三角形中边的关系课件

合集下载

三角形三边关系ppt课件

三角形三边关系ppt课件
高层建筑 高层建筑的结构设计中,经常采用三角形支撑结 构,利用三角形三边关系来增强建筑的稳定性和 抗风能力。
建筑设计软件 现代建筑设计软件中集成了三角形三边关系的计 算功能,帮助建筑师快速准确地完成设计。
地理测量中距离计算
三角测量法
01
在地理测量中,利用三角形三边关系和已知的两个角度或两条
边长,可以计算出未知的距离或角度。
04
与三角形三边关系相关的数学定理
勾股定理及其逆定理
01
02
03
勾股定理
在直角三角形中,直角边 的平方和等于斜边的平方。
勾股定理的逆定理
如果三角形的三边满足勾 股定理,则这个三角形是 直角三角形。
应用举例
通过勾股定理可以判断一 个三角形是否为直角三角 形,以及求解直角三角形 的未知边长。
余弦定理及其推论
特殊情况下的三边关系
等边三角形
三边长度相等,任意两边之和等 于两倍的第三边,任意两边之差
等于0。
等腰三角形
有两边长度相等,这两边之和大于 第三边,同时这两边之差等于0。
直角三角形
满足勾股定理,即直角边的平方和 等于斜边的平方。同时也满足任意 两边之和大于第三边和任意两边之 差小于第三边的条件。
03
三角形三边关系应用举例
判断三条线段能否构成三角形
定理应用:任意两边之和大于第三边,任 意两边之差小于第三边。
实例分析:如线段a=3cm, b=4cm, c=5cm,因为a+b>c, a+c>b, b+c>a, 所以能构成三角形。
2. 验证是否满足定理条件。
判断步骤 1. 测量或计算三条线段的长度。
余弦定理
在任意三角形中,任意一 边的平方等于其他两边平 方和减去这两边与它们夹 角的余弦的积的两倍。

三角形的三边关系ppt

三角形的三边关系ppt
一个锐角为90°
直角三角形中,有一个内角为90°,即∠C=90°。
轴对称
等腰直角三角形是轴对称图形,对称轴为底边的 垂直平分线。
06
总结
主要观点的总结
三角形三边关系是指三角形的三条边之间的长度关系, 可以用不等式表示为两边之和大于第三边,两边之差小 于第三边。
在三角形中,任意两边之和大于第三边,任意两边之差 小于第三边。
个人感悟及收获
学习三角形三边关系让我对几何学有了更深入的认识和理解, 也让我感受到了几何学的严谨和实用性。
通过学习三角形三边关系,我不仅掌握了一种新的证明方法, 而且也增强了自己的数学素养和逻辑思维能力,这对于我未来 的学习和工作都非常重要。
在学习三角形三边关系的过程中,我深刻体会到了数学知识的 连贯性和系统性,以及数学知识在解决实际问题中的重要作用 。
三角形三边长大于0。
可加性
任意两边之和大于第三边。
可减性
任意两边之差小于第三边。
三角形按边分类
01
02
03
等边三角形
三边长度都相等的三角形 。
等腰三角形
两边长度相等,第三边不 等的三角形。
一般三角形
三条边长度都不相等的三 角形。
三角形边的关系
勾股定理
在直角三角形中,两条直角边的平方和等于斜边的平方。
相关概念简介
等边三角形
三条边长度相等的三角形。
等腰三角形
两条边长度相等的三角形。
三角形
由三条直线段连接的封闭图形,其中任意 两条边都相交于一个顶点。

三角形中的三条线段。在等腰三角形中, 两条边长度相等。
角度
三角形中三个内角的大小。在等边三角形 中,三个角度相等。

11.1.1 三角形的边 课件(共24张PPT)

11.1.1 三角形的边 课件(共24张PPT)

若一个三角形的两边长分别是2和4,第三
边的长可能是( B )
A.2
B.4
C.6
D.8
解析:设第三边的长为x,由三角形的三边关系,得
4-2<ⅹ<4+2,即2<ⅹ<6.观察四个选项,知B项正确.
特别提醒
“两边的和”“两边的差”中的“两边”是指三角形的任
意两边。
总结
根据三角形的三边关系可得三角 形的任意一边总是大于另两边之 差,小于另两边之和,据此通过 列不等式(组)求出三角形的待求 边长的取值范围.
( D)
A.2,2,4
B.5,6,12
C.5,7,2
D.6,8,10
思路分析:根据“三角形两边之和大于第三
边”可以判断长度为各个选项中数值的三
条线段是否能组成三角形。
3.若一个等腰三角形中的两边长分别是 4cm和8cm,则此三角形的周长为( B)
A.16cm B.20cm C.16cm或20cm
解析:当腰长是4cm时,则三角形的三边长分别 是4cm,4cm,8cm,4+4=8,不满足三角形的三 边关系,舍去;当腰长是8cm时,三角形的三 边长分别是8cm,8cm,4cm,8+4>8,符合三角形 的三边关系,此时三角形的周长是20cm.
α
A
b
C
如图:△ABC有三条边,三个内角,三个顶点。
顶点:相邻两边的 公共端点是 三角形的顶 点。
3.三角形的表示
顶点A,B,C的三角形,记作“△ABC”,读 作“三角形ABC”。
注意:在△ABC中,∠A的对边可以用BC表 示,也可以用a表示;∠B对边可以用AC 表示,也可以用b表示;∠C的对边可以用 AB表示,也可以用c表示。

直角三角形的边角关系课件1

直角三角形的边角关系课件1

精选教课课件设计| Excellent teaching plan直角三角形的边角关系讲义第 1 节从梯子的倾斜程度谈起本节内容:正切的定义坡度的定义及表示(难点)正弦、余弦的定义三角函数的定义(要点)1、正切的定义在确立,那么 A 的对边与邻边的比便随之确立,这个比叫做∠ A 的正切,记作tanA 。

A 的对边 a即 tanA=A的邻边 b例 1 如图,△ ABC是等腰直角三角形,求tanC.例2 如图,已知在 Rt △ ABC中,∠ C=90°, CD⊥ AB,AD=8, BD=4,求 tanA 的值。

BDC A精选教课课件设计| Excellent teaching plan2、坡度的定义及表示(难点我们往常把坡面的铅直高度h 和水平宽度l 的比叫做坡度(或坡比)。

坡度常用字母i 表示。

斜坡的坡度和坡角的正切值关系是:h tan al注意:( 1)坡度一般写成 1: m的形式(比率的前项为1,后项能够是小数);( 2)若坡角为 a,坡度为htana,坡度越大,则a角越大,坡面越陡。

il例 3 如图,拦水坝的横断面为梯形ABCD ,坝顶宽 BC 为 6m,坝高为 3.2m,为了提升水坝的拦水能力,需要将水坝加高2m,而且保持坝顶宽度不变,迎水坡CD? 的坡度不变,但是背水坡的坡度由本来的i = 1: 2 变为 i ′= 1: 2.5,(相关数据在图上已注明).?求加高后的坝底 HD 的长为多少?3、正弦、余弦的定义在 Rt 中,锐角∠ A 的对边与斜边的比叫做∠ A 的正弦,记作sinA 。

A 的对边 a即 sinA=斜边 c∠ A 的邻边与斜边的比叫做∠ A 的余弦,记作cosA。

A 的邻边 b即 cosA=斜边 c例4在△ ABC中,∠ C=90°, BC=1, AC=2,求 sinA 、 sinB 、cosA、 cosB 的值。

经过计算你有什么发现?请加以证明。

精选教课课件设计| Excellent teaching plan4、三角函数的定义(要点)锐角 A 的正弦、余弦和正切都是∠ A 的三角函数。

《三角形的边》三角形PPT优质课件

《三角形的边》三角形PPT优质课件
C、因为3+4<8,所以不能构成三角形,故C错误;
D、因为3+3>4,所以能构成三角形,故D正确.
故选:D.
知识巩固
2.若三角形的三边长分别为3,2-2x,5,则x的取值范围是多少?
-3<x<0
解析:由三角形的三边关系可知,
5-3 <2-2x <5+3
解得-3<x<0,
典例剖析
2a
已知△ABC的三边长分别是a、b、c,化简|a+b-c|-|b-a-c|=______。
一个三角形的三边关系:
三角形任何两边的和大于第三边,任何两边的差小于第三边。
典例剖析
三角形的两边分别为3和7,第三边长为偶数,求第三边的长。
解:∵ ︳两边之差︳<第三边 <两边之和
∴ 7-3<第三边<7+3
即4<第三边<10
又∵ 第三边为偶数
∴ 三边的长为6或8
方法点拨
在三角形第三边未知的情况下,判段第三条边可能有两种情况。三角形三边的关系:三角形

×(18-4)=7cm,所以能围成三角形。

例:如图,点P是△ABC内一点,连接BP,并
延长交AC于点D。
(1)试探究线段AB+BC+CA与线段2BD的大
小关系;
(2)试探就AB+AC与PB+PC的大小关系。
解:(1)∵根据三角形三边关系可得AB+AD>BD,BC+AD>BD,
∴AB+AD+BC+AD>2BD,
一个三角形,若不符合就不可能构成一个三角形。
解:(1)设底边长为xcm,则腰长为2xcm,
x+2x+2x=18,可得:x=3.6cm

直角三角形三边的关系(公开课课件)

直角三角形三边的关系(公开课课件)
读一读
我国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦.图1-1称为“弦图 ”,最早是由三国时期的数学家赵爽在为《周髀算经 》作法时给出的.图1-2是在北京召开的2002年国际数 学家大会(TCM-2002)的会标,其图案正是“弦图 ”,它标志着中国古代的数学成就.
图1-1
P
Q R
SR
=724×½ ×3×4 =25
把R“补”成边长为7的正方形面积减 去4个直角边为3、4的三角形的面积
观察所得到的各组数据,你有什么发现?
A a
Sa+Sb=Sc
Bb c
C
a2+b2=c2
猜想:两直角边a、b与斜边c 之间的关系?
观察所得到的各组数据,你有什么发现?
a
Sa+Sb=Sc
bc
的BC方向上的点C测得CA=130米,CB=120米,则
AB为
A
A.50米 B.120米 C.100米 D.130米
A
130
?
C
120 B
c a
b c
b
a
(ba)241abc2 2
b22a b a22a b c2 a2b2 c2
a
b c
a
c
b
(ab)2 c241ab 2
AC2+BC2=AB2
在等腰直角三角形中,两直角边的平方和 等于斜边的平方。
AR P
CQ B
把R分“割”成4个直 角边为1的三角形
SR
=4×½×C 1×1
=2
AR P
CQ B
SR
=22-4×½C ×1× =2
把R“补”成边长为2的 正方形面积减去4个小直 角三角形的面积

三角形的三边关系(课件)

三角形的三边关系(课件)
两边之差<第三边<两边之和
新知讲解
如果一根木棒能与原来的两根木棒摆成三角形,那么它的长度取值范
围是什么?
C
b
a
已知△ABC的两边为a,b(a>b), 第三边设为x,则x的取值范围为:
A
x
B
a-b<x<a+b
课堂练习
1.现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的 长度, 要钉成一个三角形木架,应在下列四根木棒中选取 ( B )
三角形任意两边之和大于第三边.
新知讲解
【做一做】 分别量出下面三个三角形的三边长度,并填入空格内。
a
ba
b
a b
c a= b= c=
c
c
, a=
, a=

, b=
, b=

。形的任意两边之差,并与第三边比较,你能得到什 么结论?小组交流。
三角形任意两边之差小于第三边.
新知讲解
【总结归纳】
判断三条线段能否组成三角形,只需看较短两边的和是否大于第三边 即可.因为只要较短两边的和大于第三边,则任意两边的和都大于第 三边,所以用此方法可以很快地判断出三条线段能否构成三角形.
新知讲解
如果一根木棒能与原来的两根木棒摆成三角形,那么它的长度取值范 围是什么? 三角形任意两边之和大于第三边. 三角形任意两边之差小于第三边.
作业布置
课本 习题4.2
新知讲解
有两根长度分别为5cm和8cm的木棒,用长度为2cm的木棒与它们能 摆成三角形吗?为什么?长度为13cm的木棒呢?
取长度为2cm的木棒时,由于 2+5=7<8,出现了两边之和小于 第三边的情况,所以它们不能摆成三角形. 取长度为13 cm的木棒时,由于5+8=13,出现了两边之和等于 第三边的情况,所以它们也不能 摆成三角形.

八年级数学上册第13章三角形中的边角关系第1课时三角形中边的关系上课pptx课件新版沪科版

八年级数学上册第13章三角形中的边角关系第1课时三角形中边的关系上课pptx课件新版沪科版
解:设第三条边长为a cm,则 9-3<a<9+3 即 6<a<12
其它两边之差<三角形的一边<其它两边之和
三角形中任何两边的和大于第三边. 三角形中任何两边的差小于第三边.
三角形。
等腰三角形中, 相等的两边叫做 腰,第三边叫做 底边,两腰的夹 角叫做顶角,腰 与底边的夹角叫
做底角.
顶角


底角 底
底角
等腰三角形
等边三角形Leabharlann 不等边三角形按边分类
不等边三角形
腰和底不等的三角形 等腰三角形
等边三角形
在一个三角形中,任意两边之和与第三边 的大小关系如何?你判断的根据是什么?
A
c b
B
C
a
A
c b
B
C
a
由“两点之间,线段最短”可以得到
AB+AC>BC
同理可得:AC+BC>AB,
三角形的三边有这样的关系: (1) 三角形中任何两边的和大于第三边. (2) 三角形中任何两边的差小于第三边.
例1 等腰三角形中,周长为18cm. (1)如果腰长是底边长的2倍,求各边长; (2)如果一边长为4cm,求另两边长.
2.一个等腰三角形的一边是2cm,另一边是 9cm,则这个三角形的周20长cm是______.
3. 一个等腰三角形的一边是5cm,另一边是9cm, 则这个三角形的周长是_1__9_c_m__或__2_3_c_m__
4.已知一个三角形的两条边长分别为3cm和 9cm,你能确定该三角形第三条边长的范围吗?
解:(1)设等腰三角形的底边长为xcm, 则腰长为2xcm,根据题意,得
x+2x+2x = 18 解方程,得 x = 3.6 所以三角形的三边长为3.6cm,7.2cm, 7.2cm.

直角三角形的三边关系课件

直角三角形的三边关系课件
直角边
直角三角形的直角所对的边称为直角边。
勾股定理
勾股定理是指直角三角形两个较短边的平方和等于斜边的平方,即a²+b²=c²。
三边关系
1
正弦定理
正弦定理指的是直角三角形中,任意一角的正弦值与其对边之比等于斜边长与其 一定点(垂足上方)到该角对边的距离之比。
2
余弦定理
余弦定理指的是任意一三角形中,任意边平方等于另外两边平方和的2倍减去这 两边夹角的余弦倍积。
直角三角形的三边关系
本PPT将为大家介绍直角三角形的三边关系。通过了解其定义、性质以及各种 定理,我们将掌握如何求解直角三角形的边长,以及它在实际应用中的作用。
引言
直角三角形是指其中一个角为90度的三角形。它有许多独特的性质,我们将从定义和性质入手,理解直角三角形的 基本概念和性质。
定义
斜边直角三角形的斜边是三角中最长的一条边。充分理解直角三角形三边关系定理和应用,并经常练 习,这是掌握数学和几何学的必要条件。
3
正切定理
正切定理是指直角三角形中,一个锐角的正切值等于这个角的对边长度除以邻边 长度。
例题演练
应用题 I
已知一个直角三角形的直角边和斜边,求另一个直角边 的长度。
应用题 II
已知一个角的度数和相对边的长度,求直角边的长度。
总结
1 斜边是直角三角形中最长的一条边。 2 勾股定理是直角三角形的基本定理之一。 3 三边定理包括正弦定理、余弦定理、正切定理。
直角三角形的应用
直角三角形的三边关系在几何学及相关学科中有广泛的应用。在实际生活中,我们也可以通过直角三角形的三条边 关系,来计算各种日常问题,如测量家具的尺寸,计算建筑物高度,甚至测量星体距离。
结语

三角形的三边关系课件

三角形的三边关系课件

本节课知识点总结回顾
三角形的基本概念和性质
01
三角形是由三条不在同一直线上的线段首尾顺次连接所组成的
封闭图形。
三角形三边关系定理
02
三角形任意两边之和大于第三边,任意两边之差小于第三边。
三角形按边的分类
03
根据三角形的边长关系,可以将三角形分为等边三角形、等腰
三角形和一般三角形。
学生自我评价报告展示
交通网络优化
三角形的三边关系还可以应用于交通网络的优化。通过分析交通网络中各个节 点之间的连接关系,可以合理规划道路布局,提高交通网络的通行效率和便捷 性。
其他领域应用举例
机械设计
在机械设计中,三角形的稳定性原理被用于设计各种支撑 结构和连接件。例如,三角形的支架可以用于支撑机械部 件,确保其稳定性和可靠性。
对于多边形,可以将其划分成若 干个三角形,然后利用三角形的 三边关系定理来推断多边形的边 长关系。
实际应用
在建筑、工程等领域中,经常需 要利用三角形的三边关系定理来 解决实际问题,如测量距离、设 计结构等。同时,对于多边形边 长关系的探索也可以为相关领域 的研究提供新的思路和方法。
THANK YOU
02
三角形三边关系定理
三角形两边之和大于第三边
对于任意三角形ABC,有AB + BC > AC,AC + BC > AB,AB
+ AC > BC。
三角形两边之和大于第三边是三 角形的基本性质之一,也是判断 三条线段能否构成三角形的必要
条件。
若三条线段满足三角形两边之和 大于第三边的条件,则它们可以 构成一个三角形;反之,则不能。
当两点之间直线距离不可达时, 可以通过构造三角形并利用三 边关系找到最短路径。

《三角形三边的关系》ppt课件

《三角形三边的关系》ppt课件
、建筑设计等。
06
三角形不等式在实 际问题中的应用
城市规划与建筑设计中的应用
道路设计
在道路规划中,利用三角形不等 式原理可以确定最短路径,优化
交通网络布局。
建筑设计
建筑师在设计建筑物时,需考虑 结构的稳定性和美观性,三角形 不等式可用于确定支撑结构的最
佳角度和长度。
城市规划
在城市规划中,三角形不等式可 用于计算地块之间的最短距离, 为公共设施布局、绿地规划等提
THANKS
感谢您的观看
其他领域中的实际应用案例
机器人路径规划
在机器人技术领域,三角形不等式可用于规划机器人的行动路径, 确保其以最短距离到达目的地。
计算机图形学
在计算机图形学中,三角形不等式可用于三维模型的表面重建、纹 理映射等方面,提高图形渲染的真实感和效率。
物理模拟与仿真
在物理模拟和仿真领域,三角形不等式可用于计算物体之间的相互作 用力和运动轨迹,为科学研究和工程设计提供有力支持。
《三角形三边的关系 》ppt课件
目录
CONTENTS
• 三角形基本概念与性质 • 三角形三边关系定理 • 三角形稳定性与三边关系 • 三角形面积与三边关系 • 三角形相似与全等中的三边关系 • 三角形不等式在实际问题中的应

01
三角形基本概念与 性质
三角形定义及分类
三角形的定义
由不在同一直线上的三条线段首 尾顺次连接所组成的封闭图形。
等腰三角形的面积最大化
对于等腰三角形,在给定底边和腰长的情况下,探讨其面积最大化 的条件及求解方法。
直角三角形面积最大化
对于直角三角形,在给定斜边和一条直角边的情况下,探讨其面积 最大化的条件及求解方法。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个风车里有我们熟悉的几何图形吗?
请同学们说说日常生活中什么物体上有三角形?
如果不允许利用三角形这个世界将会怎样?
三角形中边的关系
1
13.1.1三角形中边的关系
三角形中边的关系
2
探究 活动1:下面图形中哪些是三角形,哪些不是, 理由是什么?请给三角形下一个合适的定义。
(1)
(2)
(3)
(4)
(5)
A
B
C
由“两点的所有连线中,线段最短”可得:
AB+AC>BC
同理可得:AC+三B角形C中边>的关系AB,AB+BC>AC
9
结论
三角形中任 意的两边
三角形中任意两边的和大于第三边。
AB+AC>BC AC+BC>AB BC+AB>AC
AB>BC-AC AC>AB-BC BC>AC-AB
三角形中任意两边的差小于第三边。
(6)
三角形的定义:
(7)
(8)
三角形中边的关系
3
A
c
b
这个三角形记作:ΔABC, 读作:三角形ABC
B
a
C
三角形的顶点:点A、B、C, 三角形的(内)角:∠A、 ∠B、 ∠C,
三角形的边:AB、BC、AC,
c、 a、 b
三角形中边的关系
4
现学现用:
1、图中共有_____个三角形? 它们分别是
___________________________.B
11
能力提升: 等腰三角形中,周长为18CM。 1.如果腰长是底边的2倍,求各边长。 2.如果一边长为4cm,求另两边。
三角形中边的关系
12
课堂小结: 布置作业:
三角形中边的关系
13
A
DC
___________________________. 2、△ACD中,三条边是____________________, 三个角是___________________, ∠DAC的对边是_____,AC的对角___________.究 活动2:请将三角形按边是否相等分类
三角形中边的关系
10
1.下列长度的三条线段能否组成三角形? 为什么?
(1) 1,3,7 (2) 2,5,6 (3) 4,6,10
() () ()
2.有两根钢筋,长度是30cm和50cm,另取
一根钢筋长度为xcm,使第三根钢筋可焊接
成一个三角形钢架,那么第三根钢筋的长
度在什么范围内?
三角形中边的关系
三角形中边的关系
6
等腰三角形
A




B
底底
角 底角
C
相等的两边都叫腰,另一边叫做底,
两腰的夹角叫做顶角,腰和底边的夹
角叫做底角。 三角形中边的关系
7
等边三角形
A
B
C
三边相等 三个内角相等,都是60°
三角形中边的关系
8
假设一只小虫从点B出发,沿三角形的边或曲 线爬到C,它有几条路可以选择?各条线路的 长一样吗?
相关文档
最新文档