹣7,求x与﹣y的差;(2)求的绝对值的相反数与的相反数的差.【解答】解:(1)根据题意知x=﹣5,y=x﹣(﹣7)=﹣5+7=2,则x﹣(﹣y)=﹣5﹣(﹣2)=﹣3.(2)由题意得:﹣|﹣|﹣(﹣)=.32.已知a是2的相反数,计算|a﹣2|的值.【解答】解:∵a是2的相反数,∴a=﹣2,∴|a﹣2|=4.33.已知|a﹣1|=2,求﹣3+|1+a|值.【解答】解:∵|a﹣1|=2,∴a=3或a=﹣1,当a=3时,﹣3+|1+a|=﹣3+4=1;当a=﹣1时,﹣3+|1+a|=﹣3;综上所述,所求式子的值为1或﹣3。

湘教版数学七年级上册1.2数轴、相反数与绝对值(含答案)

湘教版数学七年级上册1.2数轴、相反数与绝对值(含答案)

初中数学试卷1.2数轴、相反数与绝对值专题一绝对值的非负性1.小明、小亮、小花、小倩四人是一个学习小组的同学,下面是该小组学习有理数的绝对值时进行的小组讨论:小明说:“﹣a的绝对值是它的相反数a”;小亮说:“如果有理数a的绝对值是它本身,那么a一定是正数”;小花说:“如果a为有理数,那么﹣|a|一定是负数”;小倩说:“你们说得都不对”.你认为这四位同学中谁说错了?谁说对了?错的该怎样改正?2.若a、b、c都是有理数,且|a﹣1|+|b+2|+|c﹣4|=0,求a+|b|+c的值.3.探究题(1)比较下列各式的大小:|﹣2|+|3| |﹣2+3|;|﹣3|+|﹣5| |(﹣3)+(﹣5)|;|0|+|﹣5| |0+(﹣5)|;…(2)通过(1)的比较,请你分析,归纳出当a,b为有理数时,|a|+|b|与|a+b|的大小关系.(3)根据(2)中你得出的结论,求当|x|+5=|x﹣5|时,求x的取值范围.专题二数轴、相反数与绝对值的“大融合”4.已知有理数a与b互为相反数,有理数c到原点的距离为1,有理数d为绝对值最小的数,求式子2013(a+b)+c+2013d的值.5.如图,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示﹣4,点G 表示8.(1)点B表示的有理数是,表示原点的是点是.(2)图中的数轴上另有点M到点A,点G距离之和为13,则这样的点M表示的有理数是.(3)若将原点取在点D,则点C表示的有理数是,此时点B与点表示的有理数互为相反数.6.一个有理数x在数轴上对应的点为A,将A点向左移动3个单位长度,再向左移动2个单位长度,得到点B,点B所对应的数和点A对应的数的绝对值相等,求点A的对应的数x是多少?【知识要点】1.规定了原点、正方向和单位长度的直线叫作数轴.任何有理数都可以用数轴上唯一的一个点来表示.2.如果两个数只有符号不同,那么其中的一个数叫作另一个数的相反数.0的相反数是0.3.一个数的绝对值等于数轴上表示这个数的点与原点的距离.正数的绝对值是它的本身;负数的绝对值是它的相反数;0的绝对值是0.互为相反数的两个数的绝对值相等.一般地,如果a表示一个数,则:(1)当a(2)当a=0(3)当a a和-a中非负数的那一个.【温馨提示】(针对易错)1.画数轴时必须具备三要素:原点、正方向和单位长度.2.任何一个数都有相反数,两个互为相反数的绝对值相等.3.一个数的绝对值是一个非负数,在求一个数的绝对值时,不能只是去掉绝对值符号,一定要考虑绝对值符号内的式子表示的数是正数还是负数.【方法技巧】1.求一个数的相反数,在这个数的前面加上负号即可.2.求一个数的绝对值时,先分清这个数是正数、0还是负数,再按照相应的情况“对号入座”,即去掉绝对值后是否添上负号.3.几个非负数之和等于零,其中每一个数都等于零.参考答案1.解:小明、小亮、小花都说错了.只有小倩是对的.小明说错了,因为﹣a的绝对值应该分情况进行讨论,小亮说错了,因为﹣a的绝对值等于本身的数除了正数还有0;小花说错了,因为﹣|﹣a|不一定是负数,还可能是0,即﹣|﹣a|≤0.故小倩是对的.2.解:因为|a﹣1|+|b+2|+|c﹣4|=0,所以|a﹣1|=0,|b+2|=0,|c﹣4|=0,所以a=1,b=﹣2,c=4,所以a+|b|+c=1+2+4=7.3.解:(1)因为|﹣2|+|3|=5,|﹣2+3|=1,所以|﹣2|+|3|>|﹣2+3|.因为|﹣3|+|﹣5|=8,|(﹣3)+(﹣5)|=8,所以|﹣3|+|﹣5|=|(﹣3)+(﹣5)|.因为|0|+|﹣5|=5,|0+(﹣5)|=5,所以|0|+|﹣5|=|0+(﹣5)|.故答案为>,=,=.(2)根据(1)中规律可得出:|a|+|b|≥|a+b|.(3)因为|﹣5|=5,所以|x|+5=|x|+|﹣5|=|x+(﹣5)|=|x﹣5|.所以x<0.即当|x|+5=|x﹣5|时,x<0.4.解:因为有理数a与b互为相反数,所以a+b=0.因为有理数c到原点的距离为1,所以c=1 或c=-1.因为有理数d为绝对值最小的数,所以d=0.所以当c=1时,原式=2013×0+1+0=1;当c=-1时,原式=2013×0+(-1)+0=-1.所以原式的值为1或-1.5.(1) ﹣2,C;(2) ﹣4.5或8.5;(3) ﹣2;F 【解析】(1)因为数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示﹣4,点G表示8,所以AG=|8+4|=12,所以相邻两点之间的距离==2,所以点B表示的有理数是﹣4+2=﹣2,点C表示的有理数﹣2+2=0.故答案为﹣2,C;(2)设点M表示的有理数是m,则|m+4|+|m﹣8|=13,所以m=﹣4.5或m=8.5.故答案为﹣4.5或8.5;(3)若将原点取在点D,因为每两点之间距离为2,所以点C表示的有理数是﹣2.因为点B与点F在原点D的两侧且到原点的距离相等,所以此时点B与点F表示的有理数互为相反数.6.解:由题意得:点A对应的数为x,则点B所对应的数x﹣3﹣2=x﹣5,又点B所对应的数和点A对应的数的绝对值相等,|x|=|x﹣5|,所以x=2.5.。

湘教版七年级上册数学1.2数轴、相反数与绝对值同步练习(解析版)

湘教版七年级上册数学1.2数轴、相反数与绝对值同步练习(解析版)

1.2 数轴、相反数与绝对值一、选择题1.以下说法正确的选项是()A. ﹣3 的倒数是B.﹣2 的绝对值是﹣ 2C. ﹣(﹣ 5)的相反数是﹣ 5D. x 取随意实数时,都存心义2.以下各式正确的选项是()A. ﹣|﹣3|=3B. +(﹣ 3)=3C. ﹣(﹣ 3)=3D. ﹣(﹣ 3)=﹣33.如图,检测 4 个足球,此中超出标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最靠近标准的是()A. B. C.D.4.如图 ,四个实数 m,n,p,q 在数轴上对应的点分别为M,N,P,Q,若 p+m=0,则 m,n,p,q 四个实数中 ,绝对值最小的一个是()A. pB. qC. mD. n5.已知 a,b 两数在数轴上对应的点如下图,以下结论正确的选项是()A. a+b>0B. a>bC. ab<0 D. b﹣a>06.实数在数轴上对应点的地点如下图,则必有()A. B. C.D.7.若|a|=5,|b|=3,那么 a?b的值是()A. 15B.﹣15 C. 15±D.以上都不对8.有理数﹣ l 的绝对值是()A. 1B.﹣l C. l D±.29.已知 |a|=5,b3=﹣ 27,且 a>b,则 a﹣b 值为()A. 2B.﹣2 或8 C. 8 D.﹣210.若 a 为有理数,以下结论必定正确的选项是()A. a>﹣ aB. a>C. |a|=aD.2≥0a11.已知 |x+y|+(x﹣y+5)2=0,那么 x 和 y 的值分别是()A.﹣,B.,﹣C.,D.﹣,﹣12.以下说法正确的选项是()①有理数包含正有理数和负有理数②相反数大于自己的数是负数③数轴上原点双侧的数互为相反数④两个数比较,绝对值大的反而小A. ②B.①③C.①②D.②③④二、填空题13.的倒数的相反数是 ________.14.A 为数轴上表示 -1 的点,将点 A 沿数轴向右平移 3 个单位到点 B,则点 B 所表示的数为 ________.15.-2和它的相反数之间的整数有________个.16.如图,在数轴上,点A,B 分别在原点 O 的双侧,且到原点的距离都为 2 个单位长度,若点 A 以每秒 3 个单位长度,点 B 以每秒 1 个单位长度的速度均向右运动,当点 A 与点 B 重合时,它们所对应的数为 ________.17.绝对值不大于 5 的全部整数和为 ________18.数轴上表示数- 5 和表示- 14 的两点之间的距离是 ________.19.在数轴上 A 点表示-,B点表示,则离原点较近的点是________.20.假如 a、b 互为倒数, c、d 互为相反数,且 m=-1,则代数式 2ab-(c+d)+m2=________;21.实数 m,n 在数轴上对应点的地点如下图,化简:|m-n|=________22.-4 的绝对值是 ________三、解答题23.某邮递员依据邮递需要,先从 A 地向东走 3 千米,而后折回向西走了 10 千米.又折回向东走 6 千米,又折回向西走 5.5 千米.现规定向东为正,问该邮递员此时在 A 地的哪个方向?与 A 地相距多少千米?要求:用有理数加法运算,并将这一问题在数轴表示出来.24.实数 a,b,c 在数轴上的地点如下图,化简|c|﹣|a|+|﹣b|+|﹣a|.25.已知 |a﹣3|+|b﹣4|=0,求的值.26.在一条不完好的数轴上从左到右有点A,B,C,此中 AB=2 ,BC=1,如图所示,设点 A,B,C 所对应数的和是p.(1)若以 B 为原点,写出点 A,C 所对应的数,并计算 p 的值;若以 C 为原点,p又是多少?(2)若原点 O 在图中数轴上点 C 的右侧,且 CO=28,求 p.参照答案一、选择题1.【答案】 C【分析】:A、﹣3的倒数是﹣,故A选项不切合题意;B、﹣ 2 的绝对值是 2,故 B 选项不切合题意;C、﹣(﹣ 5)的相反数是﹣ 5,故 C 选项切合题意;D、应为 x 取随意不等于 0 的实数时,都存心义,故D选项不切合题意.故答案为: C.【剖析】乘积为 1 的两个数互为倒数;正数与0 的绝对值为它自己,负数的绝对值为它的相反数;在一个数前加一个负号,它就是这个数的相反数;分式的分母不可以为 0.2.【答案】 C【分析】 A. 原式 =-3;A 不切合题意; B.原式 =-3,B 不切合题意; C.原式 =3,C 切合题意; D.原式 =3, D 不切合题意;故答案为: C.【剖析】 A.依据绝对值性质来剖析; B.依据正负得负来剖析; C.依据负负得正来剖析; D.依据负负得正来剖析;3.【答案】 A【分析】:∵ |+0.9|=0.9,|+1.2|=1.2,|﹣2.4|=2.4,|+2.8|=2.8,0.9<1.2<2.4<2.8,∴从轻重的角度看,最靠近标准的是﹣0.9.故答案为: A.【剖析】先求出各数的绝对值可得|+0.9|=0.9,|+1.2|=1.2,|﹣2.4|=2.4,|+2.8|=2.8,再比较大小可得0.9<1.2<2.4<2.8,因此从轻重的角度看,最靠近标准的是﹣0.9.4.【答案】 D【分析】:∵ p+m=0,∴p和 m 互为相反数, 0 在线段 PM 的中点处,∴四个数中绝对值最小的一个是 n故答案为: D【剖析】依据 p+m=0,p 和 m 互为相反数, 0 在线段 PM 的中点处,依据绝对值的意义,可得出点N 离原点的距离近来,即可求解。

数轴、相反数、绝对值(习题及答案)

数轴、相反数、绝对值(习题及答案)

数轴、相反数、绝对值(习题)巩固练习1.下列图形表示数轴正确的是( )101234-1A .B .12-1-2-2-121C .D .2.下列说法正确的是( ) A .正数和负数统称有理数 B .正整数和负整数统称为整数 C .小数3.14不是分数D .整数和分数统称为有理数3.下列各组数中,互为相反数的是( ) A .( 3.2)--与 3.2-B .2.3与 2.31-C .[]( 4.9)-+-与4.9D .(1)-+与(1)+-4.下列说法正确的是( )A .数轴是一条规定了原点、正方向和单位长度的射线B .离原点近的点所对应的有理数较小C .任意一个有理数都可以用数轴上的一个点来表示D .原点在数轴的正中间5.关于相反数的叙述,错误的是( ) A .两数之和为0,则这两个数互为相反数B .到原点距离相等的点所表示的两个数互为相反数C .符号相反的两个数,一定互为相反数D .零的相反数是零6. 任何一个有理数的绝对值一定( ) A .大于0 B .小于0 C .不大于0 D .不小于07. 如果a a >,那么a 是( )A .正数B .负数C .非正数D .非负数8.下列说法正确的是( )A .绝对值等于它本身的数是正数B .相反数等于它本身的数是负数C .相反数等于它本身的数是0D .任意一个数小于它的绝对值9.如图,若点A ,B ,C 所对应的数为a ,b ,c ,则下列大小关系错误的是( )CBA -3-2-1321A .b c a <<B .a b c -<<C .b c a <-<D .a c b <<-10. 有如下一些数:-3,3.14,-20,0,6.8,0.34,12-,9-,其中是非正整数的有____________________________.11. 在数轴上点A 表示-1,点B 表示-0.5,则离原点较近的是点__________. 12. 在数轴上距离原点为2的点所对应的数为________,它们互为_____________. 13. 数轴上-1所对应的点为A ,将点A 向右移4个单位再向左移6个单位,则此时点A 到原点的距离为__________.14. 绝对值最小的数是________;绝对值越小,则该数在数轴上所对应的点离原点越________. 15. 若0x>,则x --=_______;若m n >,则n m -=________.16.填空: (1)43=__________________;----= (2)21=____________----=;(3)32_____________-⨯-=⨯=; (4)33=___________________________42-÷-÷=⨯=.思考小结 1. 在数轴上距离原点3个单位长度的点表示的数是_________. 2.若字母a 表示一个有理数,则-a 一定是负数吗? 我们的思考过程是这样的:-a 表示a 的相反数,若a 为正数,则-a 为__________; -a 表示a 的相反数,若a 为0,则-a 为__________; -a 表示a 的相反数,若a 为负数,则-a 为__________.综上:若字母a 表示一个有理数,则-a 可能是正数、负数或0,因此,-a___________(“一定”或“不一定”)是负数. 3.请判断下列说法的正误.(对的打“√”,错的打“×” ) (1)所有的有理数都能用数轴上的点表示 ( ) (2)符号不同的两个数互为相反数 ( ) (3)有理数分为正数和负数 ( ) (4)最小的正数是1 ( ) (5)最大的负整数是-1 ( ) (6)绝对值最小的数是0 ( ) (7)绝对值等于它本身的数是0和1 ( ) (8)相反数等于它本身的数是0和1 ( )【参考答案】巩固练习1. D2. D3. A4. C5. C6. D7. B8. C9. D10.-3,-20,011.B12.±2,相反数13.314.0,近15.-x,-n+m16.(1)4,3,1 (2)2,1,1(3)3,2,6 (4)34,32,34,23,12思考小结1.±32.负数;0;正数.不一定3.(1)√;(2)×;(3)×;(4)×;(5)√;(6)√;(7)×;(8)×.。

数轴、相反数、绝对值专题练习(含答案)

数轴、相反数、绝对值专题练习(含答案)

数轴.相反数.绝对值 【1 】专题练习1. 若上升5m 记作+5m,则-8m 暗示___________;假如-10元暗示支出10元,那么+50元暗示_____________;假如零上5℃记作5℃,那么零下2℃记作__________;宁靖洋中的马里亚纳海沟深达11 034m,可记作海拔11 034m (即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它地点的聚集里:-2,7,32,0,2 013,0.618,3.14,-1.732,-5,+3 ①正数聚集:{…}②负数聚集:{…}③整数聚集:{…}④非正数聚集:{…}⑤非负整数聚集:{…}⑥有理数聚集:{…}3. a ,b 为有理数,在数轴上的地位如图所示,则下列关于a ,b ,0三者之间的大小关系,准确的是( )b 0aA.0<a<b B.a<0<b C.b<0<a D.a<b<04.在数轴上暗示下列各数:0,0.5,112,1,+3,223,并比较它们的大小.5.在数轴上大于-4.12的负整数有______________________.6.到原点的距离等于3的数是____________.7.数轴上暗示-2和-101的两个点分离为A,B,则A,B两点间的距离是______________.8.已知数轴上点A与原点的距离为2,则点A对应的有理数是____________ 点B与点A之间的距离为3,则点B对应的有理数是________________.9.在数轴上,点M暗示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N,则点N暗示的数是_________.10.文具店.书店和玩具店依次坐落在一条器械走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的地位在()A.玩具店 B.文具店 C.文具店西边40米 D.玩具店东边-60米11.如图是正方体的概况睁开图,请你在其余三个空格内填入恰当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图12. 上图是一个正方体盒子的睁开图,请把-10,8,10,-3,-8,3这六个数字分离填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不准确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+-C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的地位如图所示,把a ,-a ,b ,-b按照从小到大的次序分列准确的是( )b 0aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值必定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______;21+=_______;5--=_______;3+=_______;_______=1;_______=-2. 20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值规模是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____; (3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____.25.化简下列各数的符号:(1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26.若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27.若-m>0,|m|=7,求m.28.若|a+b|+|b+z|=0,求a,b的值.29.去失落下列各数的绝对值符号:(1)若x<0,则|x|=________________;(2)若a<1,则|a-1|=_______________;(3)已知x>y>0,则|x+y|=________________;(4)若a>b>0,则|-a-b|=__________________.【参考答案】1.降低8m;收入50元;2℃;+50m;30m2.①7,2 013,0.618,3.14,+3②2,23-, 1.732, 5③2,7,0,2 013,5,+3④2,23-,0, 1.732,5⑤7,0,2 013,3+3⑥2,7,23-,0,2 013,0.618,3.14, 1.732,5,+3 3. B4.21210.501332-<-<-<<<+图略;5.4,3,2, 16.3±7.998.2±;1±,5±9.10. B11.略12.略13. C14. D15. B16. C17. C18.13+,3-,(2)19. 3.5;12;5;3;1±;2±20.x,n m;21. D22.3±;3; 2 23.±7;724.(1)43;(2)4.2 4.2 0; (3)3 5 8;(4)2 2 0;(5)3 6.218.6;(6)23,143,23,314,17。

数轴相反数绝对值的计算与化简有理数的加减混合运算综合练习题(附答案)

数轴相反数绝对值的计算与化简有理数的加减混合运算综合练习题(附答案)
A. B. C. D.15
10. 的值为()
A. B. C. D.2
11.已知a,b是不为0的有理数,且 , , ,那么用数轴上的点来表示a,b时,正确的是()
A.
B.
C.
D.
12.某项科学研究以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如:9:15记为 ,10:45记为 等,以此类推,上午7:45应记为()
解析:∵ ,b是2的相反数,
∴ 或 ,
当 时, ;
当 时, ;
综上, 的值为-1或-3,
故选:C.
2.答案:B
解析:-3的相反数为3,故答案为B
3.答案:C
解析:
4.答案:C
解析:
5.答案:B
解析:2019的相反数为 ,选B。
6.答案:B
解析:
7.答案:C
解析:
8.答案:B
解析:原式
9.答案:B
解析:到原点距离5个单位长度的数是5或 ,在数轴右边的是5,故选B.
数轴相反数绝对值的计算与化简有理数的加减混合运算综合练习题
一、单选题
1.已知 ,b是2的相反数,则 的值为( )
A. B. C. 或 D.1或
2.-3的相反数是()
A.-3B. 3C. D.
3.下列各数: ,其中整数有m个,负分数有n个,则 等于()
A.4B.5C.6D.7
4.点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()
18.请根据图示的对话解答下列问题.
求:(1) 的值;
(2) 的值.
19.已知 ,则 的值为多少?
20.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度,下表是某次测量数据的部分记录(用 表示观测点A相对于观测点C的高度).

《正、负数、数轴、相反数、绝对值》练习题答案

《正、负数、数轴、相反数、绝对值》练习题答案

《正、负数、数轴、相反数、绝对值》练习题一、填空题(每空1分,共计40分)1、如果温度上升3o C 记作+3o C ,那么下降5o C 记作__-5o C ____________________2、如果向西走12米记作+12米,则向东走—120米表示的意义是_向西走120米__________________3、味精袋上标有“300±5克”字样,还说明这袋味精的质量应该是295____~_305___4、地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海报高度为—5米,其中最高处为____甲_______地,最低处为_____丙______地,最高处与最低处相差____35_____________5、规定了原点、正方向和单位长度___的__直线______叫做数轴。

6、数轴上原点左边的数表示____负________数,原点右边的数表示__正___数,__原点___表示0。

7、如果点A 表示的数是2.2,将点A 向左边移动2个单位长度,那么这时点A 表示的数是__0.2_____,如过再向左移动1.2个单位长度,那么这时点A 表示的数是__-1_____8、 数轴上,到原点的距离等于4个单位长度的点所表示的数是±4,它们互为__相反数_______9、数轴上与距离原点3个单位长度的点所表示的负数是___-3___________10、+3的相反数是___-3________;_2.3____的相反数是—2.3;0的相反数是_____0________11、若X 的相反数是—5,则X=___5_________;若—X 的相反数是—3.7,则X=__-3.7_______12、|—5.7|=____5.7__;|0|=______0___;—|+5|=______-5___;—|—6.8|=__-6.8________13、______0_______的相反数是它本身,_________非负数_______的绝对值是它本身,±1的倒数是它本身,_____负数__________的绝对值是它的相反数。

七年级数学数轴、相反数、绝对值(有理数及其运算)基础练习(含答案)

七年级数学数轴、相反数、绝对值(有理数及其运算)基础练习(含答案)

七年级数学数轴、相反数、绝对值(有理数及其运算)基础练习试卷简介:<strong>全卷共7个选择题,5个填空题,5个计算题和1个解答题,分值100分,测试时间30分钟。

本套试卷立足基础,主要考察了学生对有理数及其运算的掌握。

各个题目难度有阶梯性,学生在做题过程中可以回顾本章知识点,认清自己对知识的掌握及灵活运用程度。

</strong>学习建议:<strong>本讲主要内容是有理数及其运算,是中考常考的内容之一,大多出现在选择题的第一或第二小题,是整个数学学科的基础内容。

本讲题目难度不大,但考验同学们的细心程度,同学们在做这一类练习题时切勿犯眼高手低的毛病。

</strong>一、单选题(共7道,每道5分)1.下面说法正确的是()A.正数都带有“+”号B.不带“+”号的数都是负数C.小学数学中学过的数都可以看作是正数D.0既不是正数也不是负数答案:D解题思路:正数前面的正号是可以省略的,A错;3是正数,但前面没带“+”号,B错;0不属于正数,C错.答案为D.易错点:正负号与正负数的关系试题难度:二颗星知识点:正数和负数2.下列图为数轴的是()A.B.C.D.答案:C解题思路:A中只有原点和单位长度,没有正方向,不能称为数轴;B中单位长度不统一;C选项有正方向、原点和单位长度,是数轴;D选项中有正方向和单位长度,没有原点,不是数轴.易错点:数轴的原点、正方向、单位长度这三要素没掌握试题难度:三颗星知识点:数轴3.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在()A.玩具店B.文具店C.文具店西边40米D.玩具店东边-60米答案:B解题思路:以东为正方向,书店所在的位置为原点画出数轴.在数轴上标出文具店和玩具店位置所对应的点,玩具店对应的点的坐标为100,文具店对应点的坐标为-20,小明从书店沿街向东走了40米,小明所在位置坐标为40,接着又向东走了-60米,小明所在位置坐标为-20.易错点:数轴原点、正方向以及格点位置的确定试题难度:三颗星知识点:数轴4.下列说法中,错误的是()A.最小的正整数是1B.-1是最大的负整数C.在一个数的前面加上负号,就变成了这个数的相反数D.在一个数的前面加上负号,就变成了负数答案:D解题思路:在一个负数的前面加一个负号,则为正数;在0的前面加一个负号,仍然是0,D错.易错点:相反数的含义和求法试题难度:三颗星知识点:相反数5.下列各组数中,互为相反数的是()A.0.4与-0.41B.3.8与-2.9C.-(-8)与-8D.-(+3)与+(-3)答案:C解题思路:当两个数只有符号不同绝对值相等时,称之为互为相反数.题中四个选项中的数只有C符合.易错点:不明确相反数的概念试题难度:二颗星知识点:相反数6.已知a≠b,a=-5,|a|=|b|,则b等于()A.+5B.-5C.0D.+5或-5答案:A解题思路:a=-5,|a|=5=|b|,这说明b所对应的点到原点的距离为5,b的值可能是+5和-5.又由于a≠b,所以b=+5.易错点:绝对值的概念试题难度:三颗星知识点:绝对值7.下列数中,属于正数的是()A.+(-2)B.-3的相反数C.-(-a)D.3的倒数的相反数答案:B解题思路:+(-2)=-2,为负数,A错;-3的相反数为3,是正数,B正确;a=0时,-(-a)=0,不是正数,a为正数时,-(-a)是正数,a为负数时,-(-a)是负数,C错;3的倒数的相反数为,D错易错点:a的不确定性试题难度:三颗星知识点:相反数二、填空题(共5道,每道5分)1.把下列各数填入表示它所在的集合里.-2,7,,0,2003,0.618,3.14,-1.732,-5,+3答案:正数集合{7、2003、0.618、3.14、+3},负数集合{-2、、-1.732、-5},整数集合{-2、7、2003、0、-5、+3},有理数集合{-2,7,,0,2003,0.618,3.14,-1.732,-5,+3}解题思路:依次筛选,正数集合中有7、2003、0.618、3.14、+3;负数集合中有-2、、-1.732、-5;整数集合中有-2、7、0、2003、-5、+3;有理数集合中有-2,7,,0,2003,0.618,3.14,-1.732,-5,+3.易错点:遗漏部分有理数试题难度:三颗星知识点:有理数2.在数轴上大于-4.12的负整数有____.答案:-4、-3、-2、-1解题思路:画出一条数轴,给出它的正方向、原点以及单位长度,大于-4.12的数肯定在-4.12 的右侧,在数轴上找出-4.12的位置,在-4.12的右侧的负整数有-4、-3、-2、-1.易错点:不能正确掌握数轴上的数的大小关系试题难度:三颗星知识点:有理数3.数轴上表示-2和-101的两个点分别为A、B,则A、B两点间的距离等于____.答案:99解题思路:-2到原点的距离是2,-101到原点的距离为101,-2和-101都在原点的左侧,因此-2、-101之间的距离等于101-2=99.易错点:判断点与原点的位置关系试题难度:二颗星知识点:数轴4.已知数轴上A、B两点之间的距离为3,点A与原点O的距离为2,则点B对应的有理数是____.答案:5或-1或1或-5解题思路:A与原点的位置关系有两种,A在原点的右侧或A在原点的左侧.先看第一种情况,A在原点的右侧,A对应的有理数为2,又由A、B两点之间的距离为3可知B点对应的有理数是5或-1;A在原点的左侧时,A对应的有理数为-2,B点对应的有理数是1或-5.易错点:分情况讨论试题难度:三颗星知识点:数轴5.在数轴上,点M表示的数是-2,将它先向右移动4.5个单位,再向左移5个单位到达点N,则点N表示的数是____.答案:-2.5解题思路:点M向右移动4.5个单位后的坐标为2.5,再向左移动5个单位后的坐标为-2.5,即点N表示的数为-2.5.易错点:数轴上点对应的有理数试题难度:三颗星知识点:数轴三、计算题(共5道,每道6分)1.|-4.2|-|4.2|答案:原式=4.2-4.2=0解题思路:|-4.2|是指-4.2到原点的距离,等于4.2;|4.2|也是等于4.2,所以原式=4.2-4.2=0. 易错点:绝对值的概念及计算试题难度:三颗星知识点:绝对值2.|-|-(-)答案:原式解题思路:|-|是指-到原点的距离,等于;-(-)是指-的相反数,等于.所以原式=+=.| 易错点:绝对值的概念及计算试题难度:二颗星知识点:绝对值3.||+2|-|-2||答案:原式=|2-2|=|0|=0解题思路:先计算最外面绝对值里面的数,|+2|是指+2到原点的距离,等于2,|-2|是指-2到原点的距离,等于2.那么原式=|2-2|=|0|=0.易错点:绝对值的概念及计算试题难度:三颗星知识点:绝对值4.|-3|+|+5|答案:原式=3+5=8解题思路:|-3|是指-3到原点的距离,等于3,|+5|是指+5到原点的距离,等于5,那么原式=3+5=8.易错点:绝对值的概念及运算试题难度:二颗星知识点:绝对值5.|-|×||答案:原式解题思路:|-|是指-到原点的距离,等于,|-|是指-到原点的距离,等于.原式.易错点:绝对值的概念及运算试题难度:三颗星知识点:相反数四、解答题(共1道,每道10分)1.如图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方体,使得折成正方体后相对的面上的数字互为相反数.答案:(答案不唯一)解题思路:先找出三组相反数,分别是10和-10、8和-8、3和-3,然后找到图形折成正方体后相对的面,正方体的展开图中任何两个相对的面中间总是相隔一个面,给图中每个小正方形标上字母a、b、c、d、e、f,可以得到a和f是相对的面,b和d、c和e是相对的面,这样就可以得到答案.易错点:相对面的寻找试题难度:三颗星知识点:几何体的展开图。

(word)数轴,相反数,绝对值(拔高题)

(word)数轴,相反数,绝对值(拔高题)

第二讲数轴,相反数,绝对值(拔高题)一.选择题〔共7小题〕1.假设两个非零的有理数 a、b,满足:|a|=a,|b|=﹣b,a+b<0,那么在数轴上表示数a、b的点正确的选项是〔〕A. B.C. D.2.:a>0,b<0,|a|<|b|<1,那么以下判断正确的选项是〔〕A.1﹣b>﹣b>1+a>a B.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣b D.1﹣b>1+a>﹣b>a3.以下说法中正确的选项是〔〕A.互为相反数的两个数的绝对值相等B.最小的整数是 0C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等4.如图,数轴上有A,B,C,D四个整数点〔即各点均表示整数〕,且2AB=BC=3CD.假设A,D两点所表示的数分别是﹣5和6,那么线段BD的中点所表示的数是〔〕A.6 B.5 C.3 D.25.假设ab>0,那么+ + 的值为〔〕A.3 B.﹣1C.±1或±3D.3或﹣16.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,假设在这个数轴上随意画出一条长为2004厘米的线段AB,那么线段AB盖住的整点的个数是〔〕A.2002或2003 B.2003或2004 C.2004或2005 D.2005或20067.将一刻度尺如下列图放在数轴上〔数轴的单位长度是1cm〕,刻度尺上的“0cm〞和“15cm〞分别对应数轴上的﹣和x,那么〔〕A.9<x<10 B.10<x<11 C.11<x<12 D.12<x<13第1页〔共17页〕二.填空题〔共18小题〕8.A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如下列图.假设BC=2AB,那么点C表示的数是.9.如下列图,数轴上点A所表示的数的相反数是.10.|a+2|=0,那么a=.11.大家知道|5|=|5﹣0|,它在数轴上的意义是表示5的点与原点〔即表示0的点〕之间的距离.又如式子|6﹣3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子|a+5|在数轴上的意义是.12.在数轴上,与表示﹣1的点距离为3的点所表示的数是.13.假设|x|+3=|x﹣3|,那么x的取值范围是.14.定义:A={b,c,a},B={c},A∪B={a,b,c},假设M={﹣1},N={0,1,﹣1},那么M∪N={}.15.假设,那么a的取值范围是.16.﹣〔﹣6〕的相反数是.17.有理数a、b、c在数轴的位置如下列图,且a与b互为相反数,那么|a﹣c|﹣|b+c|=.③a>﹣b,④﹣ab<0,正确的个数是.18.有理数a,b在数轴上的位置如下列图,以下各式:①b﹣a>0,②﹣b>0,19.点A,B,C在同一条数轴上,其中A,B表示的数为﹣5,2,假设BC=3,那么20.如果|m﹣1|=5,那么m=.AC=.21.如下列图,在直线l上有假设干个点A1、A2、、A n,每相邻两点之间的距离都为1,点P是线段A1n上的一个动点.A〔1〕当n=3时,那么点P分别到点A1、2、3的距离之和的最小值是;A A第2页〔共17页〕〔2〕当n=13时,那么当点P在点的位置时,点P分别到点A1、2、、A A13的距离之和有最小值,且最小值是.22.a,b,c为三个有理数,它们在数轴上的对应位置如下列图,那么|c﹣b|﹣|b﹣a|﹣|a﹣c|=.23.〔1〕假设,那么﹣a=;〔2〕假设﹣a=,那么a=;〔3〕假设﹣〔﹣a〕=16,那么﹣a=;〔4〕假设a=﹣〔+5〕,那么﹣a=.24.|x+1|+|x﹣5|+4的最小值是.25.设a,b,c为有理数,那么由构成的各种数值是.三.解答题〔共6小题〕26.请把以下各数填入相应的集合中,,0,,,﹣22,,2005,﹣正数集合:{};分数集合:{};非负整数集合:{};有理数集合:{}.27.|a|=3,|b|=5,且a<b,求a﹣b的值.28.有理数a,b,c在数轴上的位置如下列图,试化简下式:|a﹣c|﹣|a﹣b|+|2a|.第3页〔共17页〕29.同学们都知道:|5﹣〔﹣2〕|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:〔1〕数轴上表示5与﹣2两点之间的距离是,〔2〕数轴上表示x与2的两点之间的距离可以表示为.〔3〕如果|x﹣2|=5,那么x=.〔4〕同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是.5〕由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.30.A,B在数轴上分别表示数a,b.〔1〕对照数轴填写下表:〔2〕假设A,B两点间的距离记为d,试问d与a,b有何数量关系?〔3〕在数轴上找到所有符合条件的整数点P,使它到5和﹣5的距离之和为10,并求出所有这些整数的和.〔4〕假设数轴上点C表示的数为x,当点C在什么位置时,①|x+1|的值最小?②|x+1|+|x﹣2|的值最小?第4页〔共17页〕31.阅读以下材料并解决有关问题:我们知道,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=O,分别求得x=﹣1,x=2〔称﹣1,2分别为|x+1|与|x﹣2|的零点值〕.在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:1〕x<﹣1;〔2〕﹣1≤x<2;〔3〕x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:1〕当x<﹣1时,原式=﹣〔x+1〕﹣〔x﹣2〕=﹣2x+1;2〕当﹣1≤x<2时,原式=x+1﹣〔x﹣2〕=3;3〕当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.(通过以上阅读,请你解决以下问题:1〕分别求出|x+2|和|x﹣4|的零点值;2〕化简代数式|x+2|+|x﹣4|.第5页〔共17页〕参考答案与试题解析一.选择题〔共7小题〕1.假设两个非零的有理数a、b,满足:|a|=a,|b|=﹣b,a+b<0,那么在数轴上表示数a、b的点正确的选项是〔〕A.B.C.D.【解答】解:∵a、b是两个非零的有理数满足:|a|=a,|b|=﹣b,a+b<0,a>0,b<0,∵a+b<o,|b|>|a|,∴在数轴上表示为:应选B.2.:a>0,b<0,|a|<|b|<1,那么以下判断正确的选项是〔〕A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a【解答】解:∵a>0,∴|a|=a;b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;1﹣b>1+a;而1+a>1,1﹣b>1+a>﹣b>a.应选D.3.以下说法中正确的选项是〔〕A.互为相反数的两个数的绝对值相等B.最小的整数是0第6页〔共17页〕C.有理数分为正数和负数D.如果两个数的绝对值相等,那么这两个数相等【解答】解:根据绝对值和相反数的定义,互为相反数的两个数到原点距离相等,因此互为相反数的两个数的绝对值相等,故A正确;整数分为正整数、零负整数,不存在最小的整数,故B错误;有理数分为正有理数、零、负有理数,故C错误;如果两个数绝对值相等,这两个数可能相等,可能互为相反数,故D错误.应选A.4.如图,数轴上有A,B,C,D四个整数点〔即各点均表示整数〕,且2AB=BC=3CD.假设A,D两点所表示的数分别是﹣5和6,那么线段BD的中点所表示的数是〔〕A.6B.5C.3D.2【解答】解:设BC=6x,2AB=BC=3CD,∴AB=3x,CD=2x,AD=AB+BC+CD=11x,∵A,D两点所表示的数分别是﹣5和6,11x=11,解得:x=1,AB=3,CD=2,B,D两点所表示的数分别是﹣2和6,∴线段BD的中点表示的数是2.应选D.5.假设ab>0,那么++的值为〔〕A.3B.﹣1C.±1或±3 D.3或﹣1【解答】解:因为ab>0,所以a,b同号.第7页〔共17页〕①假设a,b同正,那么++=1+1+1=3;②假设a,b同负,那么++=﹣1﹣1+1=﹣1.应选D.6.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,假设在这个数轴上随意画出一条长为2004厘米的线段AB,那么线段AB盖住的整点的个数是〔〕A.2002或2003B.2003或2004C.2004或2005D.2005或2006【解答】解:依题意得:①当线段AB起点在整点时覆盖2005个数;②当线段AB起点不在整点,即在两个整点之间时覆盖2004个数.应选C.7.将一刻度尺如下列图放在数轴上〔数轴的单位长度是1cm〕,刻度尺上的“0cm〞和“15cm〞分别对应数轴上的﹣和x,那么〔〕A.9<x<10B.10<x<11C.11<x<12D.12<x<13【解答】解:依题意得:x﹣〔﹣〕=15,.应选C.二.填空题〔共18小题〕8.A,B,C是数轴上的三个点,且C在B的右侧.点A,B表示的数分别是1,3,如下列图.假设BC=2AB,那么点C表示的数是7.【解答】解:∵点A,B表示的数分别是1,3,AB=3﹣1=2,∵BC=2AB=4,OC=OA+AB+BC=1+2+4=7,∴点C表示的数是7.第8页〔共17页〕故答案为7.9.如下列图,数轴上点A所表示的数的相反数是2.【解答】解:数轴上点A所表示的数是﹣2,﹣2的相反数是2,故答案为:2.10.|a+2|=0,那么a=﹣2.【解答】解:由绝对值的意义得:a+2=0,解得:a=﹣2;故答案为:﹣2.11.大家知道|5|=|5﹣0|,它在数轴上的意义是表示5的点与原点〔即表示0的点〕之间的距离.又如式子|6﹣3|,它在数轴上的意义是表示6的点与表示3的点之间的距离.类似地,式子|a+5|在数轴上的意义是表示数a的点与表示﹣5的点之间的距离.【解答】解:根据题意,得|a+5|=|a﹣〔﹣5〕|,即表示数a的点与表示﹣5的点之间的距离.故答案为:表示数a的点与表示﹣5的点之间的距离.12.在数轴上,与表示﹣1的点距离为3的点所表示的数是2或﹣4.【解答】解:假设点在﹣1的左面,那么点为﹣4;假设点在﹣1的右面,那么点为2.故答案为:2或﹣4.13.假设|x|+3=|x﹣3|,那么x的取值范围是x≤0.【解答】解:①当x≥3时,原式可化为:x+3=x﹣3,无解;②当0<x<3时,原式可化为:x+3=3﹣x,此时x=0;③当x≤0时,原式可化为:﹣x+3=3﹣x,等式恒成立.第9页〔共17页〕综上所述,那么x≤0.14.定义:A={b,c,a},B={c},A∪B={a,b,c},假设M={﹣1},N={0,1,﹣1},那么M∪N={1,0,﹣1}.【解答】解:∵M={﹣1},N={0,1,﹣1},M∪N={1,0,﹣1},故答案为:1,0,﹣1.15.假设,那么a的取值范围是a<0.【解答】解:∵=﹣1,|a|=﹣a且a≠0,a<0.16.﹣〔﹣6〕的相反数是﹣6.【解答】解:﹣〔﹣6〕=6,6的相反数是﹣6.故答案为:﹣6.17.有理数a、b、c在数轴的位置如下列图,且a与b互为相反数,那么|a﹣c|﹣|b+c|= 0.【解答】解:由图知,a>0,b<0,c>a,且a+b=0,|a﹣c|﹣|b+c|=c﹣a﹣c﹣b=﹣〔a+b〕=0.18.有理数a,b在数轴上的位置如下列图,以下各式:①b﹣a>0,②﹣b>0,③a>﹣b,④﹣ab<0,正确的个数是1.【解答】解:a<0,b>0,b﹣a>0,故①b﹣a>0正确,第10页〔共17页〕b>0,﹣b<0,故②﹣b>0错误,a<0,b>0,|a|>|b|,a<﹣b,故③a>﹣b错误,a<0,b>0,﹣ab>0,故④﹣ab<0错误,故只有①正确.故答案为:1.19.点A,B,C在同一条数轴上,其中A,B表示的数为﹣5,2,假设BC=3,那么AC= 4或10.【解答】解:∵如以下列图,点A,B,C在同一条数轴上,其中A,B表示的数为﹣5,2,且BC=3,C表示的数为﹣1或5,当C表示的数为﹣1时,AC=4.C表示的数为5时,AC=10.故答案为:4或10.20.如果|m﹣1|=5,那么m=6或﹣4.【解答】解:∵|m﹣1|=5,m﹣1=5或m﹣1=﹣5.解得:m=6或m=﹣4.故答案为:6或﹣4.21.如下列图,在直线l上有假设干个点A、A、、A,每相邻两点之间的距离12n都为1,点P是线段A1n上的一个动点.A〔1〕当n=3时,那么点P分别到点A1、2、3的距离之和的最小值是2;A A〔2〕当n=13时,那么当点P在点A7的位置时,点P 分别到点1、2、、13A A A第11页〔共17页〕的距离之和有最小值,且最小值是42.【解答】解:〔1〕P在A2处,PA1+PA3=1+1=2,;2〕当点P在点A7的位置时,〔PA1+PA2+PA3+PA4+PA5+PA6〕×2=〔1+2+3+4+5+6〕×2=42,故答案为:2,A7,42.22.a,b,c为三个有理数,它们在数轴上的对应位置如下列图,那么|c﹣b|﹣|b﹣a|﹣|a﹣c|=0.【解答】解:根据图示知:b>1>a>0>c>﹣1,|c﹣b|﹣|b﹣a|﹣|a﹣c|=﹣c+b﹣b+a﹣a+c=0故答案是0.23.〔1〕假设,那么﹣a=﹣;〔2〕假设﹣a=,那么a=﹣;3〕假设﹣〔﹣a〕=16,那么﹣a=﹣16;4〕假设a=﹣〔+5〕,那么﹣a=5.【解答】解:〔1〕假设,那么﹣a=﹣;2〕假设﹣a=,那么a=﹣;3〕假设﹣〔﹣a〕=16,那么﹣a=﹣16;4〕假设a=﹣〔+5〕,那么﹣a=5,故答案为:﹣;﹣;﹣16;524.|x+1|+|x﹣5|+4的最小值是10.第12页〔共17页〕【解答】解:①当x<﹣1,|x+1|+|x﹣5|+4=﹣〔x+1〕+5﹣x+4=8﹣2x>10,②当﹣1≤x≤5,|x+1|+|x﹣5|+4=x+1+5﹣x+4=10,③当x>5,|x+1|+|x﹣5|+4=x+1+x﹣5+4=2x>10;所以|x+1|+|x﹣5|+4的最小值是10.故答案为:10.25.设a,b,c为有理数,那么由构成的各种数值是4、4、0.【解答】解:∵a,b,c为有理数,①假设a>0,b>0,c>0,∴=1+1+1+1=4;②假设a,b,c中有两个负数,那么abc>0,∴=〔1﹣2〕+1=0,③假设a,b,c中有一个负数,那么abc<0,∴=〔2﹣1〕+〔﹣1〕=0,④假设a,b,c中有三个负数,那么abc<0,∴=〔﹣3〕+〔﹣1〕=﹣4,故答案为:±4,0.三.解答题〔共6小题〕26.请把以下各数填入相应的集合中,,0,,,﹣22,,2005,﹣正数集合:{,,,,2005,};分数集合:{,,,﹣,};非负整数集合:{0,2005,};有理数集合:{,,0,,﹣22,,2005,}.第13页〔共17页〕【解答】解:正数集合:{,,,,2005,}分数集合:{,,,﹣,}非负整数集合:{0,2005,}有理数集合{,,0,,﹣22,,2005,},故答案为:,,,,2005,,,,﹣,0,2005,,,0,,﹣22,,2005.27.|a|=3,|b|=5,且a<b,求a﹣b的值.【解答】解:∵|a|=3,|b|=5,a=±3,b=±5.∵a<b,∴当a=3时,b=5,那么a﹣b=﹣2.当a=﹣3时,b=5,那么a﹣b=﹣8.28.有理数a,b,c在数轴上的位置如下列图,试化简下式:|a﹣c|﹣|a﹣b|+|2a|.【解答】解:由图可知:c<a<0<b;a﹣c>0,a﹣b<0,2a<0;∴原式=a﹣c+a﹣b﹣2a=﹣b﹣c.29.同学们都知道:|5﹣〔﹣2〕|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:〔1〕数轴上表示5与﹣2两点之间的距离是7,〔2〕数轴上表示x与2的两点之间的距离可以表示为|x﹣2|.〔3〕如果|x﹣2|=5,那么x= 7或﹣3.〔4〕同理|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的第14页〔共17页〕距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x﹣1|=4,这样的整数是﹣3、﹣2、﹣1、0、1.5〕由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【解答】解:〔1〕数轴上表示5与﹣2两点之间的距离是|5﹣〔﹣2〕|=|5+2|=7,故答案为:7;2〕数轴上表示x与2的两点之间的距离可以表示为|x﹣2|,故答案为:|x﹣2|;3〕∵|x﹣2|=5,x﹣2=5或x﹣2=﹣5,解得:x=7或x=﹣3,故答案为:7或﹣3;〔4〕∵|x+3|+|x﹣1|表示数轴上有理数x所对应的点到﹣3和1所对应的点的距离之和,|x+3|+|x﹣1|=4,∴这样的整数有﹣3、﹣2、﹣1、0、1,故答案为:﹣3、﹣2、﹣1、0、1;〔5〕有最小值是3.30.A,B在数轴上分别表示数a,b.〔1〕对照数轴填写下表:〔2〕假设A,B两点间的距离记为d,试问d与a,b有何数量关系?〔3〕在数轴上找到所有符合条件的整数点P,使它到5和﹣5的距离之和为10,并求出所有这些整数的和.〔4〕假设数轴上点C表示的数为x,当点C在什么位置时,①|x+1|的值最小?②第15页〔共17页〕|x+1|+|x﹣2|的值最小?【解答】解:〔1〕2〕d=|a﹣b|;3〕是﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5共11个点,和为0;4〕①点C在﹣1;②点C在﹣1与2之间〔包括﹣1和2〕.31.阅读以下材料并解决有关问题:我们知道,现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|x+1|+|x﹣2|时,可令x+1=0和x﹣2=O,分别求得x=﹣1,x=2〔称﹣1,2分别为|x+1|与|x﹣2|的零点值〕.在实数范围内,零点值x=﹣1和,x=2可将全体实数分成不重复且不遗漏的如下3种情况:1〕x<﹣1;〔2〕﹣1≤x<2;〔3〕x≥2.从而化简代数式|x+1|+|x﹣2|可分以下3种情况:1〕当x<﹣1时,原式=﹣〔x+1〕﹣〔x﹣2〕=﹣2x+1;2〕当﹣1≤x<2时,原式=x+1﹣〔x﹣2〕=3;3〕当x≥2时,原式=x+1+x﹣2=2x﹣1.综上讨论,原式=.通过以上阅读,请你解决以下问题:1〕分别求出|x+2|和|x﹣4|的零点值;2〕化简代数式|x+2|+|x﹣4|.【解答】解:〔1〕|x+2|和|x﹣4|的零点值分别为x=﹣2和x=4.〔2〕当x<﹣2时,|x+2|+|x﹣4|=﹣2x+2;第16页〔共17页〕当﹣2≤x<4时,|x+2|+|x﹣4|=6;当x≥4时,|x+2|+|x﹣4|=2x﹣2.综上讨论,原式=.第17页〔共17页〕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数轴、相反数、绝对值(习题)
➢ 巩固练习
1. 下列图形表示数轴正确的是( )
34
A .
B .
C .
D .
2. 下列说法正确的是( )
A .正数和负数统称有理数
B .正整数和负整数统称为整数
C .小数3.14不是分数
D .整数和分数统称为有理数
3. 下列各组数中,互为相反数的是( )
A .( 3.2)--与 3.2-
B .2.3与 2.31-
C .[]( 4.9)-+-与4.9
D .(1)-+与(1)+-
4. 下列说法正确的是( )
A .数轴是一条规定了原点、正方向和单位长度的射线
B .离原点近的点所对应的有理数较小
C .任意一个有理数都可以用数轴上的一个点来表示
D .原点在数轴的正中间
5. 关于相反数的叙述,错误的是( )
A .两数之和为0,则这两个数互为相反数
B .到原点距离相等的点所表示的两个数互为相反数
C .符号相反的两个数,一定互为相反数
D .零的相反数是零
6. 任何一个有理数的绝对值一定( )
A .大于0
B .小于0
C .不大于0
D .不小于0 7. 如果a a >,那么a 是( )
A .正数
B .负数
C .非正数
D .非负数
8.
下列说法正确的是( )
A .绝对值等于它本身的数是正数
B .相反数等于它本身的数是负数
C .相反数等于它本身的数是0
D .任意一个数小于它的绝对值
9. 如图,若点A ,B ,C 所对应的数为a ,b ,c ,则下列大小关系
错误的是( )
A .b c a <<
B .a b c -<<
C .b c a <-<
D .a c b <<-
10. 有如下一些数:-3,3.14,-20,0,6.8,0.34,1
2
-,9-,
其中是非正整数的有____________________________.
11. 在数轴上点A 表示-1,点B 表示-0.5,则离原点较近的是点
__________.
12. 在数轴上距离原点为2的点所对应的数为________,它们互为
_____________.
13. 数轴上-1所对应的点为A ,将点A 向右移4个单位再向左移6个
单位,则此时点A 到原点的距离为__________.
14. 绝对值最小的数是________;绝对值越小,则该数在数轴上
所对应的点离原点越________.
15. 若0x >,则x --=_______;若m n >,则n m -=________. 16. 填空:
(1)43=__________________;----= (2)21=____________----=; (3)32_____________-⨯-=⨯=; (4)33
=___________________________42
-÷-÷=⨯=.
➢思考小结
1.在数轴上距离原点3个单位长度的点表示的数是_________.
2.若字母a表示一个有理数,则-a一定是负数吗?
我们的思考过程是这样的:
-a表示a的相反数,若a为正数,则-a为__________;
-a表示a的相反数,若a为0,则-a为__________;
-a表示a的相反数,若a为负数,则-a为__________.
综上:若字母a表示一个有理数,则-a可能是正数、负数或0,因此,-a___________(“一定”或“不一定”)是负数.3.请判断下列说法的正误.(对的打“√”,错的打“×”)
(1)所有的有理数都能用数轴上的点表示()(2)符号不同的两个数互为相反数()(3)有理数分为正数和负数()(4)最小的正数是1 ()(5)最大的负整数是-1 ()(6)绝对值最小的数是0 ()(7)绝对值等于它本身的数是0和1 ()(8)相反数等于它本身的数是0和1 ()
【参考答案】
➢巩固练习
1. D
2. D
3. A
4. C
5. C
6. D
7. B
8. C
9. D
10.-3,-20,0
11.B
12.±2,相反数
13.3
14.0,近
15.-x,-n+m
16.(1)4,3,1 (2)2,1,1
(3)3,2,6 (4)3
4

3
2

3
4

2
3

1
2
➢思考小结
1.±3
2.负数;0;正数.不一定
3.(1)√;(2)×;(3)×;(4)×;
(5)√;(6)√;(7)×;(8)×.。

相关文档
最新文档