最新口腔材料学第一章PPT课件
口腔材料学
口腔材料学第一章总论一、口腔材料的分类(一)按材料性质分类:有机高分子材料、无机非金属材料、金属材料(二)按材料用途分类:印模材料、模型材料、义齿材料、充填材料、粘结材料、种植材料、齿科预防保健材料(三)按材料与口腔组织接触方式分类1、直接与口腔组织接触的材料:表面接触、外部接入和植入材料2、间接与口腔组织接触的材料按接触时间又分为:短期接触、长期接触和持久接触材料(四)按材料的应用部位分类:非植入人体的材料、植入人体的材料二、材料的性能(一)物理性能1、尺寸变化2、线[膨]胀系数3、热导率(导热系数)4、流电性5、表面张力和润湿性6、色彩性(二)机械性能1、应力2、应变3、应力-应变曲线4、冲击韧性5、硬度6、应变-时间曲线7、蠕变与疲劳 8、挠曲强度和挠度 9、应力集中、裂缝扩展和温度应力(三)化学性能1、腐蚀和变色2、扩散和吸附3、老化4、化学性粘结(四)生物性能1、生物相容性2、生物安全性3、生物功能性第二章口腔有机高分子材料一、高分子概述(一)高分子材料分类:橡胶、纤维和塑料三大类。
(二)聚合反应:加聚反应和缩聚反应。
二、印模材料(一)印模材料性能1、良好的生物安全性2、良好的流动性、弹性、可塑性3、适当的凝固时间4、良好的准确性、形稳性5、与模型材料不发生化学变化6、强度好7、操作简便,价格低廉,良好的储存稳定性,容易推广使用(二)常用印模材料1、藻酸盐类印模材料:室温20~22℃,2~5分钟凝固。
粉剂型、糊剂型温度高,凝固快,温度低,凝固慢。
粉剂型使用方法:水分比例按要求计量,调和30s,在口腔内1.5~2min,取出后水洗、灌注模型。
调和时间不足,会使印模强度下降,调和时间过长,会破坏凝胶而降低强度。
2、琼脂印模材料琼脂印模材料的胶凝温度介于36~40℃之间,温度低有利于胶凝。
温度越低胶凝越快。
凝胶转变成溶胶的温度需60~70℃3、琼脂/藻酸盐印模材料4、硅橡胶印模材料5、聚硫橡胶印模材料6、聚醚橡胶印模材料7、其他印模材料:印模膏、印模糊剂(氧化锌-丁香酚印模材料)、Ⅰ型石膏(三)蜡型材料常用牙用蜡:铸造蜡、基托蜡和其他蜡型材料(四)义齿基托树脂一般全扣义齿是由人工牙齿和树脂基托两部分组成。
材料学基础知识(口腔材料学课件)
➢ 蛋白质、纤维素、淀粉、天然橡胶、脂肪
聚合成的高分子化合物
➢ 均聚物:一种单体 ➢ 共聚物:两种或两种以上的单体
➢ 聚甲基丙烯酸甲酯为均聚物
➢ 丁苯橡胶为共聚物
----( CH2--CH=CH--CH2 -)x--(-CH2--CH-y)--n--
(二)高分子材料分类
材料的微观结构
课程标准
➢ 能描述口腔常用材料的基本知识 ➢ 知道口腔材料的微观结构的基本概念
一、原子间结合键
结合键类型 离子键
实例
LiCl NaCl KCl RbCl
共价键
金属键
金刚石 Si Ge Sn
Li Na K Rb
分子键(范德华键)
Ne Ar
氢键
H2O
HF
结合能 ev/mol
8.63 7.94 7.20 6.90
➢ 晶格畸变 ➢ 强度、硬度增加 ➢ 韧性、延展性、塑性下降
2.金属间化合物
➢ 晶体结构与组成元素的晶体结构均不相同
➢ 可用分子式表示组成,如银汞合金
➢ 高熔点
➢ 硬度、脆性、强度、硬度和耐磨性提高
➢ 塑性降低
金属化合物MgCu2晶体结构
二、金属的熔融与凝固 熔融 凝固、体积收缩
(一)金属的凝固——结晶
➢ 口腔潮湿环境中耐腐蚀、耐氧化的金属,包括金 (Au)、铂 (Pt)、铱(Ir)、锇(Os)、钯(Pd)、铑(Rh)和钌(Ru),不包括 银
➢ 贵金属合金(noble metal alloy)和非贵金属合金(base-
metal alloy)
➢ 一种或几种贵金属元素总含量≥25wt%
五、金属的形变与热处理
三、高分子的分子结构
口腔材料学课件PPT(54页)
总论
口腔材料学的发展简史 1920年美国国家标准局制定的银汞合金质量标准。
牙体的光学特性受两个因素制约,反射光与透射光。
1792年,De Chemat获得瓷修复体制作的专利
1940年 Ti 及合金
1728年,Pierre Fauchard发表专著,开创口腔医学新纪元
2500年前,金合金用于固定修复 有机液体表面张力较小,通常较易湿润表面而不呈滴状。
口腔材料学
中国医科大学口腔医学院 口腔材料教研室 郝凤渝
第一节 概 述
临床工作 科研工作
治疗 修复 矫正
课题选择
口腔材料研发工作
材料学知识
总论
人的一生有两副牙列:乳牙列和恒牙列。 任何原因所造成牙体或牙列的缺损或缺失,无论 其程度如何,机体都不能够通过再生进行修复。 修复的方法只能是通过使用人工材料,恢复缺损 或缺失牙体组织的形态,使其重新行使功能。
印模材料、模型材料 修复体精度
总论 1937年甲基丙烯酸树脂基托 1940年 Ti 及合金 1960年 聚羧酸Cements问世 单晶氧化铝陶瓷 1963年 金属烤瓷技术 1971年 Glass inomer cements 1965年 全瓷修复体 80年代 CAD—CAM 、 羟基磷灰石、铸钛技术 90年代 类陶瓷材料
将施加在材料标本上的力和引起的形变量记录下来,可描出应力应变曲线。
尺寸改变的测量方法:
1792年,De 1 直接法
2 间接法:电阻应变计
Chemat获得瓷修复体制作的专利
差动变压器
热膨胀系数的测试方法有示差法、光杠杆放大法、光干涉法、差动变压器法和Ⅹ线射线法。
19世纪中叶,氧化锌丁香酚水门汀,磷酸锌水门汀 机械性能和以下几个方面有关系:力、应力、应变、强度、硬度等。
级口腔材料学第一三章
遵义医学院珠海校区口腔系
12
三、口腔材料的标准和标准化组织
口腔材料的标准
13 遵义医学院珠海校区口腔系
1、国际标准化组织( I.S.O )
(International standards organization )
2、国家标准(GB)
3、医药行业标准(YY)
4、地方和企业标准
遵义医学院珠海校区口腔系
化学性能
遵义医学院珠海校区口腔系
生物性能
18
❖ 学习重点:
❖ 掌握物理性能、力学性能、化学性能和生物性能的 含义以及物理、力学性能的临床意义
❖ 了解化学性能和生物性能的临床意义
遵义医学院珠海校区口腔系
19
第一节 物理性能
遵义医学院珠海校区口腔系
20
(一)尺寸变化(dimensional change)
32
对临床的意义:
接触角愈小、润湿性愈好、 亲水亲组织性愈好。 粘接剂对被粘物体表面的湿润是粘接的必要条件。 金属烤瓷粉熔附于金属表面时也应有良好的润湿。
遵义医学院珠海校区口腔系
33
(六)色彩性
色彩的三个特性: 色调hue : 指颜色的名称 彩度chroma(饱和度):指颜色的纯度 明度value(明亮度):物体对光的反射性 (非彩色只有明度的区别)
34
对临床的意义
遵义医学院珠海校区口腔系
35
遵义医学院珠海校区口腔系
36
第二节 力学性能
力学性能(mechanical strength)又称为机械性能 材料在不同环境(温度、介质、湿度)下,承受各种 外力(拉伸、压缩、弯曲、冲击、交变应力等)时所 表现出的力学特征。
遵义医学院珠海校区口腔系
口腔材料学—口腔有机高分子材料
口腔材料学——第一章口腔有机高分子材料考查重点1.成分2.机制3.性能4.应用有机高分子印模材料义齿基托树脂=热凝、自凝型、光固化型、热塑注射聚甲基丙烯酸甲酯树脂及其改性产品目前应用最广牙体类--复合树脂牙髓类---根管糊剂固体名称组成性能牙胶尖由古塔胶(10%~20%)、氧化锌(61%~75%);少量松香、硫酸钡等组成①具有一定的压缩性(3%~6%)②具有热塑性,加热时软化③可被氯仿、桉油醇等溶剂软化、溶解④大多具有射线阻射性银尖含银99.8%~99.9%;及微量的镍和铜①具有较高的强度和良好的韧性,可用于弯曲的根管②具有一定的抑制、杀菌作用③射线阻射性能④耐腐蚀性较差塑料一般由热塑性树脂、填料和射线阻射物组成①有较好的弹韧性,容易进入弯曲的根管②组织亲和性好③缺乏射线阻射尖性糊剂氧化锌-丁香酚封闭剂粉剂含氧化锌等,液剂含丁香油等常见有Rickert和Grossman配方①氧化锌具有收敛作用,而丁香酚对多种根管细菌有抗菌作用②流动性好,凝固过程中体积收缩小,对根管封闭效果较好③有明显的X线阻射性①对根尖周组织有轻度的致炎性,可产生轻微炎症,导致疼痛,愈合迟缓等②常与牙胶尖联合使用氢氧化钙基封闭剂种类较多,剂型上有粉液型、单糊剂型和双糊剂型①有较强的抗菌作用②中和酸性炎症产物,促进根尖孔钙化,封闭根尖孔③有促进尖周骨缺损愈合功能④有些封闭剂含有碘仿,不但赋予封闭剂①含有碘仿的氢氧化钙糊剂可用于脓液渗出性感染根管②单糊剂型氢氧化钙用作暂时性根管充填,用作为乳牙根管永久性充填及年轻恒牙根尖诱导成形术射线阻射性,还提高了杀菌、抑菌作用树脂基封闭剂典型的是以环氧树脂为基础的封闭剂,剂型有粉液型和双糊剂型①聚合收缩较小,因此环氧树脂封闭剂的根管封闭性能较好②固化时间较长,为9~15小时,便于充分操作,流动性耗,容易渗入侧副根管③固化后水溶解性低,长期稳定性好①用于根管永久性充填封闭,与牙胶尖结合使用②对环氧树脂过敏的患者禁止使用矿物三氧化物凝聚体MTA 主要由硅酸三钙、硅酸二钙、铝酸三钙、铁铝酸四钙及硫酸钙组成①与水调和后,凝固时间较长,达2小时45分钟②凝固过程中伴随有轻微体积膨胀,用该材料充填根管后具有优秀的边缘封闭性能③凝固反应中会产生氢氧化钙晶体,反应产物呈强碱性,具有良好抑菌作用和盖髓效果①用于直接盖髓、活髓切断、根尖诱导成形中封闭根尖孔、髓室底穿孔或根管侧穿修补、根管倒充填②不适用于保留滞留的乳牙④对牙髓的刺激性较小⑤与牙胶相似的X线阻射性粘结材料1.种类和机制2.口腔组织环境的粘结特性(一)牙体组织1.釉质--97%(质量)无机矿+2%水+有机物质(1%)--表面-釉护膜覆盖,非极性--表面下30μm--氟化物+碳化合物--抗酸能力强--深层--紧密排列的釉柱和柱间质2.牙本质--70%无机物/18%蛋白质/11%水/1.5%其他有机物--小管+突起+细胞间质--小管贯穿牙本质,牙髓--釉牙本质界(放射)--小管近髓端粗,近表面处细--结构非均匀性,近髓多孔,近表致密--玷污层--1-5μm,有机物+大量无机物--结构无序,堵塞牙本质,渗透性降低--胶原蛋白多,表面能低--牙本质粘结难(二)口腔环境1.湿度--唾液+牙本质小管液--口腔粘结区域100%rh(相对湿度)潮湿状态--难以持久和粘结失败的重要原因2.温度--温度变化大+材料与牙体组织膨胀系数不一致--热应力,边缘微渗漏--粘结失败3.微生物和酶--细菌及代谢产物--降低表面能--酶--降解老化粘接剂4.应力--综合复杂的应力大+粘接面积小--粘接剂应力疲劳5.化学反应--临床要求时间短,化学反应要求时间长6.临床操作--复杂3.表面处理技术①除去妨碍粘结的表面污物及疏松层;②提高表面能;③增加表面积。
口腔材料学课件
— 不锈钢制作正畸矫正器以及各种弹性印模材料
¡ 口腔材料学作为一门独立的科学,是从20世 纪开始形成的。
口腔材料学课件
5
三、口腔材料的标准和标准化组织
¡ 口腔材料的标准是评价口腔材料性能的技术 文件,即对某种材料的性能提出具体的技术 要求。
¡ 口腔材料的第一项标准是由美国国家标准局 于1920年制定的银汞合金标准。美国牙科协 会(American Dental Association)自 1928年以来,已经制定几十项美国牙科协会 标准。
口腔材料学课件
30
¡ (四)冲击韧性
¡ 冲击韧性是指材料在冲击载荷下,抵抗冲击 破坏的能力,又称冲击韧度或冲击强度。用 于考察材料的脆性和韧性。冲击韧性可以由 下式计算
¡ 一般把冲击韧度值低的材料称为脆性材料, 冲击韧度值高的材料称为韧性材料。
口腔材料学课件
31
¡ (五) 硬度
¡ 硬度是固体材料抵抗弹性变形、塑性变形或 破坏能力,或抵抗其中两种或三种情况同时 发生时的能力。它表示材料表面局部区域抵 抗压缩变形和断裂的能力,是衡量材料软硬 程度的指标。
¡ 彩度:又称饱和度,指颜色的纯度。 ¡ 明度:又称明亮度,反映物体对光的反射性。 ¡ 非彩色只有明度的差别。
口腔材料学课件
19
¡ 常用三种方法对颜色进行描述:①颜色名词; ②色卡、色片、比色板;③CIE标准色度系 统。
¡ 对口腔材料颜色的定量描述常用CIE标准色 度系统及孟塞尔系统。
口腔材料学课件
口腔材料学课件
21
¡ (一)应力
¡ 应力是描述物体内部各点各个方向的力学状 态。单位面积所受的内力即为应力。
¡ 当外力为拉力时,产生的是拉应力;当外力 为压力时,产生的是压应力;当外力是剪切 力时,产生的是切应力。
口腔材料学教学口腔修复陶瓷材料ppt课件
遮色瓷(opaque)、 体瓷(body )或本质瓷(dentine)、 釉质瓷(enamel)。
40
长石
长石为造岩矿物,化学成分为不含水的碱金属与碱土金属铝 硅酸盐,主要是钾、钠、钙和少量钡的铝硅酸盐。 口腔陶瓷中的长石为钠长石与钾长石的混合物,作为熔剂使 用,是形成玻璃相的主要成分。
SiO2 65~75
Al2O3 7~30
R2O+RO 4~33
8
4.陶瓷的结构 陶瓷材料的结合键
离子晶体-以离子键结合的晶体。金属氧化物。 MgO、Al2O3、ZrO2
共价晶体-以共价键结合的晶体。 金刚石、SiC、Si3N4、BN
9
陶瓷材料的相组成
陶瓷一般是多相多晶材料。由晶体相、玻璃 相、气相组成。(陶瓷的三相结构)
无机胶凝材料:水泥,石膏,石灰等(有机胶凝材料:沥 青,树脂等)
天然矿物材料:来源于矿物或岩石,改造但不改变其理化 性质直接应用的材料,如大理石,石棉
什么是玻璃?
物质的三种聚集状态:气、固、液态 固态和液态又存在两种:晶态、非晶态 玻璃是具有非晶态结构的固体材料 玻璃内的原子排列和液体相似,又被称作 “固态液体” 制作玻璃一般需要快速冷却,让原子来不及 有序排列形成结晶。
光纤陶瓷插芯
掺钕钇铝石榴石陶瓷
(Nd:YAG)激光材料 28
生物陶瓷
人工关节
口腔陶瓷
29
陶瓷在口腔医学中的应用
29
口腔修复用陶瓷材料的种类
金属烤 瓷材料
口腔修复 陶瓷材料
全瓷 材料
烧结全瓷材料 热压铸全瓷材料 粉浆堆涂玻璃渗透 全瓷材料
第一章 口腔材料学概述
三、化学性能
• 要求材料在口腔环境中不
溶解、不腐蚀、不溶出重 要成份。 (一)腐蚀与 变色 ☆材料由于周围环境的化学 侵蚀而造成的破坏或变质 称为腐蚀。 • 腐蚀开始发生的阶段可发 生变色。 干腐蚀
腐蚀
湿腐蚀
腐蚀
均匀腐蚀 局部腐蚀
。。。
。。。
(二)扩散与吸附
• 物体中原子和分子向周围移动的现象,称为扩散。 • 材料均一稳定地分散在溶剂中的过程,又称为溶
3. 19世纪
口腔材料的快速发展期
☺ 19世纪中期银汞合金、氧 化锌丁香酚水门汀和磷酸锌水 门汀相继出现,并一直沿用至今。
☺
19世纪中期开始采用硫化橡胶制作义齿基托。
4. 20世纪至今
☺
口腔材料精制、改进期
1937年出现的丙烯酸树脂基托材料,是合成高分子 材料在口腔医学领域应用的最早实例。 ☺ 1940年,纯钛及钛合金出现。 ☺ 1957, 高速手机(牙钻)的应用。 ☺1960年聚羧酸水门汀世。 ☺ 1963年,美国学者Bowen取得牙科复合树脂的专利。 ☺ 1971年开发出玻璃离子水门汀。 ☺ 1978年,羟基磷灰石等生物陶瓷作为植入材料应用于 口腔临床。
解。
• 固体或液体表面的离子、原子或分子与接触相中
的离子、原子或分子间,借助静电力或分子间的 范德华力所产生的吸着现象,称为吸附。
•
•
(三)老化 材料在加工、贮存和 使用的过程中物理、 化学性质和机械性能 变坏的现象,称为老 化。 老化对口腔高分子材 料的应用有很大的影 响。
•
•
(四)化学性粘接 粘接是指两个固体借 助于两者界面间力的 作用而产生结合的现 象。 口腔环境的特殊性对 粘接性能的要求高。
热导率是量度材料导热性能的物理量。定义为面 积热流量除以温度梯度。 近髓充填时要考虑材料的热导率。
口腔材料学 PPT课件
材料的性能 一 物理性能
1.尺寸变化:口腔材料在制作和使用过程中 由于物理化学因素的影响,引起长度或体 积大小的变化,称为尺寸变化 (dimensional change)
2.热膨胀:指材料在受热是膨胀,与冷时
收缩的现象。热膨胀系数:描述物体长度 随温度变化的物理量,当长度的变化表示 热膨胀系数时,称为线胀系数
断增加的现象。
• (6)耐磨度:两个物体在一定的压应力作用下,
抵抗相互产生表面破坏的性能,也指材料抵抗磨耗的 能力。
• (7)挠曲强度和挠度
• 挠曲强度:又称变曲强度,是描述材料承受这样复
杂应力下得性能。简明:持续受力,直至断裂
ቤተ መጻሕፍቲ ባይዱ
• 挠度:材料承受其比例极限内的应力所发生的弯曲
形变
三 化学性能
• 1.腐蚀:材料与外界之间发生的反应,而使材料
口腔修复材料
• 第一节 印模材料 • 定义:口腔修复中,凡用于制取各种颌面及口腔
• •
软,硬组织阴模的材料均可称为印模材料。功能: 记录口腔颌面各部分组织形态和关系的阴模 理想印模材料应具备的条件 1.良好的生物安全性2.适当的流动性,可塑性及 弹性3.适当的凝固时间4.良好的尺寸稳定性5.与模 型材料不发生化学反应6.便于清洁,消毒,操作 简单,价格合理,便于推广使用
• 口腔模型材料的分类
按有无弹性的物理特点分类:弹性印模材料和非弹 性印模材料 按凝固形式分类:化学反应凝固类,温度固化类和 室温状态成型类 下面重点讲述各类材料的性能
澡酸盐类印模材料
• 性能:一种弹性不可逆性的水胶印模材料 • 分类:粉剂型和糊剂型,两种,粉剂型由粉和 •
水调和,糊剂型由糊剂与胶结剂调拌使用; 常用:藻酸钠、藻酸钾、藻酸铵三种
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 概述
国际牙科联盟(federation dentaire internationale,FDI)
国际标准化组织international standards organization,ISO)
12
第二节 口腔材料的性能 物理性能
尺寸变化 口腔材料在制作和使用过程中,由于物理及化学
因素的影响,引起长度或体积大小的变化称为 尺寸变化,如印模材料、模型材料和充填材料 等。
要的能量。
22
第二节 口腔材料的性能
机械性能
冲击强度是材料抵抗冲击破坏的能力, 又称冲击韧性。用于考察脆性和韧性。
硬度是固体材料抵抗弹性变形、塑性变 形或破坏的能力,或抵抗其中两种或三种情 况同时发生时的能力。
应变-时间曲线:蠕变是在恒应力作用下, 塑性应变随时间不断增加的现象;疲劳是指 材料在循环(交变)应力作用下发生损伤乃 至断裂的过程。
10
第一节 概述
口腔材料的分类
按材料与口腔组织的接触方式分类 直接、暂时与口腔组织接触的材料 直接、长期与口腔组织接触的材料 间接与口腔组织接触的材料
按材料的应用部位分类 非植入人体材料 植入人体材料
11
口腔材料的标准和标准化组织 美国牙科协会ADA American dental association
19世纪中期银汞合金用于临床
19世纪ZOE和磷酸锌水门汀出现
19世纪中叶用硫化橡胶制作义齿,1937年被甲基丙烯酸酯取代
20世纪 非贵金属、不锈钢、弹性印模材等用于临床
1960年聚羧酸水门汀问世
1971年美国学者研制玻璃离子水门汀
1963年R、L、Bowen取得牙科复合树脂专利→开发粘接剂
1940年纯钛和钛合金出现
1、黑土利用的问题、保护措施
2、沼泽的作用、保护 五、商品农业基地的建设
弹性极限是材料不 发生永久形变所能承受的 最大应力;弹性模量是量 度材料刚性的量,与材料 的组成有关
第二节 口腔材料的性能
×机械性能
×应力-应变曲线
× 屈服强度yield strength是材料屈服点所 对应的应力值
× 极限强度ulimate strength—材料出现断 裂过程中产生的最大应力值,拉应力时拉伸强 度,压应力时为压缩强度,切应力时为剪切强 度,弯曲应力时为挠曲强度。
23
第二节 口腔材料的性能
机械性能 挠曲强度或弯曲强度是指材料承受复杂应力下
的性能;挠度是物体承受其比例极限内的应力所发 生的弯曲形变。均为描述材料弯曲韧性的指标。
热应力和裂缝扩展
24
第二节 口腔材料的性能
化学性能 腐蚀和变色腐蚀是指材料由于周围环境的化
学侵蚀而造成的破坏或变质,类型有干腐蚀和 湿腐蚀,其形态有均匀腐蚀和局部腐蚀。
生物功能性是指材料与宿主产生功能反应(活 性反应)的总称。
27
第八章 商品农业区域的开发 ──以东北地区农林基地 建设为例
自学提纲: 一、东北农林基地区域概况
1、位置、范围 2、气候(类型、温度带、干湿地区
3、地形特征
4、主要的农作物
二、土地资源的优势
1、耕地 2、土壤 3、地形 三、森林资源优势 四、土地资源开发与保护
× 断裂强度fracture strength是指材料发
生断裂时的应力
21
第二节 口腔材料的性能
×机械性能
×应力-应变曲线
× 延伸率elongation是材料在拉力作用下, 所能经受的最大拉应变。伸长是材料在拉应力 作用下发生的形变。
× 回弹性resilience是材料抵抗永久变形的
ห้องสมุดไป่ตู้
能力,表明使材料出现永久应变单位体积所需
13
第二节 口腔材料的性能 物理性能
热膨胀——物体长度或体积随温度变化的物理量 线胀系数 是表征物体长度随温度变化的物理量;
体胀系数 是表征物体体积随温度变化的物理量
14
第二节 口腔材料的性能
物理性能
热导率(导热系数)是量度材料导热性能的物理量,其定 义为面积热流量除以温度梯度。
流电性在口腔环境中存在异种金属修复体相接触时,由于 不同金属之间的电位不同,将会出现电位差,导致微电 流产生,这种性质称为流电性,该现象称为流电现象。
口腔材料学第一章
第一节 概述
口腔材料的发展简史 18世纪:1728年Pierre Fauchard撰写口腔 医学专著
1756年用蜡制取口腔印模---煅石膏的使 用
1770年Jean Darcet低熔合金用于牙科 1792年De Chemat获得瓷牙制作方法
7
第一节 概述
口腔材料的发展简史
1978年羟基磷灰石等生物陶瓷植入材料问世
8
第一节 概述
口腔材料的分类
按材料主要应用临床科室分类:口腔内科材 料;口腔颌面外科材料;口腔修复材料;口 腔正畸材料;口腔预防保健材料 按材料性质分类:有机高分子材料;无机非 金属材料;金属材料;复合材料
9
第一节 概述
口腔材料的分类
按材料用途分类:印模材料;模型材料;义 齿材料;充填材料;粘接材料;种植材料; 齿科预防保健材料;其他--衬层材料、颌面 修复材料、包埋材料、抛光材料
溶解和吸附:扩散是指物体中原子和分子向 周围移动的现象;固体或液体表面的离子、原 子或分子与接触相中的离子、原子或分子之间, 借助于静电力或分子间的范德华力所产生的吸 着现象,称为吸附。
25
第二节 口腔材料的性能
化学性能 老化是指材料在加工、贮存和使用过程
中物理、化学性质和机械性能变坏的现象 化学性粘接:粘接是指两个固体借助于
两者界面间力的作用而产生结合的现象; 化学性粘接是指粘接剂表面的原子或离子 与被粘体表面的原子或离子间的结合,一 般是以共价键或离子键形式存在。
26
第二节 口腔材料的性能
生物性能
生物安全性是指材料进入临床应用前具有安全 使用的性质
生物相容性是指在某种特定的目的、特定的部 位材料与宿主同处于静动态变化环境中发生相互反 应的能力和作用,保持相对稳定而不被排斥的性质, 又称生物适应性和生物可接受性。
15
第二节 口腔材料的性能
物理性能
表面张力是扩张表面单位所需的力:润湿性
18
第二节 口腔材料的性能
机械性能 应力是描述物体内部各点各个方向的力学状态。 单位面积所受的内力即为应力。
19
应变是描述材料在外力 作用下形状变化的量。 应力-应变曲线
比例极限是材料不 偏离正比例应力-应变 关系所能承受的最大应 力