中考数学中的二次函数的线段和差以及最值问题
中考复习线段和差的最大值与最小值(拔高)
中考二轮复习之线段和(差)的最值问题一、两条线段和的最小值。
填空题:1.如图,正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB+PE的最小值是.2.如图,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,则P A+PC的最小值是.3.如图,在锐角△ABC中,AB=42,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.4.如图,在四边形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为__________.5.已知A(-2,3),B(3,1),P点在x轴上,若P A+PB长度最小,则最小值为.若P A—PB长度最大,则最大值为.6.如图,MN是半径为1的⊙O的直径,点A在⊙O上,∠AMN=30°,B为AN弧的中点,P是直径MN上一动点,则PA+PB的最小值为.7、如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为8、如图,正方形ABCD的边长是2,∠DAC的平分线交DC于点E,若点P、Q分别是AD 和AE上的动点,则DQ+PQ的最小值为.综合题:1.如图,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.第1题第2题第3题第4题2.如图,已知平面直角坐标系,A ,B 两点的坐标分别为A (2,-3),B (4,-1)设M ,N 分别为x 轴和y 轴上的动点,请问:是否存在这样的点M (m ,0),N (0,n ),使四边形ABMN 的周长最短?若存在,请求出m =______,n = ______(不必写解答过程);若不存在,请说明理由.中考赏析:1.著名的恩施大峡谷(A )和世界级自然保护区星斗山(B )位于笔直的沪渝高速公路X 同侧,AB =50km 、B 到直线X 的距离分别为10km 和40km ,要在沪渝高速公路旁修建一服务区P ,向A 、B 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP 与直线X 垂直,垂足为P ),P 到A 、B 的距离之和S 1=P A +PB ,图(2)是方案二的示意图(点A 关于直线X 的对称点是A',连接BA'交直线X 于点P ),P 到A 、B 的距离之和S 2=P A +PB . (1)求S 1、S 2,并比较它们的大小; (2)请你说明S 2=P A +PB 的值为最小;(3)拟建的恩施到张家界高速公路Y 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B 到直线Y 的距离为30km ,请你在X 旁和Y 旁各修建一服务区P 、Q ,使P 、A 、B 、Q 组成的四边形的周长最小.并求出这个最小值.2.如图,抛物线y =35x 2-185x +3和y 轴的交点为A ,M 为OA 的中点,若有一动点P ,自M 点处出发,沿直线运动到x 轴上的某点(设为点E ),再沿直线运动到该抛物线对称轴上的某点(设为点F ),最后又沿直线运动到点A ,求使点P 运动的总路程最短的点E ,点F 的坐标,并求出这个最短路程的长.3、在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC 绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.(1)求经过A、B、C三点的抛物线的解析式;(2)当BE经过(1)中抛物线的顶点时,求CF的长;(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ 的周长最小,求出P、Q两点的坐标.4.如图,已知平面直角坐标系,A,B两点的坐标分别为A(2,-3),B(4,-1)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a为何值时,四边形ABDC的周长最短.5、如图11,在平面直角坐标系中,矩形的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标;(2)若E、F为边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.二、求两线段差的最大值问题 (运用三角形两边之差小于第三边)1.直线2x-y-4=0上有一点P ,它与两定点A (4,-1)、B (3,4)的距离之差最大,则P 点的坐标是 .2.已知A 、B 两个村庄的坐标分别为(2,2),(7,4),一辆汽车(看成点P )在x 轴上行驶.试确定下列情况下汽车(点P )的位置:(1)求直线AB 的解析式,且确定汽车行驶到什么点时到A 、B 两村距离之差最大? (2)汽车行驶到什么点时,到A 、B 两村距离相等?3. 如图,抛物线y =-14x 2-x +2的顶点为A ,与y 轴交于点B .(1)求点A 、点B 的坐标;(2)若点P 是x 轴上任意一点,求证:P A -PB ≤AB ; (3)当P A -PB 最大时,求点P 的坐标.4. 如图,已知直线y =21x +1与y 轴交于点A ,与x 轴交于点D ,抛物线y =21x 2+bx +c 与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B (1)求该抛物线的解析式;(3)在抛物线的对称轴上找一点M ,使|AM -MC |大,求出点M 的坐标.5. 如图,直线y =-3x +2与x 轴交于点C ,与y 轴交于点B ,点A 为y 轴正半轴上的一点,⊙A 经过点B 和点O ,直线BC 交⊙A 于点D . (1)求点D 的坐标;(2)过O ,C ,D 三点作抛物线,在抛物线的对称轴上是否存在一点P ,使线段PO 与PD 之差的值最大?若存在,请求出这个最大值和点P 的坐标.若不存在,请说明理由.好题赏析:原型:已知:P 是边长为1的正方形ABCD 内的一点,求P A +PB +PC 的最小值.例题:如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM . (1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM 的值最小,并说明理由; (3)当AM +BM +CM 的最小值为3+1时,求正方形的边长.变式:如图四边形ABCD 是菱形,且∠ABC =60,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM ,则下列五个结论中正确的是( )①若菱形ABCD 的边长为1,则AM +CM 的最小值1; ②△AMB ≌△ENB ;③S 四边形AMBE =S 四边形ADCM ;④连接AN ,则AN ⊥BE ;⑤当AM +BM +CM 的最小值为23时,菱形ABCD 的边长为2. A .①②③ B .②④⑤ C .①②⑤三、其它非基本图形类线段和差最值问题1、求线段的最大值与最小值需要将该条线段转化到一个三角形中,在该三角形中,其他两边是已知的,则所求线段的最大值为其他两线段之和,最小值为其他两线段之差。
2024年中考数学方法、技巧:二次函数中的最值问题
中考数学方法、技巧9-二次函数中的最值问题题型分析
题型一【铅垂高系列】
中考高频考点,常常考在压轴题部分,最常见以考查面积的最值为考点,做法常常作铅锤高,利用坐标法构造面积的二次函数,求得面积最值.
题型二【线段和差最值篇】
中考高频考点,常常考查将军饮马,和的最小值(利用两边之和大于第三边求解),或者线段差的最大值(利用三角形两边之差小于第三边来求解);还有期间涉及到的隐圆问题,也和最值有关。
题型三【构造二次函数模型求最值】
设坐标,构造二次函数,也叫做设坐标法。
题型四【加权线段最值】
利用阿氏圆或者胡不归模型(以上内容公众号中都有的哦),将加权线段进行转化,进而求得最值。
题型五【几何构造最值篇】
几何构造常考于特殊的边和角度时,利用构造特殊图形进行求解。
中考数学中的二次函数的线段和差以及最值问题
二次函数与线段和差问题例题精讲:如图抛物线与x 轴交于A,B(1,0 ),与y 轴交于点C,直线经过点A,C. 抛物线的顶点为D,对称轴为直线l,(1))求抛物线解析式。
(2))求顶点 D 的坐标与对称轴l.点E的坐标。
(3))设点E 为x 轴上一点,且AE=CE求,(4))设点G是y 轴上的一点,是否存在点G,使得GD+GB的值最小,若存在,求出G点坐标,若不存在,说明理由。
(5))在直线l 上是否存在一点F,使得△ BCF的周长最小,若存在,求出点 F的坐标及△ BCF周长的最小值,若不存在,说明理由。
(6))在y 轴上是否存在一点S, 使得SD-SB的值最大,若存在,求出S 点坐标,若不存在,说明理由。
(7))若点H 是抛物线上位于AC上方的一点,过点H 作y 轴的平行线,交AC于点K,设点H的横坐标为h, 线段HK=d①求 d 关于h 的函数关系式②求d 的最大值及此时H点的坐标(8))设点P 是直线AC上方抛物线上一点,当P点与直线AC距离最大值时,求P点的坐标,并求出最大距离是多少?1. 如图,矩形的边OA在轴上,边OC在轴上,点的坐标为(10,8) ,沿直线OD折叠矩形,使点正好落在上的处,E点坐标为(6,8) ,抛物线经过、、三点。
(1))求此抛物线的解析式。
(2))求AD的长。
(3))点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P 的坐标。
2. 如图,在平面直角坐标系中,抛物线y x2点O关于点 A 对称。
(1))填空:点 B 的坐标是。
1与轴相交于点A,点B与4(2))过点的直线(其中)与轴相交于点C,过点C作直线平行于轴,P 是直线上一点,且PB=PC,求线段PB的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由。
(3))在(2)的条件下,若点C关于直线BP的对称点恰好落在该抛物线的对称轴上,求此时点P 的坐标。
3. 如图, 抛物线与x 轴交于A,B 两点, 与y 轴交于点C,点O为坐标原点, 点D为抛物线的顶点, 点E 在抛物线上, 点F 在x 轴上, 四边形OCEF为矩形, 且OF=2,EF=3,.(1) 写出抛物线对应的函数解析式: △AOD的面积是(2) 连结CB交EF于M,再连结AM交OC于R,求△ ACR的周长.(3) 设G(4,-5) 在该抛物线上,P 是y 轴上一动点, 过点P作PH垂直于直线EF并交于H,连接AP,GH,问AP+PH+H是G否有最小值?如果有, 求点P 的坐标; 如果没有, 请说明理由.4.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A、B 分别在x 轴、y轴的正半轴上,OA 3 ,OB 4 ,D 为边OB的中点.若E 、F 为边OA 上的两个动点,且EF 2 ,当四边形CDEF 的周长最小时,求点 E 、F 的坐标.yB CDO A x5.四边形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC与y 轴相交于点M,且M 是BC的中点,A、B、D 三点的坐标分别是A( 1 ,0 ),B( 1 ,2 ),D(3,0).连接DM,并把线段DM 沿DA方向平移到ON.若抛物线y ax2 bx c 经过点D、M、N.(1)求抛物线的解析式;(2)抛物线上是否存在点P,使得PA=PC,若存在,求出点P 的坐标;若不存在,请说明理由;(3)设抛物线与x 轴的另一个交点为E,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有| QE-QC| 最大?并求出最大值.6. 已知,如图,二次函数y ax2 2ax 3a (a0) 图象的顶点为H,与x 轴交于A、B 两点(B 在A 点右侧),点H、B 关于直线l : y3x33 对称.(1)求A、B 两点坐标,并证明点 A 在直线l 上;(2)求二次函数解析式;(3)过点B 作直线BK∥AH 交直线l 于K 点,M、N 分别为直线AH 和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK 和的最小值.ylHKA O Bx7.如图,已知点A(- 4,8)和点B(2,n)在抛物线y = ax2 上.(1)求a 的值及点 B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q,使得AQ+QB 最短,求出点Q 的坐标;(2)平移抛物线y = ax 2 ,记平移后点 A 的对应点为A′,点B 的对应点为B′,点C(- 2,0)和点D(- 4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.yA 8642 BD - 4 C- 2 O- 22 4 x- 4。
部编数学九年级下册专项10二次函数和线段和差最值问题(解析版)含答案
专项10 二次函数和线段和差最值问题“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。
“两点定点一定长”模型一:当两定点 A、B 在直线l异侧时,在直线l上找一点 P,使 PA+PB 最小。
作法:连接AB交直线l 于点 P,点P即为所求作的点。
结论:PA+PB值最小模型二:作法:作点B关于直线l的对称点B’,连接AB’与直线l相交的点P即为所求结论:AP+PB’值最小模型三:PA-最大。
当两定点 A、B 在直线l同侧时,在直线l上找一点 P,使PB作法:接 AB并延长交直线l于点 P,点P即为所求作的点。
PA-的最大值为 AB。
结论:PBPA-最大。
当 l 两B定点 A、B 在直线l 异侧时,在直线l 上找一点 P,使PB作法:作点B关于直线l的对称点B′,连接AB′并延长交直线于点 P,点P即为所求作的点。
PA-的最大值为AB′结论:PB模型四:当 l 两定点 A、B 在直线l同侧时,在直线l上找一点 P,使PBPA-最小。
作法:连接 AB,作AB的垂直平分线交直线l于点 P,点 P 即为所求作的点。
PA-的最小值为 0结论:PB【考点1 线段最值问题】【典例1】(盘锦)如图,在平面直角坐标系中,抛物线y=ax2+bx+4交y轴于点C,交x 轴于A、B两点,A(﹣2,0),a+b=,点M是抛物线上的动点,点M在顶点和B点之间运动(不包括顶点和B点),ME∥y轴,交直线BC于点E.(1)求抛物线的解析式;(2)求线段ME的最大值;【解答】解:(1)将点A的坐标代入抛物线表达式得:0=4a﹣2b+4,则,解得:,故抛物线的表达式为:y=﹣x2+x+4;(2)y=﹣x2+x+4,令x=0,则y=4,令y=0,则x=4或﹣2,故点A、B、C的坐标分别为:(﹣2,0)、(4,0)、(0,4),设直线BC的表达式为:y=kx+b,则,解得:,故直线BC的表达式为:y=﹣x+4,设点M(x,﹣x2+x+4),则点E(x,﹣x+4),则ME=(﹣x2+x+4)﹣(x﹣4)=﹣x2+2x,∵,故ME有最大值,当x=2时,ME的最大值为2;【变式1-1】(2021•柳南区校级模拟)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?【解答】解:(1)∵点A(3,4)在直线y=x+m上,∴4=3+m.∴m=1.设所求二次函数的关系式为y=a(x﹣1)2.∵点A(3,4)在二次函数y=a(x﹣1)2的图象上,∴4=a(3﹣1)2,∴a=1.∴所求二次函数的关系式为y=(x﹣1)2.即y=x2﹣2x+1.(2)①设P、E两点的纵坐标分别为y P和y E.∴PE=h=y P﹣y E=(x+1)﹣(x2﹣2x+1)=﹣x2+3x.即h=﹣x2+3x(0<x<3).②存在.∵h=﹣(x﹣)2+,又∵a=﹣1<0,∴x=时,h的值最大,最大值为.【变式1-2】(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.求线段PM的最大值;【解答】解:(1)将A,B,C代入函数解析式得,,解得,∴这个二次函数的表达式y=x2﹣2x﹣3;(2)设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式得,,解得,∴BC的解析式为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,=,当n=时,PM最大∴线段PM的最大值;【典例2】(2020秋•椒江区校级月考)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A (1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点T为对称轴直线x=2上一点,则TC﹣TB的最大值为多少?【解答】解:(1)设抛物线的表达式为y=a(x﹣x1)(x﹣x2)=a(x﹣1)(x﹣3)=a(x2﹣4x+3)=ax2+bx+3,解得a=1,故抛物线的表达式为y=x2﹣4x+3①;(2)点B关于函数对称轴的对称点为点A,连接CA交函数对称轴于点T,则点T为所求点,则TC﹣TB=TC﹣TA=AC为最大,故TC﹣TB的最大值为AC==,故答案为;【变式2】(2020•连云港)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;【解答】解:(1)当y=0时,x2﹣x﹣2=0,解得x=﹣1或4,∴A(﹣1,0),B(4,0),C(0,﹣2),由题意设抛物线L2的解析式为y=a(x+1)(x﹣4),把(2,﹣12)代入y=a(x+1)(x﹣4),﹣12=﹣6a,解得a=2,∴抛物线的解析式为y=2(x+1)(x﹣4)=2x2﹣6x﹣8.(2)∵抛物线L2与L1是“共根抛物线”,A(﹣1,0),B(4,0),∴抛物线L1,L2的对称轴是直线x=,∴点P在直线x=上,∴BP=AP,如图1中,当A,C,P共线时,BP﹣PC的值最大,此时点P为直线AC与直线x=的交点,∵直线AC的解析式为y=﹣2x﹣2,∴P(,﹣5)【典例3】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线及直线BC的表达式;(2)过点P作PN⊥BC,垂足为点N.求线段PN的最大值;【解答】解:(1)∵抛物线对称轴为x=1,点B与A(﹣1,0)关于直线x=1对称,∴B(3,0),设y=a(x﹣3)(x+1),把C(0,3)代入得:﹣3a=3,解得:a=﹣1,∴y=﹣(x﹣3)(x+1)=﹣x2+2x+3,设直线BC的解析式为y=kx+d,则,解得:,∴直线BC的解析式为y=﹣x+3,故抛物线解析式为y=﹣x2+2x+3,直线BC的解析式为y=﹣x+3;(2)设P(t,﹣t2+2t+3),则Q(t,﹣t+3),∴PQ=﹣t2+2t+3﹣(﹣t+3)=﹣t2+3t,∵OB=OC=3,∠BOC=90°,∴∠BCO=45°,∵PQ⊥x轴,∴PQ∥y轴,∴∠PQN=∠BCO=45°,∵PN⊥BC,∴PN=PQ•sin∠PQN=(﹣t2+3t)•sin45°=﹣(t﹣)2+,∵<0,∴当t=时,PN的最大值为;【变式3】(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.【解答】解:(1)直线y=﹣x﹣2中,当x=0时,y=﹣2,∴B(0,﹣2),当y=0时,﹣x﹣2=0,∴x=﹣2,∴A(﹣2,0),将A(﹣2,0),B(0,﹣2)代入抛物线y=ax2+bx+c(a>0)中,得,,∴2a﹣b=1,c=﹣2;(2)当a=1时,2×1﹣b=1,∴b=1,∴y=x2+x﹣2,∴A(﹣2,0),B(0,﹣2),C(1,0),∴OA=OB,∴△AOB是等腰直角三角形,∴∠OAB=45°,如图2,过点Q作QF⊥x轴于F,交AB于E,则△EQD是等腰直角三角形,设Q(m,m2+m﹣2),则E(m,﹣m﹣2),∴QE=(﹣m﹣2)﹣(m2+m﹣2)=﹣m2﹣2m=﹣(m+1)2+1,∴QD=QE=﹣(m+1)2+,当m=﹣1时,QD有最大值是,当m=﹣1时,y=1﹣1﹣2=﹣2,综上,点Q的坐标为(﹣1,﹣2)时,QD有最大值是.【考点2 线段和最小】【典例4】(2019秋•东莞市校级期末)已知,抛物线y=ax2+bx+c,过A(﹣1,0)、B (3,0)、C(0,﹣3),M为顶点.(1)求抛物线的解析式;(2)在该抛物线的对称轴上找一点P,使得PA+PC的值最小,并求出P的坐标;【解答】解:(1)设抛物线解析式为y=a(x+1)(x﹣3),把C(0,﹣3)代入得a×(0+1)×(0﹣3)=﹣3,解得a=1,∴抛物线解析式为y=(x+1)(x﹣3),即y=x2﹣2x﹣3;(2)抛物线的对称轴为直线x=1,点A与点B关于直线x=1对称,连接BC交直线x=1于P点,则PA=PB,∵PA+PC=PB+PC=BC,∴此时PA+PC的值最小,设直线BC的解析式为y=mx+n,把B(3,0),C(0,﹣3)代入得,解得,∴直线BC的解析式为y=x﹣3,当x=1时,y=x﹣3=﹣2,则满足条件的P点坐标为(1,﹣2);【变式4-1】(2019•赤峰)如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;【解答】解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,令y=0,则x=﹣1或3,故点A(﹣1,0);(2)如图1中,作点C关于x轴的对称点C′,连接CD′交x轴于点E,则此时EC+ED 为最小,函数顶点D坐标为(1,4),点C′(0,﹣3),将C′、D的坐标代入一次函数表达式并解得:直线C′D的表达式为:y=7x﹣3,当y=0时,x=,故点E(,0),则EC+ED的最小值为DC′=;【变式4-2】(2016•黑龙江二模)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣2上,∴×(﹣1)2+b×(﹣1)﹣2=0,解得:b=﹣,∴抛物线的解析式为:y=x2﹣x﹣2.∵y=x2﹣x﹣2=(x2﹣3x﹣4 )=,∴顶点D的坐标为(,﹣).(2)设点C关于x轴的对称点为C′,直线C′D的解析式为y=kx+n,则,解得:.∴y=﹣x+2.∴当y=0时,﹣x+2=0,解得:x=.∴m=.【典例5】(2022•恩施州模拟)如图1,已知抛物线.点A(﹣1,2)在抛物线的对称轴上,是抛物线与y轴的交点,D为抛物线上一动点,过点D 作x轴的垂线,垂足为点C.(1)直接写出h,k的值;(2)如图1,若点D的坐标为(3,m),点Q为y轴上一动点,直线QK与抛物线对称轴垂直,垂足为点K.探求DK+KQ+QC的值是否存在最小值,若存在,求出这个最小值及点Q的坐标;若不存在,请说明理由;【解答】解:(1)∵点A(﹣1,2)在抛物线的对称轴上,∴抛物线的对称轴为直线x=﹣1,∴h=1,∴y=(x+1)2+k,∵是抛物线与y轴的交点,∴+k=,∴k=1;(2)存在最小值,理由如下:由(1)可知y=(x+1)2+1,作C点关于直线x=﹣的对称点C',连接C'D交抛物线对称轴于点K,连接CQ,由对称性可知C'K=CQ,∴CQ+KQ+KD=C'K+KD+KQ≥C'D+KQ,当C'、K、D三点共线时,CQ+KQ+KD的值最小,∵抛物线的对称轴为直线x=﹣1,∴KQ=1,∵D(3,5),CD⊥x轴,∵C(3,0),∴C'(﹣4,0),∴C'D=,∴CQ+KQ+KD的最小值为+1,设直线C'D的解析式为y=kx+b,∴,解得,∴y=x+,∴K(﹣1,),∴Q(0,);【变式5】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B 的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;【解答】解:(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),C(0,4);(2)将C(0,4)向下平移至C',使CC'=PQ,连接BC'交抛物线的对称轴l于Q,如图:∵CC'=PQ,CC'∥PQ,∴四边形CC'QP是平行四边形,∴CP=C'Q,∴CP+PQ+BQ=C'Q+PQ+BQ=BC'+PQ,∵B,Q,C'共线,∴此时CP+PQ+BQ最小,最小值为BC'+PQ的值,∵C(0,4),CC'=PQ=1,∴C'(0,3),∵B(4,0),∴BC'==5,∴BC'+PQ=5+1=6,∴CP+PQ+BQ最小值为6;【考点3 周长最值问题】【典例6】(2020春•五华区校级期末)如图,抛物线y=x2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.【解答】解:(1)∵点A(﹣1,0)在抛物线y=x2+bx﹣3上,∴b=﹣2,∴抛物线解析式y=x2﹣2x﹣3,∵抛物线y=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标(1,﹣4);(2)对于y=x2﹣2x﹣3,当x=0时,y=﹣3,∴C(0,﹣3),当y=0时,0=x2﹣2x﹣3,解得:x=3或﹣1,∴B(3,0),由抛物线的性质可知:点A和B是对称点,∴连接BC交函数的对称轴于点M,此时AM+CM=BC为最小值,而BC的长度是常数,故此时△ACM的周长最小,设直线BC的表达式为y=mx+n,则,解得,故直线BC的表达式为y=x﹣3,当x=1时,y=﹣2,故点M(1,﹣2).【变式6-1】(2021•富拉尔基区模拟)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线解析式;(2)若M是抛物线对称轴上的一点,则△ACM周长的最小值为多少?【解答】解:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),∴,解得,∴抛物线解析式为y=﹣x2﹣2x+3;(2)∵△ACM周长的值最小,∴MC+AM的值最小,即点M即为直线BC与抛物线对称轴的交点,∴△ACM周长的最小值为BC+AC,∵点B(﹣3,0),C(0,3),∴BC==3,AC==,∴△ACM周长的最小值为,故答案为:;【变式6-2】(2022•齐河县模拟)如图1,抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,交y轴于点C.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在点M,使△ACM的周长最小?若存在,求出△ACM 周长的最小值;若不存在,请说明理由.(3)如图2,连接BC,抛物线上是否存在一点P,使得∠BCP=∠ACB?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,∴方程ax2+bx+3=0的两根为x=1或x=3,∴1+3=﹣,1×3=,∴a=1,b=﹣4,∴二次函数解析式是y=x2﹣4x+3;(2)∵二次函数解析式是y=x2﹣4x+3,∴抛物线的对称轴为直线x=2,C(0,3).∵点A、B关于对称轴对称,∴点M为BC与对称轴的交点时,MA+MC=BC的值最小.设直线BC的解析式为y=kx+t(k≠0),则,解得:.∴直线BC的解析式为y=﹣x+3.∵抛物线的对称轴为直线x=2.∴当x=2时,y=1.∴抛物线对称轴上存在点M(2,1)符合题意,∵A(1,0)、B(3,0),C(0,3).∴AC==,BC==3,∴AC+BC=+3,∴在抛物线的对称轴上存在点M,使△ACM的周长最小,△ACM周长的最小值为+3;【典例7】(2022春•衡阳期中)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+x+c经过A、B两点.(1)求二次函数解析式;(2)如图1,点E在线段AB上方的抛物线上运动(不与A、B重合),过点E作ED⊥AB,交AB于点D,作EF⊥AC,交AC于点F,交AB于点M,求△DEM的周长的最大值;【解答】解:(1)∵直线y=﹣x+3与x轴交于点A,与y轴交于点B,∴A(4,0),B(0,3).∵抛物线y=ax2+x+c经过A、B两点,∴,解得.∴二次函数的解析式为:y=﹣x2+x+3.(2)∵A(4,0),B(0,3).∴OA=4,OB=3,∴AB=5.∵ED⊥AB,∴∠EDM=∠AOB=90°,∵∠DEM+∠EMD=∠FMA+∠BAO=90°,∠FMA=∠EMD,∴∠DEM=∠BAO,∴△AOB∽△EDM,∴AO:OB:AB=ED:DM:EM=4:3:5,设E的横坐标为t,则E(t,﹣t2+t+3),∴M(t,﹣t+3),∴EM=﹣t2+t+3﹣(﹣t+3)=﹣t2+t.∴△DEM的周长为:ED+DM+EM=EM=﹣(t﹣2)2+,∴当t=2时,△DEM的周长的最大值为.【变式7】(2022春•北碚区校级期中)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+2交x轴于A、B两点(点A在点B的左侧),交y轴于点C,一次函数y=﹣x﹣1交抛物线于A,D两点,其中点D(3,﹣4).(1)求抛物线C1的解析式;(2)点G为抛物线上一点,且在线段BC上方,过点G作GH∥y轴交BC于H,交x 轴于点N,作GM⊥BC于点M,求△GHM周长的最大值;【解答】解:(1)∵一次函数y=﹣x﹣1交抛物线于A点,且点A在x轴上,∴A(﹣1,0);将A(﹣1,0)和D(3,﹣4)代入抛物线C1:y=ax2+bx+2,∴,解得,∴抛物线C1:y=﹣x2+x+2.(2)由(1)知抛物线C1:y=﹣x2+x+2.令y=0,解得x=﹣1或x=2,∴B(2,0);令x=0,则y=2,∴C(0,2).∴OB=OC=2,直线BC的解析式为:y=﹣x+2;∴△OBC是等腰直角三角形,且∠OBC=∠OCB=45°;∵GH∥y轴,∴∠GNB=90°,∴∠BHN=45°,∵GM⊥BC,∴∠GMH=90°,∵∠MGH=∠GHM=45°,∴GM=MH=GH;设点G的横坐标为t,则G(t,﹣t2+t+2),H(t,﹣t+2),∴GH=﹣t2+2t=﹣(t﹣1)2+1.∵﹣1<0,∴当t=1时,GH有最大值1;∵△GHM的周长为:GM+MH+GH=(+1)GH,∴△GHM周长的最大值为+1.1.(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A (﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.求线段PM的最大值;【解答】解:(1)将A,B,C代入函数解析式得,,解得,∴这个二次函数的表达式y=x2﹣2x﹣3;(2)①设BC的解析式为y=kx+b,将B,C的坐标代入函数解析式得,,解得,∴BC的解析式为y=x﹣3,设M(n,n﹣3),P(n,n2﹣2n﹣3),PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,=,当n=时,PM最大∴线段PM的最大值;2.(2022•宁远县模拟)如图,抛物线y=x2+bx+c与x轴交于A,B两点,其中点A的坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值;【解答】解:(1)∴二次函数y=x2+bx+c的图象经过A(﹣3,0),D(﹣2,﹣3),∴,解得:.∴二次函数解析式为y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3的对称轴x=﹣=﹣1,D(﹣2,﹣3),C(0,﹣3),∴C、D关于抛物线的对称轴x=﹣1对称,连接AC与对称轴的交点就是点P,此时PA+PD=PA+PC=AC===3.∴PA+PD的最小值为3;3.(2022•昭平县二模)如图1,对称轴为直线x=1的抛物线经过B(3,0)、C(0,4)两点,抛物线与x轴的另一交点为A.(1)求抛物线的解析式;(2)若点P为抛物线对称轴上的一点,使PA+PC取得最小值,求点P的坐标;【解答】解:(1)由对称性得:A(﹣1,0),设抛物线的解析式为:y=a(x+1)(x﹣3),把C(0,4)代入:4=﹣3a,a=﹣,∴y=﹣(x+1)(x﹣3),∴抛物线的解析式为:y=﹣x2+x+4;(2)如图,点A与点B关于对称轴直线x=1对称,连接BC,交抛物线对称轴于点P,连接PA,即点P为所求点,此时PA+PC=PB+PC=BC的值最小,∵B(3,0)、C(0,4),设直线BC的函数解析式为y=kx+b,∴,解得,∴直线BC的函数解析式为y=﹣x+4,当x=1时,y=,∴P点的坐标为(1,);4.(2022春•石鼓区校级月考)已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求△PAD周长的最小值.【解答】解:(1)将(﹣3,0),(﹣2,﹣3)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2+2x﹣3.(2)∵y=x2+2x﹣3,∴抛物线对称轴为直线x=﹣1,连接BD,交对称轴于点P,∵点A坐标为(﹣3,0),抛物线对称轴为直线x=﹣1,∴点B坐标为(1,0),∴BD==3,又∵AD==,∴△PAD周长的最小值为3+.5.(2022•江阴市校级一模)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x 轴分别相交于A(﹣1,0)、B(3,0)两点,与y轴相交于点C(0,3).(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC 的最小值;【解答】解:(1)∵抛物线过点A(﹣1,0),B(3,0),C(0,3),∴设抛物线解析式为y=a(x+1)(x﹣3),将C(0,3)代入,得:3=a(0+1)(0﹣3),解得:a=﹣1,∴y=﹣(x+1)(x﹣3)=﹣x2+2x+3=﹣(x﹣1)2+4,∴该抛物线解析式为y=﹣x2+2x+3,顶点坐标为M(1,4).(2)如图1,将点C沿y轴向下平移1个单位得C′(0,2),连接BC′交抛物线对称轴x=1于点Q′,过点C作CP′∥BC′,交对称轴于点P′,连接AQ′,∵A、B关于直线x=1对称,∴AQ′=BQ′,∵CP′∥BC′,P′Q′∥CC′,∴四边形CC′Q′P′是平行四边形,∴CP′=C′Q′,Q′P′=CC′=1,在Rt△BOC′中,BC′=,==.∴AQ′+Q′P′+P′C=BQ′+C′Q′+Q′P′=BC′+Q′P′=+1,此时,C′、Q′、B三点共线,BQ′+C′Q′的值最小,∴AQ+QP+PC的最小值为+1.6.(2022•常德)如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.(1)求此抛物线的解析式;(2)当△OAB的面积为15时,求B的坐标;(3)在(2)的条件下,P是抛物线上的动点,当PA﹣PB的值最大时,求P的坐标以及PA﹣PB的最大值.【解答】解:(1)∵抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,∴抛物线与x轴的另一个交点坐标为(4,0),设抛物线解析式为y=ax(x﹣4),把A(5,5)代入,得5a=5,解得:a=1,∴y=x(x﹣4)=x2﹣4x,故此抛物线的解析式为y=x2﹣4x;(2)∵点B是抛物线对称轴上的一点,且点B在第一象限,∴设B(2,m)(m>0),设直线OA的解析式为y=kx,则5k=5,解得:k=1,∴直线OA的解析式为y=x,设直线OA与抛物线对称轴交于点H,则H(2,2),∴BH=m﹣2,=15,∵S△OAB∴×(m﹣2)×5=15,解得:t=8,∴点B的坐标为(2,8);(3)设直线AB的解析式为y=cx+d,把A(5,5),B(2,8)代入得:,解得:,∴直线AB的解析式为y=﹣x+10,当PA﹣PB的值最大时,A、B、P在同一条直线上,∵P是抛物线上的动点,∴,解得:,(舍去),∴P(﹣2,12),此时,PA﹣PB=AB==3.7.(2022•玉州区一模)如图,抛物线y=﹣x2x+4交x轴于A,B两点(点B在A的右边),与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P 的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.(1)求A、B两点坐标;(2)过点P作PN上BC,垂足为点N,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?【解答】解:(1)当y=0,﹣x2+x+4=0,解得x1=﹣3,x2=4,∴A(﹣3,0),B(4,0),(2)设点P(m,﹣m2+m+4),则点Q(m,﹣m+4),∵OB=OC,∴∠ABC=∠OCB=45°=∠PQN,P~N=PQ•sin∠PQN=(﹣m2+m+4+m﹣4)=﹣(m﹣2)2+,∵﹣<0,∴PN有最大值,当m=2时,PN的最大值为.8.(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.(1)求抛物线和直线BC的函数表达式.(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.【解答】解:(1)∵抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),∴,解得,∴抛物线的解析式为y=﹣x2+2x+3,令x=0,可得y=3,∴C(0,3),设直线BC的解析式为y=kx+b,则,∴,∴直线BC的解析式为y=﹣x+3;(2)如图一中,连接PC,OP,PB.设P(m,﹣m2+2m+3),∵B (3,0),C (0,3),∴OB =OC =3,∴∠OBC =45°,∵PF ∥AB ,∴∠PFE =∠OBC =45°,∵PE ⊥BC ,∴△PEF 是等腰直角三角形,∴PE 的值最大时,△PEF 的周长最大,∵S △PBC =S △POB +S △POC ﹣S △OBC=×3×(﹣m 2+2m +3)+×3×m ﹣×3×3=﹣m 2+m=﹣(m ﹣)2+,∵﹣<0,∴m =时,△PBC 的面积最大,面积的最大值为,此时PE 的值最大,∵×3×PE =,∴PE =,∴△PEF 的周长的最大值=++=+,此时P (,);。
(精品课)初三数学学案:二次函数中求线段和差最值问题
将军饮马问题的应用之二次函数中求线段和差最值问题 姓名____ 班级__ 一:学习目标1、熟练掌握基本事实——两点之间线段最短及三角形的三边关系:两边之和大于第三边,两边之差小于第三边;能根据题意熟练的应用基本事实用尺规作图。
2、在具体的实例中体会“将军饮马”问题中蕴含的数学本质:利用对称思想把复杂的问题简单化,它与抛物线(轴对称图形)相结合,在初中几何求最值问题中展现了特殊的魅力,在中考中体现了重要的地位。
二:教学过程(一)复习回顾1、若抛物线 过点(0,1)、(1,0),则此抛物线的解析式为_____________2、如图1,在l 上求作一点M ,使得AM +BM 最小;3、如图2,在l 上求作一点M ,使得|AM -BM |最大。
图1 图2(二)例题讲练例1、如图,已知抛物线的方程C 1:()()1y x 2(x m)m 0m=-+->与x 轴相交于点B 、C , 与y 轴相交于点E ,且点B 在点C 的左侧(1)若抛物线C 1过点M(2,2),求实数m 的值。
(2)在(1)的条件下,在抛物线的对称轴上找一点H ,使BH+EH 最小,并求出点H 的坐标。
l 212y x bx c =++练习1、如图,已知抛物线y=﹣x 2+bx+c 与一直线相交于A (﹣1,0),C (2,3)两点,与y 轴交于点N .其顶点为D .(1)抛物线及直线AC 的函数关系式;(2)设点M (3,m ),求使MN+MD 的值最小时m 的值。
练习2:如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.B A O y x例2:如图,已知抛物线的方程C 1:()()1y x 2(x m)m 0m=-+->与x 轴相交于点B 、C , 与y 轴相交于点E ,且点B 在点C 的左侧(1)若抛物线C 1过点M(2,2),求实数m 的值。
中考数学中的二次函数的线段和差以及最值问题
二次函数与线段和差问题例题精讲:如图抛物线与x轴交于A,B(1,0),与y 轴交于点C,直线经过点A,C.抛物线的顶点为D,对称轴为直线l, (1)求抛物线解析式。
(2)求顶点D的坐标与对称轴l.(3)设点E为x轴上一点,且AE=CE,求点E的坐标。
(4)设点G是y轴上的一点,是否存在点G,使得GD+GB的值最小,若存在,求出G点坐标,若不存在,说明理由。
(5)在直线l上是否存在一点F,使得△BCF的周长最小,若存在,求出点F 的坐标及△BCF周长的最小值,若不存在,说明理由。
(6)在y轴上是否存在一点S,使得SD-SB的值最大,若存在,求出S点坐标,若不存在,说明理由。
(7)若点H是抛物线上位于AC上方的一点,过点H作y轴的平行线,交AC 于点K,设点H的横坐标为h,线段HK=d①求d关于h的函数关系式②求d的最大值及此时H点的坐标(8)设点P是直线AC上方抛物线上一点,当P点与直线AC距离最大值时,求P点的坐标,并求出最大距离是多少?1.如图,矩形的边OA在轴上,边OC在轴上,点的坐标为(10,8),沿直线OD折叠矩形,使点正好落在上的处,E点坐标为(6,8),抛物线经过、、三点。
(1)求此抛物线的解析式。
(2)求AD的长。
(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标。
2.如图,在平面直角坐标系中,抛物线412+=x y 与轴相交于点A ,点B 与点O 关于点A 对称。
(1)填空:点B 的坐标是 。
(2)过点的直线(其中)与轴相交于点C ,过点C 作直线平行于轴,P 是直线上一点,且PB=PC ,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由。
(3)在(2)的条件下,若点C 关于直线BP 的对称点恰好落在该抛物线的对称轴上,求此时点P 的坐标。
3.如图,抛物线与x轴交于A,B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,.(1)写出抛物线对应的函数解析式:△AOD的面积是(2)连结CB交EF于M,再连结AM交OC于R,求△ACR的周长.(3)设G(4,-5)在该抛物线上,P是y轴上一动点,过点P作PH垂直于直线EF并交于H,连接AP,GH,问AP+PH+HG是否有最小值?如果有,求点P的坐标;如果没有,请说明理由.4.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.5.四边形ABCD 是直角梯形,BC ∥AD ,∠BAD =90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使得PA =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大?并求出最大值.6.已知,如图,二次函数223y ax ax a =+-(0)a ≠图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线:3l y x =+ (1)求A 、B 两点坐标,并证明点A 在直线l 上;(2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M 、N 分别为直线AH 和直线l 上的两个动点,连接HN 、NM 、MK ,求HN +NM +MK 和的最小值.7.如图,已知点A (-4,8)和点B (2,n )在抛物线2=y ax 上.(1)求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;(2)平移抛物线2=y ax ,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.①当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.8.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.9.在Rt △ABC 中,∠A=90°,AC=AB=4, D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ,线段CE 1的长等于 ;(直接填写结果)(2)如图2,当α=135°时,求证:BD 1= CE 1,且BD 1⊥CE 1;(3)①设BC 的中点为M ,则线段PM 的长为 ;②点P 到AB 所在直线的距离的最大值为 .(直接填写结果)E 1B C E D (D 1)A PE 1BCED D 1A。
二次函数最值问题及解题技巧(个人整理)
二次函数最值问题及解题技巧(个人整理)一、二次函数线段最值问题1、平行于x轴的线段最值问题1)首先表示出线段两个端点的坐标2)用右侧端点的横坐标减去左侧端点的横坐标3)得到一个线段长关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、平行于y轴的线段最值问题1)首先表示出线段两个端点的坐标2)用上面端点的纵坐标减去下面端点的纵坐标3)得到一个线段长关于自变量的二次函数解析式4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值3、既不平行于x轴,又不平行于y轴的线段最值问题1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于x轴、y轴2)根据线段两个端点的坐标表示出直角顶点坐标3)根据“上减下,右减左”分别表示出两直角边长4)根据勾股定理表示出斜边的平方(即两直角边的平方和)5)得到一个斜边的平方关于自变量的二次函数6)将其化为顶点式,并根据a的正负及自变量的取值规模判断最值7)根据所求得的斜边平方的最值求出斜边的最值即可2、二次函数周长最值问题1、矩形周长最值问题1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长最值2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值2、利用两点之间线段最短求三角形周长最值1)首先判断图形中那些边是定值,哪些边是变量2)使用二次函数轴对称性及两点之间线段最短找到两条变革的边,并求其和的最小值3)周长最小值即为两条变革的边的和最小值加上不变的边长3、二次函数面积最值问题1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴)1)首先表示出所需的边长及高2)使用求面积公式表示出面积3)得到一个面积关于自变量的二次函数4)将其化为顶点式,并根据a的正负及自变量的取值规模判断最值2、不划定规矩图形面积最值问题1)支解。
专项10 二次函数和线段和差最值问题(原卷版)
专项10 二次函数和线段和差最值问题“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。
“两点定点一定长”模型一:当两定点 A、B 在直线l异侧时,在直线l上找一点 P,使 PA+PB 最小。
作法:连接AB交直线l 于点 P,点P即为所求作的点。
结论:PA+PB值最小模型二:作法:作点B关于直线l的对称点B’,连接AB’与直线l相交的点P即为所求结论:AP+PB’值最小模型三:PA-最大。
当两定点 A、B 在直线l同侧时,在直线l上找一点 P,使PB作法:接 AB并延长交直线l于点 P,点P即为所求作的点。
PA-的最大值为 AB。
结论:PBPA-最大。
当 l 两B定点 A、B 在直线l 异侧时,在直线l 上找一点 P,使PB作法:作点B关于直线l的对称点B′,连接AB′并延长交直线于点 P,点P即为所求作的点。
PA-的最大值为AB′结论:PB模型四:PA-最小。
当 l 两定点 A、B 在直线l同侧时,在直线l上找一点 P,使PB作法:连接 AB,作AB的垂直平分线交直线l于点 P,点 P 即为所求作的点。
PA-的最小值为 0结论:PB【考点1 线段最值问题】【典例1】(盘锦)如图,在平面直角坐标系中,抛物线y=ax2+bx+4交y轴于点C,交x 轴于A、B两点,A(﹣2,0),a+b=,点M是抛物线上的动点,点M在顶点和B点之间运动(不包括顶点和B点),ME∥y轴,交直线BC于点E.(1)求抛物线的解析式;(2)求线段ME的最大值;【变式1-1】(2021•柳南区校级模拟)如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?【变式1-2】(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.求线段PM的最大值;【典例2】(2020秋•椒江区校级月考)如图,已知抛物线y=ax2+bx+3(a≠0)经过点A (1,0)和点B(3,0),与y轴交于点C.(1)求此抛物线的解析式;(2)若点T为对称轴直线x=2上一点,则TC﹣TB的最大值为多少?【变式2】(2020•连云港)在平面直角坐标系xOy中,把与x轴交点相同的二次函数图象称为“共根抛物线”.如图,抛物线L1:y=x2﹣x﹣2的顶点为D,交x轴于点A、B(点A在点B左侧),交y轴于点C.抛物线L2与L1是“共根抛物线”,其顶点为P.(1)若抛物线L2经过点(2,﹣12),求L2对应的函数表达式;(2)当BP﹣CP的值最大时,求点P的坐标;【典例3】(2022•澄海区模拟)如图,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C,点A的坐标为(﹣1,0),点C坐标为(0,3),对称轴为x=1.点M为线段OB上的一个动点(不与两端点重合),过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线及直线BC的表达式;(2)过点P作PN⊥BC,垂足为点N.求线段PN的最大值;【变式3】(2022•广元)在平面直角坐标系中,直线y=﹣x﹣2与x轴交于点A,与y轴交于点B,抛物线y=ax2+bx+c(a>0)经过A,B两点,并与x轴的正半轴交于点C.(1)求a,b满足的关系式及c的值;(2)当a=1时,若点Q是直线AB下方抛物线上的一个动点,过点Q作QD⊥AB于点D,当QD的值最大时,求此时点Q的坐标及QD的最大值.【考点2 线段和最小】【典例4】(2019秋•东莞市校级期末)已知,抛物线y=ax2+bx+c,过A(﹣1,0)、B (3,0)、C(0,﹣3),M为顶点.(1)求抛物线的解析式;(2)在该抛物线的对称轴上找一点P,使得P A+PC的值最小,并求出P的坐标;【变式4-1】(2019•赤峰)如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;【变式4-2】(2016•黑龙江二模)如图,抛物线y=x2+bx﹣2与x轴交于A、B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.【典例5】(2022•恩施州模拟)如图1,已知抛物线.点A(﹣1,2)在抛物线的对称轴上,是抛物线与y轴的交点,D为抛物线上一动点,过点D 作x轴的垂线,垂足为点C.(1)直接写出h,k的值;(2)如图1,若点D的坐标为(3,m),点Q为y轴上一动点,直线QK与抛物线对称轴垂直,垂足为点K.探求DK+KQ+QC的值是否存在最小值,若存在,求出这个最小值及点Q的坐标;若不存在,请说明理由;【变式5】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ(点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)求CP+PQ+QB的最小值;【考点3 周长最值问题】【典例6】(2020春•五华区校级期末)如图,抛物线y=x2+bx﹣3与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点M是对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.【变式6-1】(2021•富拉尔基区模拟)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C.(1)求抛物线解析式;(2)若M是抛物线对称轴上的一点,则△ACM周长的最小值为多少?【变式6-2】(2022•齐河县模拟)如图1,抛物线y=ax2+bx+3过A(1,0)、B(3,0)两点,交y轴于点C.(1)求抛物线的函数解析式;(2)在抛物线的对称轴上是否存在点M,使△ACM的周长最小?若存在,求出△ACM 周长的最小值;若不存在,请说明理由.(3)如图2,连接BC,抛物线上是否存在一点P,使得∠BCP=∠ACB?若存在,求出点P的坐标;若不存在,请说明理由.【典例7】(2022春•衡阳期中)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B,抛物线y=ax2+x+c经过A、B两点.(1)求二次函数解析式;(2)如图1,点E在线段AB上方的抛物线上运动(不与A、B重合),过点E作ED⊥AB,交AB于点D,作EF⊥AC,交AC于点F,交AB于点M,求△DEM的周长的最大值;【变式7】(2022春•北碚区校级期中)如图,在平面直角坐标系中,抛物线C1:y=ax2+bx+2交x轴于A、B两点(点A在点B的左侧),交y轴于点C,一次函数y=﹣x﹣1交抛物线于A,D两点,其中点D(3,﹣4).(1)求抛物线C1的解析式;(2)点G为抛物线上一点,且在线段BC上方,过点G作GH∥y轴交BC于H,交x 轴于点N,作GM⊥BC于点M,求△GHM周长的最大值;1.(2022春•丰城市校级期末)如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).(1)求这个二次函数的表达式;(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.求线段PM的最大值;2.(2022•宁远县模拟)如图,抛物线y=x2+bx+c与x轴交于A,B两点,其中点A的坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出P A+PD的最小值;3.(2022•昭平县二模)如图1,对称轴为直线x=1的抛物线经过B(3,0)、C(0,4)两点,抛物线与x轴的另一交点为A.(1)求抛物线的解析式;(2)若点P为抛物线对称轴上的一点,使P A+PC取得最小值,求点P的坐标;4.(2022春•石鼓区校级月考)已知:二次函数y=x2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣3,0),与y轴交于点C,点D(﹣2,﹣3)在抛物线上.(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求△P AD周长的最小值.5.(2022•江阴市校级一模)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x 轴分别相交于A(﹣1,0)、B(3,0)两点,与y轴相交于点C(0,3).(1)求出这条抛物线的解析式及顶点M的坐标;(2)PQ是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求AQ+QP+PC 的最小值;6.(2022•常德)如图,已知抛物线过点O(0,0),A(5,5),且它的对称轴为x=2,点B是抛物线对称轴上的一点,且点B在第一象限.(1)求此抛物线的解析式;(2)当△OAB的面积为15时,求B的坐标;(3)在(2)的条件下,P是抛物线上的动点,当P A﹣PB的值最大时,求P的坐标以及P A﹣PB的最大值.7.(2022•玉州区一模)如图,抛物线y=﹣x2x+4交x轴于A,B两点(点B在A的右边),与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,点P 的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q.(1)求A、B两点坐标;(2)过点P作PN上BC,垂足为点N,请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?8.(2022•怀化)如图一所示,在平面直角坐标中,抛物线y=ax2+2x+c经过点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为点D.在线段CB上方的抛物线上有一动点P,过点P作PE⊥BC于点E,作PF∥AB交BC于点F.(1)求抛物线和直线BC的函数表达式.(2)当△PEF的周长为最大值时,求点P的坐标和△PEF的周长.。
中考数学中的二次函数的线段和差以及最值问题
二次函数与线段和差问题例题精讲:如图抛物线与x轴交于A,B(1,0),与y 轴交于点C,直线经过点A,C。
抛物线的顶点为D,对称轴为直线l,(1)求抛物线解析式.(2)求顶点D的坐标与对称轴l。
(3)设点E为x轴上一点,且AE=CE,求点E的坐标.(4)设点G是y轴上的一点,是否存在点G,使得GD+GB的值最小,若存在,求出G点坐标,若不存在,说明理由。
(5)在直线l上是否存在一点F,使得△BCF的周长最小,若存在,求出点F的坐标及△BCF周长的最小值,若不存在,说明理由。
(6)在y轴上是否存在一点S,使得SD-SB的值最大,若存在,求出S点坐标,若不存在,说明理由。
(7)若点H是抛物线上位于AC上方的一点,过点H作y轴的平行线,交AC 于点K,设点H的横坐标为h,线段HK=d①求d关于h的函数关系式②求d的最大值及此时H点的坐标(8)设点P是直线AC上方抛物线上一点,当P点与直线AC距离最大值时,求P点的坐标,并求出最大距离是多少?1.如图,矩形的边OA 在轴上,边OC 在轴上,点的坐标为(10,8),沿直线OD 折叠矩形,使点正好落在上的处,E 点坐标为(6,8),抛物线经过、、三点。
(1)求此抛物线的解析式。
(2)求AD 的长.(3)点P 是抛物线对称轴上的一动点,当△PAD 的周长最小时,求点P 的坐标.2。
如图,在平面直角坐标系中,抛物线412+=x y 与轴相交于点A ,点B 与点O 关于点A 对称。
(1)填空:点B 的坐标是 。
(2)过点的直线(其中)与轴相交于点C ,过点C 作直线平行于轴,P 是直线上一点,且PB=PC,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由.(3)在(2)的条件下,若点C 关于直线BP 的对称点恰好落在该抛物线的对称轴上,求此时点P 的坐标。
3.如图,抛物线与x 轴交于A,B 两点,与y 轴交于点C,点O 为坐标原点,点D 为抛物线的顶点,点E 在抛物线上,点F 在x 轴上,四边形OCEF 为矩形,且OF=2,EF=3,.(1)写出抛物线对应的函数解析式: △AOD 的面积是(2)连结CB 交EF 于M ,再连结AM 交OC 于R ,求△ACR 的周长。
最新二次函数中的最值问题整理(中考数学必考知识点)
二次函数中的最值问题归纳(中考数学必考知识点)一.线段和差最值1、如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),B(4,0),与y轴交于点C,点D为BC的中点.(1)求该抛物线的函数表达式;(2)点G是该抛物线对称轴上的动点,若GA+GC有最小值,求此时点G的坐标;第二问解题思路:(1)根据点G是该抛物线对称轴上的动点可得当点G在直线BC与抛物线对称轴的交点上时,GA+GC最小,先求出点C的坐标.(2)再设直线BC的解析式为y=kx﹣4(k≠0),根据待定系数求得直线BC 的解析式为y=x﹣4,然后求出抛物线的对称轴为直线x=1,联立两解析式求解即可.2、如图,在平面直角坐标系中,直线y=4x+4与x轴交于A点,与y轴交于C点,抛物线)经过A,C两点,与x轴相交于另一点B,连接BC.点P是线段BC上方抛物线上的一个动点,过点P作PQ⊥BC交线段BC于点Q.(1)求抛物线的解析式;(2)点D为抛物线对称轴上的一个动点,求|DC﹣DB|的最大值;第二问解题思路:(1)作点C关于抛物线的对称轴的对称点N(2,4).(2)连接BN交抛物线的对称轴于点D,则点D为所求点,进而求解.二.线段最值3、如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(点A在点B的左侧),点A的坐标为(﹣1,0),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.(1)求抛物线的解析式和直线BC的解析式;(2)当点P在线段OB上运动时,求线段MN的最大值;第二问解题思路:(1)用m可分别表示出N、M的坐标,则可表示出MN的长.(2)再利用二次函数的最值可求得MN的最大值.变式训练:如图,已知抛物线经过点A(﹣6,0),B(2,0),与y轴交于点C.(1)求抛物线的解析式;(2)若点P为该抛物线上一动点.当点P在直线AC下方时,过点P作PE∥x轴,交直线AC于点E,作PF∥y轴.交直线AC于点F,求EF的最大值;4、如图,在平面直角坐标系中,直线y=4x+4与x轴交于A点,与y轴交于C点,抛物线)经过A,C两点,与x轴相交于另一点B,连接BC.点P是线段BC上方抛物线上的一个动点,过点P作PQ⊥BC交线段BC于点Q.(1)求抛物线的解析式;(2)求PQ的最大值,并写出此时点P的坐标;第二问解题思路:由PQ=HP sin∠PHQ=PH知,当PH最大时,PG最大,进而求解变式训练:如图,二次函数y=ax2+bx+2的图象与x轴相交于点A(﹣1,0)、B(4,0),与y轴相交于点C.(1)求该函数的表达式;(2)点P为该函数在第一象限内的图象上一点,过点P作PQ⊥BC,垂足为点Q,连接PC.线段PQ的最大值;变式训练:如图,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.对称轴为直线x=﹣1.(1)a=;(2)点P为直线AC下方抛物线上的一动点,过P作PE⊥AC于点E,过P作PF⊥x轴于点F,交直线AC于点G,求PE+PG的最大值;5、如图,抛物线y=ax2+bx+3交x轴于点A(3,0)和点B(﹣1,0),交y轴于点C.(1)求抛物线的表达式;(2)D是直线AC上方抛物线上一动点,连接OD交AC于点N,求的最大值,并求出此时D的坐标.第二问解题思路:过点D作DH∥y轴,交AC于点H,由(1)设D(m,﹣m2+2m+3),直线AC的解析式为y=kx+n,然后可求出直线AC的解析式,则有H(m,﹣m+3),进而可得DH=﹣m2+3m,最后根据△OCN∽△DHN可进行求解.变式训练:如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=﹣x2+bx+c经过A、C两点,与x轴的另一交点为点B.(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为S1,△BCE的面积为S2,求的最大值;三.周长和面积6、如图,抛物线过点O(0,0),E(10,0),矩形ABCD的边AB在线段OE上(点B在点A的左侧),点C,D在抛物线上.设B(t,0),当t=2时,BC=4.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?第二问解题思路:由抛物线的对称性得AE=OB=t,据此知AB=10﹣2t,再由x=t时BC=t2﹣t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得变式训练:如图1,抛物线y=ax2+bx+c与x轴相交于点B,C(点B在点C左侧),与y轴相交于点A(0,4),已知点C坐标为(4,0),△ABC面积为6.(1)求抛物线的解析式;(2)点M是直线AC下方抛物线上一点,过点P作直线AC的垂线,垂足为点H,过点P作PQ∥y轴交AC于点Q,求△PHQ周长的最大值及此时点P的坐标;7、如图,抛物线y=ax2+x+c经过坐标轴上A、B、C三点,直线y=﹣x+4过点B和点C.(1)求抛物线的解析式;(2)E是直线BC上方抛物线上一动点,连接BE、CE,求△BCE面积的最大值及此时点E的坐标;第二问解题思路:过E点作EG∥y轴交BC于点G,设E(t,﹣t2+t+4),则G(t,﹣t+4),可得S=﹣(t﹣2)2+4,当t=2时,△BCE的面积有最大值4,此时E △BCE(2,4)变式训练:二次函数y=ax2+bx+4(a≠0)的图象经过点A(﹣4,0),B(1,0),与y轴交于点C,点P为第二象限内抛物线上一点.(1)求二次函数的表达式;(2)如图,连接P A,PC,AC,求S的最大值;△P AC变式训练:已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)直接写出抛物线的函数解析式;(2)点N是第一象限内抛物线上的一动点,连接NA分别交BC、y轴于D、E两点,若△NBD、△CDE的面积分别为S1、S2,求S1﹣S2的最大值;四.AP+kBP型8、如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3),P是第四象限内这个二次函数的图象上一个动点,设点P的横坐标为m,过点P作PH⊥x轴于点H,与BC交于点M.(1)求这个二次函数的表达式;(3)求PM+2BH的最大值;第二问解题思路:设P点坐标为(m,m2﹣2m﹣3),则M点坐标为(m,m﹣3),H点坐标为(m,0),将PM+2BH转化为二次函数求最值即可变式训练:抛物线y=﹣x2+bx+c与x轴交于A、B(3,0)两点,与y轴交于点C,点和点P都在抛物线上.(1)求出抛物线表达式;(2)如图,若点P在直线AD的上方,过点P作PH⊥AD,垂足为H,①当点P是抛物线顶点时,求PH的长,②求AH+PH的最大值;变式训练:如图,已知抛物线y=x2+bx+c与x轴相交于A(﹣1,0),B(m,0)两点,与y轴相交于点C(0,﹣3),抛物线的顶点为D.(1)求抛物线的解析式;(2)若P是直线BC下方抛物线上任意一点,过点P作PH⊥x轴于点H,与BC交于点M.①求线段PM长度的最大值.②在①的条件下,若F为y轴上一动点,求PH+HF+CF的最小值.。
(完整版)中考数学中的二次函数的线段和差以和最值问题
二次函数与线段和差问题例题精讲:如图抛物线y=ax2+bb+b(b≠0与x轴交于A,B(1,0),与yb−2经过点A,C.抛物线的顶点为D,对称轴为直线l, 轴交于点C,直线y=12(1)求抛物线解析式。
(2)求顶点D的坐标与对称轴l.(3)设点E为x轴上一点,且AE=CE,求点E的坐标。
(4)设点G是y轴上的一点,是否存在点G,使得GD+GB的值最小,若存在,求出G点坐标,若不存在,说明理由。
(5)在直线l上是否存在一点F,使得△BCF的周长最小,若存在,求出点F 的坐标及△BCF周长的最小值,若不存在,说明理由。
(6)在y轴上是否存在一点S,使得SD-SB的值最大,若存在,求出S点坐标,若不存在,说明理由。
(7)若点H是抛物线上位于AC上方的一点,过点H作y轴的平行线,交AC 于点K,设点H的横坐标为h,线段HK=d①求d关于h的函数关系式②求d的最大值及此时H点的坐标(8)设点P是直线AC上方抛物线上一点,当P点与直线AC距离最大值时,求P点的坐标,并求出最大距离是多少?1.如图,矩形的边OA在轴上,边OC在轴上,点的坐标为(10,8),沿直线OD折叠矩形,使点正好落在上的处,E点坐标为(6,8),抛物线经过、、三点。
(1)求此抛物线的解析式。
(2)求AD的长。
(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标。
2.如图,在平面直角坐标系中,抛物线412+=x y 与轴相交于点A ,点B 与点O 关于点A 对称。
(1)填空:点B 的坐标是 。
(2)过点的直线(其中)与轴相交于点C ,过点C 作直线平行于轴,P 是直线上一点,且PB=PC ,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由。
(3)在(2)的条件下,若点C 关于直线BP 的对称点恰好落在该抛物线的对称轴上,求此时点P 的坐标。
3.如图,抛物线与x轴交于A,B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,.(1)写出抛物线对应的函数解析式:△AOD的面积是(2)连结CB交EF于M,再连结AM交OC于R,求△ACR的周长.(3)设G(4,-5)在该抛物线上,P是y轴上一动点,过点P作PH垂直于直线EF并交于H,连接AP,GH,问AP+PH+HG是否有最小值?如果有,求点P的坐标;如果没有,请说明理由.4.在平面直角坐标系中,矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,3OA =,4OB =,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且2EF =,当四边形CDEF 的周长最小时,求点E 、F 的坐标.5.四边形ABCD 是直角梯形,BC ∥AD ,∠BAD =90°,BC 与y 轴相交于点M ,且M 是BC 的中点,A 、B 、D 三点的坐标分别是A ( 1 0-,),B ( 1 2-,),D (3,0).连接DM ,并把线段DM 沿DA 方向平移到ON .若抛物线2y ax bx c =++经过点D 、M 、N .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使得PA =PC ,若存在,求出点P 的坐标;若不存在,请说明理由;(3)设抛物线与x 轴的另一个交点为E ,点Q 是抛物线的对称轴上的一个动点,当点Q 在什么位置时有|QE -QC |最大?并求出最大值.6.已知,如图,二次函数223y ax ax a=+-(0)a≠图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线:3l y x=+(1)求A、B两点坐标,并证明点A在直线l上;(2)求二次函数解析式;(3)过点B作直线BK∥AH交直线l于K点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.7.如图,已知点A(-4,8)和点B(2,n)在抛物线2y ax上.=(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;(2)平移抛物线2y ax,记平移后点A的对应点为A′,点B的对应点为B′,=点C(-2,0)和点D(-4,0)是x轴上的两个定点.①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.8.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.9.在Rt △ABC 中,∠A=90°,AC=AB=4, D ,E 分别是AB ,AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ,线段CE 1的长等于 ;(直接填写结果)(2)如图2,当α=135°时,求证:BD 1= CE 1,且BD 1⊥CE 1;(3)①设BC 的中点为M ,则线段PM 的长为 ;②点P 到AB 所在直线的距离的最大值为 .(直接填写结果)E 1BCE (D 1)A P E 1B C E D D 1Aword文档整理分享参考资料。
中考专项训练---二次函数中的线段最值
中考专项训练--------二次函数中的线段最值问题一、单线段最值1.如图,已知二次函数y=-x2-2x+3的图象交x轴于A、B两点(A在B左边),交y轴于C点。
(1)求A、B、C三点的坐标和直线AC的解析式;(2)点P是直线AC:y=x+3 上方抛物线y=-x2-2x+3上一动点(不与A,C重合)过点P作y轴平行线交直线AC于Q点,求线段PQ的最大值;(3)点P是直线AC上方抛物线y=-x2-2x+3上一动点(不与A,C重合),过点P作x轴平行线交直线AC 于M点,求线段PM的最大值;(4)点P是直线AC上方抛物线y=-x2-2x+3上一动点(不与A,C重合),求P点到直线AC距离的最大值:问题2:你能求出△PQH周长的最大值吗?(5)点P是直线AC上方抛物线y=-x2-2x+3上一动点(不与A,C重合),连接PA,PC,求△PAC面积的最大值;(6)点P是直线AC y=x+3 上方抛物线y= -x2-2x+3上一动点(不与A,C重合),连接PA,PC.求四边形AOCP面积的最大值;二、线段和差最值问题1. 如图,抛物线L:y=x2﹣x﹣3与x轴正半轴交于点A,与y轴交于点B.(1)求直线AB的解析式及抛物线顶点坐标;(2)如图1,点P为第四象限且在对称轴右侧抛物线上一动点,过点P作PC⊥x轴,垂足为C,PC交AB 于点D,求PD+BD的最大值,并求出此时点P的坐标.2. 如图,在平面直角坐标系中,抛物线y=x 2+bx+c 经过点A (-1,0),B (25,0),直线y=x+21与抛物线交于C ,D 两点,点P 是抛物线在第四象限内图象上的一个动点.过点P 作PG ⊥CD ,垂足为G ,PQ ∥y 轴,交x 轴于点Q .(1)求抛物线的函数表达式;(2)当2PG+PQ 取得最大值时,求点P 的坐标和2PG+PQ 的最大值3. 如图,在平面直角坐标系中,抛物线y=23212--x x 交x 轴于A 、B 两点(点A 在点B 左侧).一次函数y=21x+b 与抛物线交于A 、D 两点,交y 轴于点C .(1)求点D 的坐标; (2)点E 是线段CD 上任意一点,过点E 作EF ⊥y 轴于点F ,过点E 作EP ⊥AD 交抛物线于点P .点P 位于直线AD 下方,求EF PE 455+的最大值及相应的P 点坐标.4. 如图,在平面直角坐标系中,抛物线2y x bx c =++经过(0,1)A -,(4,1)B .直线AB 交x 轴于点C ,P 是直线AB 下方抛物线上的一个动点.过点P 作PD AB ⊥,垂足为D ,//PE x 轴,交AB 于点E .(1)求抛物线的函数表达式;(2)当PDE ∆的周长取得最大值时,求点P 的坐标和PDE ∆周长的最大值.三、线段的最值综合类1.如图,在平面直角坐标系中,抛物线322++-=x x y 与 x 轴交于 A 、B 两点,与 y 轴交于点 C ,点 D 是抛物线的顶点.(1)设点 P 是对称轴上的一个动点,当△PAC 的周长最小时,求点 P 的坐标;(2)在直线BC 上是否存在一点Q ,使△QAO 的周长最小?若存在,求出Q 点坐标;若不存在,请说明理由;(3)若点 M 是抛物线对称轴上的一动点,当|AM -CM|的值最大时,求出点 M 的坐标;(4)若点 N 是抛物线对称轴上的一动点,点|BN -CN|的值最大时,求点 N 的坐标;(5)若点 T 是 x 轴上的一个动点,当|BT -DT|的值最小时,求点 T 的坐标;(6)若点 E 在 x 轴上,且使得 CE+31BE 最小,求点 E 的坐标; .2.已知二次函数22y x x =--的图象和x 轴交于点A 、B ,与y 轴交于点C ,过直线BC 的下方抛物线上一动点P 作PQ⊥AC 交线段BC 于点Q ,再过P 作PE⊥x 轴于点E ,交BC 于点D.(1)求直线AC 的解析式;(2)求线段PE 的最大值;(3)求⊥PQD 周长的最大值;(4)当⊥PQD 的周长最大时,在y 轴上有两个动点M 、N(M 在N 上方),且MN=1,求PN+MN+AM 的最小值.。
中考数学二次函数大题 二次函数最值问题
二次函数最值问题题型一竖直线段(或水平线段)最值问题典例剖析例1如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标及DF的最大值.跟踪训练1.如图,二次函数y=x2+bx+c的图象交x轴于点A(﹣3,0),B(1,0),交y轴于点C.点P(m,0)是x轴上的一动点,PM⊥x轴,交直线AC于点M,交抛物线于点N.(1)求这个二次函数的表达式;(2)若点P仅在线段AO上运动,如图,求线段MN的最大值.2.如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=x+3经过A、B两点.(1)求二次函数的表达式;(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB 于点D,求线段PD的最大值.过关精练1.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值.题型二斜线段最值问题典例剖析例1如图,抛物线y=ax2+bx﹣2经过点A(4,0)、B(1,0),交y轴于点C.(1)求抛物线的解析式;(2)点P是直线AC上方的抛物线上一点过点P作PH⊥AC于点H,求线段PH长度的最大值.例2 如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣3与x轴交于点A,B(点A在点B 的左侧),交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.(1)连结BD,求直线BD的表达式;(2)点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD,交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,当MN取得最大值时,求点N的坐标.1.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?2.在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、B(1,0),交y 轴于点N,点M为抛物线的顶点,对称轴与x轴交于点C.(1)求抛物线的解析式;(2)如图1,连接AM,点E是线段AM上方抛物线上一动点,EF⊥AM于点F,过点E 作EH⊥x轴于点H,交AM于点D.当EF取最大值时,求点D的坐标.1.如图,抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,直线y=﹣x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.2. 在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于A,B两点.与y轴交于点C.且点A的坐标为(-1,0),点C的坐标为(0,5).(1)求该抛物线的解析式;(2)如图,若点P是第一象限内抛物线上的一动点.当点P到直线BC的距离最大时,求点P的坐标;题型三 线段和差最值问题典例剖析例1 如图,抛物线L :y =x 2﹣x ﹣3与x 轴正半轴交于点A ,与y 轴交于点B .(1)求直线AB 的解析式及抛物线顶点坐标;(2)如图1,点P 为第四象限且在对称轴右侧抛物线上一动点,过点P 作PC ⊥x 轴,垂足为C ,PC 交AB 于点D ,求PD +BD 的最大值,并求出此时点P 的坐标.例2 如图,在平面直角坐标系中,抛物线y=x 2+bx+c 经过点A (-1,0),B (25,0),直线y=x+21与抛物线交于C ,D 两点,点P 是抛物线在第四象限内图象上的一个动点.过点P 作PG⊥CD,垂足为G ,PQ∥y 轴,交x 轴于点Q .(1)求抛物线的函数表达式; (2)当2PG+PQ 取得最大值时,求点P 的坐标和2PG+PQ 的最大值1. 如图,在平面直角坐标系中,抛物线y=ax 2+bx+c (a 、b 、c 为常数,a≠0)的图象与x轴交于点A (1,0)、B 两点,与y 轴交于点C (0,4),且抛物线的对称轴为直线x=23-. (1)求抛物线的解析式; (2)在直线BC 上方的抛物线上有一动点M ,过点M 作MN⊥x 轴,垂足为点N ,交直线BC 于点D ;是否存在点M ,使得MD+22DC 取得最大值,若存在请求出它的最大值及点M 的坐标;若不存在,请说明理由.2. 如图,在平面直角坐标系中,抛物线y=23212--x x 交x 轴于A 、B 两点(点A 在点B 左侧).一次函数y=21x+b 与抛物线交于A 、D 两点,交y 轴于点C . (1)求点D 的坐标;(2)点E 是线段CD 上任意一点,过点E 作EF⊥y 轴于点F ,过点E 作EP⊥AD 交抛物线于点P .点P 位于直线AD 下方,求EF PE 455+的最大值及相应的P 点坐标.1. 抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E,当PE+EC的值最大时,求出对应的点P的坐标.题型四 周长最值问题典例剖析例1 如图,在平面直角坐标系中,抛物线2y x bx c =++经过(0,1)A -,(4,1)B .直线AB 交x 轴于点C ,P 是直线AB 下方抛物线上的一个动点.过点P 作PD AB ⊥,垂足为D ,//PE x 轴,交AB 于点E .(1)求抛物线的函数表达式;(2)当PDE ∆的周长取得最大值时,求点P 的坐标和PDE ∆周长的最大值.例2 如图,抛物线y=﹣x 2+2x+3与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 和点C 关于抛物线的对称轴对称,直线AD 与y 轴交于点E .(1)求直线AD 的解析式;(2)如图1,直线AD 上方的抛物线上有一点F ,过点F 作FG ⊥AD 于点G ,作FH 平行于x 轴交直线AD 于点H ,求△FGH 周长的最大值;跟踪训练1.在平面直角坐标系中,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q.(1)如图1,连接AC,BC,求直线BC的表达式;(2)若点P为直线BC上方抛物线上一动点,过点P作PE∥y轴交BC于点E,作PF ⊥BC于点F.当△PEF的周长最大时,求△PEF的周长最大值及此时点P的坐标.2.如图1,抛物线y=﹣x2+x+2与x轴交于A,B两点(点A在点B右侧),与y轴交于点C,点D是抛物线的顶点,连接AD、BD.(1)如图1,连接AC、BC,若点P是直线AC上方抛物线上一动点,过点P作PE∥BC 交AC于点E,作PQ∥y轴交AC于点Q,当△PQE周长最大时,求点P的坐标.过关精练1. 如图,已知抛物线y=ax2+bx+c与x轴交于点A(2,0),B(-4,0),与y轴交于C(0,-3),连接BC.(1)求抛物线的解析式;(2)如图1,点P是直线BC下方抛物线上一点,过点P作PD⊥BC于点D,过点P作PE∥y轴交BC于点E,求△PDE周长的最大值及此时点P的坐标;题型五面积最值问题典例剖析例1 如图,在平面直角坐标系中,抛物线y=ax2+bx﹣4(a≠0)与x轴交于点A(﹣1,0),B(4,0),与y轴交于点C.(1)求该抛物线的解析式;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接P A,PD,求△P AD面积的最大值.例2 如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣,0),直线BC的解析式为y=﹣x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标.跟踪训练1.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(﹣3,﹣4),B(0,﹣1).(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接P A,PB,求△P AB面积的最大值.2. 如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A 关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F 为y轴上一点,求△PBE的最大面积及点P的坐标.A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.求△PCE的最大面积及点P的坐标.过关精练1.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△P AB的面积最大?2.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2交x轴于A,B两点,交y轴于点C,且OA=2OC=8OB.点P是第三象限内抛物线上的一动点.(1)求此抛物线的表达式;(2)连接AC,求△P AC面积的最大值及此时点P的坐标.在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)试判断△ABC的形状;(1)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,求△PCD的最大面积及点P的坐标.4.如图,直线y=﹣x+2交y轴于点A,交x轴于点C,抛物线y=﹣x2+bx+c经过点A,点C,且交x轴于另一点B.(1)直接写出点A,点B,点C的坐标及拋物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M 的坐标.5.如图,抛物线y=ax2+bx﹣2与x轴交于A,B两点,与y轴交于点C,已知A(﹣1,0),直线BC的解析式为y=x﹣2,过点A作AD∥BC交抛物线于点D,点E为直线BC下方抛物线上一点,连接CD,DB,BE,CE.(1)求抛物线的解析式;(2)求四边形DBEC面积的最大值,以及此时点E的坐标.题型六 其他最值问题典例剖析已知:抛物线y=ax 2+bx+c 经过A (-1,0),B (3,0),C (0,3)三点.(1)求抛物线的解析式;(2)如图1,点P 为直线BC 上方抛物线上任意一点,连PC 、PB 、PO ,PO 交直线BC 于点E ,设k OEPE ,求当k 取最大值时点P 的坐标,并求此时k 的值.跟踪训练1.已知抛物线y=ax 2+bx+c 与x 轴交于A (-2,0)、B (6,0)两点,与y 轴交于点C (0,-3).(1)求抛物线的表达式;(2)点P 在直线BC 下方的抛物线上,连接AP 交BC 于点M ,当AM PM 最大时,求点P 的坐标及AMPM 的最大值。
二次函数中线段最值问题的探究
二次函数中线段最值问题的探究摘要:本文主要针对二次函数中线段最值问题进行探究,通过实例对竖直线段、水平线段、垂直线段等单线最值问题、线段和差的最值问题两大类进行探究.关键词:竖直线段,水平线段,垂直线段,最值问题,化斜为直.二次函数是初中学习的重点内容,是中考考点,本文针对二次函数中的一类问题——线段最值问题进行探究,主要从单线最值、线段和差最值两个大的方面进行探究,从实例出发,探究问题、解决问题最终归纳总结一般解题的方法和策略.一、单线最值问题:题型一求竖直线段的最值问题:例1如图,二次函数的图象交轴于两点,交轴于点,点是直线上方抛物线上的一个动点,过点作轴的垂线,交直线于点,求线段长度的最大值.分析从题中可知,要求得线段长度的最大值,需要根据点坐标表示出线段的长度,运用二次函数的知识求得最大值.解答:由题可求、直线解析式为设点坐标为,则点坐标为线段当时,有最大值为.题型二求水平线段的最值问题:例2如图,二次函数的图象交轴于两点,交轴于点,点是直线上方抛物线上一个动点,过点作轴的平行线,交直线于点,求线段长度的最大值.分析本小题可以根据点坐标表示出线段的长度,利用二次函数知识求得最大值;也可以利用相似找到与竖直线段的关系,运用转化的方式在例1基础上求得线段的最值.解答:法一:由题可求、直线解析式为设点坐标为,则点坐标为线段当时,有最大值为.法二:过点作轴的垂线,交直线于点,由例1可知线段当时,有最大值为,有最大值为.题型三求垂直线段的最值问题:例3如图,二次函数的图象交轴于两点,交轴于点,点是直线上方抛物线上一个动点,过点作直线的垂线,交直线于点,求线段长度的最大值?分析本小题直接表示线段比较困难,通过转化方式找到与竖直线段之间的关系,表示线段长度,运用二次函数知识求最大值.解答:过点作轴的垂线,交直线于点,由例1可知线段当时,有最大值为,有最大值为.题型四求其他线段的最值问题:例4如图,二次函数的图象交轴于两点,交轴于点,点是线段上一个动点,将绕点逆时针转,与上方抛物线交于点,求线段长度的最大值?分析通过转化找到与垂直线段之间的关系,进而找到与竖直线段的关系,运用二次函数知识求得线段长度的最大值.解答:过点作直线的垂线,交直线于点,由例3可知线段的最大值为当时,有最大值为.二、线段的和差倍分的最值问题:题型一求两条线段和的最值问题:例5如图,二次函数的图象交轴于两点,交轴于点,点是直线下方抛物线上一个动点,过点作轴的垂线,交直线于点,过点作轴的垂线,交轴于点,求的最大值?分析从题中可知,要求得的最大值,需要根据点坐标表示出线段的长度求和,运用二次函数知识求得最大值.解答:由题可求、直线解析式为设点坐标为,则点坐标为线段线段当时,有最大值为.题型二求带有系数的线段和的最值问题:例6如图,二次函数的图象交轴于两点,交轴于点,点是直线下方抛物线上一个动点,过点作轴的垂线,交直线于点,求的最大值?分析从题中可知,要求得的最大值,这一类带有系数的问题,表示很容易,直接表示有一定困难,可以直接表示,进而求和求最值.解答:延长线段与轴交于点设点坐标为,则点坐标为坐标为由例5得线段线段当时,有最大值为.题型二求带有系数的线段差的最值问题:例7如图,二次函数的图象交轴于两点,交轴于点,点是直线下方抛物线上一个动点,过点作轴的垂线,交直线于点,过点作直线的平行线交直线于点求的最大值?分析要利用相似表示,再利用二次函数知识求最值,依然用转化的方式.解答:过作线段的垂线交于点.设点坐标为,则点坐标为由例5得线段由例6得当时,有最大值为.通过以上例题分析与解答,二次函数中线段最值问题实质转化为竖直线段最值问题,化斜为直,最终转化成利用二次函数知识求最值问题.1。
二次函数中线段和、差最值问题精编版
二次函数中线段和、差最值问题姓名:1、如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;并求出周长的最小值;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.2、如图,△ABC的三个顶点坐标分别为A(-2,0)、B(6,0)、C(0,32-),抛物线y=ax2+bx+c (a≠0)经过A、B、C三点。
(1)求直线AC的解析式;(2)求抛物线的解析式;(3)若抛物线的顶点为D,在直线AC上是否存一点P,使得△BDP的周长最小,若存在,求出P点的坐标;若不存在,请说明理由。
3、如图,已知直线112y x=+与y轴交于点A,与x轴交于点D,抛物线212y x bx c=++与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。
⑴求该抛物线的解析式;⑵动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P。
⑶在抛物线的对称轴上找一点M,使||AM MC-的值最大,求出点M的坐标。
4、如图8,对称轴为直线x =2的抛物线经过点A (-1,0),C (0,5)两点,与x 轴另一交点为B ,已知M (0,1),E (a ,0),F (a +1,0),点P 是第一象限内的抛物线上的动点.(1)求此抛物线的解析式.(2)当a =1时,求四边形MEFP 面积的最大值,并求此时点P 的坐标.(3)若△PCM 是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由.图8O A E F B MCPxy备用图 A O M C E F x B y P5、如图,已知抛物线经过A(3,0),B(0,4),(1).求此抛物线解析式(2)若抛物线与x轴的另一交点为C,求点C关于直线AB的对称点C’的坐标(3)若点D是第二象限内点,以D为圆心的圆分别与x轴、y轴、直线AB相切于点E、F、H,问在抛物线的对称轴上是否存在一点一点P,使得|PH-PA|的值最大?若存在,求出该最大值;若不存在,请说明理由。
二次函数专题:二次函数与线段和差最值问题(详解版)
图形的对称 轴对称与几何最值
轴于点 ,连结 .若以 、 、 为顶点的三角形与
相似,试求出点 的坐
标.
(3) 试问在( )的抛物线的对称轴上是否存在一点 ,使得
的值最大.若存在,求
出 点坐标;若不存在,请说明理由.
答案 解析
.
点
.
存在一点
.
使得
最大.
∵
,
,
∴
.
∵抛物线经过原点,
∴设抛物线的解析式为
又抛物线经过点
与点
∴
,解得:
. , .
如图 ,
. 的最小值即
,为 点的横坐标 .
如图 ,
都变成了 直角三角形的斜边,故
为.
考点
函数 二次函数 待定系数法求二次函数解析式 二次函数与线段和差最值问题
【例题2】
已知:如图,把矩形
放置于直角坐标系中,
,
把
沿 轴的负方向平移 的长度后得到
.
,取 的中点 ,连结 ,
(1) 直接写出点 的坐标.
(2) 已知点 与点 在经过原点的抛物线上,点 在第一象限内的该抛物线上移动,过点 作
交 轴于 点交 轴于 点,直线
过 点交 轴于 点.
(1) 抛物线
过 点,且与 轴正半轴有唯一交点,求抛物线的解析式.
(2) 若( )中抛物线与直线
交与点 ( 在第一象限), 是 轴上一动点,
是直线
上一动点,求
的最小值.
(3) 若
的大小始终与
取得最小值时
的大小一致,且
时,
直接写出
的值.
答案 解析
. 的最小值为 . 为.
函数二次函数二次函数与相似三角形问题二次函数与线段和差最值问题几何变换图形的平移点的平移答案例题3在平面直角坐标系中抛物线轴交于点线段上有一动点出发以每秒个单位长度的速度向点移动线段出发以每秒个单位长度的速度向点移动两动点同时出发设运动时为顶点的三角形与相似
2024年中考复习-13 二次函数中求线段,线段和,面积等最值问题(解析版)
抢分秘籍13二次函数中求线段,线段和,面积等最值问题(压轴通关)目录【中考预测】预测考向,总结常考点及应对的策略【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)二次函数中求线段,线段和,面积等最值问题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,二次函数的图象和性质是考查的基础,也是高频考点、必考点。
2.从题型角度看,以解答题的最后一题或最后第二题为主,分值12分左右,着实不少!题型一二次函数中求线段的最值问题【例1】(2024·安徽滁州·一模)已知抛物线()22131y x n x n =-++++交x 轴于点()10A -,和点B ,交y 轴于点C .(1)求抛物线的函数解析式;(2)如图1,已知点P 是位于BC 上方的抛物线上的一点,作PM BC ⊥,垂足为M ,求线段PM 长度的最大值;(3)如图2,已知点Q 是第四象限抛物线上一点,45ACQ ∠=︒,求点Q 的坐标.设()234P m m m -++,,则∴(2222PM PE ==∵202->,∴PM 有最大值,最大值为(3)解:作BG CQ ⊥∵()10A -,,()40B ,,∴1OA =,OB OC ==∵45ACQ ∠=︒,OCB ∠∴ACO GCB ∠=∠,∴tan tan ACO GCB ∠=∠∴1442BG =,本题考查了二次函数的图象与性质,一次函数的图象与性质,等腰直角三角形的性质,三角函数的定义,勾股定理等知识,根据题意作出辅助线是解题的关键.【例2】(2024·江苏淮安·二模)如图,在平而直角坐标系中,二次函数2y =+的图象与x 轴分别交于点,O A ,顶点为B .连接,OB AB ,将线段AB 绕点A 按顺时针方向旋转60︒得到线段AC ,连接BC .点,D E 分别在线段,OB BC 上,连接,,,AD DE EA DE 与AB 交于点,60F DEA ∠=︒.(1)求点A ,B 的坐标;(2)随着点E 在线段BC 上运动.①EDA ∠的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.∵()2313y x =--+,∴抛物线对称轴为1x =,即ON ∵将线段AB 绕点A 按顺时针方向旋转∴60BAC ∠=︒,AB AC =,∴BAC 是等边三角形,1.(2024·四川南充·一模)如图,已知抛物线2y x bx c =++与x 轴交于0()1,A -,B 两点,与y 轴交于点C (0,3)-.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于第四象限内一动点,PD BC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)如图2,点E 是抛物线的顶点,点M 是线段BE 上的动点(点M 不与B 重合),过点M 作MN x ⊥轴于N ,是否存在点M ,使CMN 为直角三角形?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)223y x x =--(2)当32m =时,PD 取得最大值为928.此时315,24P ⎛⎫- ⎪⎝⎭(3)CMN 为直角三角形时,点M 的坐标为:3,32⎛⎫- ⎪⎝⎭或()323,6212--【分析】(1)把点,A C 坐标代入函数的解析式,利用待定系数法求解即可;(2)先求线BC 的解析式,设点p 的横坐标为m ,再用m 的代数式表示PD 的长度建立二次函数求解即可;(3)先求直线BE 的解析式,再分三种情况,根据相似三角形的判定和性质求解即可.【详解】(1)由题意得103b c c -+=⎧⎨=-⎩,解得:23b c =-⎧⎨=-⎩.则抛物线的解析式为:223y x x =--;(2)过点P 作PH x ⊥轴于点H ,交BC 于点G当0y =时,2230x x --=,解得=1x -或3,∴(3,0)B 设直线BC 的解析式为:1y kx b =+,则11303k b b +=⎧⎨=-⎩解得:113k b =⎧⎨=-⎩∴3y x =-则263n -=-,∴32n =,∴M ③当90MCN ∠=︒时,过点M∵90MCF NCO ∠+∠=︒,CNO ∠∴MCF CNO ∠=∠,又90MFC CON ∠=∠=︒,∴MFC CON ∽,∴CF MF NO CO =,∴()3263n n n ---=,【点睛】本题考查用待定系数法求二次函数的解析式,构造二次函数求线段的最值,二次函数与直角三角形的存在性问题,相似三角形的判定和性质,难度较大,是中考的压轴题,解题的关键是数形结合,提高综合运用的能力.2.(23-24九年级下·江苏宿迁·阶段练习)如图,在平面直角坐标系中抛物线214y x bx c =++与x 轴交于点A ,B ,与y 轴交于点C ,其中()3,0B ,()0,3C -.(1)求该抛物线的表达式;(2)点P 是直线AC 下方抛物线上一动点,过点P 作PD AC ⊥于点D ,求PD 的最大值及此时点P 的坐标;(3)在(2)的条件下,将该抛物线向右平移5个单位,点E 为点P 的对应点,平移后的抛物线与y 轴交于点F ,Q 为平移后的抛物线的对称轴上任意一点.求出所有使得以QF 为腰的QEF △是等腰三角形的点Q 的坐标.设211,344P t t t ⎛⎫+- ⎪⎝⎭,则3,4Q t ⎛- ⎝∴231133444PQ t t t ⎛⎫=---+-= ⎪⎝⎭∵AQE PQD ∠=∠,AEQ QDP ∠=∠∴OAC QPD ∠=∠,∵4,3OA OC ==,如图,二次函数213442y x x =--的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,连接AC ,作直线BC .(1)求A ,B ,C 三点的坐标,并直接写出直线BC 的表达式;(2)如图1,若点P 是第四象限内二次函数图象上的一个动点,其横坐标为m ,过点P 分别作x 轴、y 轴的垂线,交直线BC 于点M ,N ,试探究线段MN 长的最大值;(3)如图2,若点Q 是二次函数图象上的一个动点,直线BQ 与y 轴交于点H ,连接CD ,在点Q 运动的过程中,是否存在点H ,使以H ,C ,B 为顶点的三角形与ACD 相似?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)()20A -,,()80B ,,()04C -,,直线BC 的表达式为1y x 42=-;(2)线段MN 长的最大值为45;(3)点Q 的坐标为3954⎛⎫- ⎪⎝⎭,或()46-,.【分析】(1)令0y =,求得x 的值,令0x =,求得y 的值,可求得A ,B ,C 三点的坐标,利用待定系数法即可求得直线BC 的表达式;(2)设213442P m m m ⎛⎫-- ⎪⎝⎭,,则142M m m ⎛⎫- ⎪⎝⎭,,证明PNM OBC ∠=∠,利用正切函数的定义推出2PN PM =,求得225MN PN PM PM =+=,得到MN 关于m 的二次函数,利用二次函数的性质求解即可;(3)利用勾股定理求得25AC =,5AD OC ==,作DG AC ⊥于点G ,用正切函数的定义推出OCA BCH ∠=∠,分BC BH =和BH CH =两种情况讨论,分别求得点H 的坐标,求得直线BH 的表达式,与二次函数的表达式联立求解即可.【详解】(1)解:令0y =,则2134042x x --=,解得12x =-,28x =,令0x =,则4y =-,∴()20A -,,()80B ,,()04C -,,设直线BC 的表达式为4y kx =-,代入()80B ,得084k =-,解得12k =,∴直线BC 的表达式为1y x 42=-;∵PN OB ∥,PM OC ∥,∴PNM OBC ∠=∠,∴4tan tan 8OC PNM OBC OB ∠=∠===∴2PN PM =,22MN PN PM =+=∴(2155244MN m m m ⎛⎫=-+=-- ⎪⎝⎭①当BC BH =时,∵BO CH ⊥,∴OH OC =,∴()04H ,,同理求得直线BH 的表达式为142y x =-+联立得241234412x x x ---+=,【点睛】本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,点的坐标表示三角形的面积,勾股定理,正切函数,解方程,熟练掌握待定系数法,勾股定理,正切函数是解题的关键.题型二将军饮马河求二次函数中线段和最值问题【例1】(2024·天津津南·一模)综合与探究:如图,抛物线2y x bx c =-++上的点A ,C 坐标分别为()0,2,()4,0,抛物线与x 轴负半轴交于点B ,且2OM =,连接AC ,CM .(1)求点M 的坐标及抛物线的解析式;(2)点P 是抛物线位于第一象限图象上的动点,连接AP ,CP ,当PAC ACM S S =△△时,求点P 的坐标;(3)将抛物线沿x 轴的负方向平移得到新抛物线,点A 的对应点为点A ',点C 的对应点为点C ',当MA MC ''+的值最小时,新抛物线的顶点坐标为,MA MC ''+的最小值为.设直线AC 的解析式为y =将()0,2A ,()4,0C 代入y 240m k m =⎧⎨+=⎩,解得122k m ⎧=-⎪⎨⎪=⎩∴直线AC 的解析式为y =由平移的性质可知,MA '∴MA MC ''+的值最小就是显然点M '在直线=2y -上运用,作出点C 关于直线=2y -得最小值,即为AC ''的长度,∵点C 关于直线=2y -对称的对称的点是点∴()4,4C ''-,∴()(min MA MC M A '''+=+设直线AC ''的解析式是:将点()0,2A ,()4,4C ''-代入得:本题考查求二次函数的解析式,二次函数的图象与性质,二次函数与几何变换综合,二次函数与相似三角形综合,最短路径问题,三角形面积公式等知识,难度较大,综合性大,作出辅助线和掌握转换思想是解题的关键,第二问的解题技巧是使用铅锤公式计算面积,第三问的技巧是转化成直角三角形的讨论问题,如果直接按相似讨论,则有四种情况,可以降低分类讨论的种类,第四问的技巧,是将点M 向反方向移动,从而将两个动点转化成一个动点来解决.【例2】(2024·江苏宿迁·模拟预测)如图1,抛物线2y x bx =-+与x 轴交于点A ,与直线y x =-交于点()4,4B -,点()0,4C -在y 轴上.点P 从点B 出发,沿线段BO 方向匀速运动,运动到点O 时停止.(1)求抛物线2y x bx =-+的表达式;(2)当BP =时,请在图1中过点P 作PD OA ⊥交抛物线于点D ,连接PC OD ,,判断四边形OCPD 的形状,并说明理由;(3)如图2,点P 从点B 开始运动时,点Q 从点O 同时出发,以与点P 相同的速度沿x 轴正方向匀速运动,点P 停止运动时点Q 也停止运动.连接BQ PC ,,求CP BQ +的最小值. OH PH ∴=,POH ∠连接BC ,4OC BC == ,42OB ∴=.22BP = ,22OP OB BP ∴=-=在OA 上方作OMQ ,使得4OC BC == ,BC ⊥45CBP ∴∠=︒,CBP MOQ ∴∠=∠,BP OQ = ,CBP ∠=(SAS)CBP MOQ ∴△≌△CP MQ ∴=,1.(2024·宁夏银川·一模)如图,已经抛物线经过点()00O ,,()55A ,,且它的对称轴为2x =.(1)求此抛物线的解析式;(2)若点B 是抛物线对称轴上的一点,且点B 在第一象限,当OAB 的面积为15时;求点B 的坐标.(3)在(2)的条件下,P 是抛物线上的动点,求P 的坐标以及PA PB -的最大值.【答案】(1)24.y x x =-(2)()2,8B (3)()2,12,P -PA PB -的最大值为32.【分析】(1)根据题意可设抛物线为2,y ax bx =+再利用待定系数法求解抛物线的解析式即可;(2)设()2,,B y 且0,y >记OA 与对称轴的交点为Q ,设直线OA 为:,y kx =解得:1,k =可得直线OA 为:,y x =则()2,2,Q 利用()12OAB BOQ ABQ A O S S S BQ x x =+=⨯⨯- 列方程,再解方程即可;(3)如图,连接AB ,延长AB 交抛物线于P ,则此时PA PB AB -=最大,由勾股定理可得最小值,再利用待定系数法求解AB 的解析式,联立一次函数与二次函数的解析式,解方程组可得P 的坐标.【详解】(1)解: 抛物线经过点(0,0)O ,∴设抛物线为:2,y ax bx =+ 抛物线过(5,5)A ,且它的对称轴为2x =.2555,22a b b a+=⎧⎪∴⎨-=⎪⎩解得:1,4a b =⎧⎨=-⎩∴抛物线为:24.y x x =-(2)解:如图,点B 是抛物线对称轴上的一点,且点B 在第一象限,设()2,,B y 且0,y >记OA 与对称轴的交点为Q ,设直线OA 为:y kx =55,k \=解得:k =∴直线OA 为:y =()2,2,Q ∴OAB BOQ ABQ S S S ∴=+ 12515,2y =-⨯=解得:8y =或4,y =-()()5,5,2,8,A B ()(2525AB ∴=-+设AB 为:y k x b '=+55,28k b k b '''+=⎧∴⎨+=⎩'解得:1,10k b =-⎧⎨='⎩'∴AB 为:10,y x =-+210,4y x y x x =-+⎧∴⎨=-⎩解得:52,,512x x y y ==-⎧⎧⎨⎨==⎩⎩()2,12.P ∴-【点睛】本题考查的是利用待定系数法求解二次函数的解析式,坐标与图形面积,三角形三边关系的应用,勾股定理的应用,确定PA PB -最大时P 的位置是解本题的关键.2.(2024·湖南怀化·一模)如图1,在平面直角坐标系中,抛物线2y x bx c =-++与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,5OB OC ==,顶点为D ,对称轴交x 轴于点E .图1图2图3(1)求抛物线的解析式、对称轴及顶点D 的坐标;(2)如图2,点Q 为抛物线对称轴上一动点,当Q 在什么位置时QA QC +最小,求出Q 点的坐标,并求出此时QAC △的周长;(3)如图3,在对称轴左侧的抛物线上有一点M ,在对称轴右侧的抛物线上有一点N ,满足90MDN ∠=︒.求证:直线MN 恒过定点,并求出定点坐标.设直线BC 的解析式为5y kx =+代入点()50B ,得055k =+,解得∴直线BC 的解析式为y x =-+当2x =,253y =-+=,∴()23Q ,,∵点()10A -,,∵221526=+=AC ,设点M 的坐标为(24m m -+,∵顶点D 的坐标为()29,,∴()2945MH m m =--++=()22945GN n n n =--++=-由题意得H G MDN ∠=∠=∠∴90MDH NDG ∠=︒-∠=∠∴MDH DNG ∽△△,∴当20x -=即2x =时,8y =,∴无论m n 、为何值,直线MN 总会经过定点()28,,∴直线MN 恒过定点,定点坐标为()28,.【点睛】本题考查了二次函数的综合运用.考查了待定系数法求函数解析式,相似三角形的判定和性质,熟练掌握二次函数的图象与性质、轴对称的性质,添加适当的辅助线,是解题的关键.3.(2024·安徽池州·二模)如图,抛物线2Ly ax bx c =++∶与x 正半轴交于点(3,0)A ,与y 轴交于点(0,3)B ,对称轴为直线1x =.(1)求直线AB 的解析式及抛物线的解析式;(2)如图①,点P 为第一象限抛物线上一动点,过点P 作PC x ⊥轴,垂足为C ,PC 交AB 于点D ,求当点P 的横坐标为多少时,PD AD +最大;(3)如图②,将抛物线2L y ax bx c =++∶向左平移得到抛物线L ',直线AB 与抛物线L '交于M 、N 两点,若点B 是线段MN 的中点,求抛物线'L 的解析式.题型三胡不归求二次函数中线段和最值问题【例1】(新考法,拓视野)(2024·陕西西安·三模)已知抛物线2(,,y ax bx c a b c =++为常数,0)a ≠与x 轴交于点()A -、点B 两点,与y 轴交于点()0,2C ,对称轴为x =(1)求抛物线的表达式;(2)M 是抛物线上的点且在第二象限,过M 作MN AC ⊥于点N ,求AN 的最大值.设AC 的解析式为y kx b =+2302k b b ⎧-+=⎪∴⎨=⎪⎩,32k b ⎧=⎪⎨⎪=⎩∴AC 的解析式为33y x =23AO = ,2CO =,3CO本题考查二次函数的综合应用,涉及待定系数法,含30︒的直角三角形三边关系,解直角三角形的应用,二次函数的最大值等知识,解题的关键是用含字母的式子表示相关点坐标和相关线段的长度.【例2】(2024·浙江·一模)如图,在平面直角坐标系中,抛物线24y ax bx =++交y 轴于点A ,交x 轴于点()6,0B -和点()2,0C ,连接AB 、AQ 、BQ ,BQ 与y 轴交于点N .(1)求抛物线表达式;(2)点713Q ⎛⎫ ⎪⎝⎭,,点M 在x 轴上,点E 在平面内,BME AOM ≌,且四边形ANEM 是平行四边形.①求点E 的坐标;②设射线AM 与BN 相交于点P ,交BE 于点H ,将BPH 绕点B 旋转一周,旋转后的三角形记为11BPH △,求11BP 的最小值.1.(2024·河南洛阳·一模)在平面直角坐标系中,抛物线212y x bx c =-++交x 轴于()4,0A 、B 两点,交y 轴于点()0,4C .(1)求抛物线表达式中的b 、c ;(2)点P 是直数AC 上方抛物线上的一动点,过点F 作PF y 轴交AC 于点E ,作PE AC ∥交x 轴于点F ,求PE 的最大值及此时点P 的坐标;(3)将该抛物线沿射线CA 方向平移1y ,请直接写出新抛物线1y 的表达式______.()4,0A ,()0,4C ,∴直线AC 的解析式为y =-PE y ∥Q 轴,PE x ∴⊥轴,90AOC ∴∠=︒,,,.(1)求抛物线的解析式;(2)设点P 是第一象限内的抛物线上的一个动点,①当P 为抛物线的顶点时,求证:PBC 直角三角形;②求出PBC 的最大面积及此时点P 的坐标;③过点P 作PN x ⊥轴,垂足为N ,PN 与BC 交于点E .当PE 的值最大时,求点P 的坐标.∴45HCP ∠=︒又∵在Rt BOC 中,OB =∴45OCB ∠=︒,∴90PCB ∠=︒∴PCB 是直角三角形②设直线BC 的解析式为∴(),3E x x -+,∴(223PE x x x =-++--∴1122PBCS PE OB =⨯⨯= 当32x =时,PBC 的最大面积为∴(),3E x x -+,∴(223PE x x x =-++--∵()0,3C ,()3,0B ,∴3OC OB ==,3BN =∴45OBC OCB ∠=∠=︒,3.(2023·山东济南·一模)抛物线()2122y x a x a =-+-+与x 轴交于(),0A b ,()4,0B 两点,与y 轴交于点()0,C c ,点P 是抛物线在第一象限内的一个动点,且在对称轴右侧.(1)求a ,b ,c 的值;(2)如图1,连接BC 、AP ,交点为M ,连接PB ,若14PMB AMB S S =V V ,求点P 的坐标;(3)如图2,在(2)的条件下,过点P 作x 轴的垂线交x 轴于点E ,将线段OE 绕点O 逆时针旋转得到OE ',旋转角为9(0)0αα︒<<︒,连接E B ',E C ',求34E B E C ''+的最小值.设BC l :y kx b =+,将()0,4,BC l ∴:4y x =-+,设21,42P m m m ⎛⎫-++ ⎪⎝⎭,则21PD y y m m =-=-++根据旋转得性质得出:OE ∵9494OF OC ⋅=⨯=,2OE OF OC '∴=⋅,∴OE OC OF OE '=',题型四化简求值的解法【例1】(2024·四川广元·二模)如图,二次函数2y ax bx c =++的图象与x 轴交于原点O 和点()40A ,,经过点A 的直线与该函数图象交于另一点()13B ,,与y 轴交于点C .(1)求直线AB 的函数解析式及点C 的坐标.(2)点P 是抛物线上位于直线AB 上方的一个动点,过点P 作直线PE x ⊥轴于点E ,与直线AB 交于点D ,过点B 作BF x ⊥轴于点F ,连接OP ,与BF 交于点G ,连接DG .求四边形GDEF 面积的最大值.(3)抛物线上是否存在这样的点Q ,使得45BOQ ∠=︒若存在,请求出点Q 的坐标;若不存在,请说明理由.∵点()13B ,,∴13BN ON ==,.又点()40A ,,∴点()43M ,.∴3BM =.又MH BN =,ONB BMH ∠∠=∴()SAS OBN BHM ≌.∴OB HB =,且OB HB ⊥.∴45BOH ∠=︒.∴OH 与抛物线的交点Q 即为所求的点.∵1MH =,∴点()42H ,.本题考查待定系数法求函数解析式,二次函数与几何图形面积的综合,等腰直角三角形的判定和性质,作辅助线构造全等三角形是解题的关键.【例2】(2024·安徽宣城·一模)如图,已知抛物线23y ax bx =+-与x 轴的交点为()()4,0,2,0A D -,与y 轴交点为C .(1)求该抛物线的解析式;(2)设点C 关于抛物线对称轴的对称点为点B ,在抛物线的A ~B 段上存在点P ,求五边形APBCD 面积的最大值ax M S ;(3)问该抛物线上是否还存在与点P 不重合的点Q ,使以A 、B 、C 、D 、Q 五点为顶点的凸五边形面积等于题(2)中五边形APBCD 面积的最大值ax M S ,若存在,直接写出....所有满足条件的点Q 的横坐标;若不存在,请说明理由.(3)解:由(2)可知,S 五边形由对称性可知,点P 与对称轴对称的点一定符合题意,即此时点∵抛物线解析式为238y x =-∴顶点坐标为2718⎛⎫- ⎪⎝⎭,,∴顶点与B 、C 组成的三角形面积为1.(2024·山东济南·一模)如图,直线132y x=-+交y轴于点A,交x轴于点C,抛物线214y x bx c=-++经过点A,点C,且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点(),0P m顺时针旋转90︒得到线段O A'',若线段O A''与抛物线只有一个公共点,请结合函数图象,求m的取值范围.设21,34M x x x ⎛⎫-++ ⎪⎝⎭,令0y =,得2134y x x =-++解得:2x =-,或6x =,∴PO PO m '==,'='A O OA ∴(),O m m ',()3,A m m '+,当()3,A m m '+在抛物线上时,有解得,326m =-±,,与轴交于点1,0A -和点()3,0B ,与y 轴交于点C ,E 为抛物线的顶点.图1图2(1)求该抛物线的函数表达式;(2)如图1,点P 是第一象限内抛物线上一动点,连接PC PB BC 、、,设点P 的横坐标为t .①当t 为何值时,PBC 的面积最大?并求出最大面积;②当t 为何值时,PBC 是直角三角形?(3)如图2,过E 作EF x ⊥轴于F ,若(),0M m 是x 轴上一动点,N 是线段EF 上一点,若90MNC ∠=︒,请直接写出实数m 的取值范围.。
中考数学压轴题:二次函数中两线段的和最小问题(及差最大问题)
抛物线中两线段和最小问题(及差最大问题)1. (2012湖北恩施8分)如图,已知抛物线y=﹣x 2+bx+c 与一直线相交于A (﹣1,0),C (2,3)两点,与y 轴交于点N .其顶点为D .(1)抛物线及直线AC 的函数关系式;(2)设点M (3,m ),求使MN+MD 的值最小时m 的值;(3)若抛物线的对称轴与直线AC 相交于点B ,E 为直线AC 上的任意一点,过点E 作EF ∥BD 交抛物线于点F ,以B ,D ,E ,F 为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由;(4)若P 是抛物线上位于直线AC 上方的一个动点,求△APC 的面积的最大值.1,(2012湖北恩施8分)【分析】(1)利用待定系数法求二次函数解析式、一次函数解析式。
(2)根据轴对称的性质和三角形三边关系作N 点关于直线x=3的对称点N′,当M (3,m )在直线DN′上时,MN+MD 的值最小。
(3)分BD 为平行四边形对角线和BD 为平行四边形边两种情况讨论。
(4)如图,过点P 作PQ ⊥x轴交AC 于点Q ;过点C 作CG ⊥x 轴于点G ,设Q (x ,x+1),则P (x ,﹣x 2+2x+3),求得线段PQ=﹣x 2+x+2。
由图示以及三角形的面积公式知APCAPQ CPQ S S +S ∆∆∆=,由二次函数的最值的求法可知△APC 的面积的最大值解:(1)由抛物线y=﹣x 2+bx+c 过点A (﹣1,0)及C (2,3)得,1b+c=04+2b+c=3--⎧⎨-⎩, 解得b=2c=3⎧⎨⎩。
∴抛物线的函数关系式为2y x 2x 3=-++。
设直线AC 的函数关系式为y=kx+n ,∵AC 过点A (﹣1,0)及C (2,3)得k+n=02k+n=3-⎧⎨⎩,解得k=1n=1⎧⎨⎩。
∴直线AC 的函数关系式为y=x+1。
(2)作N 点关于直线x=3的对称点N′, 令x=0,得y=3,即N (0,3)。
初中复习方略数学微专题四 二次函数中几何图形线段、周长、面积的最值
抛物线对称轴为直线 x=- 2
=1,
2×(-1)
3k+c=0
设直线 AC 的解析式为 y=kx+c,将 A(3,0),C(0,3)代入,得:
,
c=3
k=-1
解得:
,
c=3
∴直线 AC 的解析式为 y=-x+3,∴P(1,2);
(3)存在.设 P(1,t),①以 AC 为边时,如图 2,∵四边形 ACPQ 是菱形, ∴CP=CA, ∴12+(3-t)2=32+32,解得:t=3± 17 , ∴P1(1,3- 17 ),P2(1,3+ 17 ), ∴Q1(4,- 17 ),Q2(4, 17 ),
1.(2021·天津中考)已知抛物线 y=ax2-2ax+c(a,c 为常数,a≠0)经过点 C(0,- 1),顶点为 D. (1)当 a=1 时,求该抛物线的顶点坐标; (2)当 a>0 时,点 E(0,1+a),若 DE=2 2 DC,求该抛物线的解析式; (3)当 a<-1 时,点 F(0,1-a),过点 C 作直线 l 平行于 x 轴,M(m,0)是 x 轴上 的动点,N(m+3,-1)是直线 l 上的动点.当 a 为何值时,FM+DN 的最小值为 2 10 ,并求此时点 M,N 的坐标.
(2021·常德中考)如图,在平面直角坐标系 xOy 中,平行四边形 ABCD 的 AB 边与 y 轴交于 E 点,F 是 AD 的中点,B、C、D 的坐标分别为(-2,0),(8,0),(13, 10). (1)求过 B、E、C 三点的抛物线的解析式; (2)试判断抛物线的顶点是否在直线 EF 上; (3)设过 F 作与 AB 平行的直线交 y 轴于 Q,M 是线段 EQ 之间的动点,射线 BM 与抛物线交于另一点 P,当△PBQ 的面积最大时,求 P 的坐标.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(7)若点H是抛物线上位于AC上方的一点,过点H作y轴的平行线,交AC于点K,设点H的横坐标为h,线段HK=d
①求d关于h的函数关系式
②求d的最大值及此时H点的坐标
(8)设点P是直线AC上方抛物线上一点,当P点与直线AC距离最大值时,求P点的坐标,并求出最大距离是多少?
8.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).
(1)求线段AB的长;
(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+ FO的最小值;
1.如图,矩形的边OA在 轴上,边OC在 轴上,点 的坐标为(10,8),沿直线OD折叠矩形,使点 正好落在 上的 处,E点坐标为(6,8),抛物线 经过 、 、 三点。
(1)求此抛物线的解析式。
(2)求AD的长。
(3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标。
2.如图,在平面直角坐标系 中,抛物线 与 轴相交于点A,点B与点O关于点A对称。
(1)如图1,当α=90°时,线段BD1的长等于,线段CE1的长等于;(直接填写结果)
(2)如图2,当α=135°时,求证:BD1= CE1,且BD1⊥CE1;
(3)①设BC的中点为M,则线段PM的长为;②点P到AB所在直线的距离的最大值为.(直接填写结果)
(1)求抛物线解设点E为x轴上一点,且AE=CE,求点E的坐标。
(4)设点G是y轴上的一点,是否存在点G,使得GD+GB的值最小,若存在,求出G点坐标,若不存在,说明理由。
(5)在直线l上是否存在一点F,使得△BCF的周长最小,若存在,求出点F的坐标及△BCF周长的最小值,若不存在,说明理由。
(1)填空:点B的坐标是。
(2)过点 的直线 (其中 )与 轴相交于点C,过点C作直线 平行于 轴,P是直线 上一点,且PB=PC,求线段PB的长(用含k 的式子表示),并判断点P是否在抛物线上,说明理由。
(3)在(2)的条件下,若点C关于直线BP的对称点恰好落在该抛物线的对称轴上,求此时点P的坐标。
(2)平移抛物线 ,记平移后点A的对应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点.
①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;
②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.
(3)在(2)中,PH+HF+ FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.
9.在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是AB,AC的中点.若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.
3.如图,抛物线 与x轴交于A,B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,.ﻫ(1)写出抛物线对应的函数解析式:△AOD的面积是
(2)连结CB交EF于M,再连结AM交OC于R,求△ACR的周长.ﻫ(3)设G(4,-5)在该抛物线上,P是y轴上一动点,过点P作PH垂直于直线EF并交于H,连接AP,GH,问AP+PH+HG是否有最小值?如果有,求点P的坐标;如果没有,请说明理由.ﻫ
(1)求抛物线的解析式;
(2)抛物线上是否存在点P,使得PA=PC,若存在,求出点P的坐标;若不存在,请说明理由;
(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE-QC|最大?并求出最大值.
6.已知,如图,二次函数 图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线 对称.
中考数学中的二次函数的线段和差以及最值问题
———————————————————————————————— 作者:
———————————————————————————————— 日期:
ﻩ
二次函数与线段和差问题
例题精讲:如图抛物线 与x轴交于A,B(1,0),与y轴交于点C,直线 经过点A,C.抛物线的顶点为D,对称轴为直线l,
(1)求A、B两点坐标,并证明点A在直线 上;
(2)求二次函数解析式;
(3)过点B作直线BK∥AH交直线 于K点,M、N分别为直线AH和直线 上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.
7.如图,已知点A(-4,8)和点B(2,n)在抛物线 上.
(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;
4.在平面直角坐标系中,矩形 的顶点O在坐标原点,顶点A、B分别在 轴、 轴的正半轴上, , ,D为边OB的中点.若 、 为边 上的两个动点,且 ,当四边形 的周长最小时,求点 、 的坐标.
5.四边形ABCD是直角梯形,BC∥AD,
∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A( ),B( ),D(3,0).连接DM,并把线段DM沿DA方向平移到ON.若抛物线 经过点D、M、N.