勾股定理中考真题精选汇总1

合集下载

勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题(6种类型48道)—2024学年八年级数学上册(解析版)

勾股定理中的常考问题6种类型48道【类型一用勾股定理解决折叠问题】1.如图,将长方形ABCD沿着AE折叠,点D落在BC边上的点F处,已知AB=8,BC=10,则EC的长为()A.4B.3C.5D.2【答案】B【分析】长方形ABCD沿着AE折叠,得AD=AF=BC=10,EF=ED,根据勾股定理得BF=6,则CF=4,设EC=x,ED=8−x,根据勾股定理得EF2=EC2+CF2,即可解得EC的长.【详解】解:∵四边形ABCD是长方形,∴AD=BC=10,DC=AB=8,∵长方形ABCD沿着AE折叠,∴AD=AF=BC=10,EF=ED,∴BF=√AF2−AB2=√100−64=6,CF=BC−BF=4,设EC=x,ED=8−x,∴EF2=EC2+CF2,即(8−x)2=x2+42,解得x=3,所以EC=3,故选:B.【点睛】本题主要考查了图形折叠以及勾股定理等知识内容,掌握图形折叠的性质是解题的关键.2.如图,有一块直角三角形纸片,∠C=90°,AC=4,BC=3,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为()【答案】C【分析】利用勾股定理求得AB=5,由折叠的性质可得AB=AE=5,DB=DE,求得CE=1,设DB=DE=x,则CD=3−x,根据勾股定理可得12+(3−x)2=x2,进而求解即可.【详解】解:∵∠C=90°,AC=4,BC=3,∴AB=√32+42=5,由折叠的性质得,AB=AE=5,DB=DE,∴CE=1,设DB=DE=x,则CD=3−x,在Rt△CED中,12+(3−x)2=x2,,解得x=53故选:C.【点睛】本题考查勾股定理、折叠的性质,熟练掌握勾股定理是解题的关键.【答案】B【分析】根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8−x,再Rt△BCE中利用勾股定理即可求出CE的长度.【详解】解:∵△ADE翻折后与△BDE完全重合,∴AE=BE,设AE=x,则BE=x,CE=8−x,∵在Rt△BCE中,CE2=BE2−BC2,即(8−x)2=x2−62,解得,x=7,4.∴CE=74故选:B【点睛】本题考查了图形的翻折变换,解题中应注意折叠是一种对称变换,属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.4.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,AD为∠BAC的平分线,将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,则DE的长为()【答案】B【分析】根据勾股定理求得BC,进而根据折叠的性质可得AE=AC,可得BE=2,设DE=x,表示出BD,DE,进而在Rt△BDE【详解】解:∵在Rt△ABC中,∠ABC=90°,AB=3,AC=5,∴BC=√AC2−AB2=√52−32=4,∵将△DAC沿AD向上翻折得到△DAE,使点E在射线AB上,∴AE=AC,设DE=x,则DC=DE=x,BD=BC−CD=4−x,BE=AE−AB=5−3=2,在Rt△BDE中,BD2+BE2=DE2,即(4−x)2+22=x2,解得:x=52,即DE的长为52故选:B.【点睛】本题考查了勾股定理与折叠问题,熟练掌握勾股定理是解题的关键.5.如图,矩形纸片ABCD的边AB长为4,将这张纸片沿EF折叠,使点C与点A重合,已知折痕EF长为2√5,则BC长为()A.4.8B.6.4C.8D.10【答案】C【分析】过点F作FG⊥BC于点G,则四边形ABGF是矩形,从而FG=AB=4,在Rt△EFG中,利用勾股定理求得EG=√EF2−FG2=√(2√5)2−42=2.设BE=x,则BG=BE+EG=x+2.由∠AFE=∠CEF=∠AEF 得到AE=AF=BG=x+2,从而在Rt△ABE中,有AB2+BE2=AE2,代入即可解得x的值,从而得到BE,CE的长,即可得到BC.【详解】过点F作FG⊥BC于点G∵在矩形ABCD中,∠DAB=∠B=90°∴四边形ABGF是矩形∴FG=AB=4∴在Rt△EFG中,EG=√EF2−FG2=√(2√5)2−42=2设BE=x,则BG=BE+EG=x+2∵在矩形ABCD中,BC∥AD∴∠AFE=∠CEF由折叠得∠CEF=∠AEF∴AE=AF∵在矩形ABGF中,AF=BG=x+2∴AE=AF=x+2∵在Rt△ABE中,AB2+BE2=AE2∴42+x2=(x+2)2解得x=3即BE=3,AE=5∴由折叠可得CE=AE=5∴BC=BE+EC=3+5=8故选:C【点睛】本题考查矩形的性质,勾股定理的应用,利用勾股定理构造方程是解决折叠问题的常用方法.A.7B.136【答案】B【分析】根据题意可得AD=AB=2,∠B=∠ADB,CE=DE,∠C=∠CDE,可得∠ADE=90°,继而设AE=x,则CE=DE=3−x,根据勾股定理即可求解.【详解】解:∵沿过点A的直线将纸片折叠,使点B落在边BC上的点D处,∴AD=AB=2,∠B=∠ADB,∵折叠纸片,使点C与点D重合,∴CE=DE,∠C=∠CDE,∵∠BAC=90°,∴∠B+∠C=90°,∴∠ADB+∠CDE=90°,∴AD2+DE2=AE2,设AE=x,则CE=DE=3−x,∴22+(3−x)2=x2,,解得x=136即AE=13,6故选:B【点睛】本题考查了折叠的性质,勾股定理,掌握折叠的性质以及勾股定理是解题的关键.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边BC沿CE翻折,点B落在点F处,连接CF交AB于点D,则FD的最大值为()【答案】D【分析】根据将边BC沿CE翻折,点B落在点F处,可得FD=CF−CD=4−CD,即知当CD最小时,FD最大,此时CD⊥AB,用面积法求出CD,即可得到答案.【详解】解:如图:∵将边BC沿CE翻折,点B落在点F处,∴CF=BC=4,∴FD=CF−CD=4−CD,当CD最小时,FD最大,此时CD⊥AB,∵∠ACB=90°,AC=3,BC=4,∴AB=√AC2+BC2=√32+42=5,∵2S△ABC=AC⋅BC=AB⋅CD,∴CD=AC⋅BCAB =3×45=125,∴FD=CF−CD=4−125=85,故选:D.【点睛】本题考查直角三角形中的翻折问题,涉及勾股定理及应用,解题的关键是掌握翻折的性质.A.73B.154【答案】B【分析】先求出BD=2,由折叠的性质可得DN=CN,则BN=8−DN,利用勾股定理建立方程DN2= (8−DN)2+4,解方程即可得到答案.【详解】解:∵D是AB中点,AB=4,∴AD=BD=2,∵将Rt△ABC折叠,使点C与AB的中点D重合,∴DN=CN,∴BN=BC−CN=8−DN,在Rt△DBN中,由勾股定理得DN2=BN2+DB2,∴DN2=(8−DN)2+4,∴DN=17,4,∴BN=BC−CN=154故选:B.【点睛】本题主要考查了勾股定理与折叠问题,正确理解题意利用方程的思想求解是解题的关键.【类型二杯中吸管问题】9.如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一支15cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为()A.1cm B.2cm C.3cm D.不能确定【答案】B【分析】吸管露出杯口外的长度最少,即在杯内最长,可用勾股定理解答.【详解】解∶∵CD=5cm,AD=12cm,∴AC=√CD2+AD2=√52+122,露出杯口外的长度为=15−13=2(cm).故答案为:B.【点睛】本题考查勾股定理的应用,所述问题是一个生活中常见的问题,与勾股定理巧妙结合,可培养同学们解决实际问题的能力.10.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.3cm D.2cm【分析】根据勾股定理求得AC的长,进而即可求解.【详解】解:根据题意可得图形:AB=12cm,BC=9cm,在Rt△ABC中:AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm).则这只铅笔在笔筒外面部分长度为3cm.故选:C.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.11.如图,一支笔放到圆柱形笔筒中,笔筒内部底面直径是9cm,内壁高12cm.若这支笔长18cm,则这支笔在笔筒外面部分的长度是()A.6cm B.5cm C.4cm D.3cm【答案】D【分析】首先根据题意画出图形,利用勾股定理计算出AC的长度.然后求其差.【详解】解:根据题意可得:AB BC=9cm,在Rt△ABC中∶AC=√AB2+BC2=√122+92=15(cm),所以18−15=3(cm),则这只铅笔在笔筒外面部分长度为3cm.故选:D.【点睛】此题主要考查了勾股定理的应用,正确得出笔筒内铅笔的最短长度是解决问题的关键.12.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm<ℎ≤16cm【分析】根据勾股定理及直径为最大直角边时即可得到最小值,当筷子垂直于底面时即可得到最大值即可得到答案;【详解】解:由题意可得,当筷子垂直于底面时ℎ的值最大,ℎmax=24−8=16cm,当直径为直角边时ℎ的值最小,根据勾股定理可得,ℎmin=24−√82+152=7cm,∴7cm<ℎ≤16cm,故选D.【点睛】本题考查勾股定理的运用,解题的关键是找到最大与最小距离的情况.13.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度ℎcm,则ℎ的取值范围是()A.ℎ≤17cm B.ℎ≥16cm C.5cm<ℎ≤16cm D.7cm≤ℎ≤16cm【答案】D【分析】如图,当筷子的底端在A点时,筷子露在杯子外面的长度最短;当筷子的底端在D点时,筷子露在杯子外面的长度最长.然后分别利用已知条件根据勾股定理即可求出的取值范围.【详解】解:如图1所示,当筷子的底端在D点时,筷子露在杯子外面的长度最长,=24−8=16cm,∴ℎ最大如图2所示,当筷子的底端在A点时,筷子露在杯子外面的长度最短,在Rt△ABD中,AD=15cm,BD=8cm,∴AB=√AD2+BD2=17cm,=24−17=7cm,∴此时ℎ最小∴的取值范围是7cm≤h≤16cm.故选:D.【点睛】本题主要考查了勾股定理的应用,明确题意,准确构造直角三角形是解题的关键.A.5B.7C.12D.13【答案】A【分析】根据勾股定理求出h的最短距离,进而可得出结论.【详解】解:如图,当吸管、底面直径、杯子的高恰好构成直角三角形时,h最短,此时AB=√92+122=15(cm),故ℎ=20−15=5(cm);最短故选:A.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.15.如图,某同学在做物理实验时,将一支细玻璃棒斜放入了一只盛满水的烧杯中,已知烧杯高8cm,玻璃棒被水淹没部分长10cm,这只烧杯的直径约是()A.9cm B.8cm C.7cm D.6cm【答案】D可.【详解】解:由题意,可得这只烧杯的直径是:√102−82=6(cm).故选:D.【点睛】本题考查了勾股定理的应用,能够将实际问题转化为数学问题是解题的关键.16.如图,一根长18cm的牙刷置于底面直径为5cm、高为12cm的圆柱形水杯中,牙刷露在杯子外面的长度为h cm,则h的取值范围是()A.4<h<5B.5<h<6C.5≤h≤6D.4≤h≤5【答案】C【分析】根据题意,求出牙刷在杯子外面长度最小与最大情况即可得出取值范围.【详解】解:根据题意,当牙刷与杯底垂直时,ℎ最大,如图所示:故ℎ最大=18−12=6cm;∵当牙刷与杯底圆直径、杯高构成直角三角形时,ℎ最小,如图所示:在RtΔABC中,∠ACB=90°,AC=5cm,BC=12cm,则AB=√BC2+AC2=√52+122=13cm,∵牙刷长为18cm,即AD=18cm,∴ℎ最小=AD−AB=18−13=5cm,∴h的取值范围是5≤h≤6,故选:C.【点睛】本题考查勾股定理解实际应用题,读懂题意,根据牙刷的放置方式明确牙刷在杯子外面长度最小与最大情况是解决问题的关键.【类型三楼梯铺地毯问题】17.如图在一个高为3米,长为5米的楼梯表面铺地毯,则地毯至少需要().A.3米B.4米C.5米D.7米【答案】D【分析】当地毯铺满楼梯时的长度是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,即可求得地毯的长度.【详解】解:由勾股定理得:楼梯的水平宽度=√52−32=4(米),∵地毯铺满楼梯的长度应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是3+4=7(米).故选:D.【点睛】此题考查了生活中的平移现象以及勾股定理,属于基础题,利用勾股定理求出水平边的长度是解答本题的关键.18.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得水平宽度,然后求得地毯的长度即可.【详解】解:由勾股定理得:楼梯的水平宽度=√132−52=12m,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,∴地毯的长度至少是12+5=17(m).故选B.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解答本题的关键.19.如图是楼梯的示意图,楼梯的宽为5米,AC=5米,AB=13米,若在楼梯上铺设防滑材料,则所需防滑材料的面积至少为()A.65m2B.85m2C.90m2D.150m2【答案】B【分析】勾股定理求出BC,平移的性质推出防滑毯的长为AC+BC,利用面积公式进行求解即可.【详解】解:由图可知:∠C=90°,∵AC=5米,AB=13米,∴BC=√AB2−AC2=12米,由平移的性质可得:水平的防滑毯的长度=BC=12(米),铅直的防滑毯的长度=AC=5(米),∴至少需防滑毯的长为:AC+BC=17(米),∵防滑毯宽为5米∴至少需防滑毯的面积为:17×5=85(平方米).故选:B.【点睛】本题考查勾股定理.解题的关键是利用平移,将防滑毯的长转化为两条直角边的边长之和.A.13cm B.14cm C.15cm D.16cm【答案】A【分析】根据勾股定理即可得出结论.【详解】如图,由题意得AC=1×5=5(cm),BC=2×6=12(cm),故AB=√122+52=13(cm).故选:A.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.21.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【答案】C【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【详解】∵△ABC是直角三角形,BC=6m,AC=10m∴AB=√AC2−BC2=√102−62=8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选C【点睛】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系.22.某酒店打算在一段楼梯面上铺上宽为2米的地毯,台阶的侧面如图所示,如果这种地毯每平方米售价为80元,则购买这种地毯至少需要()A.2560元B.2620元C.2720元D.2840元【答案】C【分析】根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求.【详解】利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为√132−52=12米、5米,∴地毯的长度为12+5=17米,地毯的面积为17×2=34平方米,∴购买这种地毯至少需要80×34=2720元.故选C.【点睛】本题考查的知识点是勾股定理的应用,生活中的平移现象,解题关键是要注意利用平移的知识,把要求的所有线段平移到一条直线上进行计算.23.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【答案】C【详解】楼梯竖面高度之和等于AB的长.由于AB=√AC2−BC2=√52−32=4,所以至少需要地毯长4+3=7(m).故选C24.如图,是一段楼梯,高BC是1.5m,斜边AC是2.5m,如果在楼梯上铺地毯,那么至少需要地毯()A.2.5m B.3m C.3.5m D.4m【答案】C【分析】当地毯铺满楼梯时其长度的和应该是楼梯的水平宽度与垂直高度的和,根据勾股定理求得AB,然后求得地毯的长度即可.【详解】解:由勾股定理得:AB=√2.52−1.52=2因为地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和所以地毯的长度至少是1.5+2=3.5(m)故选C.【点睛】本题考查了图形平移性质和勾股定理,解决本题的关键是要熟练掌握勾股定理.【类型四最短路径问题】25.如图,透明圆柱的底面半径为6厘米,高为12厘米,蚂蚁在圆柱侧面爬行.从圆柱的内侧点A爬到圆柱的外侧点B处吃食物,那么它爬行最短路程是厘米.(π≈3)【答案】30【分析】把圆柱的侧面展开,根据勾股定理即可得到结论.【详解】解:∵透明圆柱的底面半径为6厘米,∴透明圆柱的底面周长为2×6π=厘米≈36厘米,作点A关于直线EF的对称点A′,连接A′B,则A′B的长度即为它爬行最短路程,×36=18厘米,∴A′A=2AE=24厘米,AB=12∴A′B=√AB2+A′A2=√182+242=30(cm),故答案为:30.【点睛】本题考查平面展开-最短路径问题,解题的关键是计算出圆柱展开后所得长方形的长和宽的值,然后用勾股定理进行计算.【答案】10【分析】将圆柱侧面展开,由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,再由勾股定理求出.【详解】解:根据圆柱侧面展开图,cm,高为8cm,∵圆柱的底面半径为6π∴底面圆的周长为2×6×π=12cm,π×12=6cm,∴BC=8cm,AC=12由图形可知蚂蚁在圆柱侧面爬行,从点A爬到点B的最短路程即为AB的长,AB=√AC2+BC2=10cm,故答案为:10.【点睛】本题考查了平面展开最短路线问题,勾股定理,将立体图形转化成平面图形求解是解题的关键.27.如图有一个棱长为9cm的正方体,一只蜜蜂要沿正方体的表面从顶点A爬到C点(C点在一条棱上,距离顶点B 3cm处),需爬行的最短路程是cm.【答案】15【分析】首先把正方体展开,然后连接AC,利用勾股定理计算求解即可.【详解】解:如图,连接AC,由勾股定理得,AC=√92+(9+3)2=15,故答案为:15.【点睛】本题考查了正方体的展开图、勾股定理的应用,解题的关键在于明确爬行的最短路线.28.如图,桌上有一个圆柱形玻璃杯(无盖),高6厘米,底面周长16厘米,在杯口内壁离杯口1.5厘米的A处有一滴蜜糖,在玻璃杯的内壁,A的相对方向有一小虫P,小虫离杯底的垂直距离为1.5厘米,小虫爬到蜜糖处的最短距离是厘米.【答案】10【分析】将杯子侧面展开,作A关于杯口的对称点A′,根据两点之间线段最短可知A′P的长度即为所求,再结合勾股定理求解即可.【详解】解:如图所示:将杯子侧面展开,作A关于杯口的对称点A′,连接PA′,最短距离为PA′的长度,)2+(6−1.5+1.5)2=10(厘米),PA′=√PE2+EA′2=√(162最短路程为PA ′=10厘米.故答案为:10.【点睛】本题考查了平面展开−最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.【答案】20【分析】先把圆柱的侧面展开,连接AS ,利用勾股定理即可求得AS 的长.【详解】解:如图,∵在圆柱的截面ABCD 中,AB =24π,BC =32,∴AB =12×24π×π=12,BS =12BC =16, ∴AS =√AB 2+BS 2=20,故答案为:20.【点睛】本题考查平面展开图−最短路径问题,根据题意画出圆柱的侧面展开图,利用勾股定理求解是解题的关键.30.如图,圆柱形玻璃杯的杯高为9cm ,底面周长为16cm ,在杯内壁离杯底4cm 的点A 处有一滴蜂蜜,此时,一只蚂蚁正好在杯外壁上,它在离杯上沿1cm ,且与蜂蜜相对的点B 处,则蚂蚁从外壁B 处到内壁A 处所走的最短路程为 cm .(杯壁厚度不计)【答案】10【分析】如图(见解析),将玻璃杯侧面展开,作B关于EF的对称点B′,根据两点之间线段最短可知AB′的长度即为所求,利用勾股定理求解即可得.【详解】解:如图,将玻璃杯侧面展开,作B关于EF的对称点B′,作B′D⊥AE,交AE延长线于点D,连接AB′,BB′=1cm,AE=9−4=5(cm),由题意得:DE=12∴AD=AE+DE=6cm,∵底面周长为16cm,×16=8(cm),∴B′D=12∴AB′=√AD2+B′D2=10cm,由两点之间线段最短可知,蚂蚁从外壁B处到内壁A处所走的最短路程为AB′=10cm,故答案为:10.【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.31.如图所示,ABCD是长方形地面,长AB=20m,宽AD=10m.中间竖有一堵砖墙高MN=2m.一只蚂蚱从A点爬到C点,它必须翻过中间那堵墙,则它要走的路程s取值范围是.【答案】s≥26m【分析】连接AC,利用勾股定理求出AC的长,再把中间的墙平面展开,使原来的长方形长度增加而宽度不变,求出新长方形的对角线长即可得到范围.【详解】解:如图所示,将图展开,图形长度增加4m,原图长度增加4m,则AB=20+4=24m,连接AC,∵四边形ABCD是长方形,AB=24m,宽AD=10m,∴AC=√AB2+BC2=√242+102=26m,∴蚂蚱从A点爬到C点,它要走的路程s≥26m.故答案为:s≥26m.【点睛】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.【答案】5【分析】要求彩带的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,借助于勾股定理.【详解】解:将圆柱表面切开展开呈长方形,则彩灯带长为2个长方形的对角线长,∵圆柱高3米,底面周长2米,∴AC2=22+1.52=6.25,∴AC=2.5,∴每根柱子所用彩灯带的最短长度为5m.故答案为5.【点睛】本题考查了平面展开−最短路线问题,勾股定理的应用.圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.【类型五旗杆高度问题】【答案】6m【分析】设AD=x,在△ABC中,利用勾股定理列出方程,解之即可.【详解】解:∵BF=2m,∴CE=2m,∵DE=1m,∴CD=CE−DE=1m,设AD=x,则AB=x,AC=AD−CD=x−1,由题意可得:BC⊥AE,在△ABC中,AC2+BC2=AB2,即(x−1)2+32=x2,解得:x=5,即AD=5,∴旗杆AE的高度为:AD+DE=5+1=6m.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理的相关知识并在直角三角形中正确运用是解题的关键.34.荡秋千是深受人们喜爱的娱乐项目,如图,小丽发现,秋千静止时踏板离地面的垂直高度DE=0.5m,将它往前推送至点B,测得秋千的踏板离地面的垂直高度BF=1.1m,此时水平距离BC=EF=1.8m,秋千的绳索始终拉的很直,求绳索AD的长度.【答案】3m【分析】设绳索AD的长度为xm=(x−0.6)m,在Rt△ABC中,由勾股定理得出方程,解方程即可.【详解】解:设秋千的绳索AD长为xm,则AB为xm,∵四边形BCEF是矩形,∴BF=CE=1.1m,∵DE=0.5m,∴CD=0.6m则AC为(x−0.6)m在Rt△ABC中,由勾股定理得:AC2+BC2=AB2,即:(x−0.6)2+1.82=x2解得:x=3∴绳索AD的长度为3m.【点睛】本题考查了勾股定理的应用,由勾股定理得出方程是解题的关键.35.如图,数学兴趣小组要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),聪明的小红发现:先测出垂到地面的绳子长,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离n,利用所学知识就能求出旗杆的长,若m=1米,n=5米,求旗杆AB的长.【答案】12米【分析】设旗杆的高为x米,在Rt△ABC中,推出x2+52=(x+1)2,可得x=12,由此解决问题.【详解】解:设AB=x米,因为∠ABC=90°,所以在Rt△ABC中,根据勾股定理,得:x2+52=(x+1)2,解之,得:x=12,所以,AB的长为12米,答:旗杆AB的长为12米.【点睛】本题考查直角三角形、勾股定理等知识,解题的关键是理解题意,学会构建方程.【答案】风筝的高度CE为61.68米.【分析】利用勾股定理求出CD的长,再加上DE的长度,即可求出CE的高度.【详解】解:在Rt△CDB中,由勾股定理,得CD=√CB2−BD2=√652−252=60(米).∴CE=CD+DE=60+1.68=61.68(米).答:风筝的高度CE为61.68米.【点睛】本题考查了勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.37.看着冉冉升起的五星红旗,你们是否想过旗杆到底有多高呢?某数学兴趣小组为了测量旗杆高度,进行以下操作:如图1,先将升旗的绳子拉到旗杆底端,发现绳子末端刚好接触到地面;如图2,再将绳子末端拉到距离旗杆8m处,发现绳子末端距离地面2m.请根据以上测量情况,计算旗杆的高度.【答案】17米【分析】根据题意画出示意图,设旗杆高度为xm,可得AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【详解】解:如图所示设旗杆高度为x m,则AC=AD=x m,AB=(x−2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2(x−2)2+82=x2解得:x=17,答:旗杆的高度为17m.【点睛】本题考查了勾股定理的应用,解题的关键是构造直角三角形.38.同学们想利用升旗的绳子、卷尺,测算学校旗杆的高度.爱动脑的小华设计了这样一个方案:如图,将升旗的绳子拉直刚好触底,此时测得绳子末端C到旗杆AB的底端B的距离为1米,然后将绳子末端拉直到距离旗杆5米的点E处,此时测得绳子末端E距离地面的高度DE为1米.请你根据小华的测量方案和测量数据,求出学校旗杆的高度.【答案】12.5米【分析】过点E作EF⊥AB,垂足为F,在Rt△ABC和Rt△AEF中,根据勾股定理得出AC2=AB2+BC2,AE2= AF2+EF2,根据AC=AE,得出AB2+12=(AB−1)2+52,求出AB的长即可.【详解】解:过点E作EF⊥AB,垂足为F,如图所示:由题意可知:四边形BDEF是长方形,△ABC和△AEF是直角三角形,∴DE=BF=1,BD=EF=5,BC=1,在Rt△ABC和Rt△AEF中,根据勾股定理可得:AC2=AB2+BC2,AE2=AF2+EF2,即AC2=AB2+12,AE2=(AB−1)2+52,又∵AC=AE,∴AB2+12=(AB−1)2+52,解得:AB=12.5.答:学校旗杆的高度为12.5米.【点睛】本题主要考查了勾股定理的应用,解题的关键是根据勾股定理列出关于AB方程AB2+12= (AB−1)2+52.39.学过《勾股定理》后,某班兴趣小组来到操场上测量旗杆AB的高度,得到如下信息:①测得从旗杆顶端垂直挂下来的升旗用的绳子比旗杆长1米(如图1);②当将绳子拉直时,测得此时拉绳子的手到地面的距离CD为1米,到旗杆的距离CE为6米(如图2).根据以上信息,求旗杆AB的高度.【答案】9米【分析】设AB=x,则AC=x+1,AE=x−1,再根据勾股定理可列出关于x的等式,解出x即得出答案.【详解】解:设AB=x依题意可知:在Rt△ACE中,∠AEC=90°,AC=x+1,AE=x−1,CE=6,根据勾股定理得:AC2=AE2+CE2,即:(x+1)2=(x−1)2+62,解得:x=9答:旗杆AB的高度是9米.【点睛】本题考查勾股定理的实际应用.结合题意,利用勾股定理列出含未知数的等式是解题关键.40.如图,学校要测量旗杆的高度,同学们发现系在旗杆顶端的绳子垂到地面并多出一段(如图1),同学们首先测量了多出的这段绳子长度为1米,再将绳子拉直(如图2),测出绳子末端C到旗杆底部B的距离为5米,求旗杆的高度.【答案】12米【分析】因为旗杆、绳子、地面正好构成直角三角形,设旗杆的高度为x米,则绳子的长度为(x+1)米,根据勾股定理即可求得旗杆的高度.【详解】解:设旗杆的高度AB为x米,则绳子AC的长度为(x+1)米,在Rt△ABC中,根据勾股定理可得:x2+52=(x+1)2,解得,x=12,答:旗杆的高度为12米.【点睛】本题考查了勾股定理的应用,熟知勾股定理是解题关键.【类型六航海问题】【答案】30海里/小时【分析】先根据题意结合方位角的描述求出∠ABC=90°以及AB、BC的长,再利用勾股定理求出AC的长即可得到答案.【详解】解:如图所示,由题意得,∠HAB=90°−60°=30°,∠MBC=90°−∠EBC=60°,∵AH∥BM,∴∠ABM=∠BAH=30°,∴∠ABC=∠ABM+∠MBC=90°,∵巡逻艇沿直线追赶,半小时后在点C处追上走私船,∴BC=18×0.5=9海里,在Rt△ABC中,∠ABC=90°,AB=12海里,BC=9海里,∴AC=√AB2+BC2=15海里,∴我军巡逻艇的航行速度是15=30海里/小时,0.5答:我军巡逻艇的航行速度是30海里/小时.【点睛】本题主要考查了勾股定理的实际应用,正确理解题意在Rt△ABC中利用勾股定理求出AC的长是解题的关键.(1)求点A与点B之间的距离;(2)若在点C处有一灯塔,灯塔的信号有效覆盖半径为处有一艘轮船准备沿直线向点多能收到多少次信号?(信号传播的时间忽略不计)【答案】(1)AB=1000海里(2)最多能收到14次信号【分析】(1)由题意易得∠ACB是直角,由勾股定理即可求得点A与点B之间的距离;(2)过点C作CH⊥AB交AB于点H,在AB上取点M,N,使得CN=CM=500海里,分别求得NH、MH的长,可求得此时轮船过MN时的时间,从而可求得最多能收到的信号次数;【详解】(1)由题意,得:∠NCA=54°,∠SCB=36°;。

中考数学考点大串讲(北师大版):勾股定理必刷易错30题(解析版)

中考数学考点大串讲(北师大版):勾股定理必刷易错30题(解析版)

专题01勾股定理(易错30题3种题型)一、探索勾股定理1.(2023春·辽宁抚顺·八年级统考期末)在ABC 中,5AB AC ,6BC ,D 是BC 的中点,则ABC 的面积为()A .12B .24C .10D .20【答案】A【分析】如图,过A 作AD BC 于,D 证明224,3,CD BD AD AC CD再利用三角形的面积公式可得答案.【详解】解:如图,过A 作AD BC 于,D 5,6AB AC BC ,∴223,4,CD BD AD AC CD ∴116412.22ABC S BC AD 故选A .【点睛】本题考查的是等腰三角形的性质,勾股定理的应用,证明CD BD 是解本题的关键.2.(2023春·山东临沂·八年级校考阶段练习)如图,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别是3、5、2、3,则最大正方形E 的面积是()A .13B .14C .15D .26【答案】A 【分析】分别设正方形F 、G 、E 的边长为x 、y 、z ,由勾股定理得出29x ,26y ,222z x y ,即最大正方形E 的面积为2z .【详解】解:如图,分别设正方形F 、G 、E 的边长为x 、y 、z ,则由勾股定理得:2358x ,2235y ,222z x y ,即最大正方形E 的面积为:28513z .故选:A .【点睛】本题考查了勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.3.(2023春·辽宁营口·八年级校考阶段练习)如图,在ABC 中,CE 平分ACB 交AB 于点E ,CF 平分ACD ,EF BC ∥,EF 交AC 于点M ,若5CM ,则22CE CF ()A .75B .100C .120D .125【答案】B 【分析】根据角平分线的定义推出ECF △为直角三角形,然后根据勾股定理即可求得222CE CF EF ,进而可求出22CE CF 的值.【详解】解:CE ∵平分ACB ,CF 平分ACD ,12ACE ACB ,12ACF ACD ,即1()902ECF ACB ACD ,EFC 为直角三角形,又EF BC ∥∵,CE 平分ACB ,CF 平分ACD ,ECB MEC ECM ,DCF CFM MCF ,5CM EM MF ,10EF ,由勾股定理可知222100CE CF EF .故选:B .【点睛】本题考查角平分线的定义,直角三角形的判定以及勾股定理的运用,解题的关键是首先证明出ECF △为直角三角形.4.(2023春·安徽合肥·八年级校考期中)在ABC 中,A B C 、、所对的边分别为a b c 、、,且4,5,7a b c ,则ABC 的面积为.【答案】46【分析】作CD AB 于点D ,设AD x ,则7BD x ,先根据2222AC AD BC BD 求出x ,再求出CD ,然后根据三角形的面积公式计算即可.【详解】解:作CD AB 于点D ,设AD x ,则7BD x ,由勾股定理得,2222AC AD BC BD ,∴ 2222547x x ,解得297x =,∴22222986577CD AC AD,∴ABC 的面积为∶1186746227AB CD .故答案为:46.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a 和b ,斜边为c ,那么222 a b c .也就是说,直角三角形两条直角边的平方和等于斜边的平方.5.(2023春·海南海口·八年级统考开学考试)如图,在Rt ABC △中,90BAC ,4BC ,分别以AB AC 、为直径作半圆,面积分别记为1S 、2S ,则12S S .【答案】2π【分析】根据半圆面积公式结合勾股定理,知12S S 等于以斜边为直径的半圆面积.【详解】解:2222121111228228AB AC S AB S AC ,所以 2221211288S S AC AB BC ,故答案为:2π.【点睛】此题根据半圆的面积公式以及勾股定理证明:以直角三角形的两条直角边为直径的半圆面积和等于以斜边为直径的半圆面积,重在验证勾股定理.6.(2022秋·山东泰安·七年级统考期中)如图,把一块等腰直角三角形零件(ABC ,其中90ACB ),放置在一凹槽内,三个顶点A 、B 、C 分别落在凹槽内壁上,已知90ADE BED ,测得3cm 4cm AD BE ,,该三角形零件的面积为2cm .【答案】12.5/1122/252【分析】先证明ACD CBE ≌得到4cm CD BE ,利用勾股定理求出5cm AC ,再根据三角形面积公式进行求解即可.【详解】解:∵90ACB ,∴90DCA ECB ,∵90ADE BED ,∴90DAC DCA ,∴DAC ECB ,又∵AC CB ,∴ AAS ACD CBE △≌△,∴4cm CD BE ,在Rt ADC 中,由勾股定理得225cm AC AD CD ,∴2112.5cm 2ABC S AC BC △,∴该三角形零件的面积为212.5cm ,故答案为:12.5.【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,证明ACD CBE ≌得到4cm CD BE 是解题的关键.7.(2023春·湖北恩施·八年级统考期中)如图,在55 的正方形网格中,每一个小正方形的顶点为格点,且每一个小正方形的边长为1四边形ABCD 为格点四边形.(1)求AD 的长;(2)仅用无刻度的直尺过点C 作CE AD ,垂足为E ,并简单说明理由.【答案】(1)5(2)见解析【分析】(1)利用勾股定理即可求解;(2)选取格点,,,F H G M ,作射线,MF GH ,两射线的交点为I ,连接CI 交AD 于点E ,则点E 为所求的点.【详解】(1)解:由图可知,AD 是直角边分别为3,4的直角三角形的斜边故22345AD (2)解:选取格点,,,F H G M ,作射线,MF GH ,两射线的交点为I ,连接CI 交AD 于点E ,则点E 为所求的点.取格点,K L ,∵4,3,90IK AL CK DL CKI DLA∴IKC ALD△≌△KIC DAC90DAC ACE KIC ACECE AD【点睛】本题考查了勾股定理、全等三角形的判定与性质.熟记相关数学结论是解题关键.8.(2023春·广西贺州·八年级统考期中)如图,在Rt ABC △中,90C ,AM 是中线,MN AB ,垂足为点N ,求证:222AN BN AC .【答案】见解析【分析】在直角三角形BNM 和ANM 中利用勾股定理可以得到222BN BM MN ,222AN AM MN ,然后得到22222222()()BN AN BM MN AM MN BM AM ;又在直角三角形AMC 中,222AM AC CM ,代入前面的式子中即可得出结论.【详解】解:证明:MN AB ∵于N ,222BN BM MN ,222AN AM MN 2222BN AN BM AM ,又90C ∵,222AM AC CM 22222BN AN BM AC CM ,又BM CM ∵,222BN AN AC ,即222AN BN AC .【点睛】本题考查了勾股定理、三角形的中线;熟练掌握勾股定理,并能进行推理论证是解决问题的关键.9.(2023秋·河南南阳·八年级校考期末)如图,长方形ABCD 中,点E 在边AB 上,将长方形ABCD 沿直线DE 折叠,点A 恰好落在边BC 上的点F 处,若5AE ,3BF ,求CD 的长【答案】9【分析】由折叠的性质可知5EF AE ,再结合勾股定理即可求解.【详解】解:由折叠的性质可知5EF AE .∵四边形ABCD 为长方形,∴90B Ð=°,AB CD ,∴2222534BE EF BF ,∴549CD AB AE BE .即CD 的长为9.【点睛】本题考查折叠的性质,勾股定理,解题的关键是掌握折叠前后对应边相等.10.(2023春·陕西商洛·八年级校考期中)如图,一文物C (看作一点)被探明位于地面A 点垂直往下36米处,由于A 点下有障碍物,考古人员不能垂直下挖,他们从距离A 点15米的B 处斜着挖掘,已知障碍物不在线段BC 上,则要取出文物C 至少要挖()A .39米B .3119米C .42米D .51米【答案】A 【分析】根据题意可知:14,4890AB AC BAC ,,然后根据勾股定理求解即可.【详解】解:∵14,4890AB AC BAC ,,∴2222153639BC AB AC .故选:A .【点睛】本题考查了勾股定理的应用,将实际问题抽象成勾股定理是解题的关键.11.(2023春·河北保定·八年级校考期中)利用四个全等的直角三角形可以拼成如图所示的图形,这个图形被称为弦图,在用弦图验证勾股定理时,用到的面积相等关系是()A .ABH EFGHS S 正方形△B .ABCD EFGH S S 正方形正方形C .4ABH EFGH ABCDS S S 正方形正方形△D .2ABH ABCD EFGHS S S 正方形正方形△【答案】C 【分析】设DE AH BG CF a ,AE BH CG DF b ,根据题意求出224ABH EFGH S S a b 正方形 ,22ABCD S a b 正方形,进而求解即可.【详解】设DE AH BG CF a ,AE BH CG DF b ,∴ 2221442ABH EFGH S S b a ab a b 正方形 ,22222ABCD S AD DE AE a b 正方形,∴4ABH EFGH ABCD S S S 正方形正方形△.故选:C .【点睛】此题考查了勾股定理的证明,解题的关键是熟练掌握以上知识点.12.(2023秋·全国·八年级专题练习)边长为1的正方形OABC 在数轴上的位置如图所示,点B 表示的数是()A .1B .2C .3D .5【答案】B 【分析】由于正方形OABC 的边长为1,可知OAB 为等腰直角三角形,可利用勾股定理求出OB 的长,即可得到B 点表示的数.【详解】解:∵正方形OABC 的边长为1,∴在等腰直角OAB 中,22112OB =+=.故选:B .【点睛】本题考查了勾股定理,根据四边形OABC 为正方形判断出OAB 为直角三角形是解题的关键.13.(2023春·河南新乡·八年级统考期中)《九章算术》卷九中记载:今有立木,系索其末,委地四尺,引索却行,去本八尺而索尽,问索长几何?译文:今有一竖立着的木柱,在木柱的上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有4尺,牵着绳索(绳索头与地面接触)退行,在距木柱根部8尺处时绳索用尽,问绳索长是()A .5尺B .6尺C .8尺D .10尺【答案】D【分析】根据题意得,绳索,木桩形成直角三角形,根据勾股定理,即可求出绳索长.【详解】解:设绳索长为x 尺∴根据题意得: 22248x x 解得10x .∴绳索长为10尺,故选:D .【点睛】本题考查勾股定理的知识,解题的关键是理解题意,运用勾股定理解决实际问题.14.(2023春·重庆忠县·八年级校考阶段练习)如图,这是某种牛奶的长方体包装盒,长、宽、高分别为5cm 、4cm 、12cm ,插吸管处的出口到相邻两边的距离都是1cm ,为了设计配套的直吸管,要求插入碰到底面后,外露的吸管长度要在3cm 至5cm 间(包括3cm 与5cm ,不计吸管粗细及出口的大小),则设计的吸管总长度L 的范围是.【答案】16cm 17cmL 【分析】当吸管与长方体上、下底面垂直时,位于盒体内的长度最短,为12cm ,则15cm 17cm L ;如图,当吸管底端位于点A 时,位于盒体内的长度最长,经过点A ,D ,E 的截面如下图1,根据勾股定理分别求得,5cm DE ,Rt ADE △中,13cm AE ,则16cm 18cm L ;综上,吸管垂直于底面时外露的部分最长,底端底端位于点A 时,外露的部分最短,所以吸管长度范围为16cm 17cm L .【详解】解:当吸管与长方体上、下底面垂直时,位于盒体内的长度最短,为12cm ,外露的吸管长度要在3cm 至5cm 间,则15cm 17cm L ;如图,当吸管底端位于点A 时,位于盒体内的长度最长,经过点A ,D ,E 的截面如下图1,如图2为长方体上底面,5cm DG ,4cm CG ,1cm EH CH JG ,∴4cm DJ DG JG ,3cm JE GH CG CH ,∴225cm DE DJ JE .如图1,Rt ADE △中,222212513(cm)AE AD DE ,外露的吸管长度要在3cm 至5cm 间,则16cm 18cm L ;综上,吸管垂直于底面时外露的部分最长,底端位于点A 时,外露的部分最短,所以吸管长度范围为16cm 17cm L .【点睛】本题考查长方体的截面图,勾股定理;具备一定的空间想象能力,熟练勾股定理的运用是解题的关键.15.(2023春·广东惠州·八年级校考开学考试)直角三角形的斜边长为13,其中一条直角边长为12,把四个相同的直角三角形拼成如图所示的正方形,则阴影部分的面积为.【答案】120【分析】根据勾股定理求出AE 的长度,再根据三角形的面积公式求出AEF △的面积,即可求出阴影部分面积.【详解】解:在Rt AEF 中,222213125AE EF AF ,∴110251232AEF S AE AF ,∴阴影部分的面积430120 .故答案是:120.【点睛】本题主要考查了勾股定理,解题的关键是掌握直角三角形两直角边平方和等于斜边平方.16.(2023春·全国·八年级期末)如图,长方形ABCD 的边AD 在数轴上,若点A 与数轴上表示数1 的点重合,点D 与数轴上表示数4 的点重合,1AB ,以点A 为圆心,对角线AC 的长为半径作弧与数轴负半轴交于一点E ,则点E 表示的数为.【答案】110 /101【分析】根据勾股定理计算出AC 的长度,进而求得该点与点A 的距离,再根据点A 表示的数为1﹣,可得该点表示的数.【详解】解:在长方形ABCD 中,1(4)31AD AB CD ,,∴22223110AC AD CD ,则点A 到该交点的距离为10,∵点A 表示的数为1 ,∴该点表示的数为:110 ,故答案为:110 .【点睛】此题主要考查了勾股定理的应用,解决本题的关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方和一定等于斜边长的平方.17.(2023秋·河南省直辖县级单位·八年级校联考期末)对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.(1)如图1所示的大正方形,是由两个正方形和两个形状大小完全相同的长方形拼成的.用两种不同的方法计算图中空白部分的面积,可以得到的数学等式是_______;(2)将图1中两个阴影的长方形沿着对角线切开,则可以得到四个全等的直角三角形,其中两直角边长分别为,a b ,斜边长为c ,将这四个直角三角形拼成如图2所示的大正方形时,中间空白图形是边长为c 的正方形.试通过两种不同的方法计算中间正方形的面积,并探究a b c 、、之间满足怎样的等量关系.(3)应用:已知直角三角形两条直角边长为6和8,求这个直角三角形斜边上的高.【答案】(1)2222()a b ab a b (2)222c a b(3)245【分析】(1)空白部分是两个正方形的面积和,空白部分也可以看出大正方形的面积减去两个长方形的面积即可得出答案;(2)中间的是边长为c 的正方形,因此面积为2c ,也可以从边长为()a b 正方形面积减去四个直角三角形的面积即可;(3)利用(2)中等式求出斜边,再利用面积法求出结果.【详解】(1)解:方法一:空白部分是两个正方形的面积和,即22a b ;方法二:空白部分也可以看作边长为()a b 的面积,减去两个长为a ,宽为b 的长方形面积,即2()2a b ab ,由两种方法看出2222()a b ab a b ,故答案为:2222()a b ab a b ;(2)中间正方形的边长为c ,因此面积为2c ,也可以看作从边长为()a b 的面积减去四个两条直角边分别a 、b 的面积,即22()2c a b ab ,整理得:222c a b ;(3)∵6a ,8b ,∴斜边226810c ,∴斜边上的高为6824105 ,答:斜边的长为245.【点睛】本题考查完全平方公式的几何背景,勾股定理的证明,解题的关键是结合图形,利用面积得出等量关系.18.(2023春·山西忻州·八年级统考期末)阅读与思考阅读下列材料并完成相应的任务.我国是最早了解和应用勾股定理的国家之一,古代印度、希腊、阿拉伯等许多国家也都很重视对勾股定理的研究和应用,古希腊数学家毕达哥拉斯首先证明了勾股定理,在西方,勾股定理又称为“毕达哥拉斯定理”.关于勾股定理的研究还有一个很重要的内容是勾股数组,在课本中我们已经了解到“能够成为直角三角形三条边的三个正整数称为勾股数”.以下是毕达哥拉斯等学派研究出的确定勾股数组的两种方法:方法1:若m 为奇数 3m ,则a m , 2112b m 和2112c m 是勾股数.方法2:若任取两个正整数m 和 n m n ,则22a m n ,2b mn ,22c m n 是勾股数.任务:(1)在以上两种方法中任选一种,证明以a ,b ,c 为边长的ABC 是直角三角形.(2)学校园林设计师按照如图所示的方式摆放兰花,已知这四个直角三角形全等,且直角三角形的三边是勾股数,较短的直角边长为7m ,要求在每个直角三角形的三个顶点处需要摆放一盆兰花,每个直角三角形的三条边间隔1米摆放一盆兰花,请你计算出总共需要的兰花数量.【答案】(1)见解析(2)总共需要兰花220盆【分析】(1)方法一:21(1)02m c a ,10c b 得c a ,c b ,进行计算得222221=(1)2a b m c,即可得;方法二:先求出a 、b 、c 的平方,即可作答,(2)根据这四个直角三角形全等,且直角三角形的三边是勾股数,较短的直角边长为7m 得角三角形的三边长为7m 24m 25m ,,,则方形AHFD 的边长为31m ,正方形BCEG 的边长为25m ,根据个直角三角形的三个顶点处需要摆放一盆兰花,每个直角三角形的三条边间隔1米摆放一盆兰花,即可得正方形AHFD 上摆放兰花的盆数,方形BCEG 上摆放兰花的盆数,即可得【详解】(1)解:方法一:∵ 222111121(1)0222c m m m c m a m,10c b ,∴c a ,c b ,222224222211(+21)=1(121)42a b m m m m c m ,∴a ,b ,c 为边长的ABC 是直角三角形;方法二:∵22a m n ,2b mn ,22c m n ,∴424222m m a n n ,2224b m n ,422242c m m n n ,∴222 a b c ,∴a ,b ,c 为边长的ABC 是直角三角形;(2)解:∵这四个直角三角形全等,且直角三角形的三边是勾股数,较短的直角边长为7m ,∴直角三角形的三边长为7m 24m 25m ,,,∴正方形AHFD 的边长为:7+24=31(m),正方形BCEG的边长为:25m,∵在每个直角三角形的三个顶点处需要摆放一盆兰花,每个直角三角形的三条边间隔1米摆放一盆兰花,∴正方形AHFD上摆放兰花的盆数为:32+31+31+30=124(盆),正方形BCEG上摆放兰花的盆数为:244=96(盆),∴总共需要的兰花数量为:124+96=220(盆),答:总共需要兰花220盆.【点睛】本题考查了勾股数的应用,解题的关键是理解题意,掌握这些知识点.19.(2023秋·全国·八年级专题练习)问题情境:勾股定理是一个古老的数学定理,它有很多种证明方法.下面利用拼图的方法探究证明勾股定理.定理表述:(1)请你结合图1中的直角三角形,叙述勾股定理(可以选择文字语言或符号语言叙述);尝试证明:(2)利用图1中的直角三角形可以构造出如图2的直角梯形,请你利用图2证明勾股定理.定理应用:(3)某工程队要从点A向点E铺设管道,由于受条件限制无法直接沿着线段AE铺设,需要绕道沿着矩形的边AB和BC铺设管道,经过测量16BE 米,已知铺设每米管道需资金1000元,请你帮助工AB 米,12程队计算绕道后费用增加了多少元?【答案】(1)见解析;(2)见解析;(3)8000元【分析】(1)根据题意可直接进行求解;(2)根据等积法可进行求解;(3)利用勾股定理可进行求解.【详解】解:(1)如果直角三角形的两条直角边长分别为,a b ,斜边长为c ,那么222a b c (2) 21122S a b a b a b 梯形,2ABE ABCS S S 梯形211222c ab 212c ab ,∴221122a b c ab ,∴222 a b c ;(3)在Rt ABE △中,2220AE AB BE ,∴ 16122010008000 (元);答:增加了8000元.【点睛】本题主要考查勾股定理的应用,熟练掌握勾股定理是解题的关键.20.(2023春·浙江台州·八年级统考期末)如图,池塘边有两点A ,B ,点C 是与BA 方向成直角的AC 方向上一点,测得18m,30m AC BC .求A ,B 两点间的距离.【答案】A ,B 两点间的距离是24m【分析】直接由勾股定理求出AB 的长即可.【详解】解:由题意可知,90,18m,30m BAC AC BC ,∴ 2222301824m AB BC AC ,答:A ,B 两点间的距离是24m .【点睛】本题考查了勾股定理的应用,解答本题的关键是明确题意,利用勾股定理求出AB 的长.三、勾股定理的应用21.(2023秋·安徽芜湖·九年级校考开学考试)如图是放在地面上的一个长方体盒子,其中18cm AB ,12cm BC ,10cm BF ,点M 在棱AB 上,且6cm AM ,N 是FG 的中点,一只蚂蚁要沿着长方体盒子的表面从点M 爬行到点N ,它需要爬行的最短路程为()A .20cmB .2106cmC . 12234cmD .18cm【答案】A 【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN 的长即可.【详解】解:如图1,∵18cm AB ,12cm BC GF ,N 是FG 的中点,∴16cm 2FN FG ,∴ 18612cm BM , 10616cm BN ,∴ 22121620cm MN ;如图2,∵18cm AB ,12cm BC GF ,N 是FG 的中点,∴16cm 2FN FG ,∴ 186618cm PM ,10cm NP ,∴2218424210610MN .∵202106 ,∴蚂蚁沿长方体表面从点M 爬行到点N 处的最短路程为20cm .故选:A .【点睛】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.22.(2023春·山东临沂·八年级校考阶段练习)一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船同时以12海里/时的速度离开港口向西南方向航行,经过1.5小时后它们相距()A .25海里B .30海里C .40海里D .32海里【答案】B【分析】根据题意,画出图形,且东北和东南的夹角为90 ,根据题目中给出的1.5小时和速度可以计算AC ,BC 的长度,在直角ABC 中,已知AC ,BC 可以求得AB 的长.【详解】解:如图,作出图形,因为东南和西南的夹角为90 ,所以ABC 为直角三角形.在Rt ABC △中,16 1.524(km)AC ,121.518(km)BC ,则2222241830(km)AB AC BC故选:B .【点睛】本题考查了勾股定理在实际生活中的应用,本题中确定ABC 为直角三角形,并且根据勾股定理计算AB 是解题的关键.23.(2023春·河南信阳·八年级校联考阶段练习)某数学兴趣小组开展了关于笔记本电脑的张角大小的实践探究活动.如图,当张角为BAF 时,顶部边缘B 处离桌面的高度BC 为7cm ,此时底部边缘A 处与C 处间的距离AC 为24cm ,小组成员调整张角的大小继续探究,最后发现当张角为DAF 时(点D 是点B 的对应点),顶部边缘D 处到桌面的距离DE 为15cm ,则底部边缘A 处与E 之间的距离AE 为()A .20cmB .18cmC .12cmD .10cm【答案】A 【分析】勾股定理解Rt ABC △得出25cm AB ,勾股定理解Rt ADE △即可求解.【详解】解:依题意,247AC BC ,,在Rt ABC △中, 2225cm AB AC BC ,∵AB AD 25 ,15DE ,在Rt ADE △中, 2222251520cm AE AD DE,故选:A .【点睛】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.24.(2023春·四川南充·八年级校考期中)如图由于台风的影响,一棵树在离地面6m 处折断,树顶落在离树干底部8m 处,则这棵在折断前(不包括树根)长度是.【答案】16m /16米【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【详解】解:如图,由题意得m ,8m 6BC AC ,在直角三角形ABC 中,根据勾股定理得:226810AB (米).所以大树的高度是10616 (米).故答案为:16m .【点睛】本题考查了勾股定理的应用,关键是熟练掌握勾股定理:直角三角形中,两直角边的平方和等于斜边的平方.25.(2023春·湖北咸宁·八年级统考期末)如图,一梯子AB 斜靠在竖直的墙AO 上,测得5m AO ,若梯子的顶端沿墙下滑1m ,这时梯子的底端也沿水平方向向外滑动1m ,梯子到CD 的位置,则梯子的长度为m .【答案】41【分析】设m BO x ,利用勾股定理用x 表示出AB 和CD 的长,进而求出x 的值,然后由勾股定理求出AB 的长度.【详解】解:设m BO x ,由题意得:1m AC ,1m BD ,5m AO ,在Rt AOB △中,根据勾股定理得:222225AB AO OB x ,在Rt COD 中,根据勾股定理得: 22222511CD CO OD x ,∴ 22225511x x ,解得:4x ,∴ 22225441m AB AO BO ,即梯子AB 的长为41m .故答案为:41.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理,由勾股定理得出方程是解题的关键.26.(2023秋·八年级课时练习)《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架,其中记载了一道“折竹”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意:一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?设折断处离地面x 尺,则根据题意列方程为:.【答案】 222310x x 【分析】设折断处离地面x 尺,根据勾股定理建立方程即可求解.【详解】解:如图,设折断处离地面x 尺,根据题意可得:2223(10x)x ,.故答案为:2223(10x)x 【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理是解题的关键.27.(2023春·河北保定·八年级统考期末)如图,矩形ABCD 中,8cm AB ,12cm BC ,动点P 从点A 出发沿A B C D A 运动,速度是2cm /秒;点Q 从点C 出发沿C B A D C 运动,速度是4cm /秒,设它们的运动时间为t 秒.(1)当1t 时,连接PQ ,PQcm ;(2)若P 、Q 两点第一次相遇时,t秒;第2次相遇时,t 秒.【答案】1010310【分析】(1)先求得8216BP ,12418BQ ,再利用勾股定理即可求解;(2)根据相遇时间=总路程÷速度和得出第一次相遇的时间,再求出第二次相遇的时间即可.【详解】解:(1)当1t 时,8216BP ,12418BQ ,∴226810PQ ,故答案为:10(2)若P 、Q 两点第一次相遇时,10812243t (秒),从第一次相遇到第二次相遇需要的时间为: 202812243,故P 、Q 两点第2次相遇时,10201033t(秒)故答案为:103;10.【点睛】本题考查了勾股定理的应用、行程问题中的相遇问题.抓住“相遇时间=路程和÷速度和”是解题关键.28.(2023秋·河南郑州·八年级郑州市扶轮外国语学校校考开学考试)如图,长方体的长15cm BE ,宽10cm AB ,高20cm AD ,点M 在CH 上.且5cm CM .(1)求线段DM的长;(2)一只蚂蚁如果耍沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?【答案】(1)55DM(2)蚂蚁爬行的最短距离是25cmCD ,利用勾股定理即可求解;【分析】(1)根据长方体的性质求出10(2)将立体图形展开成平面图形,然后根据两点之间线段距离最短,利用根据勾股定理进行求解,根据立体展开成平面图形情况分类讨论进行进行比较.【详解】(1)解:10CM ,AB CD∵,52222,10555DM CD CM线段DM的长为55.(2)解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图∵长方体的宽为10cm,高为20cm,点B离点C的距离是5cm22AM2010525cm要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:22AM20510529cm只要把长方体的上表面剪开与左面所在的平面形成一个长方形,如第个图32220105537cmAM∵25529537∴蚂蚁爬行的最短距离是25cm.【点睛】本题考查了勾股定理的拓展应用,“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.29.(2020秋·广东佛山·八年级校考阶段练习)如图,小巷左右两侧是竖直的墙,巷子宽5米,一架梯子斜靠在左墙时,梯子顶端到地面的距离AC 为3米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离ED 为2米,则CB 的长度为多少?【答案】CB 的长度为2米.【分析】根据勾股定理222AC BC AB ,222BD DE BE ,列方程即可得到结论.【详解】解:根据勾股定理得,222AC BC AB ,222BD DE BE ,∵AB BE ,∴2222AC BC BD DE ,∴ 2222352BC BC ,∴2BC ,答:CB 的长度为2米.【点睛】本题主要考查了勾股定理的应用,解题的关键是掌握勾股定理.30.(2023春·云南昭通·八年级统考期中)如图,四边形ABCD 为某街心花园的平面图,经测量50m AB BC AD ,503m CD ,且90B Ð=°.(1)试判断ACD 的形状,并说明理由;(2)若射线BA 为公园的车辆进出口道路(道路的宽度忽略不计),工作人员想要在点D 处安装一个监控装置来监控道路BA 的车辆通行情况,且被监控的道路长度要超过65m .已知摄像头能监控的最大范围为周围50m (包含50m ),请问该监控装置是否符合要求?并说明理由.(参考数据2 1.4 ,3 1.7 )【答案】(1)直角三角形,见解析(2)符合要求,见解析【分析】(1)根据90B Ð=°,勾股定理求出AC ,再根据勾股定理的逆定理,即可;(2)过点D 作DE BA 于点E ;作A 点关于DE 的对称点A ,连接DA ,根据直角三角形的性质,得45BAC ,根据90DAC ,则45DAE ∠,三角形ADE 是等腰直角三角形,根据勾股定理求出AE ,可推出AA ,即可.【详解】(1)解:(1)ACD 是直角三角形.理由如下:∵90B Ð=°,50m AB BC AD ,∴在Rt ABC △中222AB BC AC ,∵25000AC ,∵22502500AD , 25037500CD ,∴227500AD AC ,∴22AD AC CD ,∴CAD 是直角三角形.(2)符合要求,理由如下:过点D 作DE BA 于点E ;作A 点关于DE 的对称点A ,连接DA ,∴90DEA ,∵90B Ð=°,AB BC ,∴45BAC ,∵90DAC ,∴45DAE ∠,∴DE AE ,∴在Rt DEA V 中222DE EA AD ,∴222500AE ,∴252AE ,∴50270m AA ,∵70m 65m ,∴该监控装置符合要求.。

中考数学考点复习 勾股定理

中考数学考点复习   勾股定理

中考数学考点复习勾股定理一.选择题1. 在ABC 中,10AB =,AC =,BC 边上的高6AD =,则另一边BC 等于( )A .10B .8C .6或10D .8或102.直角三角形有两边为3和4,则第三边的长为( )A. 5B. D. 无法确定3. 已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( )A 、40B 、80C 、40或360D 、80或3604. 乐乐婷想测量教学楼的高度,他用一根绳子从楼顶垂下,发现绳子垂到地面后还多了 米,当他把绳子的下端拉开 米后,发现绳子下端刚好接触地面,则教学楼的高度是( )米.A. B. C. D.5.在平面直角坐标系中,以点M (6,8)为圆心,2为半径的圆上有一动点P ,若A (﹣2,0),B (2,0),连接PA ,PB ,则当PA 2+PB 2取得最大值时,PO 的长度为( )A .8B .10C .12D ..6.如图,在Rt ABC ∆中,90,45,B BCA AC ︒︒∠=∠==点D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .2BC 1D .17.如图,两棵树高分别为6m ,2m ,两树相距5m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞( )A .4mB . mC .3mD .9m 8.如图,在平面直角坐标系中,有两点坐标分别为(2,0)和(0,3),则这两点之间的距离是( )A .B .C .13D .59.已知,如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距_________A 25海里B 30海里C 35海里D 40海里10. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b .若ab =6,大正方形的面积为16,则小正方形的面积为( )A .8B .6C .4D .311.如图,有一个圆锥,高为8cm ,底面直径为12cm.在圆锥的底边B 点处有一只蚂蚁,它想吃掉圆锥顶部A 处的食物,则它需要爬行的最短路程是( )A.8cmB.9cmC. 10cmD. 11cm12. 如图,在矩形ABCD 中,BC ,ADC ∠的平分线交边BC 于点E ,AH DE ⊥于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O .给出下列命题:①AEB AEH ∠=∠;②DH =;③12HO AE =;④BC BF -.其中正确命题为( )A .①②B .①③C .①③④D .①②③④13.观察图形,可以验证( )A .a 2+b 2=c 2 B.(a ﹣b )2=a 2﹣2ab+b 2 C.a 2﹣b 2=(a+b )(a ﹣b ) D.(a+b )2=a 2+2ab+b 214.如图,等腰ABC 中,10AB AC ==,12BC =,点D 是底边BC 的中点,以A 、C 为圆心,大于12AC 的长度为半径分别画圆弧相交于两点E 、F ,若直线EF 上有一个动点P ,则线段PC PD +的最小值为( )A .6B .8C .10D .1215.如图,点E 是矩形ABCD 的边AB 的中点,点F 是边CD 上一点,连接ED ,EF ,ED 平分∠AEF ,过点D 作DG ⊥EF 于点M ,交BC 于点G ,连接GE ,GF ,若FG ∥DE ,则AB AD的值是( )A .32B .2CD 二.填空题16. 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .17. 若直角三角形的两直角边的长的比是:512,斜边长是26,则斜边上的高是 .18.19. 如图所示,一架梯子 长 米,顶端 靠在墙 上,此时梯子下端 与墙角 的距离为 米,当梯子滑动后停在 的位置上,测得 长为 米.则梯子顶端 沿墙下移了________米.20. 一长方体如图,在A 处有一只蚂蚁,它想吃到上底面B 点的食物,它沿长方体的侧面爬行的最短距离是 .21. 如图是单位长度为1的网格图,A 、B 、C 、D 是4个网格线的交点,以其中两点为端点的线段中,任意取3条,能够组成________个直角三角形.22.如图是用八个全等的直角三角形拼接而成.记图中正方形 ,正方形 ,正方形 的面积分别为 , , .若 ,则 的值是________.23.如图所示,分别以直角三角形的三边为直径作半圆,其中两个半圆的面积,,则是________.24.如图,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8,设CD=x .则AC+CE 的最小值是_____.25.如下图,在Rt △ABC 中,∠B =90°,BC =15,AC =17,以AB 为直径作半圆,则此半圆的面积为________.26. 如图,在等腰ABC 中,5AC BC ==,6AB =,D ,E 分别为AB ,AC 边上的点,将边AD 沿DE 折叠,使点A 落在CD 上的点F 处.当点F 与点C 重合时,AD =________.27.如图,是一个三级台阶,它的每一级的长、宽、高分别为,,20dm 3dm 2dm ,A 和B 是这个台阶两个相对的端点,A 点有一只蚂蚁,想到B 点去吃可口的食物,则蚂蚁沿着台阶面爬到B 点的最短路...程.是 .在一个长为13米,宽为8米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD 平行且大于AD ,木块的正视图是边长为1米的正方形,一只蚂蚁从点A 处,到达C 处需要走的最短路程是________米.28.29. 如图,在ABC 中,90C ∠=︒,以A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E ;已知3CE =,5BE =,则AC 的长为________.30.如图,是一个供滑板爱好者使用的U 型池,该U 型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行的部分的截面是半径为5 m 的半圆,其边缘AB =CD =20 cm ,小明要在AB 上选取一点E ,能够使他从点D 滑到点E 再到点C 的滑行距离最短,则他滑行的最短距离为__________ m .(π取3)三.解答题31.如图,在△ABC 中,AB =17cm ,AC =8cm ,BC =15cm ,将AC 沿AE 折叠,使得点C 与AB 上的点D 重合.(1)证明:△ABC 是直角三角形;(2)求△AEB 的面积.32. 如果m ,n 是任意给定的正整数(m >n ),证明:m 2+n 2,2mn ,m 2﹣n 2是勾股数(又称毕达哥拉斯数).33.如图,在垂直于地面的墙上2m 的A 点斜放一个长2.5m 的梯子,由于不小心,梯子在墙上下滑0.5m .求梯子在地面上滑出的距离BB ′的长度.34.如图,在中,,为边上一点,且,.(1)求的长; (2)若,求的面积.35.如图,在四边形ACDB 中,CD BD ⊥,4CD =,BCD △的面积为6,12AC =,13AB =,(1)求BC 的长;(2)求ABC 的面积.36.如图,在中,点、分别是,边中点于,延长,过作于. (1)求证:. (2)若,,求的长度.37. 如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在E 处,BE 交AD 于点F .(1)判断BDF 的形状,并说明理由;(2)若6AB =,10AD =,求BDF 的面积.38.已知:在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,设△ABC 的面积为S ,周长为l .(1)填表:(2)如果a +b -c =m ,观察上表猜想:S l= (用含有m 的代数式表示). (3)证明(2)中的结论.39.问题背景.在△ABC中,AB=,BC=,AC=,求这个三角形的面积,乐乐同学在解答这道题时先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(△ABC的三个顶点都在正方形的顶点处),如图所示,这样不需要求△ABC的高,而借用网格就能计算它的面积.(1)请直接写出△ABC的面积;(2)我们把上述方法叫做构图法,若△ABC中,AB,BC,AC三边的长分别为,,,请你在图2的正方形网格(每个小正方形的边长为a)中画出相应的△ABC.并求其面积.40.在四边形ABCD中,∠A=∠B=90°,BC=4,CD=6,E为AB边上的点.(1)连接CE,DE,CE⊥DE.①如图1,若AE=BC,求证:AD=BE;②如图2,若AE=BE,求证:CE平分∠BCD;(2)如图3,F是∠BCD的平分线CE上的点,连结BF,DF,BF=DF,求CF的长.41.如图,在平面直角坐标系中,点O为原点,△OAB为等边三角形,P、Q分别为AO,AB边上的动点,点P,点Q同时从点A出发,若P以32个单位每秒的速度从点A向点O运动,点Q以2个单位每秒的速度从点A向点B运动,设运动时间为t.(1)如图1,已知点A的坐标为(a,b),且满足(a﹣3)2﹣b|=0,则A点坐标;(2)如图1,连接BP,OQ交于点C,请问当t为何值时,∠OCP=60°;(3)如图2,D为OB边上的中点,P,Q在运动过程中,D,P,Q三点是否能构成使∠PDQ=120°的等腰三角形?若能,试求:①运动时间t;②此时四边形APDQ的面积;若不能,请说明理由.42.我们在探索乘法公式时,设置由图形面积的不同表示方法验证了乘法公式.我国著名的数学家赵爽,早在公元世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图①),这个图形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边,与斜边满足关系式,称为勾股定理.(1)爱动脑筋的东东把这四个全等的直角三角形拼成了另一个大的正方形(如图②),也能验证这个结论,请你帮助东东完成验证的过程.(2)如图,在每个小正方形边长为的方格纸中,的顶点都在方格纸格点上.请在图中画出的高,利用上面的结论,求高的长.。

专题04 勾股定理常考压轴题汇总(解析版)

专题04 勾股定理常考压轴题汇总(解析版)

专题04勾股定理常考压轴题汇总一.选择题(共23小题)1.我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成一个大正方形.如图,直角三角形的直角边长为a、b,斜边长为c.若b﹣a=2,c=10,则a+b的值为()A.12B.14C.16D.18【答案】B【解答】解:由图可得,a2+b2=c2,∴且a、b均大于0,解得,∴a+b=6+8=14,故选:B.2.如图,长方体的长为3,宽为2,高为4,一只蚂蚁从点A出发,沿长方体表面到点B处吃食物,那么它爬行最短路程是()A.B.C.D.【答案】B【解答】解:第一种情况:把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是6和3,则所走的最短线段是=3;第二种情况:把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是5和4,所以走的最短线段是=;第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是7和2,所以走的最短线段是=;三种情况比较而言,第二种情况最短.所以它需要爬行的最短路线的长是,故选:B.3.如图,以Rt△ABC的三条边作三个正三角形,则S1、S2、S3、S4的关系为()A.S1+S2+S3=S4B.S1+S2=S3+S4C.S1+S3=S2+S4D.不能确定【答案】C【解答】解:如图,设Rt△ABC的三条边AB=c,AC=b,BC=a,∵△ACG,△BCH,△ABF是等边三角形,∴S1=S△ACG﹣S5=b2﹣S5,S3=S△BCH﹣S6=a2﹣S6,∴S1+S3=(a2+b2)﹣S5﹣S6,∵S2+S4=S△ABF﹣S5﹣S6=c2﹣S5﹣S6,∵c2=a2+b2,∴S1+S3=S2+S4,故选:C.4.如图,在△ABC中,∠ACB=90°,以△ABC的各边为边作三个正方形,点G落在HI 上,若AC+BC=6,空白部分面积为10.5,则AB的长为()A.3B.C.2D.【答案】B【解答】解:∵四边形ABGF是正方形,∴∠FAB=∠AFG=∠ACB=90°,∴∠FAC+∠BAC=∠FAC+∠ABC=90°,∴∠FAC=∠ABC,在△FAM与△ABN中,,∴△FAM≌△ABN(ASA),=S△ABN,∴S△F AM=S四边形FNCM,∴S△ABC∵在△ABC中,∠ACB=90°,∴AC2+BC2=AB2,∵AC+BC=6,∴(AC+BC)2=AC2+BC2+2AC•BC=36,∴AB2+2AC•BC=36,=10.5,∵AB2﹣2S△ABC∴AB2﹣AC•BC=10.5,∴3AB2=57,解得AB=或﹣(负值舍去).故选:B.5.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2B.4cm2C.6cm2D.12cm2【答案】C【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.6.如图,阴影部分表示以Rt△ABC的各边为直径向上作三个半圆所组成的两个新月形,面积分别记作S1和S2.若S1+S2=7,AC=3,则BC长是()A.3.5B.C.4D.5【答案】B【解答】解:以AC为直径的半圆的面积=×π×=π,同理:以BC为直径的半圆的面积=π,以AB为直径的半圆的面积=π,∴S1+S2=π+π+△ABC的面积﹣π,∵∠ACB=90°,∴AC2+BC2=AB2,∴S1+S2=△ABC的面积=AC•BC=7,∵AC=3,∴BC=.故选:B.7.如图,在长方体ABCD﹣EFGH盒子中,已知AB=4cm,BC=3cm,CG=5cm,长为10cm 的细直木棒IJ恰好从小孔G处插入,木棒的一端I与底面ABCD接触,当木棒的端点Ⅰ在长方形ABCD内及边界运动时,GJ长度的最小值为()A.(10﹣5)cm B.3cm C.(10﹣4)cm D.5cm【答案】A【解答】解:当GI最大时,GJ最小,当I运动到点A时,GI最大,此时GI=cm,而AC2=AB2+BC2=42+32=25,∴GI===5(cm),∴GJ长度的最小值为(10﹣5)cm.故选:A.8.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.410【答案】B【解答】解:如图,延长AB交KL于P,延长AC交LM于Q,由题意得,∠BAC=∠BPF=∠FBC=90°,BC=BF,∴∠ABC+∠ACB=90°=∠PBF+∠ABC,∴∠ACB=∠PBF,∴△ABC≌△PFB(AAS),同理可证△ABC≌△QCG(AAS),∴PB=AC=8,CQ=AB=6,∵图2是由图1放入长方形内得到,∴IP=8+6+8=22,DQ=6+8+6=20,∴长方形KLMJ的面积=22×20=440.故选:B.9.国庆假期间,妍妍与同学去玩寻宝游戏,按照藏宝图,她从门口A处出发先往东走9km,又往北走3km,遇到障碍后又往西走7km,再向北走2km,再往东走了4km,发现走错了之后又往北走1km,最后再往西走了1km,就找到了宝藏,则门口A到藏宝点B的直线距离是()A.3km B.10km C.6km D.km【答案】D【解答】解:过点B作BC⊥AC,垂足为C.观察图形可知AC=9﹣7+4﹣1=5(km),BC=3+2+1=6(km),在Rt△ACB中,AB=(km).答:门口A到藏宝点B的直线距离是km,故选:D.10.如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AB=9,BC=6,则BD的长为()A.3B.4C.5D.6【答案】B【解答】解:∵∠ACB=90°,AB=9,BC=6,∴,∵,∴AC•BC=AB•CD,,,∵CD⊥AB,∴∠CDB=90°,∴,故选:B.11.如图,某小区有一块长方形花圃,为了方便居民不用再走拐角,打算用瓷砖铺上一条新路,居民走新路比走拐角近()A.2m B.3m C.3.5m D.4m【答案】D【解答】解:根据勾股定理求得,AB==10(m),∴AC+BC﹣AB=6+8﹣10=4(m),故选:D.12.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=12,BC=7,将四个直角三角形中边长为12的直角边分别向外延长一倍,得到如图所示的“数学风车”,则这个风车的外围周长是()A.148B.100C.196D.144【答案】A【解答】解:设将CA延长到点D,连接BD,根据题意,得CD=12×2=24,BC=7,∵∠BCD=90°,∴BC2+CD2=BD2,即72+242=BD2,∴BD=25,∴AD+BD=12+25=37,∴这个风车的外围周长是37×4=148.故选:A.13.如图,四边形ABCD中,AD⊥CD于点D,BC=2,AD=8,CD=6,点E是AB的中点,连接DE,则DE的最大值是()A.5B.C.6D.【答案】C【解答】解:如图,连接AC,取AC的中点为M,连接DM、EM,∵AD⊥CD,∴∠ADC=90°,∵AD=8,CD=6,∴AC=,∵M是AC的中点,∴DM=AC=5,∵M是AC的中点,E是AB的中点,∴EM是△ABC的中位线,∵BC=2,∴EM=BC=1,∵DE≤DM+EM(当且仅当点M在线段DE上时,等号成立),∴DE≤6,∴DE的最大值为6.故选:C.14.如图,长为8cm的橡皮筋放置在数轴上,固定两端A和B,然后把中点C垂直向上拉升3cm到D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.1cm【答案】A【解答】解:∵点C为线段AB的中点,∴AC=AB=4cm,在Rt△ACD中,CD=3cm;根据勾股定理,得:AD==5(cm);∵CD⊥AB,∴∠DCA=∠DCB=90°,在△ADC和△BDC中,,∴△ADC≌△BDC(SAS),∴AD=BD=5cm,∴AD+BD﹣AB=2AD﹣AB=10﹣8=2(cm);∴橡皮筋被拉长了2cm.故选:A.15.如图的数轴上,点A,C对应的实数分别为1,3,线段AB⊥AC于点A,且AB长为1个单位长度,若以点C为圆心,BC长为半径的弧交数轴于0和1之间的点P,则点P表示的实数为()A.B.C.D.【答案】A【解答】解:由题意可得∠BAC=90°,AB=1,AC=3﹣1=2,则CB==,那么点P表示的实数为3﹣,故选:A.16.“四千年来,数学的道理还是相通的”.运用祖冲之的出入相补原理也可证明勾股定理.若图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,则大正方形的边长是()A.B.C.D.【答案】D【解答】解:如下图,设图中直角三角形的两条直角边长分别为a、b,斜边为c,∵图中空白部分的面积是11,整个图形(连同空白部分)的面积是25,∴可有,解得c2=18,解得或(不合题意,舍去),∴大正方形的边长是.故选:D.17.如图所示的一段楼梯,高BC是3米,斜边AB长是5米,现打算在楼梯上铺地毯,至少需要地毯的长度为()A.5米B.6米C.7米D.8米【答案】C【解答】解:∵△ABC是直角三角形,BC=3m,AB=5m∴AC==4(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AC+BC=7米,故选:C.18.勾股定理是人类早期发现并证明的重要数学定理之一,是数形结合的重要细带.数学家欧几里得利用如图验证了勾股定理.以直角三角形ABC的三条边为边长向外作正方形ACKJ,正方形ABFE,正方形BCIH,连接AH.CF,具中正方形BCIH面积为1,正方形ABFE面积为5,则以CF为边长的正方形面积为()A.4B.5C.6D.10【答案】D【解答】解:过点C作CM⊥EF于点M,交AB于点N,∵正方形ABFE面积为5,正方形BCIH面积为1,∴CN⊥AB,BC=1,AB=MN=,BN=FN,∵△ABC是直角三角形,∠ACB=90°,∴AC===2,∴,即=CN,∴CN=,∴BN=FM===,∴CM=CN+MN==,∴CF=10,∴以CF为边长的正方形面积为10.故选:D.19.如图,Rt△ABC中,∠C=90°.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN.四块阴影部分的面积如图所示分别记为S、S1、S2、S3,若S=10,则S1+S2+S3等于()A.10B.15C.20D.30【答案】C【解答】解:如图,过E作BC的垂线交ED于D,连接EM.在△ACB和△BDE中,∠ACB=∠BDE=90°,∠CAB=∠EBD,AB=BD,∴△ACB≌△BND(AAS),同理,Rt△GDE≌Rt△HCB,∴GE=HB,∠EGD=∠BHC,∴FG=EH,∴DE=BC=CM,∵DE∥CM,∴四边形DCME是平行四边形,∵∠DCM=90°,∴四边形DCME是矩形,∴∠EMC=90°,∴E、M、N三点共线,∵∠P=∠EMH=90°,∠PGF=∠DGE=∠BHC=∠EHM,∴△PGF≌△MHE(AAS),∵图中S1=S Rt△EMH,S△BHC=S△EGD,∴S1+S3=S Rt△ABC.S2=S△ABC,∴S1+S2+S3=Rt△ABC的面积×2=20.故选:C.20.如图,在Rt△ABC中,∠C=90°,分别以AB、AC、BC为直径向外作半圆,它们的面积分别记作S1、S2、S3,若S1=25,S3=16,则S2为()A.9B.11C.32D.41【答案】A【解答】解:在Rt△ABC中,∠C=90°,∴AB2=AC2+BC2.∵S1=(AB)2π=AB2=25,∴AB2=25×.同理BC2=16×.∴AC2=AB2﹣BC2=25×﹣16×=9×.∴S1=(AC)2π=AC2=×9×=9.故选:A.21.如图,在Rt△ABC中,∠ACB=90°,分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BDMC,记四块阴影部分的面积分别为S1、S2、S3、S4.若已知S△ABC=S,则下列结论:①S4=S;②S2=S;③S1+S3=S2;④S1+S2+S3+S4=2.5S.其中正确的结论是()A.①②③B.①②④C.①③④D.②③④【答案】A【解答】解:由题意有Rt△EBD≌Rt△ABC,∴S4=S;故①正确;过F作AM的垂线交AM于N,由题意,得Rt△ANF≌Rt△ABC,Rt△NFK≌Rt△CAT,所以S2=S,故②正确;连接FP,FQ,由题意,可得△AQF≌△ACB,则F,P,Q三点共线,由Rt△NFK≌Rt△CAT可得Rt△FPT≌Rt△EMK,∴S3=S△FPT,可得Rt△AQF≌Rt△ACB,∴S1+S3=S Rt△AQF=S,故③正确;S1+S2+S3+S4=(S1+S3)+S2+S4+S Rt△ABC+S Rt△ABC=S Rt△ABC×3=S Rt△ABC=3S,故④不正确.故选:A.22.如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【答案】C【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+()2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.23.将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFGH.现将四个直角三角形的较长直角边分别向外延长,且A′E=ME.B′F =NF,C′G=PG,D′H=HQ,得到图2所示的“新型数学风车”的四个叶片,即△A′EF,△B′FG,△C′CH.△D′HE.若FM平分∠BFE,正方形ABCD和正方形EFGH 的边长比为1:5.若”新型数学风车”的四个叶片面积和是m,则正方形EFCH的面积是()A.B.C.3m D.【答案】B【解答】解:∵将四个全等的直角三角形作为叶片按图1摆放成一个风车形状,形成正方形ABCD和正方形EFCH.正方形ABCD和正方形EFGH的边长比为1:5.∴设正方形ABCD的边长为a,则正方形EFGH的边长为5a,设AE=BF=CG=DH=x,在△BEF中,BE2+BF2=EF2,即(x+a)2+x2=(5a)2,x2+ax﹣12a2=0,(x+4a)(x﹣3a)=0,x=﹣4a(舍去)或x=3a,∴BE=4a,BF=3a,EF=5a,∵FM平分∠BFE,∴△EMF边EF上的高为BM,+S△MBF=S△BEF,则S△BMF即,∴,∴BM=,∵A'E=ME=BE﹣BM=4a﹣a,若”新型数学风车”的四个叶片面积和是m,=S△EF A'=m,∴S△EMF∴,∴a m,∴a=∴EF=5a=,=EF=,∴S正方形EFCH故选:B.二.填空题(共14小题)24.如图①,四个全等的直角三角形与一个小正方形,恰好拼成一个大正方形,这个图形是由我国汉代数学家赵爽在为《周髀算经》作注时给出的,人们称它为“赵爽弦图”.如果图①中的直角三角形的长直角边为7cm,短直角边为3cm,连结图②中四条线段得到如图③的新图案,则图③中阴影部分的周长为32cm.【答案】32.【解答】解:由题意得:BD=7cm,AB=CD=3cm,∴BC=7﹣3=4(cm),由勾股定理得:AC==5(cm),∴阴影的周长=4(AB+AC)=4×(3+5)=32(cm).故答案为:32.25.如图,在△ABC中,已知:∠ACB=90°,AB=10cm,AC=6cm,动点P从点B出发,沿射线BC以1cm/s的速度运动,设运动的时间为t秒,连接PA,当△ABP为等腰三角形时,t的值为16或10或.【答案】16或10或.【解答】解:在△ABC中,∠ACB=90°,由勾股定理得:BC=cm,∵△ABP为等腰三角形,当AB=AP时,则BP=2BC=16cm,即t=16;当BA=BP=10cm时,则t=10;当PA=PB时,如图:设BP=PA=x cm,则PC=(8﹣x)cm,在Rt△ACP中,由勾股定理得:PC2+AC2=AP2,∴(8﹣x)2+62=x2,解得x=,∴t=.综上所述:t的值为16或10或.故答案为:16或10或.26.如图,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的“勾股分割点”.已知点M,N是线段AB的“勾股分割点”,若AM=4,MN=5,则斜边BN的长为.【答案】.【解答】解:当BN为最大线段时,∵点M,N是线段AB的勾股分割点,∴BN===,故答案为:.27.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示“垂美”四边形ABCD,对角线AC,BD交于点O,若AB=6,CD=10,则AD2+BC2=136.【答案】136.【解答】解:∵BD⊥AC,∴∠COB=∠AOB=∠AOD=∠COD=90°,∴BO2+CO2=CB2,OB2+OA2=AB2=36,OA2+OD2=AD2,OC2+OD2=CD2=100,∴BO2+CO2+OA2+OB2=36+100,∴AD2+CB2=BO2+CO2+OA2+OB2=136;故答案为:136.28.如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(30,0)(0,12),点D是OA的中点,点P在BC上运动,当△ODP是腰长为15的等腰三角形时,点P 的坐标为(9,12)或(3,12)或(24,12).【答案】(9,12)或(6,12)或(24,12).【解答】解:由题意,当△ODP是腰长为15的等腰三角形时,有三种情况:(1)如答图①所示,PD=OD=15,点P在点D的左侧.过点P作PE⊥x轴于点E,则PE=12.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD﹣DE=15﹣9=6,∴此时点P坐标为(6,12);(2)如答图②所示,OP=OD=15.过点P作PE⊥x轴于点E,则PE=4.在Rt△POE中,由勾股定理得:OE===9,∴此时点P坐标为(9,12);(3)如答图③所示,PD=OD=5,点P在点D的右侧.过点P作PE⊥x轴于点E,则PE=4.在Rt△PDE中,由勾股定理得:DE===9,∴OE=OD+DE=15+9=24,∴此时点P坐标为(24,12).综上所述,点P的坐标为:(9,12)或(6,12)或(24,12);故答案为:(9,12)或(6,12)或(24,12).29.《勾股》中记载了这样一个问题:“今有开门去阃(kǔn)一尺不合2寸,问门广几何?”意思是:如图推开两扇门(AD和BC),门边沿D,C两点到门槛AB的距离是1尺(1尺=10寸),两扇门的间隙CD为2寸,则门槛AB长为101寸.【答案】101.【解答】解:设OA=OB=AD=BC=r寸,如图,过D作DE⊥AB于点E,则DE=10寸,OE=CD=1(寸),AE=(r﹣1)寸,在Rt△ADE中,由勾股定理得:AE2+DE2=AD2,即(r﹣1)2+102=r2,解得:r=50.5,∴2r=101,即门槛AB长为101寸,故答案为:101.30.如图,在某次军事演习中,舰艇1号在指挥中心(O处)北偏西30°的A处,舰艇2号在指挥中心南偏东60°的B处,并且OA=OB.接到行动指令后,舰艇1号向正东方向以60海里/小时的速度前进,舰艇2号沿北偏东60°的方向以m海里/小时的速度前进.1.5小时后,指挥中心观测到两舰艇分别到达点E,F处,若∠EOF=75°,EF=210海里,则m的值为80.【答案】80.【解答】解:延长AE、BF相交于点C,∵∠AOB=30°+90°+30°=150°,∠EOF=75°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(60°+60°)=180°,延长FB至D,使BD=AE,连接OD,∵∠OBD=∠OBC,∴.∠OBD=∠A,∴△OBD≌△OAE(SAS),∴OD=OE,∠BOD=∠AOE,∵∠EOF=∠AOB=∠EOD,∴.∠EOF=∠DOF,又∵OF=OF,∴△EOF≌△DOF(SAS),∴EF=AE+BF,即EF=1.5×(60+m)=210.解得m=80.故答案为:80.31.如图是中国古代数学家赵爽用来证明勾股定理的弦图的示意图,它是由四个全等的直角三角形和一个小正方形EFGH组成,恰好拼成一个大正方形ABCD.连结EG并延长交BC于点M.若AB=5,EF=1,则GM的长为.【解答】解:由图可知∠AED=90°,AB=5,EF=1,∵大正方形ABCD是由四个全等的直角三角形和一个小正方形EFGH组成,故AE=BF=GC=DH,设DE=x,则在Rt△AED中,AD=AB=5,AE=1+x,根据勾股定理,得AD2=DE2+AE2,即52=x2+(1+x)2,解得:x1=3,x2=﹣4(舍去).过点M作MN⊥FB于点N,如图所示.∵四边形EFGH为正方形,EG为对角线,∴△EFG为等腰直角三角形,∴∠EGF=∠NGM=45°,故△GNM为等腰直角三角形.设GN=NM=a,则NB=GB﹣GN=3﹣a,∵MN∥AF,∴△BMN∽△BAF,∴=,将MN=a,AF=3,BN=3﹣a,BF=4代入,得=,解得a=,∴MN=GN=,在Rt△MGN中,由勾股定理,得GM===.32.如图,铁路上A、D两点相距25千米,B,C为两村庄,AB⊥AD于A,CD⊥AD于D,已知AB=15km,CD=10km,现在要在铁路AD上建一个土特产品收购站P,使得B、C 两村到P站的距离相等,则P站应建在距点A10千米.【答案】10.【解答】解:设AP=x千米,则DP=(25﹣x)千米,∵B、C两村到P站的距离相等,∴BP=PC.在Rt△APB中,由勾股定理得BP2=AB2+AP2,在Rt△DPC中,由勾股定理得PC2=CD2+PD2,∴AB2+AP2=CD2+PD2,又∵AB=15km,CD=10km,∴152+x2=102+(25﹣x)2,∴x=10.故答案为:10.33.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm(杯壁厚度不计).【答案】见试题解答内容【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.34.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD⊥BC.若P、Q分别是AD和AC上的动点,则PC+PQ的最小值是.【答案】.【解答】解:如图,连接BP,在△ABC中,AB=AC=10,BC=12,AD=8,∴BD=DC,∴BP=PC,∴PC+PQ=BP+PQ=BQ,∴当B,P,Q共线时,PC+PQ的值最小,∴当BQ⊥AC时,BQ的值最小,令AQ'=a,则CQ'=10﹣a,∵BQ'⊥AC,∴AB2﹣AQ'2=BC2﹣CQ'2,即102﹣a2=122﹣(10﹣a)2,解得a=,∴BQ'==,∴PC+PQ的最小值为,故答案为:.35.如图,在△ABC中,∠ABC=45°,AB=,AC=6,BC>4,点E,F分别在BC,AC边上,且AF=CE,则AE+BF的最小值为2.【答案】2.【解答】解:过A点作AG∥BC,截取AG=AC,连接FG,BG,过B作BR⊥AG,交AG的反向延长线于R,则∠RBC=∠BRA=90°,∴∠GAF=∠ACE,在△AFG和△CEA中,,∴△AFG≌△CEA(SAS),∴GF=AE,∴AE+BF的最小值,即为BG的长,∵∠ABC=45°,∴∠RAB=∠EBA=45°,∵AB=4,∴BR=AR=4,∵AC=6,∴AG=AC=6,∴RG=AR+AG=4+6=10,∴BG===2,即AE+BF的最小值为2.故答案为:2.36.如图,在△ABC中,AB=9cm,AC=12cm,BC=15cm,M是BC边上的动点,MD⊥AB,ME⊥AC,垂足分别是D、E,线段DE的最小值是cm.【答案】.【解答】解:∵在△ABC中,AB=9cm,AC=12cm,BC=15cm,∴BC2=AB2+AC2,∴∠A=90°,∵MD⊥AB,ME⊥AC,∴∠A=∠ADM=∠AEM=90°,∴四边形ADME是矩形,∴DE=AM,当AM⊥BC时,AM的长最短,根据三角形的面积公式得:AB•AC=BC•AM,∴9×12=15AM,AM=,即DE的最小值是cm.故答案为:.37.如图,Rt△ABC中,.点P为△ABC内一点,PA2+PC2=AC2.当PB的长度最小时,△ACP的面积是.【答案】.【解答】解:如图所示,取AC中点O,连接PO,BO,∵PA2+PC2=AC2,∴∠APC=90°,∴,∵BP+OP≥OB,∴当B、P、O三点共线时BP+OP有最小值,即此时BP有最小值,∵∠ACB=90°,∴,∴BP=BO﹣OP=2,∴BP=PO,又∠ACB=90°,∴PC=BO=2,∴PC=PO=CO,∴△OPC是等边三角形,∴∠PCO=60°,∠PAC=30°∴AP==2,∴,故答案为:.三.解答题(共4小题)38.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A 出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?【答案】见试题解答内容【解答】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.39.如图,在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,动点P从B出发沿射线BC以1cm/s的速度运动,设运动时间为t(s).(1)求BC边的长.(2)当△ABP为等腰三角形时,求t的值.【答案】或10或16.【解答】解:在Rt△ABC中,∠ACB=90°,AB=10cm,AC=6cm,∴BC=,当AP=BP时,如图1,则AP=t,PC=BC﹣BP=8﹣t,在Rt△ACP中,AC2+CP2=AP2,∴62+(8﹣t)2=t2,解得t=;当AB=BP时,如图2,则BP=t=10;当AB=AP时,如图3,则BP=2BC;∴t=2×8=16,综上,t的值为或10或16.40.今年第6号台风“烟花”登陆我国沿海地区,风力强,累计降雨量大,影响范围大,有极强的破坏力.如图,台风“烟花”中心沿东西方向AB由A向B移动,已知点C为一海港,且点C与直线AB上的两点A、B的距离分别为AC=300km,BC=400km,又AB =500km,经测量,距离台风中心260km及以内的地区会受到影响.(1)海港C受台风影响吗?为什么?(2)若台风中心的移动速度为28千米/时,则台风影响该海港持续的时间有多长?【答案】(1)海港C受台风影响,理由见解答过程;(2)台风影响该海港持续的时间为小时.【解答】解:(1)海港C受台风影响,理由:∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°;过点C作CD⊥AB于D,∵△ABC是直角三角形,∴AC×BC=CD×AB,∴300×400=500×CD,∴CD=240(km),∵以台风中心为圆心周围260km以内为受影响区域,∴海港C受台风影响;(2)当EC=260km,FC=260km时,正好影响C港口,∵ED=(km),∴EF=2ED=200km,∵台风的速度为28千米/小时,∴200÷28=(小时).答:台风影响该海港持续的时间为小时.41.请阅读下列材料:已知:如图(1)在Rt△ABC中,∠BAC=90°,AB=AC,点D、E分别为线段BC上两动点,若∠DAE=45°.探究线段BD、DE、EC三条线段之间的数量关系.小明的思路是:把△AEC绕点A顺时针旋转90°,得到△ABE′,连接E′D,使问题得到解决.请你参考小明的思路探究并解决下列问题:(1)猜想BD、DE、EC三条线段之间存在的数量关系式,直接写出你的猜想;(2)当动点E在线段BC上,动点D运动在线段CB延长线上时,如图(2),其它条件不变,(1)中探究的结论是否发生改变?请说明你的猜想并给予证明;(3)已知:如图(3),等边三角形ABC中,点D、E在边AB上,且∠DCE=30°,请你找出一个条件,使线段DE、AD、EB能构成一个等腰三角形,并求出此时等腰三角形顶角的度数.【答案】见试题解答内容【解答】解:(1)DE2=BD2+EC2;(2)关系式DE2=BD2+EC2仍然成立.证明:将△ADB沿直线AD对折,得△AFD,连FE∴△AFD≌△ABD,∴AF=AB,FD=DB,∠FAD=∠BAD,∠AFD=∠ABD,又∵AB=AC,∴AF=AC,∵∠FAE=∠FAD+∠DAE=∠FAD+45°,∠EAC=∠BAC﹣∠BAE=90°﹣(∠DAE﹣∠DAB)=45°+∠DAB,∴∠FAE=∠EAC,又∵AE=AE,∴△AFE≌△ACE,∴FE=EC,∠AFE=∠ACE=45°,∠AFD=∠ABD=180°﹣∠ABC=135°∴∠DFE=∠AFD﹣∠AFE=135°﹣45°=90°,∴在Rt△DFE中,DF2+FE2=DE2,即DE2=BD2+EC2;解法二:将△EAC绕点A顺时针旋转90°得到△TAB.连接DT.∴∠ABT=∠C=45°,AT=AE,∠TAE=90°,∵∠ABC=45°,∴∠TBC=∠TBD=90°,∵∠DAE=45°,∴∠DAT=∠DAE,∵AD=AD,∴△DAT≌△DAE(SAS),∴DT=DE,∵DT2=DB2+EC2,∴DE2=BD2+EC2;(3)当AD=BE时,线段DE、AD、EB能构成一个等腰三角形.如图,与(2)类似,以CE为一边,作∠ECF=∠ECB,在CF上截取CF=CB,可得△CFE≌△CBE,△DCF≌△DCA.∴AD=DF,EF=BE.∴∠DFE=∠1+∠2=∠A+∠B=120°.若使△DFE为等腰三角形,只需DF=EF,即AD=BE,∴当AD=BE时,线段DE、AD、EB能构成一个等腰三角形,且顶角∠DFE为120°.。

全国通用版中考数学 勾股定理与最值(一)—详解版

全国通用版中考数学 勾股定理与最值(一)—详解版

【例1】在平面直角坐标系中,有A (1,1)、B (3,2)两点,点P 是x 轴上一动点,则PA+PB最小值为 。

【【【【∵A (1,1),∴点A 关于x 轴对称点A′(1,-1),连接A′B 交x 轴于P ,则此时,PA+PB=A′B 的值最小,过A′作A′C ⊥BC ,∴A′B=,∴PA+PB 最小值为,1313【例2】如图①,一只蚂蚁在长方体木块的一个顶点A 处,食物在这个长方体上和蚂蚁相对的顶点B 处,蚂蚁急于吃到食物,所以沿着长方体的表面向上爬,请你计算它从A 处爬到B 处的最短路线长为多少?【【【【如图②③所示.因为两点之间线段最短,所以最短的爬行路程就是线段AB 的长度.在图②中,由勾股定理,得222311130AB =+=.在图③中,由勾股定理,得22268100AB =+=.因为130>100,所以图③中的AB 的长度最短,为10cm ,即蚂蚁需要爬行的最短路线长为10cm .【【1.如图,两个村庄A 、B 在河CD 的同侧,A 、B 两村到河的距离分别为AC =1千米,BD =3 千米,CD =3千米.现要在河边CD 上建造一水厂,向A 、B 两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用W .【【【【延长AC到点M,使CM=AC;连接BM交CD于点P,点P就是所选择的位置;在Rt△BMN中,BN=3+1=4,MN=3∴MB=5(千米),∴最短路线AP+BP=MB=5千米,最省的铺设管道的费用为W=5×20000=100000(元),当水厂在C点时,水管长度13=AC+AB=1+,3∴最省的铺设管道的费用为W=(1+)×20000≈92200(元),∵92200<100000,答:最省的铺设管道的费用是92200元.【【2.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A 点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______.(π取3)【【【【把圆柱侧面展开,展开图如图所示,点A,B的最短距离为线段AB的长,BC=20,AC为底面半圆弧长,AC=5π≈15,所以AB=25.则蚂蚁爬的最短路线长约为25,【【3.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过四个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm,如果从点A开始经过四个侧面缠绕n圈到达点B,那么所用细线最短需要_____cm.【【【【10;【【4.如图所示,正方形ABCD的AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP最短.求EP+BP的最小值.【【【【根据正方形的对称性可知:BP =DP ,连接DE ,交AC 于P ,ED =EP +DP =EP +BP ,即最短距离EP +BP 也就是ED .∵AE =3,EB =1,∴AB =AE +EB =4,∴AD =4,222223425ED AE AD =+=+= .∵ED >0,∴ED =5,∴最短距离EP +BP =5.【【5.。

勾股定理经典中考题

勾股定理经典中考题

勾股定理练习题温故而知新:1.勾股定理直角三角形两条直角边a,b的平方和等于斜边c的平方,即a2+b2=c2.2.勾股定理的验证勾股定理的证明方法很多,据说已有400余种,其证明的内涵极其丰富.常用的证法是面积割补法,如图所示.3.直角三角形的性质两锐角互余(角的关系)、勾股定理(边的关系),30°角所对的直角边等于斜边的一半(边角关系),这些性质在求线段的长度、证明线段倍分关系、证明线段平方关系等方面有广泛的应用.例1 如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,小鸟至少飞行()A.8米B.10米C.12米D.14米例2 如图,将一个有45°角的三角板的直角顶点放在一张宽为3cm的矩形纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,则三角板最大边的长为()A.3 cmB.6 cmC.32cmD.62cm例 3 如图所示,公园里有一块形如四边形ABCD的草地,测得BC=CD=10米,∠B=∠C=120°,∠A=45°.求出这块草地的面积.举一反三:1.一直角三角形的两边长分别为3和4,则第三边的长为()A.5B.7C.5D.5或7.2.如图,△ABC和△DCE都是边长为4的等边三角形,点B、C、E在同一条直线上,连接BD,则BD的长为()A.3B.23C.33D.436.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3. (1)求DE的长;(2)求△ADB的面积.例4 勾股定理揭示了直角三角形三边之间的关系,其中蕴含着丰富的科学知识和人文价值.图是一棵由正方形和含30°角的直角三角形按一定规律长成的勾股树,树主干自下而上第一个正方形和第一个直角三角形的面积之和为S1,第二个正方形和第二个直角三角形的面积之和为S2,…,第n个正方形和第n个直角三角形的面积之和为Sn,设第一个正方形的边长为1.请解答下列问题:(1)S1=_______;(2)通过探究,用含n的代数式表示S,则Sn=________.举一反三:4.(2013·莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积分别为2,5,1,2,则最大的正方形E的面积是__________.例5如图,△ABC中,已知∠BAC=45°,AD⊥BC于点D,BD=2,DC=3,求AD的长.小萍灵活运用轴对称知识,将图形进行翻折变换,巧妙地解答了此题.请按照小萍的思路,探究并解答下列问题:分别以AB,AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点分别为E,F,延长EB,FC相交于G点,可得四边形AEGF为正方形.设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.3.如图是一张直角三角形的纸片,两直角边AC=6 cm,BC=8 cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则DE的长为()A.4 cmB.154cm C.6 cm D.10 cm举一反三:5.(2013·东营)如图,圆柱形容器中,高为1.2 m,底面周长为1 m,在容器内壁离容器底部0.3 m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3 m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为___________m(容器厚度忽略不计).解析:将圆柱侧面展开如图所示,作点A关于CD的对称点A′,连接A′B,则A′B的长即为所求最短距离;过点B作BE⊥AC于E,则BE=0.5m,A′E=1.2m,根据勾股定理得A′B=22'A E BE+=22+=1.3(m).1.20.5。

中考数学专题复习:勾股定理

中考数学专题复习:勾股定理

中考数学专题复习:勾股定理一、选择题1.下列各组数中不是勾股数的是()A.3,4,5 B.4,5,6 C.5,12,13 D.6,8,102.下列条件中,不能判定△ABC为直角三角形的是()A.a:b:c=5:12:13 B.∠A+∠B=∠CC.∠A:∠B:∠C=2:3:5 D.a=6,b=12,c=103.在一水塔A的东北方向32m处有一抽水池B,在水塔A的东南方向24m处有一建筑工地C,在BC间需建一条直水管道,则水管的长为()A.45m B.40m C.50m D.56m4.如果△ABC的三边长分别是m2﹣1、2m、m2+1(m>1),那么()A.△ABC是直角三角形,且斜边长为2mB.△ABC是锐角三角形C.△ABC是直角三角形,且斜边长为m2+1D.△ABC是否为直角三角形,需看m的值5.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是()A.12 B.14 C.16 D.186.如图,在△ABC中,AB=AC=5,BC=6,点M为BC边中点,MN⊥AC于点N,那么MN等于()A.B.C.D.7.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m8.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm2二、填空题9.在△ABC中,若三条边的长度分别为9,12、15,则以两个这样的三角形所拼成的四边形的面积是________.10.若直角三角形的两条直角边长为a、b,且满足(a﹣3)2+|b﹣4|=0,则该直角三角形的第三条边长为________.11.如图,已知AB:BC:CD:DA=2:2:3:1,且∠ABC=90°,则∠BAD的度数为________.12.在△ABC中,AB=,AC=5,若BC边上的高等于3,则BC边的长为________.13.如图,点P是等边△ABC内一点,连接P A,PB,PC,P A:PB:PC=3:4:5,以AC 为边作△AP′C≌△APB,连接PP′,则有以下结论:①△APP′是等边三角形;②△PCP′是直角三角形;③∠APB=150°;④∠APC=105°.其中一定正确的是________.(把所有正确答案的序号都填在横线上)14.如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到达点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,再向正东方向走15m到达点A5.按如此规律下去,当机器人走到点A6时,离点O的距离是________m.三、解答题15.在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AC=20,BC=15,(1)求AB的长;(2)求CD的长.16.如图所示,一架云梯长25m,斜靠在一面墙上,梯子底端离墙7m,这个梯子的顶端距地面有多高?如果梯子顶端下滑了4m,那么梯子的底端在水平方向上也滑动了4m吗?17如图,四边形ABCD中,∠ADC=90°,AD=12,CD=9,AB=25,BC=20,求四边形ABCD的面积.18如图是一块地,已知AD=4m,CD=3m,AB=13m,BC=12m,且CD⊥AD,求这块地的面积.19如图,已知BE⊥AE,∠A=∠EBC=60°,AB=4,BC2=12,CD2=3,DE=3.求证:(1)△BEC为等边三角形;(2)ED⊥CD.20如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,求CD的长.21如图所示,等腰三角形ABC的底边长为8cm,腰长为5cm,一动点P在底边上从B向C 以0.25cm/s的速度运动,当点P运动到P A与腰垂直的位置时,求点P运动的时间.22阅读理解:我们知道在直角三角形中,有无数组勾股数,例如5,12,13;9,40,41;…但其中也有一些特殊的勾股数,例如:3,4,5是三个连续正整数组成的勾股数.解决问题:(1)在无数组勾股数中,是否存在三个连续偶数能组成勾股数?若存在,试写出一组勾股数;(2)在无数组勾股数中,是否还存在其他的三个连续正整数能组成勾股数?若存在,求出勾股数;若不存在,说明理由.23距沿海某城市A的正南方向240千米的B处有一台风中心,其中心风力为12级,每远离台风中心25千米,风力就会减弱一级,该台风中心现正以20千米/时的速度沿北偏东30°的方向往C移动,如图所示,且台风中心的风力不变.若城市所受风力达到或超过4级,则称受台风影响.(1)该城市是否会受台风的影响?请说明理由.(2)若会受到台风影响,则台风影响城市的持续时间有多长?(3)该城市受到台风影响的最大风力为几级?参考答案1.【解答】解:A、∵32+42=52,∴以3、4、5为边能组成直角三角形,即3、4、5是勾股数,故本选项错误;B、∵42+52≠62,∴以4、5、6为边不能组成直角三角形,即4、5、6不是勾股数,故本选项正确;C、∵52+122=132,∴以5、12、13为边能组成直角三角形,即5、12、13是勾股数,故本选项错误;D、∵62+82=102,∴以6、8、10为边能组成直角三角形,即6、8、10是勾股数,故本选项错误;故选:B.2.【解答】解:A、∵52+122=132,∴△ABC是直角三角形,故能判定△ABC是直角三角形;B、∵∠A+∠B=∠C,∴∠C=90°,故能判定△ABC是直角三角形;C、∵∠A:∠B:∠C=2:3:5,∴∠C=×180°=90°,故能判定△ABC是直角三角形;D、∵62+102≠122,∴△ABC不是直角三角形,故不能判定△ABC是直角三角形;故选:D.3.【解答】解:已知东北方向和东南方向刚好是一直角,∴∠BAC=90°,又∵AB=32m,AC=24m,∴BC===40(m).故选:B.4.【解答】解:∵△ABC中的三边分别是m2﹣1,2m,m2+1(m>1),又∵(m2﹣1)2+(2m)2=(m2+1)2,∴△ABC是直角三角形,斜边为m2+1.故选:C.5.【解答】解:∵∠D=90°,CD=6,AD=8,∴AC==10,∵∠ACD=2∠B,∠ACD=∠B+∠CAB,∴∠B=∠CAB,∴BC=AC=10,∴BD=BC+CD=16,故选:C.6.【解答】解:连接AM,∵AB=AC,点M为BC中点,∴AM⊥CM(三线合一),BM=CM,∵AB=AC=5,BC=6,∴BM=CM=3,在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,又∵S△AMC=MN•AC=AM•MC,∴MN==.故选:C.7.【解答】解:∵△ABC是直角三角形,BC=3m,AC=5m ∴AB===4m,∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=7米.故选:C.8.【解答】解:∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=xcm,则ED=BE=(9﹣x)cm,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9﹣x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2).故选:A.9.【解答】解:∵92+122=225,152=225,∴92+122=152,这个三角形为直角三角形,且9和12是两条直角边;∴拼成的四边形的面积=×9×12×2=108.故答案为:108.10.【解答】解:∵(a﹣3)2+|b﹣4|=0,∴a﹣3=0,b﹣4=0,∴a=3,b=4,∴直角三角形斜边为:,故答案为:5.11.【解答】解:∵AB:BC:CD:DA=2:2:3:1,∴设AB=2x,BC=2x,CD=3x,AD=x,∴AB=BC,∵∠ABC=90°,∴AC=,∠BAC=45°,∵AD2+AC2=x2+8x2=9x2,CD2=9x2,∴AD2+AC2=CD2,∴∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°,故答案为:135°.12.【解答】解:有两种情况:①如图1,∵AD是△ABC的高,∴∠ADB=∠ADC=90°,由勾股定理得:BD===5,CD===4,∴BC=BD+CD=5+4=9;②如图2,同理得:CD=4,BD=5,∴BC=BD﹣CD=5﹣4=1,综上所述,BC的长为9或1;故答案为:9或1.13.【解答】解:△ABC是等边三角形,则∠BAC=60°,又△AP'C≌△APB,则AP=AP′,∠P AP′=∠BAC=60°,∴△APP'是正三角形,①正确;又P A:PB:PC=3:4:5,∴设P A=3x,则:PP′=P A=3x,P′C=PB=4x,PC=5x,根据勾股定理的逆定理可知:△PCP'是直角三角形,且∠PP′C=90°,②正确;又△APP'是正三角形,∴∠AP′P=60°,∴∠APB=150°③正确;错误的结论只能是∠APC=105°.故答案为①②③.14.【解答】解:根据题意可知当机器人走到A6点时,A5A6=18米,点A6的坐标是(6+3=9,18﹣6=12),即(9,12).所以,当机器人走到点A6时,离点O的距离是=15.故答案为:15.15.【解答】解:(1)∵∠ACB=90°,∴AB=,∵BC=15,AC=20,∴AB===25,∴AB的长是25;(2)∵S△ABC=AC•BC=AB•CD,∴AC•BC=AB•CD,∵AC=20,BC=15,AB=25,∴20×15=25CD,∴CD=12,∴CD的长是12.16.【解答】解:在Rt△AOB中,∵AB=25m,OB=7m,OA2=AB2﹣OB2,∴OA===24(m),∵AA′=4m,∴OA′=OA﹣AA′=20m;在Rt△A′OB′中,∵OB′2=A′B′2﹣OA′2,∴OB′==15(m),∴BB′=OB′﹣OB=8(m).故这个梯子的顶端距地面24m;梯子的底端在水平方向上不是滑动了4m,而是滑动了8m.17.【解答】解:连接AC,在△ADC中,∵∠D=90°,AD=12,CD=9,∴AC==15,S△ABC=AD•CD=×12×9=54,在△ABC中,∵AC=15,AB=25,BC=20,∴BC2+AC2=AB2,∴△ACB是直角三角形,∴S△ACB=AC•BC=×15×20=150.∴四边形ABCD的面积=S△ABC+S△ACD=150+54=204.18.【解答】解:连接AC,∵CD⊥AD∴∠ADC=90°,∵AD=4,CD=3,∴AC2=AD2+CD2=42+32=25,又∵AC>0,∴AC=5,又∵BC=12,AB=13,∴AC2+BC2=52+122=169,又∵AB2=169,∴AC2+BC2=AB2,∴∠ACB=90°,∴S四边形ABCD=S△ABC﹣S△ADC=30﹣6=24m2.19.【解答】证明:(1)在Rt△ABE中,∵∠A=60°,∠AEB=90°,∴∠ABE=30°.∵AB=4,∴AE=AB=2,BE2=AB2﹣AE2=12.又∵BC2=12,∴BE=BC.又∵∠CBE=60°,∴△BEC为等边三角形.(2)∵△BEC为等边三角形,∴EC2=BC2=12.又∵DE2=9,CD2=3,∴DE2+CD2=12=EC2,∴△CDE为直角三角形,且∠D=90°,∴ED⊥CD.20.【解答】解:∵两直角边AC=6cm,BC=8cm,在Rt△ABC中,由勾股定理可知AB=10,现将直角边AC沿直线AD对折,使它落在斜边AB上,且与AE重合,则CD=DE,AE =AC=6,∴BE=10﹣6=4,设DE=CD=x,BD=8﹣x,在Rt△BDE中,根据勾股定理得:BD2=DE2+BE2,即(8﹣x)2=x2+42,解得x=3.即CD的长为3cm.21.【解答】解:如图,作AD⊥BC,交BC于点D,∵BC=8cm,∴BD=CD=BC=4cm,∵AB=5cm,∴AD=3cm,分两种情况:当点P运动t秒后有P A⊥AC时,∵AP2=PD2+AD2=PC2﹣AC2,∴PD2+AD2=PC2﹣AC2,∴PD2+32=(PD+4)2﹣52,∴PD=2.25cm,∴BP=4﹣2.25=1.75=0.25t,∴t=7秒,当点P运动t秒后有P A⊥AB时,同理可证得PD=2.25,∴BP=4+2.25=6.25=0.25t,∴t=25秒,∴点P运动的时间为7秒或25秒.22.【解答】解:(1)设中间的偶数为m,则较大的偶数为m+2,较小的偶数为m﹣2,由勾股定理得,(m﹣2)2+m2=(m+2)2,解得m=8,m=0(舍去)所以这三个连续偶数为6,8,10,因此存在三个连续偶数能组成勾股数,如6,8,10;(2)不存在.理由:假设在无数组勾股数中,还存在其他的三个连续正整数能组成勾股数.设这三个正整数分别为n﹣1、n、n+1,由勾股定理得,(n﹣1)2+n2=(n+1)2,解得n=4,n=0(舍去).所以三个连续正整数是3,4,5,所以除了3、4、5以外,不存在其他的三个连续正整数能组成勾股数.23.【解答】解:(1)该城市会受到这次台风的影响.理由是:如图,过A作AD⊥BC于D.在Rt△ABD中,∵∠ABD=30°,AB=240,∴AD=AB=120,∵城市受到的风力达到或超过四级,则称受台风影响,∴受台风影响范围的半径为25×(12﹣4)=200.∵120<200,∴该城市会受到这次台风的影响.(2)如图以A为圆心,200为半径作⊙A交BC于E、F.则AE=AF=200.∴台风影响该市持续的路程为:EF=2DE=2=320.∴台风影响该市的持续时间t=320÷20=16(小时).(3)∵AD距台风中心最近,∴该城市受到这次台风最大风力为:12﹣(120÷25)≈7(级).。

中考数学复习《勾股定理》专项练习题-附带有答案

中考数学复习《勾股定理》专项练习题-附带有答案

中考数学复习《勾股定理》专项练习题-附带有答案一、单选题1.线段a、b、c组成的三角形不是直角三角形的是()A.a=7,b=24,c=25 B.Ba= √41,b=4,c=5C.a= 34,b=1,c= 54D.a=40,b=50,c=602.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.65B.95C.125D.1653.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和9,则b的面积为()A.16 B.2 C.32 D.1304.如图,在5×5的正方形网格中,每个小正方形的边长为1,在图中找出格点C,使得△ABC是腰长为无理数的等腰三角形,点C的个数为()A.3 B.4 C.5 D.75.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中S A=10,S B=8,S C=9,S D=4则下列判断不正确的是()A.S E=18B.S F=13C.S M=31D.S M−S E=176.如图,矩形OABC的边OA长为2,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是()A.2.1B.√5C.2√2D.2√37.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么(a+b)2的值为().A.49 B.25 C.13 D.18.如图,在△ABC中∠C=60°,AC=4,BC=3 .分别以点A,B为圆心,大于12AB的长为半径作弧,两弧交于M、N两点,作直线MN交AC于点D,则CD的长为()A.1 B.75C.32D.3二、填空题9.如图,△ABC中AB=AC=10,BC=16,△ABC的面积是.10.如图,在Rt△ABC中,∠C=90°,AC=3,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,且OC=4 √2,则BC=.11.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,点D在AB上,AD=AC,AF⊥CD交CD于点E,交CB于点F,则CF的长是12.某小区两面直立的墙壁之间为安全通道,一架梯子斜靠在左墙DE时,梯子底端A到左墙的距离AE为0.7m,梯子顶端D到地面的距离DE为2.4m,若梯子底端A保持不动,将梯子斜靠在右墙BC上,梯子顶端C到地面的距离CB为2m,则这两面直立墙壁之间的安全通道的宽BE为m.13.活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC中∠A=30°,AC=3,∠A所对的边为√3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为三、解答题14.如图,点C在∠DAB内部,CD⊥AD于点D,CB⊥AB于点B,CD=CB,若AD=5,求AB的长.15.如图,在△ABC中,CD⊥AB,垂足为D.AD=1,BD=4,CD=2.求证:∠ACB=90°.16.如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C点(B、C两点处于同一水平面)的距离AC=25米.若小鸟竖直下降12米到达D点(D点在线段AB上),求此时小鸟到地面C 点的距离.17.如图,在△ABC中,∠ACB的平分线CD交AB于点D,E为AC边上一点,且满足∠AED=2∠DCB.(1)求证:DE∥BC;(2)若∠B=90°,AD=6,AE=9,求CE的长.18.如图,在正△ABC的AC,BC上各取一点D,E,使AD=CE,AE,BD相交于点M(1)如图1,求∠BME的度数;(2)如图2,过点B作直线AE的垂线BH,垂足为H①求证:2MH+DM=AE;②若BE=2EC=2,求BH的长.答案1.D2.C3.A4.C5.D6.B7.A8.B9.4810.511.1.512.2.213.2√3或√314.解:解法一:连结AC∵CD⊥AD于点D,CB⊥AB于点B∴∠CDA=∠CBA=90°在Rt△ABC与Rt△ADC中有AC=AC,CD=CB∴Rt△ABC≌Rt△ADC(HL)∴AB=AD=5解法二:连结AC∵CD⊥AD于点D,CB⊥AB于点B∴∠CDA=∠CBA=90°∵CD=CB∴由勾股定理得:AB= √AC2−BC2 = √AC2−CD2 =AD=515.证明:∵CD是△ABC的高∴∠ADC=∠BDC=90°.∵AD=1,BD=4,CD=2∴AC2=AD2+CD2=12+22=5,BC2=BD2+CD2=42+22=20,AB2=(1+4)2=25.∴AC2+BC2=AB2.∴△ABC是直角三角形∴∠ACB=90°.16.解:由勾股定理得;BC2=AC2−AB2=252−202=225∴BC=15(米)∵BD=AB−AD=20−12=8(米)∴在Rt△BCD中,由勾股定理得CD=√DB2+BC2=√82+152=17∴此时小鸟到地面C点的距离17米.答;此时小鸟到地面C点的距离为17米.17.(1)证明:∵CD平分∠ACB∴∠ACD=∠DCB即∠ACB=2∠DCB又∵∠AED=2∠DCB∴∠ACB=∠AED∴DE//BC;(2)解:∵DE//BC∴∠EDC=∠BCD,∠B=∠ADE=90°∵∠BCD=∠ECD∴∠EDC=∠ECD∴ED=CE∵AD=6,AE=9∴DE=√AE2−AD2=√92−62=3√5∴CE=3√5.18.(1)解:∵△ABC是等边三角形∴AB=AC,∠BAC=∠C=60°又∵AD=CE ∴△ABD≌△CAE(SAS)∴∠BME=∠ABD+∠BAE=∠CAE+∠BAE=∠BAC=60°(2)解:①∵BH⊥AE ∠BME=60°∴∠HBM=30°∴BM=2MH∵△ABD≌△CAE ∴AE=BD=BM+MD=2MH+MD②过点E作EG⊥AB于点GBE=2EC=2 ∴AB=BC=3∴使用ABC=60°∴BG=1,AG=2,由勾股定理可得,GE= √3,AE= √7设HE=x,则AH= √7 -x由勾股定理得32-(√7 -x)2=22-x2解得x= √77再由勾般定理可得:BH= 3√21.7。

直角三角形与勾股定理(优选真题60道)三年(2021-2023)中考数学真题分项汇编(全国通用)解析

直角三角形与勾股定理(优选真题60道)三年(2021-2023)中考数学真题分项汇编(全国通用)解析

三年(2021-2023)中考数学真题分项汇编(全国通用)直角三角形与勾股定理(优选真题60道)一.选择题(共28小题)1.(2023•湖北)如图,在△ABC 中,∠ABC =90°,AB =3,BC =4,点D 在边AC 上,且BD 平分△ABC 的周长,则BD 的长是( )A .√5B .√6C .6√55D .3√64【分析】根据勾股定理得到AC =√AB 2+BC 2=5,求得△ABC 的周长=3+4+5=12,得到AD =3,CD=2,过D 作DE ⊥BC 于E ,根据相似三角形的性质得到DE =65,CE =85,根据勾股定理即可得到结论.【解答】解:在△ABC 中,∠ABC =90°,AB =3,BC =4,∴AC =√AB 2+BC 2=5,∴△ABC 的周长=3+4+5=12,∵BD 平分△ABC 的周长,∴AB +AD =BC +CD =6,∴AD =3,CD =2,过D 作DE ⊥BC 于E ,∴AB ∥DE ,∴△CDE ∽△CAB ,∴DE AB =CD AC =CE CB , ∴DE 3=25=CE 4,∴DE =65,CE =85,∴BE =125,∴BD =√BE 2+DE 2=√(125)2+(65)2=6√55,故选:C.【点评】本题考查了勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.2.(2023•济宁)如图,在正方形方格中,每个小正方形的边长都是一个单位长度,点A,B,C,D,E均在小正方形方格的顶点上,线段AB,CD交于点F,若∠CFB=α,则∠ABE等于()A.180°﹣αB.180°﹣2αC.90°+αD.90°+2α【分析】过B点作BG∥CD,连接EG,根据平行线的性质得出∠ABG=∠CFB=α.根据勾股定理求出BG2=17,BE2=17,EG2=34,那么BG2+BE2=EG2,根据勾股定理的逆定理得出∠GBE=90°,进而求出∠ABE的度数.【解答】解:如图,过B点作BG∥CD,连接EG,∵BG∥CD,∴∠ABG=∠CFB=α.∵BG2=12+42=17,BE2=12+42=17,EG2=32+52=34,∴BG2+BE2=EG2,∴△BEG是直角三角形,∴∠GBE=90°,∴∠ABE=∠GBE+∠ABG=90°+α.故选:C.【点评】本题考查了勾股定理及其逆定理,平行线的性质,准确作出辅助线是解题的关键.3.(2023•天津)如图,在△ABC 中,分别以点A 和点C 为圆心,大于12AC 的长为半径作弧(弧所在圆的半径都相等),两弧相交于M ,N 两点,直线MN 分别与边BC ,AC 相交于点D ,E ,连接AD .若BD =DC ,AE =4,AD =5,则AB 的长为( )A .9B .8C .7D .6【分析】根据线段垂直平分线的性质可得AC =2AE =8,DA =DC ,从而可得∠DAC =∠C ,再结合已知易得BD =AD ,从而可得∠B =∠BAD ,然后利用三角形内角和定理可得∠BAC =90°,从而在Rt △ABC 中,利用勾股定理进行计算,即可解答.【解答】解:由题意得:MN 是AC 的垂直平分线,∴AC =2AE =8,DA =DC ,∴∠DAC =∠C ,∵BD =CD ,∴BD =AD ,∴∠B =∠BAD ,∵∠B +∠BAD +∠C +∠DAC =180°,∴2∠BAD +2∠DAC =180°,∴∠BAD +∠DAC =90°,∴∠BAC =90°,在Rt △ABC 中,BC =BD +CD =2AD =10,∴AB =√BC 2−AC 2=√102−82=6,故选:D .【点评】本题考查了勾股定理,线段垂直平分线的性质,等腰三角形的性质,三角形内角和定理,熟练掌握勾股定理,以及线段垂直平分线的性质是解题的关键.4.(2023•泸州)《九章算术》是中国古代重要的数学著作,该著作中给出了勾股数a ,b ,c 的计算公式:a =12(m 2﹣n 2),b =mn ,c =12(m 2+n 2),其中m >n >0,m ,n 是互质的奇数.下列四组勾股数中,不能由该勾股数计算公式直接得出的是( )A .3,4,5B .5,12,13C .6,8,10D .7,24,25【分析】根据题目要求逐一代入符合条件的m ,n 进行验证、辨别.【解答】解:∵当m =3,n =1时,a =12(m 2﹣n 2)=12(32﹣12)=4,b =mn =3×1=3,c =12(m 2+n 2)=12×(32+12)=5,∴选项A 不符合题意;∵当m =5,n =1时,a =12(m 2﹣n 2)=12(52﹣12)=12,b =mn =5×1=5,c =12(m 2+n 2)=12×(52+12)=13,∴选项B 不符合题意;∵当m =7,n =1时,a =12(m 2﹣n 2)=12(72﹣12)=24,b =mn =7×1=7,c =12(m 2+n 2)=12×(72+12)=25,∴选项D 不符合题意;∵没有符合条件的m ,n 使a ,b ,c 各为6,8,10,∴选项C 符合题意,故选:C .【点评】此题考查了整式乘法运算和勾股数的应用能力,关键是能准确理解并运用以上知识进行正确地计算.5.(2023•无锡)如图,在四边形ABCD 中,AD ∥BC ,∠DAB =30°,∠ADC =60°,BC =CD =2,若线段MN 在边AD 上运动,且1,则BM 2+2BN 2的最小值是( )A .132B .293C .394D .10【分析】过B 作BF ⊥AD 于F ,过C 作CE ⊥AD 于E ,根据直角三角形的性质得到CE =√32CD =√3,求得BF =CE =√3,要使BM 2+2BN 2的值最小,则BM 和BN 越小越好,MN 显然在点B 的上方(中间位置时),设MF =x ,FN =1﹣x ,根据勾股定理和二次函数的性质即可得到结论.【解答】解:过B 作BF ⊥AD 于F ,过C 作CE ⊥AD 于E ,∵∠D =60°,CD =2,∴CE =√32CD =√3,∵AD∥BC,∴BF=CE=√3,要使BM2+2BN2的值最小,则BM和BN越小越好,∴MN显然在点B的上方(中间位置时),设MF=x,FN=1﹣x,∴BM2+2BN2=BF2+FM2+2(BF2+FN2)=x2+3+2[(1﹣x)2+3]=3x2﹣4x+11=3(x−23)2+293,∴当x=23时,BM2+2BN2的最小值是293.故选:B.【点评】本题考查了矩形的性质,直角三角形的性质,正确地作出辅助线是解题的关键.6.(2023•日照)已知直角三角形的三边a,b,c满足c>a>b,分别以a,b,c为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为S1,均重叠部分的面积为S2,则()A.S1>S2B.S1<S2C.S1=S2D.S1,S2大小无法确定【分析】由直角三角形的三边a,b,c满足c>a>b,根据垂线段最短可知该直角三角形的斜边为c,则c2=a2+b2,所以c2﹣a2﹣b2=0,则S1=c2﹣a2﹣b2+b(a+b﹣c)=ab+b2﹣bc,而S2=b(a+b﹣c)=ab+b2﹣bc,所以S1=S2,于是得到问题的答案.【解答】解:∵直角三角形的三边a,b,c满足c>a>b,∴该直角三角形的斜边为c,∴c2=a2+b2,∴c2﹣a2﹣b2=0,∴S1=c2﹣a2﹣b2+b(a+b﹣c)=ab+b2﹣bc,∵S2=b(a+b﹣c)=ab+b2﹣bc,∴S1=S2,故选:C.【点评】此题重点考查勾股定理、正方形的面积公式、根据转化思想解决面积问题等知识与方法,确定三边为a,b,c的直角三角形的斜边为c是解题的关键.7.(2022•百色)活动探究:我们知道,已知两边和其中一边的对角对应相等的两个三角形不一定全等.如已知△ABC中,∠A=30°,AC=3,∠A所对的边为√3,满足已知条件的三角形有两个(我们发现其中如图的△ABC是一个直角三角形),则满足已知条件的三角形的第三边长为()A.2√3B.2√3−3C.2√3或√3D.2√3或2√3−3【分析】根据题意知,CD=CB,作CH⊥AB于H,再利用含30°角的直角三角形的性质可得CH,AH 的长,再利用勾股定理求出BH,从而得出答案.【解答】解:如图,CD=CB,作CH⊥AB于H,∴DH=BH,∵∠A=30°,∴CH=12AC=32,AH=√3CH=32√3,在Rt△CBH中,由勾股定理得BH=√BC2−CH2=√3−94=√32,∴AB=AH+BH=3√32+√32=2√3,AD=AH﹣DH=3√32−√32=√3,故选:C.【点评】本题主要考查了勾股定理,含30°角的直角三角形的性质等知识,理解题意,求出BH的长是解题的关键.8.(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=9【分析】根据角平分线的性质和和勾股定理,可以求得CD和CE的长,再根据平行线的性质,即可得到AE的长,从而可以判断B和C,然后即可得到AC的长,即可判断D;再根据全等三角形的判定和性质即可得到BF的长,从而可以判断A.【解答】解:∵AD平分∠BAC,∠C=90°,DF⊥AB,∴∠1=∠2,DC=FD,∠C=∠DFB=90°,∵DE∥AB,∴∠2=∠3,∴∠1=∠3,∴AE=DE,∵DE=5,DF=3,∴AE=5,CD=3,故选项B、正确;∴CE=√DE2−CD2=4,∴AC=AE+EC=5+4=9,故选项D正确;∵DE∥AB,∠DFB=90°,∴∠EDF=∠DFB=90°,∴∠CDE+∠FDB=90°,∵∠CDE+∠DEC=90°,∴∠DEC=∠FDB,∵tan∠DEC=CDCE,tan∠FDB=BFDF,∴34=BF3,解得BF=94,故选项A错误;故选:A.【点评】本题考查勾股定理、全等三角形的判定和性质、等腰三角形的性质、角平分线的性质、锐角三角函数,解答本题的关键是明确题意,利用数形结合的思想解答.9.(2022•遵义)如图1是第七届国际数学教育大会(ICME )会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若AB =BC =1,∠AOB =30°,则点B 到OC 的距离为( )A .√55B .2√55C .1D .2【分析】作BH ⊥OC 于H ,利用含30°角的直角三角形的性质得OB =2,再由勾股定理得OC =√5,再根据cos ∠BOC =cos ∠CBH ,得OB OC =BH BC,代入计算可得答案. 【解答】解:作BH ⊥OC 于H ,∵∠AOB =30°,∠A =90°,∴OB =2AB =2,在Rt △OBC 中,由勾股定理得,OC =√OB 2+BC 2=√22+12=√5,∵∠CBO =∠BHC =90°,∴∠CBH =∠BOC ,∴cos ∠BOC =cos ∠CBH ,∴OB OC =BH BC , ∴√5=BH1,∴BH =2√55, 故选:B .【点评】本题主要考查了勾股定理,含30°角的直角三角形的性质,三角函数等知识,熟练掌握等角的三角函数值相等是解题的关键.10.(2022•安徽)已知点O 是边长为6的等边△ABC 的中心,点P 在△ABC 外,△ABC ,△P AB ,△PBC ,△PCA 的面积分别记为S 0,S 1,S 2,S 3.若S 1+S 2+S 3=2S 0,则线段OP 长的最小值是( ) A .3√32 B .5√32 C .3√3 D .7√32【分析】如图,不妨假设点P 在AB 的左侧,证明△P AB 的面积是定值,过点P 作AB 的平行线PM ,连接CO 并延长CO 交AB 于点R ,交PM 于点T .因为△P AB 的面积是定值,推出点P 的运动轨迹是直线PM ,求出OT 的值,可得结论.【解答】解:如图,不妨假设点P 在AB 的左侧,∵S △P AB +S △ABC =S △PBC +S △P AC ,∴S 1+S 0=S 2+S 3,∵S 1+S 2+S 3=2S 0,∴S 1+S 1+S 0=2S0,∴S 1=12S 0, ∵△ABC 是等边三角形,边长为6,∴S 0=√34×62=9√3,∴S 1=9√32,过点P 作AB 的平行线PM ,连接CO 延长CO 交AB 于点R ,交PM 于点T .∵△P AB 的面积是定值,∴点P 的运动轨迹是直线PM ,∵O 是△ABC 的中心,∴CT ⊥AB ,CT ⊥PM ,∴12•AB •RT =9√32,CR =3√3,OR =√3, ∴RT =3√32, ∴OT =OR +TR =5√32, ∵OP ≥OT ,∴OP 的最小值为5√32, 当点P 在②区域时,同法可得OP 的最小值为7√32, 如图,当点P 在①③⑤区域时,OP 的最小值为5√32,当点P 在②④⑥区域时,最小值为7√32, ∵5√32<7√32,故选:B .【点评】本题考查等边三角形的性质,解直角三角形,三角形的面积等知识,解题的关键是证明△P AB 的面积是定值.11.(2022•广元)如图,在△ABC 中,BC =6,AC =8,∠C =90°,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .52B .3C .2√2D .103【分析】利用勾股定理求出AB ,再利用相似三角形的性质求出AE 即可.【解答】解:在Rt △ABC 中,BC =6,AC =8,∴AB =√BC 2+AC 2=√62+82=10,∵BD =CB =6,∴AD =AB ﹣BC =4,由作图可知EF 垂直平分线段AD ,∴AF =DF =2,∵∠A =∠A ,∠AFE =∠ACB =90°,∴△AFE ∽△ACB ,∴AE AB =AF AC , ∴AE 10=28, ∴AE =52,故选:A .【点评】本题考查勾股定理,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.12.(2022•南京)直三棱柱的表面展开图如图所示,AC =3,BC =4,AB =5,四边形AMNB 是正方形,将其折叠成直三棱柱后,下列各点中,与点C 距离最大的是( )A .点MB .点NC .点PD .点Q【分析】根据直三棱柱的特征结合勾股定理求出各线段的距离,再比较大小即可求解.【解答】解:如图,过C点作CE⊥AB于E,∵AC=3,BC=4,AB=5,32+42=52,∴△ACB是直角三角形,∴CE=12AC•BC÷12÷AB=3×4÷5=2.4,∴AE=√AC2−CE2=√32−2.42=1.8,∴BE=5﹣1.8=3.2,∵四边形AMNB是正方形,立方体是直三棱柱,∴CQ=5,∴CM=CP=√52+32=√34,CN=√52+42=√41,∵√41>√34>5,∴与点C距离最大的是点N.故选:B.【点评】本题考查了勾股定理,勾股定理的逆定理,展开图折叠成几何体,关键是求出各线段的距离.13.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=√10+√2,则CH的长为()A.√5B.3+√52C.2√2D.√10【分析】设CF 交AB 于点P ,过C 作CN ⊥AB 于点N ,设正方形JKLM 边长为m ,根据正方形ABGF 与正方形JKLM 的面积之比为5,得AF =AB =√5m ,证明△AFL ≌△FGM (AAS ),可得AL =FM ,设AL =FM =x ,在Rt △AFL 中,x 2+(x +m )2=(√5m )2,可解得x =m ,有AL =FM =m ,FL =2m ,从而可得AP =√5m 2,FP =52m ,BP =√5m 2,即知P 为AB 中点,CP =AP =BP =√5m 2,由△CPN ∽△FP A ,得CN =m ,PN =12m ,即得AN =√5+12m ,而tan ∠BAC =BC AC =CN AN =2√5+1,又△AEC ∽△BCH ,得BC AC =CH CE,即√5+1=√10+√2,故CH =2√2.【解答】解:设CF 交AB 于点P ,过C 作CN ⊥AB 于点N ,如图:设正方形JKLM 边长为m ,∴正方形JKLM 面积为m 2,∵正方形ABGF 与正方形JKLM 的面积之比为5,∴正方形ABGF 的面积为5m 2, ∴AF =AB =√5m ,由已知可得:∠AFL =90°﹣∠MFG =∠MGF ,∠ALF =90°=∠FMG ,AF =GF ,∴△AFL ≌△FGM (AAS ),∴AL =FM ,设AL =FM =x ,则FL =FM +ML =x +m ,在Rt △AFL 中,AL 2+FL 2=AF 2,∴x 2+(x +m )2=(√5m )2,解得x =m 或x =﹣2m (舍去),∴AL =FM =m ,FL =2m , ∵tan ∠AFL =AP AF =AL FL =m 2m =12,∴√5m=12, ∴AP =√5m 2,∴FP =√AP 2+AF 2=√(5m 2)2+(√5m)2=52m ,BP =AB ﹣AP =√5m −√5m 2=√5m 2, ∴AP =BP ,即P 为AB 中点,∵∠ACB =90°,∴CP =AP =BP =√5m2,∵∠CPN =∠APF ,∠CNP =90°=∠F AP ,∴△CPN ∽△FP A ,∴CP FP =CN AF =PN AP ,即√5m 252m =5m =√5m 2,∴CN =m ,PN =12m , ∴AN =AP +PN =√5+12m ,∴tan ∠BAC =BC AC =CN AN =m √5+12=25+1, ∵△AEC 和△BCH 是等腰直角三角形, ∴△AEC ∽△BCH ,∴BC AC =CH CE ,∵CE =√10+√2,∴√5+1=10+2,∴CH =2√2,故选:C .【点评】本题考查正方形性质及应用,涉及全等三角形判定与性质,相似三角形判定与性质,勾股定理等知识,解题的关键是用含m 的代数式表示相关线段的长度.14.(2022•湖州)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.如图,在6×6的正方形网格图形ABCD 中,M ,N 分别是AB ,BC 上的格点,BM =4,BN =2.若点P 是这个网格图形中的格点,连结PM ,PN ,则所有满足∠MPN =45°的△PMN 中,边PM 的长的最大值是( )A.4√2B.6C.2√10D.3√5【分析】在网格中,以MN为直角边构造一个等腰直角三角形,使PM最长,利用勾股定理求出即可.【解答】解:如图所示:∵BM=NC=4,BN=CP=2,且∠B=∠C=90°,∴△BMN≌△CNP(SAS),∴MN=NP,∠BMN=∠CNP,∵∠BMN+∠BNM=90°,∴∠BNM+∠CNP=90°,∴∠MNP=90°,∴△NMP为等腰直角三角形,根据题意得到点P的轨迹为圆弧,当MP为直径时最长,在Rt△BMN和Rt△NCP中,根据勾股定理得:MN=NP=√22+42=2√5,则PM=√MN2+PN2=2√10.故选:C.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.15.(2022•攀枝花)如图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC.若OC=√5,BC=1,∠AOB=30°,则OA的值为()A.√3B.32C.√2D.1【分析】根据勾股定理和含30°角的直角三角形的性质即可得到结论.【解答】解:∵∠OBC=90°,OC=√5,BC=1,∴OB=√OC2−BC2=√(√5)2−12=2,∵∠A=90°,∠AOB=30°,∴AB=12OB=1,∴OA=√OB2−AB2=√22−12=√3,故选:A.【点评】本题主要考查了勾股定理,含30°角的直角三角形的性质,三角函数等知识,熟练掌握等角的16.(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校【分析】根据题意可以画出相应的平面直角坐标系,然后根据勾股定理,可以得到点O到超市、学校、体育场、医院的距离,再比较大小即可.【解答】解:如右图所示,点O到超市的距离为:√22+12=√5,点O到学校的距离为:√32+12=√10,点O到体育场的距离为:√42+22=√20,点O到医院的距离为:√12+32=√10,∵√5<√10=√10<√20,∴点O到超市的距离最近,故选:A.【点评】本题考查勾股定理、平面直角坐标系,解答本题的关键是明确题意,作出合适平面直角坐标系.17.(2021•山西)在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是()A.统计思想B.分类思想C.数形结合思想D.函数思想【分析】根据图形直观推论或验证数学规律和公式的方法体现的数学思想为数形结合思想.【解答】解:这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”,它体现的数学思想是数形结合思想,故选:C.【点评】本题考查了勾股定理的证明,掌握根据图形直观推论或验证数学规律和公式的方法体现的数学思想为数形结合思想.18.(2021•襄阳)我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸,适与岸齐.问水深几何.”(丈、尺是长度单位,1丈=10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面.水的深度是多少?则水深为()A.10尺B.11尺C.12尺D.13尺【分析】设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理列方程,解出h即可.【解答】解:设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理,得(h+1)2﹣h2=(10÷2)2,解得h=12,∴水深为12尺,故选:C.【点评】本题主要考查勾股定理的应用,熟练根据勾股定理列出方程是解题的关键.19.(2021•自贡)如图,A(8,0),C(﹣2,0),以点A为圆心,AC长为半径画弧,交y轴正半轴于点B,则点B的坐标为()A.(0,5)B.(5,0)C.(6,0)D.(0,6)【分析】根据已知可得AB=AC=10,OA=8.利用勾股定理即可求解.【解答】解:根据已知可得:AB=AC=10,OA=8.在Rt△ABO中,OB=√AB2−OA2=6.∴B(0,6).故选:D.【点评】本题考查勾股定理的应用、坐标的特征知识.关键在于利用点的坐标表示边的长度.20.(2021•常德)阅读理解:如果一个正整数m能表示为两个正整数a,b的平方和,即m=a2+b2,那么称m为广义勾股数,则下面的四个结论:①7不是广义勾股数;②13是广义勾股数;③两个广义勾股数的和是广义勾股数;④两个广义勾股数的积是广义勾股数.依次正确的是()A.②④B.①②④C.①②D.①④【分析】根据广义勾股数的定义进行判断即可.【解答】解:①∵7不能表示为两个正整数的平方和,∴7不是广义勾股数,故①结论正确;②∵13=22+32,∴13是广义勾股数,故②结论正确;③两个广义勾股数的和不一定是广义勾股数,如5和10是广义勾股数,但是它们的和不是广义勾股数,故③结论错误;④设m1=a2+b2,m2=c2+d2,则m1⋅m2=(a2+b2)⋅(c2+d=a2c2+a2d2+b2c2+b2d2=(a2c2+b2d2+2abcd)+(a2d2+b2c2﹣2abcd)=(ac+bd)2+(ad﹣bc)2,ad=bc或ac=bd时,两个广义勾股数的积不一定是广义勾股数,如2和2都是广义勾股数,但2×2=4,4不是广义勾股数,故④结论错误,∴依次正确的是①②.故选:C.【点评】本题考查了勾股数的综合应用,掌握勾股定理以及常见的勾股数是解题的关键.21.(2023•赤峰)如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6.点F是AB中点,连接CF,把线段CF沿射线BC方向平移到DE,点D在AC上.则线段CF在平移过程中扫过区域形成的四边形CFDE 的周长和面积分别是()A.16,6B.18,18C.16,12D.12,16【分析】先论证四边形CFDE是平行四边形,再分别求出CF,CD,DF,继而用平行四边形的周长公式和面积公式求出即可.【解答】解:由平移的性质可知DF∥CE,DF=CE,∴四边形CFDE是平行四边形,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=√AB2−BC2=√102−62=8,在Rt△ABC中,∠ACB=90°,AB=10,点F是AB的中点,∴CF=12AB=5,∵DF∥CE,点F是AB的中点,∴ADAC=AFAB=12,∠CDF=180°﹣∠ABC=90°,∴点D是AC的中点,∴CD=12AC=4,∵点F是AB的中点,点D是AC的中点,∴DF是Rt△ABC的中位线,∴DF=12BC=3,∴四边形CFDE的周长为2(DF+CF)=2×(5+3)=16,四边形CFDE的面积为DF•CD=3×4=12.故选:C.【点评】本题主要考查了平移的性质,平行四边形的判定和性质,直角三角形斜边的中线等于斜边的一半,平行线分线段成比例定理,三角形中位线定理等知识,推到四边形FDE是平行四边形和DF是Rt △ABC的中位线是解决问题的关键.22.(2023•株洲)一技术人员用刻度尺(单位:cm)测量某三角形部件的尺寸.如图所示,已知∠ACB=90°,点D为边AB的中点,点A、B对应的刻度为1、7,则CD=()A.3.5cm B.3cm C.4.5cm D.6cm【分析】根据图形和直角三角形斜边上的中线等于斜边的一半,可以计算出CD的长.【解答】解:由图可得,∠ACB=90°,AB=7﹣1=6(cm),点D为线段AB的中点,∴CD=12AB=3cm,故选:B.【点评】本题考查直角三角形斜边上的中线,解答本题的关键是明确题意,利用数形结合的思想解答.23.(2022•永州)如图,在Rt△ABC中,∠ABC=90°,∠C=60°,点D为边AC的中点,BD=2,则BC的长为()A.√3B.2√3C.2D.4【分析】根据直角三角形斜边中线等于斜边的一半和30°角所对的直角边等于斜边的一半即可得到结论.【解答】解:在Rt△ABC中,∠ABC=90°,点D为边AC的中点,BD=2,∴AC=2BD=4,∵∠C=60°,∴∠A=30°,∴BC =12AC =2,故选:C .【点评】本题考查了直角三角形斜边中线,含30°角的直角三角形的性质,熟练掌握直角三角形的性质是解题的关键.24.(2022•大连)如图,在△ABC 中,∠ACB =90°.分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于M ,N 两点,作直线MN .直线MN 与AB 相交于点D ,连接CD ,若AB =3,则CD 的长是( )A .6B .3C .1.5D .1【分析】根据题意可知:MN 是线段AC 的垂直平分线,然后根据三角形相似可以得到点D 为AB 的中点,再根据直角三角形斜边上的中线和斜边的关系,即可得到CD 的长.【解答】解:由已知可得,MN 是线段AC 的垂直平分线,设AC 与MN 的交点为E ,∵∠ACB =90°,MN 垂直平分AC ,∴∠AED =∠ACB =90°,AE =CE ,∴ED ∥CB ,∴△AED ∽△ACB ,∴AE AC =AD AB ,∴12=AD AB, ∴AD =12AB ,∴点D 为AB 的中点,∵AB =3,∠ACB =90°,∴CD =12AB =1.5,故选:C.【点评】本题考查直角三角形斜边上的中线、线段垂直平分线的性质、相似三角形的判定和性质,解答本题的关键是明确题意,利用数形结合的思想解答.25.(2021•新疆)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AB=4,CD⊥AB于点D,E是AB 的中点,则DE的长为()A.1B.2C.3D.4【分析】利用三角形的内角和定理可得∠B=60°,由直角三角形斜边的中线性质定理可得CE=BE=2,利用等边三角形的性质可得结果.【解答】解:∵∠ACB=90°,∠A=30°,∴∠B=60°,∵E是AB的中点,AB=4,∴CE=BE=12AB=12×4=2,∴△BCE为等边三角形,∵CD⊥AB,∴DE=BD=12BE=12×2=1,故选:A.【点评】本题主要考查了直角三角形的性质,熟练掌握定理是解答此题的关键.26.(2023•贵州)5月26日,“2023中国国际大数据产业博览会”在贵阳开幕,在“自动化立体库”中有许多几何元素,其中有一个等腰三角形模型(示意图如图所示),它的顶角为120°,腰长为12m,则底边上的高是()A .4mB .6mC .10mD .12m【分析】作AD ⊥BC 于点 D ,根据等腰三角形的性质和三角形内角和定理可得∠B =∠C =12(180°﹣∠BAC )=30°,再根据含30度角的直角三角形的性质即可得出答案.【解答】解:如图,作AD ⊥BC 于点D ,在△ABC 中,∠BAC =120°,AB =AC ,∴∠B =∠C =12(180°﹣∠BAC )=30°, 又∵AD ⊥BC ,∴AD =12AB =12×12=6(m ),故选:B .【点评】本题考查等腰三角形的性质,三角形内角和定理,含30度角的直角三角形的性质等,解题关键是掌握3027.(2021•黑龙江)如图,矩形ABCD 的边CD 上有一点E ,∠DAE =22.5°,EF ⊥AB ,垂足为F ,将△AEF 绕着点F 顺时针旋转,使得点A 的对应点M 落在EF 上,点E 恰好落在点B 处,连接BE .下列结论:①BM ⊥AE ;②四边形EFBC 是正方形;③∠EBM =30°;④S 四边形BCEM :S △BFM =(2√2+1):1.其中结论正确的序号是( )A .①②B .①②③C .①②④D .③④【分析】延长BM 交AE 于N ,连接AM ,由垂直的定义可得∠AFE =∠EFB =90°,根据直角三角形的两个锐角互余得∠EAF =67.5°,从而有∠EAF +∠FBM =90°,得到①正确;根据三个角是直角可判断四边形EFBC是矩形,再由EF=BF可知是正方形,故②正确,计算出∠EBM=22.5°得③错误;根据等腰直角三角形的性质可知AM=√2FM,推导得出AM=EM=√2FM,从而EF=EM+FM=(√2+1)FM,得到S△EFB:S△BFM=(√2+1):1,再由S四边形BCEF=2S△EFB,得S四边形BCEM:S△BFM=(2√2+1):1,判断出④正确.【解答】解:如图,延长BM交AE于N,连接AM,∵EF⊥AB,∴∠AFE=∠EFB=90°,∵∠DAE=22.5°,∴∠EAF=90°﹣∠DAE=67.5°,∵将△AEF绕着点F顺时针旋转得△MFB,∴MF=AF,FB=FE,∠FBM=∠AEF=∠DAE=22.5°,∴∠EAF+∠FBM=90°,∴∠ANB=90°,∴BM⊥AE,故①正确;∵四边形ABCD是矩形,∴∠ABC=∠C=90°,∵∠EFB=90°,∴四边形EFBC是矩形,又∵EF=BF,∴矩形EFBC是正方形,故②正确;∴∠EBF=45°,∴∠EBM=∠EBF﹣∠FBM=45°﹣22.5°=22.5°,故③错误;∵∠AFM=90°,AF=FM,∴∠MAF=45°,AM=√2FM,∴∠EAM=67.5°﹣45°=22.5°,∴∠AEM=∠MAE,∴EM=AM=√2FM,∴EF=EM+FM=(√2+1)FM,∴S△EFB:S△BFM=(√2+1):1,又∵四边形BCEF是正方形,∴S四边形BCEF=2S△EFB,∴S四边形BCEM:S△BFM=(2√2+1):1,故④正确,∴正确的是:①②④,故选:C.【点评】本题考查了矩形的性质、旋转的性质、勾股定理和正方形的判定与性质,掌握常用辅助线的添加方法,灵活运用相关知识是解题的关键.28.(2022•绍兴)如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°【分析】根据平行线的性质,可以得到∠CBF的度数,再根据∠ABC=90°,可以得到∠1的度数.【解答】解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.【点评】本题考查直角三角形的性质、平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.二.填空题(共27小题)29.(2023•东营)一艘船由A港沿北偏东60°方向航行30km至B港,然后再沿北偏西30°方向航行40km 至C港,则A,C两港之间的距离为km.【分析】根据题意可得:∠DAB=60°,∠FBC=30°,AD∥EF,从而可得∠DAB=∠ABE=60°,然后利用平角定义可得∠ABC=90°,从而在Rt△ABC中,利用勾股定理进行计算即可解答.【解答】解:如图:由题意得:∠DAB=60°,∠FBC=30°,AD∥EF,∴∠DAB=∠ABE=60°,∴∠ABC=180°﹣∠ABE﹣∠FBC=90°,在Rt△ABC中,AB=30km,BC=40km,AC=√AB2+BC2=√302+40250(km),∴A,C两港之间的距离为50km,故答案为:50.【点评】本题考查了勾股定理的应用,根据题目的已知条件画出图形进行分析是解题的关键.30.(2023•菏泽)如图,在四边形ABCD中,∠ABC=∠BAD=90°,AB=5,AD=4,AD<BC,点E在线段BC上运动,点F在线段AE上,∠ADF=∠BAE,则线段BF的最小值为.【分析】设AD的中点为O,以AD为直径画圆,连接OB交⊙O于F′,证得∠DF A=90°,于是得到点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O是交点F′时,线段BF有最小值,据此解答即可.【解答】解:设AD的中点为O,以AD为直径画圆,连接OB交⊙O于F′,∵∠ABC=∠BAD=90°,∴AD∥BC,∴∠DAE=∠AEB,∵∠ADF=∠BAE,∴∠DF A=∠ABE=90°,∴点F在以AD为直径的半圆上运动,当点F运动到OB与⊙O是交点F′时,线段BF有最小值,∵AD=4,∴AO=OF′=12AD=2,∴BO=√52+22=√29,∴线段BF的最小值为√29−2,故答案为:√29−2.【点评】本题考查了勾股定理,平行线的性质,圆周角定理,根据题意得到点F的运动轨迹是解题的关键.31.(2023•随州)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,D为AC上一点,若BD是∠ABC 的角平分线,则AD=.【分析】过点D作DE⊥AB于点E,由角平分线的性质得到CD=DE,再通过HL证明Rt△BCD≌Rt△BED,得到BC=BE=6,根据勾股定理可求出AB=10,进而求出AE=4,设CD=DE=x,则AD=8﹣x,在Rt△ADE中,利用勾股定理建立方程求解即可.【解答】解:如图,过点D 作DE ⊥AB 于点E ,∵∠C =90°,∴CD ⊥BC ,∵BD 是∠ABC 的角平分线,CD ⊥BC ,DE ⊥AB ,∴CD =DE ,在Rt △BCD 和Rt △BED 中,{CD =DE BD =BD, ∴Rt △BCD ≌Rt △BED (HL ),∴BC =BE =6,在Rt △ABC 中,AB =√AC 2+BC 2=√82+62=10,∴AE =AB ﹣BE =10﹣6=4,设CD =DE =x ,则AD =AC ﹣CD =8﹣x ,在Rt △ADE 中,AE 2+DE 2=AD 2,∴42+x 2=(8﹣x )2,解得:x =3,∴AD =8﹣x =5.故答案为:5.【点评】本题主要考查角平分线的性质、全等三角形的判定与性质、勾股定理、解二元一次方程,解题关键是正确作出辅助线,利用角平分线的性质和勾股定理解决问题.32.(2023•扬州)我国汉代数学家赵爽证明勾股定理时创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”,它是由4个全等的直角三角形和一个小正方形组成.如图,直角三角形的直角边长为a 、b ,斜边长为c ,若b ﹣a =4,c =20,则每个直角三角形的面积为 .【分析】根据勾股定理可知a 2+b 2=c 2,再根据b ﹣a =4,c =20,即可得到a 、b 的值,然后即可计算出每个直角三角形的面积.【解答】解:由图可得,a 2+b 2=c 2,∴{a 2+b 2=202b −a =4且a 、b 均大于0, 解得{a =12b =16, ∴每个直角三角形的面积为12ab =12×12×16=96, 故答案为:96.【点评】本题考查勾股定理的证明、解直角三角形,解答本题的关键是明确题意,求出a 、b 的值.33.(2022•常州)如图,在Rt △ABC 中,∠C =90°,AC =9,BC =12.在Rt △DEF 中,∠F =90°,DF =3,EF =4.用一条始终绷直的弹性染色线连接CF ,Rt △DEF 从起始位置(点D 与点B 重合)平移至终止位置(点E 与点A 重合),且斜边DE 始终在线段AB 上,则Rt △ABC 的外部被染色的区域面积是 .【分析】如图,连接CF 交AB 于点M ,连接CF ′交AB 于点N ,过点F 作FG ⊥AB 于点G ,过点F ′作F ′H ⊥AB 于点H ,连接FF ′,则四边形FGHF ′是矩形,Rt △ABC 的外部被染色的区域是梯形MFF ′N .求出梯形的上下底以及高,可得结论.【解答】解:如图,连接CF 交AB 于点M ,连接CF ′交AB 于点N ,过点F 作FG ⊥AB 于点H ,过点F ′作F ′H ⊥AB 于点G ,连接FF ′,则四边形FGHF ′是矩形,Rt △ABC 的外部被染色的区域是梯形MFF ′N .在Rt△DEF中,DF=3,EF=4,∴DE=√DF2+EF2=√32+42=5,在Rt△ABC中,AC=9,BC=12,∴AB=√AC2+BC2=√92+122=15,∵12•DF•EF=12•DE•GF,∴FG=12 5,∴BG=√BF2−FG2=√32−(125)2=95,∴GE=BE﹣BG=165,AH=GE=165,∴F′H=FG=12 5,∴FF′=GH=AB﹣BG﹣AH=15﹣5=10,∵BF∥AC,∴BMAM=BFAC=13,∴BM=14AB=154,同法可证AN=14AB=154,∴MN=15−154−154=152,∴Rt△ABC的外部被染色的区域的面积=12×(10+152)×125=21,故答案为:21.【点评】本题考查勾股定理,梯形的面积,平行线分线段成比例定理等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题在的压轴题.34.(2022•无锡)已知△ABC中,∠B=45o,∠C=60o,AB=√6,则AC=.【分析】:过A作AH⊥BC于H,由∠B=45°,得BH=AH=AB2=√3,而∠C=60°,知CH=12AC,由勾股定理有(12AC)2+(√3)2=AC2,即可解得答案.【解答】解:过A作AH⊥BC于H,如图:∵∠B =45°,∴△ABH 是等腰直角三角形,∴BH =AH =AB 2=√62=√3, ∵∠C =60°,∴∠CAH =30°,∴CH =12AC ,在Rt △ACH 中,CH 2+AH 2=AC 2,∴(12AC )2+(√3)2=AC 2, 解得AC =2(负值舍去),故答案为:2.【点评】本题考查勾股定理,解题的关键是掌握含45°,30°角的直角三角形三边的关系.35.(2022•无锡)如图,在Rt △ABC 中,∠C =90o ,AC =2,BC =4,点E 、F 分别在AB 、AC 上,点A 关于EF 的对称点A '落在BC CA '=x .若AE =AF ,则x = ;设AE =y ,请写出y 关于x 的函数表达式: .【分析】连接A 'E ,A 'F ,由点A 关于EF 的对称点A '落在BC 上,AE =AF ,可得A 'E =AE =A 'F =AF ,四边形AEA 'F 是菱形,即知A 'B =2A 'E ,而CA '=x ,在Rt △A 'CF 中,可得x 2+(12x )2=(2−12x )2,解得x =√5−1;若AE =y ,过E 作EH ⊥BC 于H ,由△BHE ∽△BCA ,可得BH =4−2√55y ,HE =2−√55y ,在Rt △A 'HE 中,有(2√55y ﹣x )2+(2−√55y )2=y 2,变形可得答案. 【解答】解:连接A 'E ,A 'F ,如图:。

【中考数学】易错易错压轴勾股定理选择题训练经典题目(含答案)(1)

【中考数学】易错易错压轴勾股定理选择题训练经典题目(含答案)(1)

【中考数学】易错易错压轴选择题精选:勾股定理选择题训练经典题目(含答案)(1)一、易错易错压轴选择题精选:勾股定理选择题1.下列四组数据不能作为直角三角形的三边长的是 ( )A .6,8,10B .5,12,13C .3,5,6D .2,3,52.如图,在△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 、BE 与相交于点G ,以下结论中正确的结论有( )(1)△ABC 是等腰三角形;(2)BF =AC ;(3)BH :BD :BC =1:2:3;(4)GE 2+CE 2=BG 2.A .1个B .2个C .3个D .4个3.已知:如图在△ABC ,△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C ,D ,E 三点在同一条直线上,连接BD ,BE ,以下四个结论:①BD=CE ;②BD ⊥CE ;③∠ACE+∠DBC=45°;④BE 2=2(AD 2+AB 2),其中结论正确的个数是( )A .1B .2C .3D .4 4.已知三角形的三边长分别为a ,b ,c ,且a+b=10,ab=18,c=8,则该三角形的形状是( )A .等腰三角形B .直角三角形C .钝角三角形D .等腰直角三角形5.如图,在ABC 中,,904C AC ︒∠==cm ,3BC =cm ,点D 、E 分别在AC 、BC上,现将DCE 沿DE 翻折,使点C 落在点'C 处,连接AC ',则AC '长度的最小值 ( )A .不存在B .等于 1cmC .等于 2 cmD .等于 2.5 cm6.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm ,在容器内壁离容器底部4 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm ,则该圆柱底面周长为( )cm .A .9B .10C .18D .207.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ;③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④8.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 和b ,那么ab 的值为( )A .49B .25C .12D .109.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,BD 平分∠ABC ,E 是AB 中点,连接DE ,则DE 的长为( )A .102B .2C 51+D .3210.若直角三角形的三边长分别为-a b 、a 、+a b ,且a 、b 都是正整数,则三角形其中一边的长可能为()A .22B .32C .62D .8211.如图,在△ABC ,∠C =90°,AD 平分∠BAC 交CB 于点D ,过点D 作DE ⊥AB ,垂足恰好是边AB 的中点E ,若AD =3cm ,则BE 的长为( )A .332cmB .4cmC .32cmD .6cm12.在ABC ∆中,D 是直线BC 上一点,已知15AB =,12AD =,13AC =,5CD =,则BC 的长为( )A .4或14B .10或14C .14D .10 13.下列条件中,不能..判定ABC 为直角三角形的是( ) A .::5:12:13a b c =B .A BC ∠+∠=∠ C .::2:3:5A B C ∠∠∠=D .6a =,12b =,10c =14.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .22B .4C .3D .1015.如图, 在ABC 中,CE 平分ACB ∠,CF 平分ABC 的外角ACD ∠,且EF //BC 交AC 于M ,若CM 4=,则22CE CF +的值为( )A .8B .16C .32D .6416.如图,在Rt △ABC 中,∠A=90°,AB=6,AC=8,现将Rt △ABC 沿BD 进行翻折,使点A 刚好落在BC 上,则CD 的长为( )A .10B .5C .4D .3 17.以下列各组数为边长,不能构成直角三角形的是( )A .3,4,5B .1,1,2C .8,12,13D .2、3、5 18.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( ) A .4 B .16 C .34 D .4或3419.如图,分别以直角ABC ∆三边为边向外作三个正方形,其面积分别用123,,S S S 表示,若27S =,32S =,那么1S =( )A .9B .5C .53D .4520.“折竹抵地”问题源自《九章算术》中,即:今有竹高一丈,末折抵地,去本四尺,问折者高几何?意思是:一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部4尺远(如图),则折断后的竹子高度为多少尺?(1丈=10尺)( )A .3B .5C .4.2D .421.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .62B .22C .210D .6 22.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直 23.我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a 、b ,那么2()a b + 的值为( ).A .49B .25C .13D .124.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2a b +值为( )A .25B .9C .13D .16925.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE 2+BG 2=2a 2+2b 2,其中正确结论有( )A .0个B .1个C .2个D .3个26.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2016的值为( )A .(22)2013B .(22)2014C .(12)2013D .(12)2014 27.如图,ABC 中,有一点P 在AC 上移动.若56AB AC BC ===,,则AP BP CP ++的最小值为( )A .8B .8.8C .9.8D .1028.如图,在23⨯的正方形网格中,AMB ∠的度数是( )A .22.5°B .30°C .45°D .60°29.三个正方形的面积如图,正方形A 的面积为( )A .6B .36C .64D .830.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S ;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S ,其中116S =,245S =,511S =,614S =,则43S S +=( ).A.86 B.61 C.54 D.48【参考答案】***试卷处理标记,请不要删除一、易错易错压轴选择题精选:勾股定理选择题1.C解析:C【分析】求出两小边的平方和长边的平方,再看看是否相等即可.【详解】A、62+82=102,此时三角形是直角三角形,故本选项不符合题意;B、52+122=132,此时三角形是直角三角形,故本选项不符合题意;C、32+52≠62,此时三角形不是直角三角形,故本选项符合题意;D、222235+=,此时三角形是直角三角形,故本选项不符合题意;故选:C.【点睛】本题主要考查了勾股定理逆定理,关键是掌握判断一个三角形是不是直角三角形,必须满足较小两边平方的和等于最大边的平方才能做出判断.2.C解析:C【分析】(1)根据角平分线的定义可得∠ABE=∠CBE,根据等角的余角相等求出∠A=∠BCA,再根据等角对等边可得AB=BC,从而得证;(2)根据三角形的内角和定理求出∠A=∠DFB,推出BD=DC,根据AAS证出△BDF≌△CDA即可;(3)根据等腰直角三角形斜边上的中线等于斜边的一半进行解答;(4)由(2)得出BF =AC ,再由BF 平分∠DBC 和BE ⊥AC 通过ASA 证得△ABE ≌△CBE ,即得CE =AE =12AC ,连接CG ,由H 是BC 边的中点和等腰直角三角形△DBC 得出BG =CG ,再由直角△CEG 得出CG 2=CE 2+GE 2,从而得出CE ,GE ,BG 的关系.【详解】 解:(1)∵BE 平分∠ABC ,∴∠ABE =∠CBE ,∵CD ⊥AB ,∴∠ABE +∠A =90°,∠CBE +∠ACB =90°,∴∠A =∠BCA ,∴AB =BC ,∴△ABC 是等腰三角形;故(1)正确;(2)∵CD ⊥AB ,BE ⊥AC ,∴∠BDC =∠ADC =∠AEB =90°,∴∠A +∠ABE =90°,∠ABE +∠DFB =90°,∴∠A =∠DFB ,∵∠ABC =45°,∠BDC =90°,∴∠DCB =90°﹣45°=45°=∠DBC ,∴BD =DC ,在△BDF 和△CDA 中==BDF CDA A DFB BD CD ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△BDF ≌△CDA (AAS ),∴BF =AC ;故(2)正确;(3)∵在△BCD 中,∠CDB =90°,∠DBC =45°,∴∠DCB =45°,∴BD =CD ,BCBD .由点H 是BC 的中点,∴DH =BH =CH =12BC , ∴BD,∴BH :BD :BC =BH:2BH =1:2.故(3)错误;(4)由(2)知:BF =AC ,∵BF 平分∠DBC ,∴∠ABE =∠CBE ,又∵BE ⊥AC ,∴∠AEB =∠CEB ,在△ABE 与△CBE 中,==ABE CBE AEB CEB BE BE ∠∠⎧⎪∠∠⎨⎪=⎩, ∴△ABE ≌△CBE (AAS ),∴CE =AE =12AC , ∴CE =12AC =12BF ; 连接CG .∵BD =CD ,H 是BC 边的中点,∴DH 是BC 的中垂线,∴BG =CG ,在Rt △CGE 中有:CG 2=CE 2+GE 2,∴CE 2+GE 2=BG 2.故(4)正确.综上所述,正确的结论由3个.故选C .【点睛】本题考查全等三角形的判定与性质,等腰直角三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,平行线的性质,勾股定理,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.3.C解析:C【解析】试题分析:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD ,即∠BAD=∠CAE . ∵在△BAD 和△CAE 中,AB=AC ,∠BAD=∠CAE ,AD=AE ,∴△BAD ≌△CAE (SAS ).∴BD=CE .本结论正确.②∵△BAD ≌△CAE ,∴∠ABD=∠ACE .∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°.∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°. ∴BD ⊥CE .本结论正确.③∵△ABC 为等腰直角三角形,∴∠ABC=∠ACB=45°.∴∠ABD+∠DBC=45°.∵∠ABD=∠ACE ,∴∠ACE+∠DBC=45°.本结论正确.④∵BD ⊥CE ,∴在Rt △BDE 中,利用勾股定理得:BE 2=BD 2+DE 2.∵△ADE 为等腰直角三角形,∴AD ,即DE 2=2AD 2.∴BE 2=BD 2+DE 2=BD 2+2AD 2.而BD 2≠2AB 2,本结论错误.综上所述,正确的个数为3个.故选C .4.B解析:B【解析】【分析】根据完全平方公式利用a+b=10,ab=18求出22a b +,即可得到三角形的形状.【详解】∵a+b=10,ab=18,∴22a b +=(a+b )2-2ab=100-36=64,∵,c=8,∴2c =64,∴22a b +=2c ,∴该三角形是直角三角形,故选:B.【点睛】此题考查勾股定理的逆定理,完全平方公式,能够利用完全平方公式由已知条件求出22a b +是解题的关键.5.C解析:C【分析】当C ′落在AB 上,点B 与E 重合时,AC'长度的值最小,根据勾股定理得到AB=5cm ,由折叠的性质知,BC ′=BC=3cm ,于是得到结论.【详解】解:当C ′落在AB 上,点B 与E 重合时,AC'长度的值最小,∵∠C=90°,AC=4cm ,BC=3cm ,∴AB=5cm ,由折叠的性质知,BC ′=BC=3cm ,∴AC ′=AB-BC ′=2cm .故选:C .【点睛】本题考查了翻折变换(折叠问题),勾股定理,熟练掌握折叠的性质是解题的关键.6.C解析:C【分析】将容器侧面展开,建立A 关于上边沿的对称点A’,根据两点之间线段最短可知A’B 的长度为最短路径15,构造直角三角形,依据勾股定理可以求出底面周长的一半,乘以2即为所求.【详解】解:如图,将容器侧面展开,作A 关于EF 的对称点'A ,连接'A B ,则'A B 即为最短距离, 根据题意:'15A B cm =,12412BD AE cm =-+=,2222'15129A D A B BD ∴--'==.所以底面圆的周长为9×2=18cm.故选:C .【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.7.A解析:A【分析】先判断△DBE 是等腰直角三角形,根据勾股定理可推导得出2BE ,故①正确;根据∠BHE 和∠C 都是∠HBE 的余角,可得∠BHE=∠C ,再由∠A=∠C ,可得②正确;证明△BEH ≌△DEC ,从而可得BH=CD ,再由AB=CD ,可得③正确;利用已知条件不能得到④,据此即可得到选项.解:∵∠DBC=45°,DE ⊥BC 于E ,∴在Rt △DBE 中,BE 2+DE 2=BD 2,BE=DE ,∴BD=2BE ,故①正确;∵DE ⊥BC ,BF ⊥DC ,∴∠BHE 和∠C 都是∠HBE 的余角,∴∠BHE=∠C ,又∵在▱ABCD 中,∠A=∠C ,∴∠A=∠BHE ,故②正确;在△BEH 和△DEC 中,BHE C HEB CED BE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BEH ≌△DEC ,∴BH=CD ,∵四边形ABCD 为平行四边形,∴AB=CD ,∴AB=BH ,故③正确;利用已知条件不能得到△BCF ≌△DCE ,故④错误,故选A.【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键.8.C解析:C【解析】试题解析:如图,∵大正方形的面积是25,∴c 2=25,∴a 2+b 2=c 2=25,∵直角三角形的面积是(25-1)÷4=6,又∵直角三角形的面积是12ab=6, ∴ab=12.故选C. 9.A解析:A试题解析:如图,过D 作AB 垂线交于K ,∵BD 平分∠ABC ,∴∠CBD=∠ABD∵∠C=∠DKB=90°,∴CD=KD ,在△BCD 和△BKD 中,CD KD BD BD ⎧⎨⎩== ∴△BCD ≌△BKD ,∴BC=BK=3∵E 为AB 中点∴BE=AE=2.5,EK=0.5,∴AK=AE-EK=2,设DK=DC=x ,AD=4-x ,∴AD 2=AK 2+DK 2即(4-x )2=22+x 2解得:x=32∴在Rt △DEK 中,2222310=+0.5=2DK KE +()(). 故选A .10.B解析:B【解析】由题可知(a-b )2+a 2=(a+b )2,解得a=4b ,所以直角三角形三边分别为3b ,4b ,5b ,当b=8时,4b=32,故选B .11.A解析:A【分析】先根据角平分线的性质可证CD=DE ,从而根据“HL”证明Rt △ACD ≌Rt △AED ,由DE 为AB 中线且DE ⊥AB ,可求AD=BD=3cm ,然后在Rt △BDE 中,根据直角三角形的性质即可求出BE 的长.∵AD 平分∠BAC 且∠C=90°,DE ⊥AB ,∴CD=DE ,由AD =AD ,所以,Rt △ACD ≌Rt △AED ,所以,AC=AE.∵E 为AB 中点,∴AC=AE=12AB , 所以,∠B=30° .∵DE 为AB 中线且DE ⊥AB ,∴AD=BD=3cm ,∴DE=12BD=32, ∴BE=22332⎛⎫-= ⎪⎝⎭332cm. 故选A.【点睛】本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键.12.A解析:A【分析】根据AC =13,AD =12,CD =5,可判断出△ADC 是直角三角形,在Rt △ADB 中求出BD ,继而可得出BC 的长度.【详解】∵AC =13,AD =12,CD =5,∴222AD CD AC +=,∴△ABD 是直角三角形,AD ⊥BC ,由于点D 在直线BC 上,分两种情况讨论:当点D 在线段BC 上时,如图所示,在Rt △ADB 中,229BD AB AD =-=,则14BC BD CD =+=;②当点D 在BC 延长线上时,如图所示,在Rt △ADB 中,229BD AB AD =-=, 则4BC BD CD =-=.故答案为:A.【点睛】 本题考查勾股定理和逆定理,需要分类讨论,掌握勾股定理和逆定理的应用为解题关键.13.D解析:D【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90︒即可.【详解】解:A 、22251213+=,ABC ∆∴是直角三角形,故能判定ABC ∆是直角三角形;B 、A BC ∠+∠=∠,90C ∴∠=︒,故能判定ABC ∆是直角三角形; C 、::2:3:5A B C ∠∠∠=,518090235C ∴∠=⨯︒=︒++,故能判定ABC ∆是直角三角形;D 、22261012+≠,ABC ∆∴不是直角三角形,故不能判定ABC ∆是直角三角形; 故选:D .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,可利用勾股定理的逆定理和直角三角形的定义判断.14.A解析:A【分析】连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出=AF FC .再根据ASA 证明FOA BOC ∆≅∆,那么==3AF BC ,等量代换得到==3FC AF ,利用线段的和差关系求出==1FD AD AF -.然后在直角FDC ∆中利用勾股定理求出CD 的长.【详解】解:如图,连接FC ,则=AF FC .AD BC ∵∥,FAO BCO ∴∠=∠.在FOA ∆与BOC ∆中,FAO BCO OA OCAOF COB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()FOA BOC ASA ∴∆≅∆,3AF BC ∴==,3FC AF ∴==,431FD AD AF =-=-=.在FDC ∆中,90D ︒∠=,222CD DF FC ∴+=,22213CD ∴+=,22CD ∴=.故选A .【点睛】本题考查了作图﹣基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.15.D解析:D【分析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理求得CE 2+CF 2=EF 2.【详解】∵CE 平分∠ACB ,CF 平分∠ACD ,∴∠ACE=12∠ACB ,∠ACF=12∠ACD ,即∠ECF=12(∠ACB+∠ACD )=90°, 又∵EF ∥BC ,CE 平分∠ACB ,CF 平分∠ACD ,∴∠ECB=∠MEC=∠ECM ,∠DCF=∠CFM=∠MCF ,∴CM=EM=MF=4,EF=8,由勾股定理可知CE 2+CF 2=EF 2=64.【点睛】此题考查角平分线的定义,直角三角形的判定,勾股定理的运用,解题关键在于掌握各性质定义.16.B解析:B【分析】根据“在Rt△ABC中”和“沿BD进行翻折”可知,本题考察勾股定理和翻折问题,根据勾股定理和翻折的性质,运用方程的方法进行求解.【详解】∵∠A=90°,AB=6,AC=8,∴,根据翻折的性质可得A′B=AB=6,A′D=AD,∴A′C=10-6=4.设CD=x,则A′D=8-x,根据勾股定理可得x2-(8-x)2=42,解得x=5,故CD=5.故答案为:B.【点睛】本题考察勾股定理和翻折问题,根据勾股定理把求线段的长的问题转化为方程问题是解决本题的关键.17.C解析:C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.)2+2=2,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.18.D解析:D试题解析:当3和5都是直角边时,第三边长为:2235+=34;当5是斜边长时,第三边长为:2253-=4.故选D .19.A解析:A【分析】根据勾股定理与正方形的性质解答.【详解】解:在Rt △ABC 中,AB 2=BC 2+AC 2,∵S 1=AB 2,S 2=BC 2,S 3=AC 2,∴S 1=S 2+S 3.∵S 2=7,S 3=2,∴S 1=7+2=9.故选:A .【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.20.C解析:C【分析】根据题意结合勾股定理得出折断处离地面的长度即可.【详解】解:设折断处离地面的高度OA 是x 尺,根据题意可得:x 2+42=(10-x )2,解得:x=4.2,答:折断处离地面的高度OA 是4.2尺.故选C .【点睛】此题主要考查了勾股定理的应用,根据题意正确应用勾股定理是解题关键.21.C解析:C【解析】试题解析:作点B 关于直线l 的对称点B ',连接AB '并延长,与直线l 的交点即为使得PA PB -取最大值时对应的点.P此时.PA PB PA PB AB -=-'='过点B '作B E AC '⊥于点,E 如图,四边形B DCE '为矩形,6, 2.B E CD EC B D BD ∴=====''2.AE ∴=22210.AB AE B E ''+=PA PB -的最大值为:210.故答案为:210.22.C解析:C【分析】矩形与菱形相比,菱形的四条边相等、对角线互相垂直;矩形四个角是直角,对角线相等,由此结合选项即可得出答案.【详解】A 、菱形、矩形的内角和都为360°,故本选项错误;B 、对角互相平分,菱形、矩形都具有,故本选项错误;C 、对角线相等菱形不具有,而矩形具有,故本选项正确D 、对角线互相垂直,菱形具有而矩形不具有,故本选项错误,故选C .【点睛】本题考查了菱形的性质及矩形的性质,熟练掌握矩形的性质与菱形的性质是解题的关键.23.A解析:A【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=12,据此即可得结果.【详解】根据题意,结合勾股定理a 2+b 2=25,四个三角形的面积=4×12ab=25-1=24, ∴2ab=24,联立解得:(a+b )2=25+24=49.故选A. 24.A解析:A【分析】根据勾股定理可以求得22a b +等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据()2222a b a ab b +=++即可求解.【详解】根据勾股定理可得2213a b +=, 四个直角三角形的面积是:14131122ab ⨯=-=,即212ab =, 则()2222131225a b a ab b +=++=+=.故选:A .【点睛】本题考查了勾股定理以及完全平方式,正确根据图形的关系求得22a b +和ab 的值是关键.25.D解析:D【解析】分析:由四边形ABCD 与四边形EFGC 都为正方形,得到四条边相等,四个角为直角,利用SAS 得到三角形BCE 与三角形DCG 全等,利用全等三角形对应边相等即可得到BE=DG ,利用全等三角形对应角相等得到∠CBM=∠MDO ,利用等角的余角相等及直角的定义得到∠BOD 为直角,利用勾股定理求出所求式子的值即可.详解:①∵四边形ABCD 和EFGC 都为正方形,∴CB=CD ,CE=CG ,∠BCD=∠ECG=90°,∴∠BCD+∠DCE=∠ECG+∠DCE ,即∠BCE=∠DCG.在△BCE 和△DCG 中,CB =CD ,∠BCE =∠DCG ,CE =CG ,∴△BCE ≌△DCG ,∴BE=DG ,故结论①正确.②如图所示,设BE交DC于点M,交DG于点O.由①可知,△BCE≌△DCG,∴∠CBE=∠CDG,即∠CBM=∠MDO.又∵∠BMC=∠DMO,∠MCB=180°-∠CBM-∠BMC,∠DOM=180°-∠CDG-∠MDO,∴∠DOM=∠MCB=90°,∴BE⊥DG.故②结论正确.③如图所示,连接BD、EG,由②知,BE⊥DG,则在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③结论正确.故选:D.点睛:本题考查了旋转的性质、全等三角形的判定与性质、正方形的性质.26.C解析:C【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=(12)n−3”,依此规律即可得出结论.【详解】解:在图中标上字母E,如图所示.∵正方形ABCD 的边长为2,△CDE 为等腰直角三角形,∴DE 2+CE 2=CD 2,DE=CE ,∴S 2+S 2=S 1.观察,发现规律:S 1=22=4,S 2=12S 1=2,S 3=12S 2=1,S 4=12S 3=12,…, ∴S n =(12)n−3. 当n=2016时,S 2016=(12)2016−3=(12)2013. 故选:C .【点睛】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n =(12)n−3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n 的值,根据数值的变化找出变化规律是关键. 27.C解析:C【分析】由AP+CP=AC 得到AP BP CP ++=BP+AC ,即计算当BP 最小时即可,此时BP ⊥AC ,根据三角形面积公式求出BP 即可得到答案.【详解】∵AP+CP=AC ,∴AP BP CP ++=BP+AC ,∴BP ⊥AC 时,AP BP CP ++有最小值,设AH ⊥BC ,∵56AB AC BC ===,∴BH=3, ∴224AH AB BH =-=, ∵1122ABC SBC AH AC BP =⋅=⋅, ∴1164522BP ⨯⨯=⨯, ∴BP=4.8,∴AP BP CP ++=AC+BP=5+4.8=9.8,【点睛】此题考查等腰三角形的三线合一的性质,勾股定理,最短路径问题,正确理解AP BP CP ++时点P 的位置是解题的关键.28.C解析:C【分析】连接AB ,求出AB 、BM 、AM 的长,根据勾股定理逆定理即可求证AMB ∆为直角三角形,而AM=BM ,即AMB ∆为等腰直角三角形,据此即可求解.【详解】连接AB∵22125AM =+=22125AB =+=221310BM =+=∴22210AM AB BM +==∴AMB ∆为等腰直角三角形∴45AMB ∠=︒故选C .【点睛】本题考查了勾股定理的逆定理,重点是求出三条边的长,然后证明AMB ∆为直角三角形.29.B解析:B【分析】根据直角三角形的勾股定理,得:两条直角边的平方等于斜边的平方.再根据正方形的面积公式,知:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.【详解】解:A 的面积等于100-64=36;【点睛】本题主要考查勾股定理的证明:以两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.30.C解析:C【分析】设1S ,2S ,3S 对应的边长为1L ,2L ,3L ,根据题意,通过等边三角形和勾股定理的性质,得23L ,从而计算得到3S ;设4S ,5S ,6S 对应的边长为4L ,5L ,6L ,通过圆形面积和勾股定理性质,得24L ,从而计算得到4S ,即可得到答案.【详解】分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S则1S ,2S ,3S 对应的边长设为1L ,2L ,3L根据题意得:21111116224S L L L =⨯==22245S L == ∴21L =,22L =∵222132L L L += ∴22232129L L L =-=∴233292944S L === 以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S 则4S ,5S ,6S 对应的边长设为4L ,5L ,6L 根据题意得:2255511228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭ 2266614228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭ ∴25811L π=⨯,26814L π=⨯ ∵222564L L L += ∴()22245688111425L L L ππ=+=⨯+=⨯∴2448S 252588L πππ==⨯⨯=∴43292554S S +=+=故选:C .【点睛】本题考查了勾股定理、等边三角形、圆形面积的知识;解题的关键是熟练掌握勾股定理、等边三角形面积计算的性质,从而完成求解.。

勾股定理测试题(涵盖大量的中考题和易错题_本试卷附答案)

勾股定理测试题(涵盖大量的中考题和易错题_本试卷附答案)

勾股定理测试题(涵盖大量的中考题和易错题,本试卷附答案)姓名: 班级: 学号 .一、精心选一选(每小题4分,共40分)1.在三边分别为下列长度的三角形中,不是直角三角形的是( ) A.5,12,13 B.4,5,7 C.2,3,5 D.1,2,32.有五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的摆放是( )7242520715202425157252024257202415(A)(B)(C)(D)3.一个三角形的三边长分别是5、13、12,则它的面积等于( ) A.30 B.60 C.65 D.1564.三角形的三条中位线长分别为6、8、10,则该三角形为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定5.如果三角形三边长分别为6、8、10,那么最大边上的高是( ) A.2.4 B.4.5 C.4.8 D.66.在△ABC 中,∠ACB=90°,AC=12,BC=5,AM=AC ,BN=BC ,则MN 的长为( ) A.2 B.2.6 C.3 D.47.正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为( ) A.13 B.17 C.5 D.2+58.若三角形ABC 中,∠A ∶∠B ∶∠C=2∶1∶1,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,则下列等式中,成立的是( ) A.222c b a =+ B.222c a = C.222a c = D.222b c =BC第6题BACD ABM第7题第14题图2032AB第16题(第15题图)9.在△ABC中,∠C=90°,如果AB=10,BC∶AC=3∶4,则BC=()A.6B.8C.10 D、以上都不对10.将一根长24厘米的筷子,置于底面直径为6厘米,高为10厘米的圆柱形水杯中,则筷子露在杯子外面的长度至少为( C )厘米A.14B.16C.24﹣136D.24+136二、细心填一填(每空3分,满分18分)11.有一个三角形的两条边长分别为3、4,要使三角形为直角三角形,则第三边为 .12.等边三角形的边长为6,则它的高是 .13.命题:“角平分线上的点到角的两边的距离相等”,它的逆命题是______________________________________________________________________ .14.如图,校园内有一块长方形花圃,为了从A走到B,有极少数同学为了避开拐角而走“捷径”,在花圃内走出了一条“路”AB,他们仅仅少走了 m的路,却踩伤了花草.这种不文明现象应纠正哦.15.如图,三个正方形围成一个直角三角形,81、400分别为所在正方形的面积,则图中字母A16.如图,是一个三级台阶,它的每一级的长、宽和高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是 dm;三、耐心做一做:(本大题共4题,共42分) 17.(10分)在数轴上作出表示29的点.18.(10分)如图,一艘帆船由于风向的原因,先向正东方航行了160千米,然后向正北方航行了120千米,这时它离出发点有多远?19.(10分)如图一梯子AB 长2.5米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 的距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,求梯子顶端A 下落了多少米?第18题图 A AB EC D 第19题第17题图 x20.(12分)已知:如图,直线y =kx+b 与双曲线y =x3在第一象限内相交于点M(1,a)和N(3,b),与x 轴和y 轴分别相交与点A 和B ,OC ⊥AB ,垂足为C. ⑴求线段AB 的长度; ⑵求OC 的长.答案:1.B.2.C.3.A.4.B.5.C.6.D.7.A.8.B.9.A.10.C. 11.5;12.33;13.到角的两边的距离相等的点在角的平分线上; 14.2;15.481;16.25.17.略;18.407千米;19.0.5米;20.a=3,b=1,直线:y =-x+4,A (4,0),B (0,4) ⑴AB=42;⑵OC=22。

勾股定理中考真题精选汇总

勾股定理中考真题精选汇总

勾股定理中考真题精选汇总一、选择题1.(2009年山西省)如图,在Rt ΔABC 中,∠ACB=90°BC =3,AC =4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( ) A .32 B .76C .256D .2D .2.(2009年达州)图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是 ( ) A .13 B .26 C .47 D .943.(2009年湖北十堰市)如图,已知Rt ΔABC 中,∠ACB =90°,AC = 4,BC =3,以AB 边所在的直线为轴,将ΔABC 旋转一周,则所得几何体的表面积是( ). A .π5168 B .π24 C .π584D .π124.(2009年湖州)如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE ⊥AC,EF ⊥AB,FD ⊥BC ,则ΔDEF 的面积与ΔABC 的面积之比等于( )A .1∶3B .2∶3C .3∶2D .3∶311.(2009白银市)如图,四边形ABCD 中,AB =BC ,∠ABC =∠CDA =90°,BE ⊥AD 于点E ,且四边形ABCD 的面积为8,则BE =( ) A .2B .3C .22D .2313.(2009年烟台市)如图,等边△ABC 的边长为3,P 为BC 上一点,且BP =1,D 为AC 上一点,若∠APD =60°,则CD 的长为( )A .32 B .23C .12D .3415.(2009恩施市)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是( )A .521B .25 ADCPB60° DCEFABAD BEC17.(2009丽水市)如图,已知△ABC 中,∠ABC=90°,AB =BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2 , l 2,l 3之间的距离为3 ,则AC 的长是( ) A .172 B .52 C .24 D .721.(2009重庆綦江)如图,点A 的坐标是(2,2),若点P 在x 轴上,且△APO 是等腰三角形,则点P 的坐标不可能...是( ) A .(4,0) B .(1.0) C .(-22,0) D .(2,0)22.(2009威海)如图,AB =AC,BD =BC ,若∠A=40°,则∠ABD 的度数是( )A .20B .30C .35D .4024.(2009年贵州黔东南州)如图,在△ABC 中,AB =AC ,=AD ,则∠A 等于( )A .30oB .40oC .45oD .36o27.(2009年云南省)如图,等腰△ABC 的周长为21,底边BC = 5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( )A .13B .14C .15D .1628.(2009呼和浩特)在等腰ABC △中,AB AC ,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( ) A .7B .11C .7或11D .7或10二、填空题2.(2009年泸州)如图1,在边长为1的等边△ABC中,中线AD 与中线BE 相交于点O ,则OA 长度为 .ADEB c1 2 3 4-1 1 2 xy ABADCl 1l 2 l 3ACB3.(2009年泸州)如图2,已知Rt △ABC 中,AC =3,BC = 4,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直做下去,得到了一组线段CA 1A 1C 1,12C A ,…,则CA 1= ,=5554C A A C5.(2009年滨州)已知等腰ABC △的周长为10,若设腰长为x ,则x 的取值范围是 . 6. (2009年)已知Rt △ABC 的周长是344+,斜边上的中线长是2,则S △ABC =____________11.(2009年黄冈市)在△A BC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,则∠B 等于_____________度.9. (2009襄樊市)在ABC △中,12cm 6cm AB AC BC D ===,,为BC 的中点,动点P 从B 点出发,以每秒1cm 的速度沿B AC →→的方向运动.设运动时间为t ,那么当t = 秒时,过D 、P 两点的直线将ABC △的周长分成两个部分,使其中一部分是另一部分的2倍.14. (2009年宜宾)已知:如图,以Rt △ABC 的三边为斜边分别向外作等腰直角三角形.若斜边AB =3,则图中阴影部分的面积为 .17.(2009年湖州)如图,已知在Rt ABC △中,Rt ACB ∠=∠,4AB =,分别以AC ,BC 为直径作半圆,面积分别记为1S ,2S ,则1S +2S 的值等于20. (2009年重庆市江津区)等腰三角形一腰上的高与另一腰的夹角为30º,腰长为4 cm ,则其腰上的高为 cm .ABC EFH第12题图CABS 1S 221.(2009年)如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的A 处目测得点A 与甲、乙楼顶B C 、刚好在同一直线上,若小明的身高忽略不计,则乙楼的高度是 米.22.(2009年安徽)13、长为4m 的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了 m .24.(2009年邵阳市)如图所示的圆锥主视图是一个等边三角形,边长为2,则这外圆锥的侧面积为______(结果保留π)。

勾股定理专题训练试题精选(一)附答案

勾股定理专题训练试题精选(一)附答案

勾股定理专题训练试题精选(一)一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.24. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为三角形,则正方形ABCD的边长为()11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+1012.A.132 B.121 C.120 D.以上答案都不对(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形A.2n﹣2B.2n﹣1C.2n D.2n+115. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确对于两人的证法,下列哪一个判断是正确的()16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个17.A.1B .C .D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0根, △ABC内一点P到三边的距离都相等. 则PC为()18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S3219. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个20. 设直角三角形的A.2B.3C.4D.5三边长分别为a、b、c, 若c﹣b=b﹣a>0,则=()21. (1999•A.4B.6C.8D.温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.A.16 B.18 C.12D.1223. 在△ABC中,∠A=15°,AB=12,则△ABC的面积等于()24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.9625. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE26. 如图, 在正方形网格中, cosα的值为()A.1B.C.D.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 129. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;③S四边形AEPF=S△ABC;④当∠EPF在△ABC内绕顶点P旋转时(点E不与A.B重合)BE+CF=EF.上述结论中始终正确的有()A.1个B.2个C.3个D.4个30. 如图, △ABC中, AC=BC, ∠ACB=90°, AE平分∠BAC交BC于E, BD⊥AE于D, DM⊥AC于M, 连CD. 下列结论: ①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个B.2个C.3个D.4个勾股定理专题训练试题精选(一)参考答案与试题解析一. 选择题(共30小题)1.(2014•十堰)如图, 在四边形ABCD中, AD∥BC, DE⊥BC, 垂足为点E, 连接AC交DE于点F, 点G为AF的中点, ∠ACD=2∠ACB.若DG=3, EC=1, 则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线. 菁优网版权所有专题:几何图形问题.分析:根据直角三角形斜边上的中线的性质可得DG=AG, 根据等腰三角形的性质可得∠GAD=∠GDA, 根据三角形外角的性质可得∠CGD=2∠GAD, 再根据平行线的性质和等量关系可得∠ACD=∠CGD, 根据等腰三角形的性质可得CD=DG, 再根据勾股定理即可求解.解答:解: ∵AD∥BC, DE⊥BC,∴DE⊥AD, ∠CAD=∠ACB, ∠ADE=∠BED=90°,又∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB=2∠CAD,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中, DE= =2 .故选:C.故选: C.故选:C.点评:综合考查了勾股定理, 等腰三角形的判定与性质和直角三角形斜边上的中线, 解题的关键是证明CD=DG=3.2. (2014•吉林)如图, △ABC中, ∠C=45°, 点D在AB上, 点E在BC上. 若AD=DB=DE, AE=1, 则AC的长为()A.B.2C.D.考点:等腰直角三角形;等腰三角形的判定与性质. 菁优网版权所有专题:几何图形问题.分析:利用AD=DB=DE, 求出∠AEC=90°, 在直角等腰三角形中求出AC的长.解答:解: ∵AD=DE,∴∠DAE=∠DEA,∵DB=DE,∴∠B=∠DEB,∴∠AEB=∠DEA+∠DEB= ×180°=90°,∴∠AEC=90°,∵∠C=45°, AE=1,∴AC= .故选:D.故选: D.故选:D.点评:本题主要考查等腰直角三角形的判定与性质, 解题的关键是利用角的关系求出∠AEC是直角.3. (2014•湘西州)如图, 在Rt△ABC中, ∠ACB=90°, CA=CB, AB=2, 过点C作CD⊥AB, 垂足为D, 则CD的长为()A.B.C.1D.2考点:等腰直角三角形. 菁优网版权所有分析:由已知可得Rt△ABC是等腰直角三角形, 得出AD=BD= AB=1, 再由Rt△BCD是等腰直角三角形得出CD=BD=1.解答:解: ∵∠ACB=90°, CA=CB,∴∠A=∠B=45°,∵CD⊥AB,∴AD=BD= AB=1, ∠CDB=90°,∴CD=BD=1.故选:C.故选: C.故选:C.点评:本题主要考查了等腰直角三角形, 解题的关键是灵活运用等腰直角三角形的性质求角及边的关系.4. (2013•和平区二模)如图, 线段AB的长为2, C为AB上一个动点, 分别以AC.BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE, 那么DE长的最小值是()A.B.1C.D.考点:等腰直角三角形;垂线段最短;平行线之间的距离. 菁优网版权所有分析:利用等腰直角三角形的特点知道AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°, ∠DCE=90°.利用勾股定理得出DE的表达式, 利用函数的知识求出DE的最小值.解答:解: 在等腰RT△ACD和等腰RT△CBE中AD=CD, CE=BE, ∠ACD=∠A=45°, ∠ECB=∠B=45°∴∠DCE=90°∴AD2+CD2=AC2, CE2+BE2=CB2∴CD2= AC2, CE2= CB ,∵DE2=DC2+EC2,∴DE===∴当CB=1时, DE的值最小, 即DE=1.故选:B.故选: B.故选:B.点评:此题考察了等腰直角三角形的特点及二次函数求最值的方法.5. (2012•威海)如图, a∥b, 点A在直线a上, 点C在直线b上, ∠BAC=90°, AB=AC, 若∠1=20°, 则∠2的度数为()A.25°B.65°C.70°D.75°考点:等腰直角三角形;平行线的性质. 菁优网版权所有专题:计算题.分析:根据等腰直角三角形性质求出∠ACB, 求出∠ACE的度数, 根据平行线的性质得出∠2=∠ACE, 代入求出即可.解答:解: ∵∠BAC=90°, AB=AC,∴∠B=∠ACB=45°,∵∠1=20°,∴∠ACE=20°+45°=65°,∴∠2=∠ACE=65°,故选B.点评:本题考查了三角形的内角和定理、等腰直角三角形、平行线的性质, 关键是求出∠ACE的度数.6. (2011•衢州)一个圆形人工湖如图所示, 弦AB是湖上的一座桥, 已知桥AB长100m, 测得圆周角∠ACB=45°, 则这个人工湖的直径AD为()A.B.C.D.考点:等腰直角三角形;圆周角定理. 菁优网版权所有专题:证明题.分析:连接OB.根据圆周角定理求得∠AOB=90°;然后在等腰Rt△AOB中根据勾股定理求得⊙O的半径AO=OB=50 m, 从而求得⊙O的直径AD=100 m.解答:解: 连接OB.∵∠ACB=45°, ∠ACB= ∠AOB(同弧所对的圆周角是所对的圆心角的一半),∴∠AOB=90°;在Rt△AOB中, OA=OB(⊙O的半径), AB=100m,∴由勾股定理得, AO=OB=50 m,∴AD=2OA=100m;故选B.点评:本题主要考查了等腰直角三角形、圆周角定理.利用圆周角定理求直径的长时, 常常将直径置于直角三角形中, 利用勾股定理解答.7. (2011•惠山区模拟)梯形ABCD中AB∥CD, ∠ADC+∠BCD=90°, 以AD.AB.BC为斜边向外作等腰直角三角形, 其面积分别是S1.S2.S3, 且S1+S3=4S2, 则CD=()A.2.5AB B.3AB C.3.5AB D.4AB考点:勾股定理;等腰直角三角形;相似三角形的判定与性质. 菁优网版权所有专题:计算题;证明题;压轴题.分析:过点B作BM∥AD, 根据AB∥CD, 求证四边形ADMB是平行四边形, 再利用∠ADC+∠BCD=90°, 求证△MBC为Rt△, 再利用勾股定理得出MC2=MB2+BC2, 在利用相似三角形面积的比等于相似比的平方求出MC即可.解答:解: 过点B作BM∥AD,∵AB∥CD, ∴四边形ADMB是平行四边形,∴AB=DM, AD=BM,又∵∠ADC+∠BCD=90°,∴∠BMC+∠BCM=90°, 即△MBC为Rt△,∴MC2=MB2+BC2,∵以AD.AB.BC为斜边向外作等腰直角三角形,∴△AED∽△ANB, △ANB∽△BFC,= , = ,即AD2= , BC2= ,∴MC2=MB2+BC2=AD2+BC2= += = ,∵S1+S3=4S2,∴MC2=4AB2, MC=2AB,CD=DM+MC=AB+2AB=3AB.故选B.点评:此题涉及到相似三角形的判定与性质, 勾股定理, 等腰直角三角形等知识点, 解答此题的关键是过点B作BM∥AD, 此题的突破点是利用相似三角形的性质求得MC=2AB, 此题有一定的拔高难度, 属于难题.8. (2011•白下区二模)如图, △A1A2B是等腰直角三角形, ∠A1A2B=90°, A2A3⊥A1B, 垂足为A3, A3A4⊥A2B, 垂足为A4, A4A5⊥A3B, 垂足为A5, …, An+1An+2⊥AnB, 垂足为An+2(n为正整数), 若A1A2=A2B=a, 则线段An+1An+2的长为()A.B.C.D.考点:等腰直角三角形;勾股定理. 菁优网版权所有专题:计算题;规律型.分析:先根据勾股定理及等腰三角形的性质求出A2A3及A3A4的长, 找出规律即可解答.解答:解: ∵△A1A2B是直角三角形, 且A1A2=A2B=a, A2A3⊥A1B,∴A1B= = a,∵△A1A2B是等腰直角三角形,∴A2A3⊥A1B,∴A2A3=A1A3= A1B= = ,同理, A4A5= ×= ,∴线段An+1An+2的长为.故选B.故选B.点评:此题属规律性题目, 涉及到等腰三角形及直角三角形的性质, 解答此题的关键是求出A2A3及A3A4的长找出规律.灵活运用等腰直角三角形的性质, 得到等腰直角三角形的斜边是直角边的倍, 从而准确得出结论.9. (2010•西宁)矩形ABCD中, E, F, M为AB, BC, CD边上的点, 且AB=6, BC=7, AE=3, DM=2, EF⊥FM, 则EM 的长为()A.5B.C.6D.考点:勾股定理;矩形的性质. 菁优网版权所有专题:压轴题.分析:过E作EG⊥CD于G, 利用矩形的判定可得, 四边形AEGD是矩形, 则AE=DG, EG=AD, 于是可求MG=DG ﹣DM=1, 在Rt△EMG中, 利用勾股定理可求EM.解答:解: 过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG⊥CD,∴∠EGD=90°,∴四边形AEGD是矩形,∴AE=DG, EG=AD,∴EG=AD=BC=7, MG=DG﹣DM=3﹣2=1,∵EF⊥FM,∴△EFM为直角三角形,∴在Rt△EGM中, EM= = = =5 .故选B.点评:本题考查了矩形的判定、勾股定理等知识, 是基础知识要熟练掌握.10.A.B.C.D.2(2010•鞍山)正方形ABCD中, E、F两点分别是BC.CD上的点.若△AEF是边长为的等边三角形,则正方形ABCD的边长为()考点:勾股定理;全等三角形的判定与性质;等边三角形的性质;正方形的性质. 菁优网版权所有分析:根据正方形的各边相等和等边三角形的三边相等, 可以证明△ABE≌△ADF, 从而得到等腰直角三角形CEF, 求得CF=CE=1.设正方形的边长是x, 在直角三角形ADF中, 根据勾股定理列方程求解.解答:解: ∵AB=AD, AE=AF,∴Rt △ABE≌Rt△ADF.∴BE=DF.∴CE=CF=1.设正方形的边长是x.在直角三角形ADF中, 根据勾股定理, 得x2+(x﹣1)2=2,解, 得x= (负值舍去).即正方形的边长是.故选A.点评:此题综合运用了正方形的性质、等边三角形的性质、全等三角形的判定和性质以及勾股定理.11. (2010•鼓楼区二模)小明将一张正方形包装纸, 剪成图1所示形状, 用它包在一个棱长为10的正方体的表面(不考虑接缝), 如图2所示. 小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+10考点:等腰直角三角形. 菁优网版权所有分析:所求正方形的边长即为AB的长, 在等腰Rt△ACF、△CDE中, 已知了CE、DE、CF的长均为10, 根据等腰直角三角形的性质, 即可求得AC、CD的长, 由AB=AC+CD+BD即可得解.解答:解: 如图;连接AB, 则AB必过C.D;Rt△ACF中, AC=AF, CF=10;则AC=AF=5;同理可得BD=5;Rt△CDE中, DE=CE=10, 则CD=10 ;所以AB=AC+CD+BD=20 ;故选C.点评:理清题意, 熟练掌握直角三角形的性质是解答此题的关键.A.132 B.121 C.120 D.以上答案都不对12.(2009•鄞州区模拟)直角三角形有一条直角边的长是11, 另外两边的长都是自然数, 那么它的周长是()考点:勾股定理. 菁优网版权所有分析:假设另外两边后, 根据勾股定理适当变形, 即可解答.解答:解: 设另外两边是a、b(a>b)则根据勾股定理, 得:a2﹣b2=121∵另外两边的长都是自然数∴(a+b)(a﹣b)=121=121×1即另外两边的和是121,故三角形的周长是132.故选A.故选A.点评:注意熟练进行因式分解和因数分解, 根据另外两边的长都是自然数分析结论.A.有一个内角等于60°的等腰三角形是等边三角形13.(2009•宝安区一模)下列命题中,是假命题的是()B.在直角三角形中, 斜边上的高等于斜边的一半C.在直角三角形中, 最大边的平方等于其他两边的平方和D.三角形两个内角平分线的交点到三边的距离相等考点:勾股定理;角平分线的性质;等边三角形的判定;直角三角形斜边上的中线. 菁优网版权所有专题:计算题;证明题.分析:A.根据等腰三角形的性质求解;B.根据直角三角形的面积计算方法求斜边的高;C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C.根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D.求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.C、根据勾股定理求解;D、求证角平分线和过角平分线交点作垂线所分的3对小三角形全等即可.解答:解: A.等腰三角形底角相等, 若底角为60°, 则顶角为180°﹣60°﹣60°=60°, 若顶角为60°, 则底角为=60°, 所以有一个角为60°的等腰三角形即为等边三角形, 故A选项正确;B.直角三角形中斜边的中线等于斜边的一半, 只有在等腰直角三角形中斜边的高与斜边的中线才会重合,故B选项错误;C.在直角三角形中, 最大的边为斜边, 根据勾股定理可知斜边长的平方的等于两直角边长平方的和, 故C选项正确;D.过三角形角平分线的交点作各边的垂线, 则三角形分成3对小三角形, 其中各顶点所在的两个直角三角形全等, 即过角平分线作的高线相等, 故D选项正确;即B选项中命题为假命题,故选B.故选B.点评:本题考查了全等三角形的证明, 考查了直角三角形中勾股定理的运用, 考查了等腰三角形的性质, 考查了直角三角形中斜边上的中线等于斜边长一半的性质.14. (2008•江西模拟)已知△ABC是腰长为1的等腰直角三角形, 以Rt△ABC的斜边AC为直角边, 画第二个等腰Rt△ACD, 再以Rt△ACD的斜边AD为直角边, 画第三个等腰Rt△ADE, …, 依此类推, 第n个等腰直角三角形的面积是()A.2n﹣2B.2n﹣1C.2n D.2n+1考点:等腰直角三角形. 菁优网版权所有专题:规律型.分析:根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积, 找出规律即可.解答:解: ∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC= = , AD= =2…,∴S△ACD=××=1=22﹣2;S△ADE=×2×2=1=23﹣2…∴第n个等腰直角三角形的面积是2n ﹣2.故选A.故选A.点评:此题属规律性题目, 解答此题的关键是分别计算出图中所给的直角三角形的面积, 找出规律即可.15. (2007•台湾)以下是甲、乙两人证明+ ≠的过程:(甲)因为>=3, >=2, 所以+ >3+2=5且=<=5所以+>5>故+≠(乙)作一个直角三角形, 两股长分别为、利用商高(勾股)定理()2+()2=15+8得斜边长为因为、、为此三角形的三边长所以+>故+≠对于两人A.两人都正确B.两人都错误C.甲正确, 乙错误D.甲错误, 乙正确的证法,下列哪一个判断是正确的()考点:勾股定理;实数大小比较;三角形三边关系. 菁优网版权所有专题:压轴题;阅读型.分析:分别对甲乙两个证明过程进行分析即可得出结论.解答:解: 甲的证明中说明+ 的值大于5, 并且证明小于5, 一个大于5的值与一个小于5的值一定是不能相等的.乙的证明中利用了勾股定理, 根据三角形的两边之和大于第三边.故选A.故选A.点评:本题解决的关键是正确理解题目中的证明过程, 阅读理解题是中考中经常出现的问题.16. (2007•宁波二模)如图, A.B是4×5网格中的格点, 网格中的每个小正方形的边长都是1, 图中使以A.B.C为顶点的三角形是等腰三角形的格点C有()A.2个B.3个C.4个D.5个考点:勾股定理;等腰三角形的判定. 菁优网版权所有专题:探究型.分析:先根据勾股定理求出AB的长, 再根据等腰三角形的性质分别找出以AB为腰和以AB为底边的等腰三角形即可.解答:解: ∵A.B是4×5网格中的格点,∴AB= = ,同理可得, AC=BD=AC= ,∴所求三角形有:△ABD, △ABC, △ABE.故选B.点评:本题考查的是勾股定理及等腰三角形的性质, 先根据勾股定理求出AB的长是解答此题的关键.17.A.1B.C.D.(2006•郴州)在△ABC中, ∠C=90°,AC, BC的长分别是方程x2﹣7x+12=0的两个根, △ABC内一点P到三边的距离都相等. 则PC为()考点:勾股定理;解一元二次方程-因式分解法;三角形的内切圆与内心. 菁优网版权所有专题:压轴题.分析:根据AC、BC的长分别是方程x2﹣7x+12=0的两个根, 根据根与系数的关系求出.解答:解: 根据“AC, BC的长分别是方程x2﹣7x+12=0的两个根”可以得出:AC+BC=7, AC•BC=12,AB2=AC2+BC2=25,AB=5,△ABC内一点P到三边的距离都相等, 即P为△ABC内切圆的圆心,设圆心的半径为r, 根据三角形面积表达式:三角形周长×内切圆的半径÷2=三角形的面积,可得出, AC•BC÷2=(AC+BC+AB)×r÷2,12÷2=(7+5)×r÷2,r=1,根据勾股定理PC= = ,故选B.故选B.点评:本题中考查了勾股定理和一元二次方程根与系数的关系. 本题中三角形内心与三角形周长和面积的关系式是本题中的一个重点.18. (2002•南宁)如图, 直角三角形三边上的半圆面积从小到大依次记为S1.S2.S3, 则S1.S2.S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S32考点:勾股定理. 菁优网版权所有专题:压轴题.分析:依据半圆的面积公式, 以及勾股定理即可解决.解答:解: 设直角三角形三边分别为a, b, c, 则三个半圆的半径分别为, ,由勾股定理得a2+b2=c2, 即()2+()2=()2两边同时乘以π得π()2+π()2=π()2即S1.S2.S3之间的关系是S1+S2=S3故选C.故选C.点评:根据勾股定理, 然后变形, 得出三个半圆之间的关系.19. (2001•广州)已知点A和点B(如图), 以点A和点B为其中两个顶点作位置不同的等腰直角三角形, 一共可作出()A.2个B.4个C.6个D.8个考点:等腰直角三角形. 菁优网版权所有专题:压轴题.分析:利用等腰直角三角形的性质来作图, 要注意分不同的直角顶点来讨论.解答:解: 此题应分三种情况:①以AB为腰, 点A为直角顶点;可作△ABC1.△ABC2, 两个等腰直角三角形;②以AB为腰, 点B为直角顶点;可作△BAC3.△BAC4, 两个等腰直角三角形;③以AB为底, 点C为直角顶点;可作△ABC5.△ABC6, 两个等腰直角三角形;综上可知, 可作6个等腰直角三角形, 故选C.点评:等腰直角三角形两腰相等, 顶角为直角, 据此可以构造出等腰直角三角形.关键是以AB为腰和以AB为底来讨论.A.2B.3C.4D.520. 设直角三角形的三边长分别为a、b、c,若c﹣b=b﹣a>0, 则=()考点:勾股定理. 菁优网版权所有分析:根据已知条件判断c是斜边, 并且得到c+a=2b, 然后根据勾股定理得到c2﹣a2=b2, 然后因式分解可以求出c﹣a, 代入要求的式子可以求出结果了.解答:解: ∵c﹣b=b﹣a>0∴c>b>a, c+a=2b根据勾股定理得, c2﹣a2=b2, (c+a)(c﹣a )=b2,∴c﹣a= b∴=4故选C.故选C.点评:此题主要利用了勾股定理和因式分解解题, 题目式子的值不能直接求出, 把它的分子分母分别用b表示才能求出.A.4B.6C .8D.21. (1999•温州)已知△ABC中,AB=AC=10,BD是AC边上的高线,DC=2, 那么BD等于()考点:勾股定理. 菁优网版权所有分析:由CD的长, 可求得AD的值, 进而可在Rt△ABD中, 由勾股定理求得BD的长.解答:解: 如图;△ABC中, AB=AC=10, DC=2;∴AD=AC﹣DC=8;Rt△ABD中, AB=10, AD=8;由勾股定理, 得:BD= =6;故选B.点评:此题主要考查了等腰三角形的性质及勾股定理的应用.22. 如图, 在四边形ABCD中, ∠B=135°, ∠C=120°, AB= , BC= , CD= , 则AD边的长为()A.B.C.D.考点:勾股定理. 菁优网版权所有专题:计算题.分析:作AE⊥BC, DF⊥BC, 构建直角△AEB和直角△DFC, 根据勾股定理计算BE, CF, DF, 计算EF的值, 并根据EF求AD.解答:解: 如图, 过点A, D分别作AE, DF垂直于直线BC, 垂足分别为E, F.由已知可得BE=AE= , CF= , DF=2 ,于是EF=4+ .过点A作AG⊥DF, 垂足为G.在Rt△ADG中, 根据勾股定理得AD= = = = = .故选D.点评:本题考查了勾股定理的正确运用, 本题中构建直角△ABE和直角△CDF是解题的关键.A.16 B.18 C.12D.1223. 在△ABC中,∠C=90°,∠A=15°,AB=12,则△ABC的面积等于()考点:勾股定理;三角形的面积. 菁优网版权所有专题:计算题.分析:作∠ABD=∠A=15°, 则∠BDC=30°;设BC=x, 则BD=2x, CD= x, 计算AC=AD+CD=(2+ )x, BC=x, AB=12, 根据勾股定理计算AC, BC的长度, △ABC的面积为根据•BC•AC计算可得.解答:解: 如图, 作∠ABD=∠A=15°BD交AC于D, 则∠DBC=75°﹣15°=60°在Rt△BCD中, 因为∠BDC=90°﹣∠DBC=30°所以BD=2BC, CD= BC设BC=x,所以BD=2x, CD= x因为∠A=∠ABD, 所以AD=BD=2x所以AC=AD+DC=(2+)x在Rt △ABC中AC2+BC2=AB2∴∴,故选B.点评:本题考查了勾股定理在直角三角形中的运用, 考查了直角三角形面积的计算, 本题中设BC=x, 根据直角△ABC求x的值, 是解题的关键.24. 如图, 在Rt△ABC中, ∠C=90°, DE⊥AB, AC=BE=15, BC=20. 则四边形ACED的面积为()A.54 B.75 C.90 D.96考点:勾股定理;相似三角形的判定与性质. 菁优网版权所有分析:先利用勾股定理求出AB的长, 再根据相似三角形对应边成比例求出DE、BD的长, 然后代入面积公式即可求解.解答:解: ∵∠BDE=∠C=90°, ∠B=∠B∴△BDE∽△BCA∴BE: BA=BD: BC∵AC=BE=15, BC=20∴AB==25∴15: 25=BD: 20∴BD=12∴DE=9∴S△BDE=×12×9=54;S△ABC=×15×20=150∴四边形ACED的面积=S△ABC﹣S△BDE=150﹣54=96故选D.故选D.点评:此题主要考查了学生对相似三角形的性质及勾股定理的运用.25. 如图, 在△ABC中, 分别以AB.BC为直径的⊙O1.⊙O2交于AC上一点D, 且⊙O1经过点O2, AB.DO2的延长线交于点E, 且BE=BD. 则下列结论不正确的是()A.A B=AC B.∠BO2E=2∠E C.A B=BE D.E O2=BE考点:勾股定理;对顶角、邻补角;三角形内角和定理;等腰三角形的性质;圆周角定理. 菁优网版权所有专题:证明题;压轴题.分析:根据等腰三角形的性质证出∠BO2E=2∠BDE, 即可得出答案B错误, 假设A成立证出C也正确, 即可判断A、C都错误, 即可选出选项.解答:解: A.∵∠ABC+∠EDA=180°, ∠ADB=90°,∴∠EDB+∠ABC=90°.∵∠BDE+∠EDC=90°, 且∠EDC=∠BCA.∴∠ABC=∠BCA.∴AB=AC. 正确, 故本选项错误;B.∵O2B=O2D,∴∠DBO2=∠EDB,∴∠BO2E=2∠BDE,∵BE=BD,∴∠BDE=∠E,∴∠BO2E=2∠E, 正确, 故本选项错误;C.∵AC=AB,∴∠C=∠ABC,∵∠BO2E=2∠BDE, ∠ABC=∠BO2E+∠E,∴∠ABC=3∠E,∵BC为⊙O2的直径,∴∠CDB=90°,∴4∠E=90°,∠E=22.5°∴∠C=∠ABC=67.5°,∴∠A=180°﹣2×67.5°=45°,在Rt△ABD中由勾股定理得:AB= BD= BE, 正确, 故本选项错误;D.故本选项正确;故选D.故选D.点评:本题主要考查了勾股定理, 三角形的内角和定理, 等腰三角形的性质, 圆周角定理, 对顶角, 邻补角等知识点, 综合运用性质进行证明是解此题的关键.26. 如图, 在正方形网格中, cosα的值为()A .1B .C .D.考点:勾股定理;锐角三角函数的定义. 菁优网版权所有专题:网格型.分析:cosα的值可以转化为直角三角形的边的比的问题, 先根据勾股定理求出AB的长, 再在Rt△ABC中根据三角函数的定义求解.解答:解: 在Rt△ABC中, BC=3, AC=4,则AB= =5,则cosα= = .故选D.点评:本题考查勾股定理和锐角三角函数的概念:在直角三角形中, 正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边.27. 直角A.10 B.2C.4或10 D.10或2三角形一边长为8,另一条边是方程x2﹣2x﹣24=0的一解, 则此直角三角形的第三条边长是()考点:勾股定理;解一元二次方程-因式分解法. 菁优网版权所有专题:分类讨论.分析:先解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4, 所以另一条边是6, 再分两种情况考虑:①若8为斜边, 则用勾股定理得第三条边长是2 ;②若8和6是两条直角边, 再用勾股定理求斜边得10.解答:解: 根据题意得解方程x2﹣2x﹣24=0, 得x1=6, x2=﹣4,所以另一条边是6,①若8为斜边, 则用勾股定理得第三条边长是=2 ;②若8和6是两条直角边, 则此直角三角形的第三条边长是=10.故选:D.故选: D.故选:D.点评:本题考查了勾股定理、解方程. 解题的关键是要注意分情况讨论.28. 如图是2002年在北京召开的国际数学家大会的会徽, 它由4个相同的直角三角形拼成, 已知直角三角形的两条直角边长分别为3和4, 则大正方形ABCD和小正方形EFGH的面积比是()A.1:5 B.1: 25 C.5:1 D.25: 1考点:勾股定理的证明. 菁优网版权所有分析:根据勾股定理可得大正方形ABCD的边长, 再根据和差关系得到小正方形EFGH的边长, 根据正方形的面积公式可得大正方形ABCD和小正方形EFGH的面积, 进一步即可求解.解答:解: 如图, 设大正方形的边长为xcm,由勾股定理得32+42=x2,解得:x=5,则大正方形ABCD的面积为: 52=25;∵小正方形的边长为: 4﹣3=1,∴小正方形EFGH的面积为: 12=1.则大正方形ABCD和小正方形EFGH的面积比是25:1.故选:D.故选: D.故选:D.点评:本题考查勾股定理及正方形的面积公式, 比较容易解答, 关键是求出大小正方形的边长.29. 如图, 已知△ABC中, AB=AC, ∠BAC=90°, 直角∠EPF的顶点P是BC中点, 两边PE、PF分别交AB.AC于点E、F, 给出以下四个结论:①AE=CF;②△EPF是等腰直角三角形;。

勾股定理练习题及答案

勾股定理练习题及答案

勾股定理练习题及答案一、选择题1、直角三角形的两直角边分别为 5 厘米、12 厘米,则斜边长是()A 13 厘米B 14 厘米C 15 厘米D 16 厘米答案:A解析:根据勾股定理,直角三角形的两直角边的平方和等于斜边的平方。

所以斜边的平方= 5²+ 12²= 25 + 144 = 169,斜边长为 13 厘米。

2、以下列各组数为边长,能组成直角三角形的是()A 3,4,6B 5,12,13C 5,11,12D 2,3,4答案:B解析:对于选项 A,3²+ 4²= 9 + 16 = 25,6²= 36,因为25 ≠ 36,所以不能组成直角三角形;对于选项 B,5²+ 12²= 25 + 144 =169,13²= 169,因为 169 = 169,所以能组成直角三角形;对于选项C,5²+ 11²= 25 + 121 = 146,12²= 144,因为146 ≠ 144,所以不能组成直角三角形;对于选项 D,2²+ 3²= 4 + 9 = 13,4²= 16,因为13 ≠ 16,所以不能组成直角三角形。

3、一个直角三角形的三边长分别为 2,3,x,则 x 的值为()A √13B √5C √13 或√5D 无法确定答案:C解析:当 x 为斜边时,x =√(2²+ 3²) =√13;当 3 为斜边时,x =√(3² 2²) =√5。

所以 x 的值为√13 或√5 。

4、已知直角三角形的两条边长分别是 5 和 12,则第三边的长为()A 13B √119C 13 或√119D 不能确定答案:C解析:当 12 为斜边时,第三边的长为√(12² 5²) =√119;当 5 和12 为直角边时,第三边的长为√(5²+ 12²) = 13。

勾股定理中等难度题集(50道含答案)

勾股定理中等难度题集(50道含答案)

1.在Rt△ABC中,∠C=90°,AB=5,AC=3,点P为边AN上一动点(且点P 不与点A,B重合),PE⊥BC于E,PF⊥AC于F,点M为EF中点,则PM 的最小值为()A.B.C.D.2.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.14S B.13S C.12S D.11S3.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC中AC边上的高是()A.B.C.D.4.如图,四边形ABCD中,∠ABC=90°,AC=BD,AC⊥BD,若AB=4,AD=5,则DC的长()A.7B.C.D.25.如图,Rt△ABC中,∠C=90°,AC=2,BC=5.分别以AB、AC、BC为边在AB的同侧作正方形ABEF,ACPQ,BDMC,四块阴影部分的面积分别为S1,S2,S3,S4.则S1+S2+S3+S4等于()A.13B.14C.15D.166.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF 的长是()A.B.6C.D.7.如图,正方形ABCD边长为2,从各边往外作等边三角形ABE、BCF、CDG、DAH,则四边形AFGD的周长为()A.4+2+2B.2+2+2C.4+2+4D.2+2+48.如图,在△ABC中,D、E分别是BC、AC的中点.已知∠ACB=90°,BE=4,AD=7,则AB的长为()A.10B.5C.2D.29.如图△ABC是等腰三角形,AB=AC,∠BAC=120°,点D在BC边上,且BD<DC,以AD为边作正三角形ADE,当△ABC的面积是25,△ADE 的面积是7时,BD与DC的比值是()A.3:4B.3:5C.1:2D.2:310.已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x 轴负半轴、y轴的正半轴上滑动,点C在第四象限,连结OC,则线段OC长的最小值是.11.如图,在△ABC中,AB=AC=6,BC=7,E是BC上的一个动点(不与点B,C重合),△DEF≌△ABC,其中点A,B的对应点分别是点D,E.当点E 运动时DE边始终经过点A.设EF与AC相交于点G,当△AEG是等腰三角形时,BE的长为.12.如图,在四边形ABCD中,∠ADC=60°,∠ABC=30°,且AD=CD,连接BD,若AB=2,BD=,则BC的长为.13.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD 的中点,AF∥BC交CE的延长线于F,则△AFC的面积为.14.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,BC=1,分别以AB、BC、AC为边作正方ABED、BCFK、ACGH,再作Rt△PQR,使∠R=90°,点H 在边QR上,点D、E在边PR上,点G、F在边PQ上,则PQ的长为.15.如图,水平距离为80米(BC=80米)的A,B两村庄隔着一条小河,并且河宽15米,A与河l1的距离为40米,B与河l2的距离为20米,为了方便行人之间来往,现在要在两条小河上各建一条垂直于河岸的桥,那么A,B两村庄来往的最短路程是米.16.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形,∠ADC=30°,若CD=6,BD=6.5,则AD=.17.四边形ACBD中,AC=BC,∠ACB=90°,∠ADB=30°,AD=6,CD=7,则BD=.18.如图,在△ABC中,AB=BC=6,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为.19.如图,A(1,0),B(0,1),若△ABO是一个三角形台球桌,从O点击出的球经过C、D两处反弹正好落在A洞,则C的坐标是.20.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若两直角边AC=4,BC=6,现将四个直角三角形中边长为6的直角边分别向外延长一倍,延长后得到下图所示的“数学风车”,则该“数学风车”所围成的总面积是.21.如图,Rt△ABC中,∠ACB=90°,AC=2,BC=.分别以AB,AC,BC 为边,向外作正方形ABDE,正方形ACFG,正方形BCMN,连接GE,DN.则图中阴影的总面积是.22.如图,△ABC是直角三角形,记BC=a,分别以直角三角形的三边向外作正方形ABDE,正方形ACFG,正方形BCMN,过点C作BA边上的高CH并延长交正方形ABDE的边DE于K,则四边形BDKH的面积为.(用含a的式子表示)23.如图,在△ABC中,AB=5,AC=3,BC=4,D是BC边上一动点,BE⊥AD,交其延长线于点E,EF⊥AC,交其延长线于点F,则AF的最大值为.24.如图,△ABC中,AB=AC=5,BC=2,以AC为边在△ABC外作等边三角形ACD,连接BD,则BD=.25.如图,点P是等边△ABC内一点,连接PA,PB,PC,PA:PB:PC=3:4:5,以AC为边作△AP′C≌△APB,连接PP′,则有以下结论:①△APP′是等边三角形;②△PCP′是直角三角形;③∠APB=150°;④∠APC=105°.其中一定正确的是.(把所有正确答案的序号都填在横线上)26.如图,正方形ABDE、CDFI、EFGH的面积分别为25、9、16,△AEH、△BDC、△GFI的面积分别为S1、S2、S3,则S1+S2+S3=.27.如图所示,在等边三角形ABC中,BC边上的高AD=10,E是AD上一点,现有一动点P沿着折线A﹣E﹣C运动,在AE上的速度是4单位/秒,在CE 上的速度是2单位/秒,则点P从A到C的运动过程中至少需秒.28.在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的四边形,则原直角三角形纸片的斜边长是.29.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为.30.如图,要使宽为2米的矩形平板车ABCD通过宽为2米的等宽的直角通道,平板车的长不能超过米.31.如图,在△ABC中,AB=AC=2,点P在BC上.若点P为BC的中点,则m=AP2+BP•PC的值为;若BC边上有100个不同的点P1,P2,…,P100,且m i=AP i2+BP i•P i C(i=1,2,…,100),则m=m1+m2+…+m100的值为.32.图(1)是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt△ABC中,若直角边AC=6cm,BC=5cm,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图(2)所示的“数学风车”.则①图中小正方形的面积为;②若给这个“数学风车”的外围装饰彩带,则需要彩带的长度至少是.33.勾股定理有着悠久的历史,它曾引起很多人的兴趣.1955年希腊发行了二枚以勾股图为背景的邮票.所谓勾股图是指以直角三角形的三边为边向外作正方形构成,它可以验证勾股定理.在右图的勾股图中,已知∠ACB=90°,∠BAC=30°,AB=4.作△PQR使得∠R=90°,点H在边QR上,点D,E在边PR上,点G,F在边PQ上,那么△PQR的周长等于.34.如图平面直角坐标系中,已知三点A(0,7),B(8,1),C(x,0).(1)求线段AB的长;(2)请用含x的代数式表示AC+BC的值;(3)根据(2)中得出的规律和结论,直接写出代数式﹣的最大值.35.如图,AD∥BC,AC⊥AB,AB=3,AC=CD=2.(1)求BC的长;(2)求BD的长.36.如图,△ABC中,D是BC的中点,AB=,AC=,AD=3,求BC 的长及△ABC的面积.37.如图,在平面直角坐标系中,四边形OABC的顶点O为坐标原点,点C在x轴的正半轴上,且BC⊥OC于点C,点A的坐标为(2,2),AB=4,∠B=60°,点D是线段OC上一点,且OD=4,连接AD.(1)求证:△AOD是等边三角形;(2)求点B的坐标;(3)在x轴上求一点P,使△OBP为等腰三角形.38.在△ABC中,AB、BC、AC三边的长分别为,,,求这个三角形的面积.小明同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)△ABC的面积为.(2)若△DEF的三边DE、EF、DF长分别为,,,请在图2的正方形网格中画出相应的△DEF,并求出△DEF的面积为.(3)在△ABC中,AB=2,AC=4,BC=2,以AB为边向△ABC外作△ABD (D与C在AB异侧),使△ABD为等腰直角三角形,则线段CD的长为.39.如图,在等腰△ACE中,已知CA=CE=2,AE=2c,点B、D、M分别是边AC、CE、AE的中点,以BC、CD为边长分别作正方形BCGF和CDHN,连结FM、FH、MH.(1)求△ACE的面积;(2)试探究△FMH是否是等腰直角三角形?并对结论给予证明;(3)当∠GCN=30°时,求△FMH的面积.40.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB 于E,PF⊥AC于F,M为EF中点,求AM的最小值.41.阅读下列材料:小明遇到一个问题:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.参考小明解决问题的方法,完成下列问题:(1)图2是一个6×6的正方形网格(每个小正方形的边长为1).①利用构图法在答卷的图2中画出三边长分别为、、的格点△DEF;②计算①中△DEF的面积为;(直接写出答案)(2)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,正方形PRDE,连接EF.①判断△PQR与△PEF面积之间的关系,并说明理由.②若PQ=,PR=,QR=3,直接..写出六边形AQRDEF的面积为.42.如图所示,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,求BC的长.43.探究下列几何题:(1)如图(1)所示,在△ABC中,CP⊥AB于点P,求证:AC2﹣BC2=AP2﹣BP2;(2)如图(2)所示,在四边形ABCD中,AC⊥BD于点P,猜一猜AB,BC,CD,DA之间有何数量关系,并用式子表示出来(不用证明);(3)如图(3)所示,在矩形ABCD中,P是其内部任意一点,试猜想AP,BP,CP,DP之间的数量关系,并给出证明.44.设a,b,c,d都是正数.求证:+>.45.如图:四边形ABCD中,AD=DC,∠ABC=30°,∠ADC=60°.试探索以AB、BC、BD为边,能否组成直角三角形,并说明理由.46.已知:如图1,Rt△ABC中,∠ACB=90°,D为AB中点,DE、DF分别交AC于E,交BC于F,且DE⊥DF.(1)如果CA=CB,求证:AE2+BF2=EF2;(2)如图2,如果CA<CB,(1)中结论AE2+BF2=EF2还能成立吗?若成立,请证明;若不成立,请说明理由.47.(1)如图1,AD是△ABC边BC上的高.①求证:AB2﹣AC2=BD2﹣CD2;②已知AB=8,AC=6,M是AD上的任意一点,求BM2﹣CM2的值;(2)如图2,P是矩形ABCD内的一点,若PA=3,PB=4,PC=5,求PD的值.48.如图,A,B两个工厂位于一段直线形河的异侧,A厂距离河边AC=5km,B厂距离河边BD=1km,经测量CD=8km,现准备在河边某处(河宽不计)修一个污水处理厂E.(1)设ED=x,请用x的代数式表示AE+BE的长;(2)为了使两厂的排污管道最短,污水厂E的位置应怎样来确定此时需要管道多长?(3)通过以上的解答,充分展开联想,运用数形结合思想,请你猜想的最小值为.49.阅读下面材料,并解决问题:(1)如图(1),等边△ABC内有一点P,若点P到顶点A,B,C的距离分别为3,4,5,则∠APB=,由于PA,PB不在一个三角形中,为了解决本题我们可以将△ABP绕顶点A旋转到△ACP′处,此时△ACP′≌这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.(2)请你利用第(1)题的解答思想方法,解答下面问题:已知如图(2),△ABC中,∠CAB=90°,AB=AC,E、F为BC上的点且∠EAF=45°,求证:EF2=BE2+FC2.50.阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为、、,求△ABC 的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为;参考小明解决问题的方法,完成下列问题:(2)图2是一个正方形网格(每个小正方形的边长为1).①利用构图法在答题卡的图2中画出三边长分别为、、的格点△DEF;②计算△DEF的面积为.(3)如图3,已知△ABC,以AB,AC为边向外作正方形ABDE,ACFG,连接EG.若AB=,BC=,AC=,则六边形BCFGED的面积为.一.选择题(共9小题)1.在Rt△ABC中,∠C=90°,AB=5,AC=3,点P为边AN上一动点(且点P 不与点A,B重合),PE⊥BC于E,PF⊥AC于F,点M为EF中点,则PM 的最小值为()A.B.C.D.【分析】首先证明四边形CEPF是矩形,因为M是EF的中点,推出延长PM经过点C,推出EF=CP,可得PM=EF=PC,求出PC的最小值可得PM的最小值.【解答】解:在Rt△ABC中,∵∠ACB=90°,AB=5,AC=3,∴BC==4,∵PE⊥BC于E,PF⊥AC于F,∴∠PEC=∠PFC=∠EPF=90°,∴四边形CEPF是矩形,∵M是EF的中点,∴延长PM经过点C,∴EF=CP,PM=EF=PC,当PC⊥AB时,PC=,∴PM的最小值为,故选:D.【点评】此题考查了矩形的判定与性质、勾股定理、直角三角形的斜边上的高的求法,注意当CP⊥AB时,CP最小.2.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.14S B.13S C.12S D.11S【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=13b2=13S,故选:B.【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.3.如图,由四个边长为1的小正方形构成一个大正方形,连接小正方形的三个顶点,可得到△ABC,则△ABC中AC边上的高是()A.B.C.D.【分析】作BD⊥AC于D,根据勾股定理求出AC的长,再利用三角形的面积公式求出△ABC中AC边上的高即可.【解答】解:作BD⊥AC于D,如图所示:∵小正方形的边长为1,∴AC==,=2×2﹣×1×1﹣×2×1﹣×2×1=1.5,∵S△ABC∴S=×AC×BD=××CD=1.5,△ABC解得:CD=.故选:D.【点评】此题主要考查了勾股定理以及三角形的面积;根据题意得出△ABC的面积等于正方形面积减去其他3个三角形的面积是解决问题的关键.4.如图,四边形ABCD中,∠ABC=90°,AC=BD,AC⊥BD,若AB=4,AD=5,则DC的长()A.7B.C.D.2【分析】如图作DH⊥BA交BA的延长线于H.首先证明△ABC≌△DHB,推出DH=AB=4,利用勾股定理求出AH、BD,即可解决问题;【解答】解:如图作DH⊥BA交BA的延长线于H.∵AC⊥BD,∴∠BEC=∠ABC=∠H=90°,∵∠BDH+∠HBD=90°,∠CAB+∠ABD=90°,∴∠CAB=∠HDB,∵AC=BD,∴△ABC≌△DHB,∴AB=DH=4,在Rt△BDH中,∵DH=4,AD=5,∴AH==3,∴AC=BD===,BC==7,∴BE==,DE=,EC==,在Rt△EDC中,DC==,故选:B.【点评】本题考查勾股定理的应用,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.5.如图,Rt△ABC中,∠C=90°,AC=2,BC=5.分别以AB、AC、BC为边在AB的同侧作正方形ABEF,ACPQ,BDMC,四块阴影部分的面积分别为S1,S2,S3,S4.则S1+S2+S3+S4等于()A.13B.14C.15D.16【分析】过F作AM的垂线交AM于G,通过证明S1+S2+S3+S4=Rt△ABC的面积×3,依此即可求解.【解答】解:∵图中S4=S Rt△ABC.S3=S△FPT,∴S1+S3=S Rt△ABC.S2的左上方的顶点为F,过F作AM的垂线交AM于G,可证明Rt△AGF≌Rt △ABC,而图中Rt△GFK全等于①,∴S2=S Rt△ABC.S1+S2+S3+S4=(S1+S3)+S2+S4=Rt△ABC的面积+Rt△ABC的面积+Rt△ABC的面积=Rt△ABC的面积×3=2×5÷2×3=15.故选:C.【点评】本题考查勾股定理的知识,有一定难度,解题关键是将勾股定理和正方形的面积公式进行灵活的结合和应用.6.如图,在△ABC中,∠A=90°,P是BC上一点,且DB=DC,过BC上一点P,作PE⊥AB于E,PF⊥DC于F,已知:AD:DB=1:3,BC=,则PE+PF 的长是()A.B.6C.D.【分析】作PM⊥AC于点M可得矩形AEPM,易证△PFC≌△CMP,得到PE+PF=AC,在直角△ABC中,根据勾股定理就可以求得.【解答】解:(1)作PM⊥AC于点M,可得矩形AEPM∴PE=AM,利用DB=DC得到∠B=∠DCB∵PM∥AB.∴∠B=∠MPC∴∠DCB=∠MPC又∵PC=PC.∠PFC=∠PMC=90°∴△PFC≌△CMP∴PF=CM∴PE+PF=AC∵AD:DB=1:3∴可设AD=x,DB=3x,那么CD=3x,AC=2x,BC=2x∵BC=∴x=2∴PE+PF=AC=2×2=4.(2)连接PD,PD把△BCD分成两个三角形△PBD,△PCD,S△PBD=BD•PE,S△PCD=DC•PF,S△BCD=B D•AC,所以PE+PF=AC=2×2=4.故选:C.【点评】解决本题的关键是作出辅助线,把所求的线段转移到一条线段求解.7.如图,正方形ABCD边长为2,从各边往外作等边三角形ABE、BCF、CDG、DAH,则四边形AFGD的周长为()A.4+2+2B.2+2+2C.4+2+4D.2+2+4【分析】连接AG,分别求出∠ABF和∠FCG的度数,再根据AB=BC=FC,求证△ABF≌△FCG,可得AF=FG,同理AF=AG,设AB中点为K,连GK,可得△AKG为直角三角形,再利用由勾股定理求得AG,然后即可求得四边形AFGD的周长.【解答】解:连接AG,那么等腰三角形ABF顶角∠ABF=90°+60°=150°,等腰三角形FCG顶角∠FCG=360°﹣90°﹣2×60°=150°又AB=BC=FC,所以△ABF≌△FCG,∴AF=FG.同理AF=AG,设AB中点为K,连GK,可得△AKG为直角三角形,∴AK=1,KG=2+,由勾股定理得AG====+.四边形AFGD的周长为:AF+FG+GD+DA=2(+)+2×2=4+2+2.故选:A.【点评】此题主要考查勾股定理,全等三角形的判定与性质,等边三角形的性质等知识点,此题有一定难度,属于难题.8.如图,在△ABC中,D、E分别是BC、AC的中点.已知∠ACB=90°,BE=4,AD=7,则AB的长为()A.10B.5C.2D.2【分析】设EC=x,DC=y,则直角△BCE中,x2+4y2=BE2=16,在直角△ADC中,4x2+y2=AD2=49,解方程组可求得x、y,在直角△ABC中,AB=.【解答】解:设EC=x,DC=y,∠ACB=90°,∴在直角△BCE中,CE2+BC2=x2+4y2=BE2=16在直角△ADC中,AC2+CD2=4x2+y2=AD2=49,解得x=,y=1.在直角△ABC中,AB===2,故选:C.【点评】本题考查了勾股定理的灵活运用,考查了中点的定义,本题中根据直角△BCE和直角△ADC求DC.BC的长度是解题的关键.9.如图△ABC是等腰三角形,AB=AC,∠BAC=120°,点D在BC边上,且BD<DC,以AD为边作正三角形ADE,当△ABC的面积是25,△ADE 的面积是7时,BD与DC的比值是()A.3:4B.3:5C.1:2D.2:3【分析】根据△ABC的面积,可以计算AF,BF,设DF=x,根据△ADE的面积计算x的值,根据BD=BF﹣DF,CD=CF+DF即可计算BD,CD长度,即可计算BD:CD.【解答】解:作AF⊥BC,∵AB=AC,∠BAC=120°,∴∠ABC=30°,即AB=2AF.BF=AF=AF.△ABC的面积为×BC×AF=25,计算得:AF=5,BF=5.设DF=x,则AD=,根据正三角形面积计算公式S=AD×()=AD2=7,计算得:x=,∴BD=BF﹣DF=4,CD=CF+FD=6,故BD:CD=2;3,故选:D.【点评】本题考查了勾股定理的运用,考查了三角形面积的计算,本题中根据正三角形ADE计算DF是解题的关键.二.填空题(共24小题)10.已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x 轴负半轴、y轴的正半轴上滑动,点C在第四象限,连结OC,则线段OC长的最小值是﹣1.【分析】利用等边三角形的性质得出C点位置,进而求出OC的长.【解答】解:如图所示:过点C作CE⊥AB于点E,当点C,O,E在一条直线上,此时OC最短,∴△ABC是等边三角形,∴CE过点O,E为BD中点,则此时EO=AB=1,故OC的最小值为:OC=CE﹣EO=BCsin60°﹣×AB=﹣1.故答案为:﹣1.【点评】此题主要考查了勾股定理以及等边三角形的性质,得出当点C,O,E 在一条直线上,此时OC最短是解题关键.11.如图,在△ABC中,AB=AC=6,BC=7,E是BC上的一个动点(不与点B,C重合),△DEF≌△ABC,其中点A,B的对应点分别是点D,E.当点E 运动时DE边始终经过点A.设EF与AC相交于点G,当△AEG是等腰三角形时,BE的长为1或.【分析】首先由∠AEF=∠B=∠C,且∠AGE>∠C,可得AE≠AG,然后分别从AE=EG与AG=EG去分析,注意利用全等三角形与相似三角形的性质求解即可求得答案.【解答】解:∵∠AEF=∠B=∠C,且∠AGE>∠C,∴∠AGE>∠AEF,∴AE≠AG;当AE=EG时,则△ABE≌△ECG,∴CE=AB=6,∴BE=BC﹣EC=7﹣6=1,当AG=EG时,则∠GAE=∠GEA,∴∠GAE+∠BAE=∠GEA+∠CEG,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴=,∴CE==,∴BE=7﹣=;∴BE=1或.故答案为:1或.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定和性质、等腰三角形的性质,熟练掌握性质定理是解题的关键.12.如图,在四边形ABCD中,∠ADC=60°,∠ABC=30°,且AD=CD,连接BD,若AB=2,BD=,则BC的长为.【分析】将△ADB以D为旋转中心,逆时针旋转60°,使A与C点重合,B与E点重合,连接BE,根据旋转的性质得∴∠ABD=∠CED,∠A=∠ECD,AB=CE,DB=DE,易得△DBE为等边三角形,则DB=BE,根据周角的定义和四边形内角和定理得∠ECB=360°﹣∠BCD﹣∠DCE=360°﹣∠BCD﹣∠A=360°﹣(360°﹣∠ADC﹣∠ABC)=60°+30°=90°,则△ECB为直角三角形,根据勾股定理得EC2+BC2=BE2,利用等线段代换可得BD2=AB2+BC2,再代入计算即可求解.【解答】解:如图,将△ADB以D为旋转中心,逆时针旋转60°,使A与C点重合,B与E点重合,连接BE,∴∠ABD=∠CED,∠A=∠ECD,AB=CE,DB=DE,又∵∠ADC=60°,∴∠BDE=60°,∴△DBE为等边三角形,∴DB=BE,又∴∠ECB=360°﹣∠BCD﹣∠DCE=360°﹣∠BCD﹣∠A=360°﹣(360°﹣∠ADC﹣∠ABC)=60°+30°=90°,∴△ECB为直角三角形,∴EC2+BC2=BE2,∴BD2=AB2+BC2.∴BC==.故答案为:.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等,对应点与旋转中心的连线段的夹角等于旋转角.也考查了全等三角形的判定与性质、等边三角形的判定与性质以及勾股定理.13.如图,在△ABC 中,∠BAC=90°,AB=4,AC=6,点D 、E 分别是BC 、AD 的中点,AF ∥BC 交CE 的延长线于F ,则△AFC 的面积为 6 .【分析】由于AF ∥BC ,从而易证△AEF ≌△DEC (AAS ),所以AF=CD ,从而可证四边形AFBD 是平行四边形,所以S 四边形AFBD =2S △ABD ,又因为BD=DC ,所以S △ABC =2S △ABD ,所以S 四边形AFBD =S △ABC ,再根据等底等高的三角形面积等于平行四边形面积的一半即可求出答案. 【解答】解:∵AF ∥BC , ∴∠AFC=∠FCD , 在△AEF 与△DEC 中,,∴△AEF ≌△DEC (AAS ). ∴AF=DC , ∵BD=DC ,∴AF=BD ,∴四边形AFBD 是平行四边形,∴S 四边形AFBD =2S △ABD ,又∵BD=DC ,∴S △ABC =2S △ABD ,∴S 四边形AFBD =S △ABC ,∵∠BAC=90°,AB=4,AC=6,∴S △ABC =AB•AC=×4×6=12,∴S 四边形AFBD =12,∴△AFC 的面积为12÷2=6.故答案为:6.【点评】本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.14.如图,Rt △ABC 中,∠ACB=90°,∠BAC=30°,BC=1,分别以AB 、BC 、AC 为边作正方ABED 、BCFK 、ACGH ,再作Rt △PQR ,使∠R=90°,点H 在边QR 上,点D 、E 在边PR 上,点G 、F 在边PQ 上,则PQ 的长为 2+7 .【分析】首先证明△ABC ≌△GFC (SAS ),利用全等三角形的性质可得:∠CGF=∠BAC=30°,在直角△ABC 中,根据三角函数即可求得AC ,进而由等边三角形的性质和正方形的性质及三角函数就可求得QR 的长,在直角△QRP 中运用三角函数即可得到RP 、进而可求出PQ 的长.【解答】解:延长BA 交QR 于点M ,连接AR ,AP .在△ABC 和△GFC 中,∴△ABC≌△GFC(SAS),∴∠CGF=∠BAC=30°,∴∠HGQ=60°,∵∠HAC=∠BAD=90°,∴∠BAC+∠DAH=180°,又∵AD∥QR,∴∠RHA+∠DAH=180°,∴∠RHA=∠BAC=30°,∴∠QHG=60°,∴∠Q=∠QHG=∠QGH=60°,∴△QHG是等边三角形.AC=BC•tan60°=,则QH=HA=HG=AC=,在直角△HMA中,HM=AH•sin60°=×=,AM=HA•cos60°=,在直角△AMR中,MR=AD=AB=2.∴QR=++2=+,∴QP=2QR=2+7.故答案为:2+7.【点评】本题考查了勾股定理和含30度角的直角三角形以及全等三角形的判定和性质,题目的综合性较强,难度较大,正确运用三角函数以及勾股定理是解决本题的关键.15.如图,水平距离为80米(BC=80米)的A,B两村庄隔着一条小河,并且河宽15米,A与河l1的距离为40米,B与河l2的距离为20米,为了方便行人之间来往,现在要在两条小河上各建一条垂直于河岸的桥,那么A,B两村庄来往的最短路程是115米.【分析】在AC上取一点A′,使得AA′=15,连接BA′交l2于F,作EF⊥l1垂足为E,连接AE.则AE+EF+FB的值最小.【解答】解:在AC上取一点A′,使得AA′=15,连接BA′交l2于F,作EF⊥l1垂足为E,连接AE.则AE+EF+FB的值最小.∵AA′=EF,AA′∥EF,∴四边形AA′FE是平行四边形,∴AE=A′F,在Rt△A′BC中,BA′===100米,∴AE+EF+FB=BA′+AA′=115米.故答案为115.【点评】本题考查勾股定理的应用、两点之间线段最短、平行四边形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.16.如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形,∠ADC=30°,若CD=6,BD=6.5,则AD=.【分析】在CD外侧作等边△CDE,连接AE,易证∠ACE=∠BCD,进而可以证明△ACE≌△BCD,可得AE=BD,在Rt△ADE中根据勾股定理可以求得DE 的长,即可解题.【解答】解:在CD外侧作等边△CDE,连接AE,则∠ADE=90°,DE=DC,∠DCE=60°,∵∠ACB=∠DCE=60°,∴∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS)∴AE=BD=6.5,∵在Rt△ADE中,DE2=AE2﹣AD2=BD2﹣AD2=6.52﹣AD2=62,∴AD=,故答案为:.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ACE≌△BCD是解题的关键.17.四边形ACBD中,AC=BC,∠ACB=90°,∠ADB=30°,AD=6,CD=7,则BD=10.【分析】作AH⊥BD于H,CN⊥BD于N,CM⊥HA于M,则四边形CMHN 是矩形.首先证明△BCN≌△ACM,四边形CMHN是正方形,设CN=a.构建方程求出a即可解决问题;【解答】解:作AH⊥BD于H,CN⊥BD于N,CM⊥HA于M,则四边形CMHN 是矩形.∵∠BCA=∠MCN=90°,∴∠BCN=∠MCA,∵∠CNB=∠M=90°,BC=CA,∴△BCN≌△ACM,∴CM=CN,BN=AM,∴四边形CMHN是正方形,设CN=a.在Rt△AHD中,AD=6,∠ADH=30°,∴AH=3,DH=3,在Rt△CND中,∵CN2+DN2=CD2,∴a2+(a+3)2=(7)2,整理得:2a2+6a﹣71=0,解得a=或(舍弃),∴AM=BN=,∴BD=BN+NH+DH=++3=10,【点评】本题考查勾股定理、全等三角形的判定和性质、正方形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.18.如图,在△ABC中,AB=BC=6,AO=BO,P是射线CO上的一个动点,∠AOC=60°,则当△PAB为直角三角形时,AP的长为3或3或3.【分析】利用分类讨论,当∠ABP=90°时,如图2,由对顶角的性质可得∠AOC=∠BOP=60°,易得∠BPO=30°,易得BP的长,利用勾股定理可得AP的长;当∠APB=90°时,分两种情况讨论,情况一:如图1,利用直角三角形斜边的中线等于斜边的一半得出PO=BO,易得△BOP为等边三角形,利用锐角三角函数可得AP的长;易得BP,利用勾股定理可得AP的长;情况二:如图3,利用直角三角形斜边的中线等于斜边的一半可得结论.【解答】解:当∠APB=90°时(如图1),∵AO=BO,∴PO=BO,∵∠AOC=60°,∴∠BOP=60°,∴△BOP为等边三角形,∵AB=BC=6,∴AP=AB•sin60°=6×=3;当∠ABP=90°时(如图2),∵∠AOC=∠BOP=60°,∴∠BPO=30°,∴BP===3,在直角三角形ABP中,AP==3;如图3,∵AO=BO,∠APB=90°,∴PO=AO,∵∠AOC=60°,∴△AOP为等边三角形,∴AP=AO=3,故答案为3或3或3.【点评】本题主要考查了勾股定理,含30°直角三角形的性质和直角三角形斜边的中线,分类讨论,数形结合是解答此题的关键.19.如图,A(1,0),B(0,1),若△ABO是一个三角形台球桌,从O点击出的球经过C、D两处反弹正好落在A洞,则C的坐标是(,).【分析】应先作出点O及点A的对称点,过两个点的直线与直线AB的交点即为所求点.【解答】解:如图所示,∵点O关于AB的对称点是O′(1,1),点A关于y轴的对称点是A′(﹣1,0)设AB的解析式为y=kx+b,∵(1,0),(0,1)在直线上,∴,解得k=﹣1,∴AB的表达式是y=1﹣x,同理可得O′A′的表达式是y=+,两个表达式联立,解得x=,y=.故答案为:(,).【点评】考查对称的知识;根据作相关点的对称点得到点D的位置是解决本题的关键.20.如图,是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若两直角边AC=4,BC=6,现将四个直角三角形中边长为6的直角边分别向外延长一倍,延长后得到下图所示的“数学风车”,则该“数学风车”所围成的总面积是100.【分析】由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由BC延伸一倍,从而求得风车的一个轮子,进一步求得四个.【解答】解:在直角三角形ACB中,AB=62+42=213,中间小正方形的面积:213×213﹣6×4÷2×4=52﹣48=4,4+(6+6)×4÷2×4=4+96=100.故答案为:100【点评】本题是勾股定理在实际情况中应用,并注意隐含的已知条件来解答此类题.21.如图,Rt △ABC 中,∠ACB=90°,AC=2,BC=.分别以AB ,AC ,BC为边,向外作正方形ABDE ,正方形ACFG ,正方形BCMN ,连接GE ,DN .则图中阴影的总面积是 2 .【分析】如图将△GAE 绕点A 顺时针旋转90°得到△KAB .首先证明S △ABK =S △ABC =S △AGE ,同理可证S △BDN =S △ABC ,推出S △AEG +S △BDN =2•S △ABC ,由此即可解决问题.【解答】解:如图将△GAE 绕点A 顺时针旋转90°得到△KAB .∵∠GAC=∠EAB=90°,∴∠GAE +∠CAB=180°,∵∠GAE=∠KAB ,∴∠KAB +∠CAB=180°,∴C 、A 、K 共线,∵AG=AK=AC ,∴S △ABK =S △ABC =S △AGE ,同理可证S △BDN =S △ABC ,∴S △AEG +S △BDN =2•S △ABC =2××2×=2.故答案为2. 【点评】本题考查的是勾股定理、正方形的性质、旋转变换等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题.22.如图,△ABC 是直角三角形,记BC=a ,分别以直角三角形的三边向外作正方形ABDE ,正方形ACFG ,正方形BCMN ,过点C 作BA 边上的高CH 并延长交正方形ABDE 的边DE 于K ,则四边形BDKH 的面积为 a 2 .(用含a 的式子表示)【分析】由射影定理得到BC 2=BH•BA ,即BH•BA=a 2,再由矩形面积公式即可得到结论.【解答】解:∵BC ⊥AC ,CH ⊥BA ,∴BC 2=BH•BA ,即BH•BA=a 2,∵四边形ABDE 是正方形,∴BD=BA ,∴四边形BDKH 的面积=BH•BD=BH•BA=a 2,故答案为:a 2.【点评】本题主要考查了射影定理,正方形的性质,矩形面积,由射影定理得到BC2=BH•BA是解题的关键.23.如图,在△ABC中,AB=5,AC=3,BC=4,D是BC边上一动点,BE⊥AD,交其延长线于点E,EF⊥AC,交其延长线于点F,则AF的最大值为4.【分析】由AB=5、AC=3、BC=4可得出∠ACB=90°,以AB为直径作⊙O,则点C、E在圆上,作BC的平行线切⊙O于点E,过点E作EF⊥AC的延长线于点F,此时AF最长,连接OE,过点O作OM⊥AC于点M,根据OE⊥EF、OE⊥EF、EF⊥AF可得出四边形OEFM为矩形,进而可得出MF的长度,再根据点O为AB的中点利用三角形中位线的性质可得出AM的长度,由AF=AM+MF可求出AF的最大值.【解答】解:∵AB=5,AC=3,BC=4,∴AB2=AC2+BC2,∴∠ACB=90°.以AB为直径作⊙O,则点C、E在圆上,作BC的平行线切⊙O于点E,过点E 作EF⊥AC的延长线于点F,此时AF最长,连接OE,过点O作OM⊥AC 于点M,如图所示.∵OM⊥AC,∠ACB=90°,∴OM∥BC.∵点O为AB的中点,∴点M为AC的中点,∴AM=AC=.∵EF切⊙O为点E,∴OE⊥EF,。

初中勾股定理练习题精选全文完整版

初中勾股定理练习题精选全文完整版

可编辑修改精选全文完整版第一章《勾股定理》练习题一、选择题(8×3′=24′) 1、在Rt △ABC 中,∠C=90°,三边长分别为a 、b 、c ,则下列结论中恒成立的是( ) A 、2ab<c 2 B 、2ab ≥c 2 C 、2ab>c 2 D 、2ab ≤c 22、已知x 、y 为正数,且│x 2-4│+(y 2-3)2=0,如果以x 、y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( ) A 、5 B 、25 C 、7 D 、153、直角三角形的一直角边长为12,另外两边之长为自然数,则满足要求的直角三角形共有( ) A 、4个 B 、5个 C 、6个 D 、8个4、下列命题①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是12、25、21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a>b=c ),那么a 2∶b 2∶c 2=2∶1∶1。

其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+338=10a+24b+26c ,则此△为( ) A 、锐角三角形 B 、钝角三角形 C 、直角三角形 D 、不能确定6、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( ) A 、40 B 、80 C 、40或360 D 、80或3607、如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( ) A 、4 B 、3 C 、5 D 、4.58、如图,一块直角三角形的纸片,两直角边AC=6㎝,BC=8㎝。

现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2㎝ B 、3㎝ C 、4㎝ D 、5㎝ 二、填空题(12×3′=36′)9、在△ABC 中,点D 为BC 的中点,BD=3,AD=4,AB=5,则AC=___________。

中考数学总复习《勾股定理》专项测试题-附参考答案

中考数学总复习《勾股定理》专项测试题-附参考答案

中考数学总复习《勾股定理》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.如图,在△ABC中,AB⊥AC,AB=5cm,BC=13cm,BD是AC边上的中线,则△BCD的面积是( )A.15cm2B.30cm2C.60cm2D.65cm22.满足下列条件的△ABC,不是直角三角形的是( )A.a:b:c=3:4:5B.∠A:∠B:∠C=9:12:15C.∠C=∠A−∠B D.b2=c2−a23.如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,如果梯子的底部在水平方向上向右滑动了8米,那么梯子的顶端下滑( )米.A.4米B.6米C.8米D.10米4.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为( )A.直角三角形B.锐角三角形C.钝角三角形D.以上答案都不对5.如图,在△ABC中∠C=90∘,AC=2点D在BC上∠ADC=2∠B,AD=√5,则BC 的长为( )A.√3−1B.√3+1C.√5−1D.√5+1 6. △ABC中∠A,∠B,∠C的对边分别是a,b,c,下列命题为真命题的( )A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b:c=3:4:√7,则△ABC是直角三角形7.如图,已知∠MON=45∘,点A,B在边ON上,OA=3点C是边OM上一个动点,若△ABC周长的最小值是6,则AB的长是( )A.12B.34C.56D.18.如图,字母B所代表的正方形的面积是( )A.12B.144C.13D.194二、填空题(共5题,共15分)9.已知Rt△ABC的面积为√3,斜边长为√7,两直角边长分别为a,b.则代数式a3b+ab3的值为.10.如图,在等腰Rt△ABC中,∠C=90∘,D为AC边上任意一点,作BD的垂直平分线交AB于点E,交BC于点F.连接DE,DF,当BC=1时,△ADE与△CDF的周长之和为.11.如图,在Rt△ABC中∠C=90∘,AD平分∠CAB,DE⊥AB于点E,若AC=9,AB= 15,则DE=.12.平面直角坐标系xOy中,点A(4,3),点B(3,0),点C(5,3),点E在x轴上,当CE= AB时,点E的坐标为.13.已知∠AOB=30∘,点C为射线OB上一点,点D为OC的中点,且OC=6.当点P在射线OA上运动时,则PC与PD和的最小值为.三、解答题(共3题,共45分)14.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B′离地面0.6m,荡秋千到AB的位置时,下端B距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB的长.15.如图,在ΔABC中,∠B=90°点P从点A开始沿AB边向点B以lcm/s的速度移动,Q 从点B开始沿BC边向C点以2cm/s的速度移动,且P、Q分别从A、B同时出发,当点Q 运动到点C为止.问:经过几秒钟,PQ的长度等于√29cm?16.如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(√2≈1.414,精确到1米)参考答案1. 【答案】A2. 【答案】B3. 【答案】A4. 【答案】C5. 【答案】C6. 【答案】D7. 【答案】D8. 【答案】B9. 【答案】14√310. 【答案】2+√211. 【答案】9212. 【答案】(4,0)或(6,0)13. 【答案】3√314.【答案】解:设AB=AB′=xm,由题意可得出:B′E=1.4﹣0.6=0.8(m)则AE=AB﹣0.8在Rt△AEB中,∵AE2+BE2=AB2∴(x﹣0.8)2+2.42=x2解得:x=4答:秋千AB的长为4m.15.【答案】解:设运动的时间是t(s),则PB=6−t在RtΔPBQ中即:(6−t)2+(2t)2=(√29)25t2−12t+7=0(t−1)(5t−7)=0.解得t1=1t2=75答:1秒或7秒后,PQ的长度等于√29cm516.【答案】解:∵CD⊥AC∴∠ACD=90°∵∠ABD=135°∴∠DBC=45°∴∠D=45°∴CB=CD在Rt△DCB中:CD2+BC2=BD22CD2=8002CD=400√2≈566(米)答:直线L上距离D点566米的C处开挖。

《勾股定理》中的经典中考题

《勾股定理》中的经典中考题

1.如图,透明的圆柱形容器(容器厚度疏忽不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是【2 】A.13cm B.cm C.cm D.cm2.如图,一只蚂蚁沿着边长为2的正方体表面从点A动身,经由3个面爬到点B,假如它活动的路径是最短的,则AC的长为.3.我国古代有如许一道数学问题:“枯木一根直登时上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末尾正好到达点B处.则问题中葛藤的最短长度是尺.4.如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为.5.如图,修公路碰到一座山,于是要修一条地道.为了加速施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延伸线上,假想过C点作直线AB的垂线L,过点B作一向线(在山的旁边经由),与L订交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,准确到1米)6.勾股定理神秘而美好,它的证法多样,其奇妙各有不同,个中的“面积法”给了小聪以灵感,他惊喜的发明,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证实,下面是小聪应用图1证实勾股定理的进程:将两个全等的直角三角形按图1所示摆放,个中∠DAB=90°,求证:a2+b2=c2证实:贯穿连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,应用图2完成下面的证实.将两个全等的直角三角形按图2所示摆放,个中∠DAB=90°.求证:a2+b2=c27.如图,将矩形ABCD沿EF折叠,使极点C正好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4B.3C.4.5 D.58.小明据说“武黄城际列车”已经开通,便设计了如下问题:如图,以往从黄石A坐客车到武昌客运站B,如今可以在A坐城际列车到武汉青山站C,再从青山站C坐市内公共汽车到武昌客运站B.设AB=80km,BC=20km,∠ABC=120°.请你关心小明解决以下问题:(1)求A.C之间的距离;(参考数据=4.6)(2)若客车的平均速度是60km/h,市内的公共汽车的平均速度为40km/h,城际列车的平均速度为180km/h,为了最短时光到达武昌客运站,小明应当选择哪种乘车计划?请解释来由.(不计候车时光)9.已知一个直角三角形的双方的长分离是3和4,则第三边长为.10.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B正好落在边AC上,与点B′重合,AE为折痕,则EB′=.11.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞翔米.12.如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直等分线MN正好过点C.则矩形的一边AB的长度为()A.1 B.C.D.213.如图,在Rt△ABC中,∠ACB=60°,DE是斜边AC的中垂线,分离交AB.AC于D.E两点.若BD=2,则AC的长是()A.4B.4C.8D.814.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D. 515..假如三角形知足一个角是另一个角的3倍,那么我们称这个三角形为“聪明三角形”.下列各组数据中,能作为一个聪明三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,16.如图,这是某种牛奶的长方体包装盒,长.宽.高分离为5cm.4cm.12cm,插吸管处的出口到相邻双方的距离都是1cm,为了设计配套的直吸管,请求插入碰着底面后,外露的吸管长度要在3cm至5cm间(包括3cm与5cm,不计吸管粗细及出口的大小),则设计的吸管总长度L的规模是_________.17.如图,有一向角三角形纸片ABC,边BC=6,AB=10,∠ACB=90°,将该直角三角形纸片沿DE 折叠,使点A与点C重合,则四边形DBCE的周长为.18.图①所示的正方体木块棱长为6cm,沿其相邻三个面的对角线(图中虚线)剪失落一角,得到如图②的几何体,一只蚂蚁沿着图②的几何体表面从极点A爬行到极点B的最短距离为cm.19.如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()第2题图A.4dm B.2dm C.2dm D.4dm20.如图,△ABC的极点A.B.C在边长为1的正方形网格的格点上,BD⊥AC于点D.则CD 的长为()A.B.C.D.21.如图,在6个边长为1的小正方形及其部分对角线组成的图形中,如图从A点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()A.1种B.2种C.3种D.4种22.图,已知∠AOB=60°,点P在边OA上,OP=12,点M,N在边OB上,PM=PN,若MN=2,则OM=()(第4题图)A.3B.4C.5D.6。

勾股定理中考练习题

勾股定理中考练习题

勾股定理中考练习题勾股定理是数学中的一条重要定理,它被广泛应用于几何学和物理学中。

在考试中,经常会出现与勾股定理相关的练习题,考察学生对该定理的理解和运用能力。

本文将通过一些例题,帮助读者更好地掌握勾股定理的应用。

例题一:已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。

解析:根据勾股定理,直角三角形的斜边的平方等于两条直角边的平方和。

即斜边的长度等于√(3^2 + 4^2) = √(9 + 16) = √25 = 5cm。

例题二:已知直角三角形的斜边为10cm,一条直角边为6cm,求另一条直角边的长度。

解析:同样利用勾股定理,设另一条直角边的长度为x,则有x^2 + 6^2 =10^2,化简得到x^2 = 100 - 36 = 64,再开方得到x = 8cm。

通过以上两个例题,我们可以看出勾股定理的应用是非常灵活的。

在解题过程中,我们可以利用已知条件,通过勾股定理建立方程,从而求解未知量。

除了直角三角形,勾股定理还可以应用于其他类型的三角形。

例如,我们可以利用勾股定理判断一个三角形是否为直角三角形。

如果一个三角形的三条边满足勾股定理的条件,那么它就是一个直角三角形。

例题三:已知三角形的三条边分别为5cm、12cm和13cm,判断该三角形是否为直角三角形。

解析:根据勾股定理,如果一个三角形是直角三角形,那么它的三条边的平方和应该相等。

即5^2 + 12^2 = 13^2,计算可得25 + 144 = 169,两边相等,因此该三角形是直角三角形。

通过这个例题,我们可以看到,勾股定理不仅可以用来求解三角形的边长,还可以用来判断三角形的性质。

在实际生活中,勾股定理的应用也非常广泛。

例如,在建筑工程中,设计师需要利用勾股定理计算建筑物的斜坡长度;在地理测量中,勾股定理被用来计算两地之间的直线距离;在导航系统中,勾股定理被用来计算航行的距离和方向。

总之,勾股定理是一条非常重要的数学定理,它的应用不仅限于数学课堂,还延伸到了各个领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理中考真题精选汇总
一、选择题
1. (滨州)在△ABC 中,∠C=90°, ∠C=72°,AB=10,则边AC 的长约为(精确到0.1)( ) A.9.1
B.9.5
C.3.1
D.3.5
2. (烟台)如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角
形,两直角边分别为6m 和8m.按照输油中心O 到三条支路的距离相等来连接管
道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( )
A2m B.3m C.6m D.9m (台湾)已知小龙、阿虎两人均在同一地点,若小龙向北直走160公
尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后, 他与神仙百货的距离为340公尺?
A . 100
B . 180
C . 220
D . 260
3. (湖北黄石)将一个有45度角的三角板的直角顶点放在一张宽为3cm 的
纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的
一边所在的直线成30度角,如图(3),则三角板的最大边的长为 A. 3cm B. 6cm C. 32cm D. 62cm
(贵州贵阳)如图,△ABC 中,∠C =90°,AC =3,∠B =30°,点P 是BC 边上的动点,则AP 长不可能是
(A )3.5 (B )4.2 (C )5.8 (D )7 O
图3A
'
C B
A
D
E
4. (河北)如图3,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB,AC 上,将△ABC 沿DE 折叠,使点A 落
在点A ′处,若A ′为CE 的中点,则折痕DE 的长为( ) A .
2
1 B .
2 C .
3 D .4
二、填空题
1. (山东德州)下列命题中,其逆.
命题成立的是_____ __.(只填写序号) ①同旁内角互补,两直线平行; ②如果两个角是直角,那么它们相等;
③如果两个实数相等,那么它们的平方相等; ④如果三角形的三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形.
2、(温州)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为S 1,S 2,S 3,若S 1+S 2+S 3=10,则S 2的值是错误!未找到引用源。


3. (重庆綦江) 一个正方体物体沿斜坡向下滑动,其截面如图所示.
正方形DEFH 的边长为2米,坡角∠A =30°,∠B =90°,BC =6
米. 当正方形DEFH
运动到什么位置,即当AE = 米时,有DC 2=AE 2+BC 2.
(四川凉山州)把命题“如果直角三角形的两直角边长分别为a 、b ,斜边长为c ,那么222
a b c +=”
的逆命题改写成“如果……,那么……”的形式:
4. (江苏无锡)如图,在Rt △ABC 中,∠ACB = 90°,D 、E 、F
分别是AB 、BC 、CA 的中点,若CD = 5cm ,则EF = _________cm .
6. (广东肇庆)在直角三角形ABC 中,∠C = 90°,BC = 12,AC = 9,则AB = .
7. (贵州安顺)如图,在Rt △ABC 中,∠C =90°,BC =6cm ,AC =8cm ,按图中所示方法将
△BCD 沿BD 折叠,使点C 落在AB 边的C ′点,那么△ADC ′的面积是 .
8. (山东枣庄)将一副三角尺如图所示叠放在一起,若AB =14cm ,则阴影部分的面积是________cm 2.
三、解答题
1. (四川广安)某园艺公司对一块直角三角形的花圃进行改造.测得两直
角边长为6m 、8m.现要将其扩建成等腰三角形,且扩充部分是以8m 为直角边....
的直角三角形......
.求扩建后的等腰三角形花圃的周长. 2. (四川绵阳)王伟准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a 米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.
(1)请用a 表示第三条边长;
(2)问第一条边长可以为7米吗?为什么?请说明理由,并求出a 的取值范围;
(3)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说明你的围法;若不能,请说明理由. 第16

A C E D
B F 30° 45° A
C B E F
D (第16
3. (四川乐山)如图,在直角△ABC 中, ∠ACB=90
,CD ⊥AB,垂足为D,点E 在AC 上,BE 交CD 于点G,EF ⊥BE 交AB 于点F,若AC=mBC,CE=nEA(m,n 为实数).试探究线段EF 与EG 的数量关系.
(1) 如图(14.2),当m=1,n=1时,EF 与EG 的数量关系是
(2) 如图(14.3),当m=1,n 为任意实数时,EF 与EG 的数量关系是
(3) 如图(14.1),当m,n 均为任意实数时,EF 与EG 的数量关系是
(写出关系式,不必证明)
4. (四川乐山)如图,在直角△ABC 中,∠C=90 ,∠CAB 的平分线
AD 交BC 于D ,若DE 垂直平分AB ,求∠B 的度数。

5. (山东枣庄)如图,在边长为1的小正方形组成的网格中,△ABC
的三个顶点均在格点上,请按要求完成下列各题:
(1)画线段AD ∥BC 且使AD =BC ,连接CD ;
(2)线段AC 的长为 ,CD 的长为 ,AD 的长为 ;
(3)△ACD 为 三角形,四边形ABCD 的面积为 ;
(4)若E 为BC 中点,则tan ∠CAE 的值是 .
A B C E。

相关文档
最新文档