(完整版)一元一次不等式组及解法导学案
一元一次不等式全章导学案
鸡西市第十九中学学案要求:任意的有理数,在“”上填“>”、“<”或“=”号;(3)在实验中注意观察不等号方向.....的变化,并总结自己的发现。
5>35>35>35>3我们发现:不等式两边同一个数(无论正负),不等号方向5>35>35>35>3我们发现:不等式两边乘以或除以同一个数,不等号方向但是:不等式两边乘以或除以同一个数,不等号方向鸡西市第十九中学学案鸡西市第十九中学学案鸡西市第十九中学学案-2x+3 >-3x+1 2x > 1 –≤ 1 2x > -1 3152x x->+;2x-19<7x+31.5343y y+>+;25453x x x-+<-;鸡西市第十九中学学案班级姓名:《解一元一次不等式》专题班级 姓名在数轴上表示为:我未曾见过一个早起勤奋谨慎诚实的人抱怨命运不好。
解下列不等式,并在数轴上表示出它们的解集.1. 8223-<+x x2. x x 4923+≥-3. )1(5)32(2+<+x x4. 0)7(319≤+-x5.31222+≥+x x 6. 223125+<-+x x7. 5223-<+x x 8. 234->-x9. )1(281)2(3--≥-+y y 10. 1213<--m m11. 31222-≥+x x 12. )2(3)]2(2[3-->--x x x x 13. 41128)1(3--<++x x 14. )1(52)]1(21[21-≤+-x x x15.22416->--x x 16. x x x 212416-≤--17. 7)1(68)2(5+-<+-x x 18. 46)3(25->--x x(1) 41328)1(3--<++x x 20. 215329323+≤---x x x21. 1215312≤+--x x 22. 31222-≥+x x23. 22416->--x x 24. x x x 232416-≤--25.31221+≥+x x 26. 223123+<-+x x27. 5213-<+x x 28.234->-x29. )1(251)2(3--≥-+y y 30.1223<--m m鸡西市第十九中学学案一元一次不等式组解集的规律:练习.利用数轴表示下列不等式13x -<⎧13x ->⎧210x ->⎧313x -->⎧314,x ->⎧21,x x >-⎧⎧+>+321x x 512,x x ->+⎧⎪⎧≥--4)2(3x x 《解一元一次不等式组》专题班级 姓名打击与挫败是成功的踏脚石,而不是绊脚石。
《一元一次不等式组》 导学案
《一元一次不等式组》导学案一、学习目标1、理解一元一次不等式组的概念。
2、掌握一元一次不等式组的解集的求法。
3、会利用一元一次不等式组解决实际问题。
二、学习重难点1、重点(1)理解一元一次不等式组的有关概念。
(2)会解一元一次不等式组,并会用数轴确定其解集。
2、难点(1)在数轴上正确表示一元一次不等式组的解集。
(2)正确找出实际问题中的不等关系,列出一元一次不等式组。
三、知识回顾1、什么是一元一次不等式?只含有一个未知数,未知数的次数是 1,且不等式的两边都是整式的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(若有分母);(2)去括号(若有括号);(3)移项;(4)合并同类项;(5)系数化为 1。
四、新课导入某班同学准备去公园游玩,门票每人5 元。
如果人数不超过25 人,那么门票费用不超过 125 元;如果人数超过 25 人,那么每增加 1 人,门票费用降低 1 元,但门票费用最低不低于 4 元。
设该班去公园游玩的人数为 x 人,那么 x 应满足怎样的不等式关系呢?五、新课讲解1、一元一次不等式组的概念把几个含有相同未知数的一元一次不等式合起来,就组成了一个一元一次不等式组。
例如:\(\begin{cases}2x 1 > 0 \\ x + 1 < 4\end{cases}\)\(\begin{cases}3x + 5 < 8 \\ 2x 1 \geq 0\end{cases}\)2、一元一次不等式组的解集一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
求不等式组解集的过程,叫做解不等式组。
3、解一元一次不等式组的步骤(1)分别求出不等式组中各个不等式的解集。
(2)将各个不等式的解集在数轴上表示出来。
(3)找出它们的公共部分,这个公共部分就是不等式组的解集。
例如:解不等式组\(\begin{cases}x 1 > 2 \\ 2x < 8\end{cases}\)解不等式\(x 1 > 2\),得\(x > 3\)解不等式\(2x < 8\),得\(x < 4\)将两个解集在数轴上表示出来:```-1 0 1 2 3 4 5 6〇───────●──────```所以,不等式组的解集为\(3 < x < 4\)4、用数轴表示不等式组的解集(1)同大取大例如:不等式组\(\begin{cases}x > 2 \\ x > 1\end{cases}\)解集为\(x > 2\)```-1 0 1 2 3 4 5 6〇─────●```(2)同小取小例如:不等式组\(\begin{cases}x < 2 \\ x < 1\end{cases}\)解集为\(x < 1\)```-1 0 1 2 3 4 5 6●─────〇```(3)大小小大中间找例如:不等式组\(\begin{cases}x < 2 \\ x > 1\end{cases}\)解集为\(1 < x < 2\)```-1 0 1 2 3 4 5 6〇─────●```(4)大大小小找不到(无解)例如:不等式组\(\begin{cases}x > 2 \\ x < 1\end{cases}\)解集为空集,即无解```-1 0 1 2 3 4 5 6〇───────●```六、例题讲解例 1:解不等式组\(\begin{cases}3x 1 > 2x + 1 \\ 2x \leq 8\end{cases}\)解:解不等式\(3x 1 > 2x + 1\),得\(x > 2\)解不等式\(2x \leq 8\),得\(x \leq 4\)在数轴上表示解集:```-1 0 1 2 3 4 5 6〇─────●```所以,不等式组的解集为\(2 < x \leq 4\)例 2:某工厂要招聘 A、B 两种工种的工人共 150 人,A、B 两个工种的工人的月工资分别为 600 元和 1000 元。
不等式导学案1
第二章一元一次不等式和一元一次不等式组§2.1 不等关系一、学习目标1. 感受生活中存在着大量的不等关系,了解不等式的意义;2. 理解实数范围内代数式的不等关系,能够根据具体的事例列出不等关系式;3.初步体会不等式是研究量与量之间关系的重要模型之一,训练分析判断能力和逻辑推理能力.二、学习重点根据具体的事例列出不等关系式.三、学习过程【课前预习自主学习】3、用不等式表示:(1)x的一半与5的差小于1;(2)x与6的和大于9;(3)8与y的2倍的和是正数;(4)x与8的差不大于0.【合作探究课堂导学】一般地,式子叫做不等式.【例1】用不等式表示:(1)a是正数;(2)a是负数;(3)a与6的和小于5;(4)x与2的差小于-1;【互助释疑精讲点拨】【例2】如图:用两根长度均为Lcm的绳子,各围成正方形和圆.(1)如果要使正方形的面积不大于25㎝²,那么绳长L应该满足怎样的关系式?(2)如果要使原的面积大于100㎝²,那么绳长L应满足怎样的关系式?(4)由(3)你能发现什么?改变L 的取值再试一试.在上面的问题中,所围谓成的正方形的面积可以表示为(L /4)²,圆的面积可以表示为π(L /2π)² .(1)要是正方形的面积不大于25㎝²,就是 (L /4)²≤25, 即 L ²/16≤25. (2)要使原的面积大于100㎝²,就是 π(L /2π)²>100, 即 L ²/4π>100.(3)当L =8时,正方形的面积为8²/16=6,圆的面积为8²/4π≈5.1,4<5.1 此时圆的面积大. 当L =12时,正方形的面积为12²/16=9,圆的面积为12²/4π≈11.5,9<11.5 此时还是圆的面积大. (4)由(3)可以发现,无论绳长L 取何值,圆的面积总大于正方形的面积,即 L ²/4π>L ²/16. 观察由上述问题得到的关系式,它们有什么共同特点?162l ≤25 π42l >100 π42l >162l 3x+5>240,这些关系式都是用不等号连接的式子.由此可知:结论:用符号“<”(或“≤”),“>”(或“≥”),“≠”连接的式子叫做不等式. 【巩固练习 达标测评】1. 下列式子中,是不等式的有① x+y, ② 3x ﹥7, ③ 2x+3=5, ④ -2>0, ⑤ x≠3,⑥ x+3≤y+1, ⑦ x 2+ xy -2y ≥52.“x 与4的和的2倍不大于x 的二分之一与3的差”用不等式表示为( )A.321)4(2-<+x x B.32124-≤⨯+x x C.321)4(2-≤+x x D.)3(21)4(2-≤+x x 3.下列各数:0.5,0,-1,π,1.5,2,其中使不等式x +1>2成立的是( )A. 0.5,0,-1B. 0,-1,πC. -1,π,1.5D. π,1.5,2 4.根据下列数量关系列不等式:(1)a 是正数; (2)a 的绝对值是非负数; (3)x 的3倍与1的差大5; (4)x 的一半不小于3; (5)x 的31与x 的2倍的和是非负数; (6)a 与b 两数和的平方不超过3; (7)a 的4倍大于a 的3倍与7的差; (8)x 的3倍与8的和比x 的5倍大 ; (9)a 的3倍与b 的和不大于0;(10)直角三角形斜边c 比它的两直角边a ,b 都长. 【学后反思】知识: 方法: 【拓展延伸】a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空:(1)a______b; (2)|a|______|b|; (3)a+b_________0;(4)a -b_______0; (5)a+b_______a -b; (6)ab______a.§2.2 不等关系式的基本性质一、学习目标1.探索并掌握不等式的基本性质; 2. 理解不等式与等式性质的联系与区别. 二、学习重点归纳并运用不等式的基本性质. 三、学习过程【课前预习 自主学习】1.阅读教材:我们知道,在等式的两边都加上或都减去同一个数或整式,等式不变. 如: ∵3<5 ∴3+2<5+2 ; 3-2<5-2;2.回答问题:如果在不等式的两边都加上或都减去同一个数或整式,那么结果会怎样? 如: 3+a <5+a ; 3-a <5-a 是否成立?3.完成填空: 2<3, 2×5 3×5;2<3, 212⨯ 213⨯;2<3, 2×(-1) 3×(-1); 2<3, 2×(-5) 3×(-5); 2<3, 2×(21-) 3×(21-).4. 不等式的基本性质1:在不等式的两边都加上(或减去)同一个整式,不等号的方向 ; 不等式的基本性质2: 在不等式的两边同乘以(或除以)一个正数时,不等号的方向 ; 不等式的基本性质3: 在不等式的两边同乘以(或除以)一个负数时,不等号的方向 .【互助释疑 精讲点拨】(1)若a >b ,则2a+1 2b+1; (2)若y 45-<10,则y -8; (3)若a <b ,且c >0,则ac+c bc+c ; (4)若a >0,b <0, c <0,(a-b )c 0. 【例2】将下列不等式化成“a x >”或“a x <”的形式:(1)15->-x (2)32>-x【例3】由(m-1)x>m-1得到x<1,则m 的取值范围是 .【巩固练习 达标测评】1.(1)用“>”号或“<”号填空,并简说理由.① 6+2 -3+2; ② 6×(-2) -3×(-2); ③ 6÷2 -3÷2; ④ 6÷(-2) -3÷(-2) (2)如果a >b ,则① b a + c b + ② b a - c b - ③ ac c bc (>0) ④c a cb(c <0) 2.根据不等式的基本性质,把下列不等式化成“x >a ”或“x <a ”的形式: (1)x -2<3; (2)6x <5x -1; (3)-4x >3.3.判断正误. 若a >b .则(1)a -3<b -3; ( ) (2)2a >2b; ( ) (3)-4a >-4b ;( ) (4)5a <5b ;( ) (5)ac>bc ;( ) (6) a 2c >b 2c ;( ) (7)2a > 2b ;( ) (8)2c a >2c b;( ) (9) 3-a>3-b .( ) 【学后反思】知识: 方法: 【拓展延伸】 1.判断正误(1)若x-y>x ,则y>0( ) (2) 若a 2c >b 2c ,则a >b ( ) 2. 如果10<<x ,则下列不等式成立的( ) A 、 x x x 12<< B 、x x x 12<< C 、21x x x << D 、x x x<<213. a 是任意有理数,试比较5a 与3a 的大小.§2.3 不等式的解集一、学习目标1. 能够根据具体问题中的大小关系了解不等式的意义.2. 理解不等式的解、不等式的解集、解不等式这些概念的含义.3. 会在数轴上表示不等式的解集. 二、学习重点了解不等式的解、解集的含义,会在数轴上表示解集. 三、学习过程【课前预习 自主学习】1. 还记得怎么解一元一次方程、二元一次方程吗?还记得它们的解的含义吗?想一想:(1)x =5,6,8能使不等式x >5成立吗?(2)是否还能找出一些使不等式x >5成立的x 的值?2. 类比方程,阅读教材,归纳结论:(1)能使不等式 ,叫做不等式的解.不等式的解有时有 个,有时有有限个,有时 .(2)一个含有未知数的不等式的 ,组成这个不等式的 ,求不等式的 的过程叫做解不等式.【合作探究 课堂导学】1. 燃放某种礼花弹时,为了确保安全,人在点燃导火线后要在燃放前转移到10 m 以外的安全区域.已知导火线的燃烧速度为以0.02 m/s ,人离开的速度为4 m/s ,那么导火线的长度应为多少厘米?分析:人转移到安全区域需要的时间最少为 秒,导火线燃烧的时间 为 秒,要使人转移到安全地带,必须有: > . 解:设导火线的长度应为x cm ,根据题意,得2. 尝试在数轴上表示出下列不等式的解集:(1)x >-1; (2)1-≥x ; (3)x <-1; (4)1-≤x注意:数轴上表示不等式的解集遵循(1)大于向右走,小于向左走 (2)有“ = ”用实心小圆点,没有“ = ”用空心圈. 【互助释疑 精讲点拨】【例1】判断下列说法是否正确:(1)2=x 是不等式3+x <4的解;( ) (2)2=x 是不等式x 3<7的解集;( ) (3)不等式x 3<7的解是2=x ;( ) (4)3=x 是不等式93≥x 的解.( ) 【例2】在数轴上表示下列不等式的解集.(1)x>3; (2) x<﹣2; (3) x≥121; (4) ﹣3 < x ≤ 1.【巩固练习 达标测评】 备选答案: 1.(1)不等式43-≤x 的解集是( ),解集是图( ); A.25-≤x B.x <0 (2)不等式324x x ->的解集是( ),解集是图( ); C.34-≤x D. x >0 (3)不等式x 53->0的解集是( ),解集是图( ); (4)不等式52≥-x 的解集是( ),解集是图( ).2.求不等式3+x <6的正整数解.3.在数轴上与原点的距离小于8的点对应的x 满足( )A 、x <8B 、x >8C 、x <-8或x >8D 、-8<x <8 【学后反思】知识: 方法: 【拓展延伸】 已知关于x 的方程4152435-=-m m x 的解为非负数,求m 的取值范围,并在数轴上表示出来.§2.4.1 一元一次不等式(一)一、学习目标1. 了解什么是一元一次不等式;2. 会解一元一次不等式;3.培养学生运用数学方法解决实际问题的创新能力及探究意识. 二、学习重点解一元一次不等式. 三、学习过程【课前预习 自主学习】 观察下列不等式:(1)2x-2.5≥1.5 (2)x≤8.75 (3)x<4 (4)5+3x>240这些不等式有哪些共同点?结论:左右两边都是 ,只含有 个未知数,并且未知数的最高次数是 的不等式,叫做一元一次不等式.【合作探究 课堂导学】【例1】解下列不等式,写出详细步骤,并把它的解集表示在数轴上(1) 3-x < 2x +6 (2) 22-x ≥3x-7归纳:解一元一次不等式的步骤:【例2】 已知关于x 的不等式32125+>-+ax x 的解集为21<x 求a 的值【巩固练习 达标测评】1. 下列不等式是一元一次不等式吗?(1)2x -2.5≥15; (2) 5+3x =240; (3) x >-4; (4)x1>1. (5) x (x+3)>-2 (6) xy -3>0 2. 已知不等式x ﹣1≥0,此不等式的解集在数轴上表示为( )A .B .C .D .3. 已知点M (1﹣2m ,m ﹣1)关于x 轴的对称点在第一象限,则m 的取值范围在数轴上表示应是( )A .B .C .D .4. 解下列不等式,并把它们的解集分别表示在数轴上.(1) x-4≥2(x+2) (2) -3x +12≤0; (3)21-x <354-x ; (4)27+x -1<223+x .【学后反思】知识: 方法: 【拓展延伸】若关于x 的不等式x <2x +a 与2x >4的解集相同,求a 的值.§2.4.2 一元一次不等式(二)一、学习目标1.进一步熟练掌握解一元一次不等式;2.会利用一元一次不等式解决简单的实际问题. 二、学习重点用一元一次不等式解决简单的实际问题. 三、学习过程【课前预习 自主学习】温故知新:解下列不等式,并把它们的解集分别表示在数轴上 (1)132<-x x (2)2235-+≥x x【合作探究 课堂导学】【例1】一次环保知识竞赛共有25道题,规定答对一道题得4分,答错或不答一道题扣1分,在这次竞赛中,小明被评为优秀(85分或85分以上),小明至少答对了几道题?【例2】小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2.2元,她买了2本笔记本.请你帮她算一算,她还可以买几支笔?小结:解一元一次不等式应用题的步骤:点评:解决这类问题的关键是理解题意,抓住“超过”、“不足”、“以上”、“最多”、“最少”、“至少”等关键词语,将其转化为不等式,并结合实际意义寻求最后的答案。
一元一次不等式组教学设计
一元一次不等式组教学设计一元一次不等式组教学设计(通用10篇)教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
下面是店铺收集整理的一元一次不等式组教学设计,希望大家喜欢。
一元一次不等式组教学设计篇1一、学习目标:1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,掌握求一元一次不等式组的解集的常规方法;2、经历知识的拓展过程,感受学习一元一次不等式组的必要性;3、逐步熟悉数形结合的思想方法,感受类比与化归的思想。
二、学习难点:1、重点:一元一次不等式组的解集和解法。
2、难点:一元一次不等式组解集的理解。
三、学习过程:问题情境:现有两根木条a和b,a长10 cm,b长3 cm。
如果再找一根木条。
,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm,那么x仅有小于两边之和还不够,仅有大于两边之差也不行,必须同时满足x10+3和x10—3。
类似于方程组引出一元一次不等式组的概念和记法。
探究新知:解下列不等式组解:解不等式(1),得x1,解不等式(2),得x—4。
在同一条数轴上表示不等式(1)、(2)的解集如图:所以,原不等式组的解是x1巩固新知:P140,1,P141,1归纳总结:不等式解集取值法则同大取大,同小取小,大小取中,矛盾无解。
若ab:①当时,•则不等式的公共解集为;②当时,不等式的公共解集为;③当时,不等式的公共解集为;④当时,不等式组。
作业:1、P141,22、解不等式组:(1);(2)(3);(4)3、若不等式组无解,求m的取值范围。
4、解不等式组,并将解集在数轴上表示出来。
5、解不等式组:(1);(2)6、解不等式:(1);(2)7、若关于x的不等式组的解集是,则下列结论正确的是()A、B、C、D、8、若方程组的解是负数,则的取值范围是()A、B、C、D、无解9、若,则x为()A、B、C、或 D、10、已知方程组的解为负数,求m的取值范围。
1.4 一元一次不等式导学案(二)
1.4 一元一次不等式导学案(二) 主备人:王军 审核人: 姓名 班级学习目标:1、会用一元一次不等式解决简单的实际问题。
2、进一步熟练解一元一次不等式,体会实际问题对解集的影响。
学习重点:一元一次不等式的解法;解一元一次不等式时,去分母及化系数为1,这两步当乘数是负数时改变不等号的方向学习难点:进一步熟练解一元一次不等式,体会实际问题对解集的影响预习导学:1、什么是一元一次不等式?2、列一元一次方程解应用题的步骤是怎样的?3、解下列不等式,并把解集分别表示在数轴上。
123x x -< 2322x x -<+合作探求:1、一次环保知识竞赛共有25道题,规定答对一道题得4分,答错了或不答一道题扣1分.在这次竞赛中小明被评为优秀(85分或85分以上),小明至少答对了几道题?思考:用一元一次不等式解决实际问题的一般步骤是什么?2、小颖准备用21元钱去买笔和笔记本。
已知每支笔3元,每个笔记本2.2元。
现在她已经买了2个笔记本,剩下的钱用来买笔,她还可以买几只笔?归纳总结利用不等式解应用题时,出现较多的是至少(≥),至多(≤),不足(<),超过(>)等关键词。
要善于抓住这些表示不等关系的词语,列出不等式。
列一元一次不等式解应用题的步骤和列一元一次不方程解应用题的步骤是一样的。
另外还要考虑是否符合实际问题。
当堂检测:(必做题)1、用不等式表示下列各题:(1)x 的2倍与它的一半的差是非负数 ; (2)x 与3差的平方不足9;(3)x 的31与5的差介于3和8之间 ; (4)x 的3倍不超过y 的212、某次数学知识竞赛中,共有16道问答题,评分标准是:答对一道题得6分,答错一道题倒扣2分,不答不扣分.小明同学有一道题未答,那么他至少答对多少道题,才能得到60分以上的成绩?选做题:3、小明骑自行车去姥姥家,每小时走12千米。
一小时后,小明的爸爸发现小明忘记带钥匙了,立即骑摩托车去送,问要在20分钟内追上,爸爸至少以多少的速度追赶?课后作业:1、某容器装了一些水,先用去了4升,然后又用了剩下的一半。
七年级数学一元一次不等式全章导学案
课题 :认识不等式 课型: 新授 课时:[学习目标]1.知道不等式的定义。
2.理解不等式的解和方程的解的异同。
3.会根据问题列不等式4.会将实际问题抽象成数学问题,并用学到的知识解决问题,从而培养学生分析问题、解决问题的能力。
[重点难点]重点:不等式的定义、不等式的解及列不等式。
难点:总结归纳不等式及不等式的解。
[学习过程] [复习]用“>”或“<”填空:(1)0 ―1; (2)―2 ―4; (3)―4 3; (4)2______-3;(5)21 31; (6)32- 43-.[新课]不等式的定义:用不等号“<”(或“≤”),“>”(或“≥”),“≠”表示不等关系的式子,叫做不等式。
[同步练习一]判断下列各式哪些是等式、哪些是不等式? ① x+y ; ②3x >7;③ 5=2+3 ; ④x ²>0 ;⑤ 2x-3 ⑥2x-3y=1 ;⑦52 [尝试练习1]用适当符号表示下列关系。
(1)a 的7倍与15的和比b 的3倍大: (2)a 是非负数; (3)x 比y 大3. (4)a 是正数; (5)a 是负数;(6)a 与6的和不大于5; (7)x 与2的差不小于-1; (8)x 的4倍大于7; (9)y 的一半小于3.[同步练习二]根据下列的数量关系列不等式:(1) x 的3倍与2的差是非负数; (2) a 的21与3的和小于1; (3) a 与b 两数和的平方不小于3; (4) a-b 是正数。
(5) —x 不大于—2 [例1]下列各数中,哪些是不等式x +2>5的解?哪些不是?-3,-2,-1,0,1.5,2.5,3,3.5,5,7。
注意:能使不等式成立的未知数的值,叫做不等式的解。
”不等式的解有时有无数个,有时有限个,有时无解。
[同步练习三]不等式x ≤3的正整数解是 。
不等式x <3的非负整数解是 ;不等式x <3的自然数解是 ;x >-2的负整数解有 。
[课堂小结]这节课你学了哪些内容? [课后作业]用不等式表示:(1)x 的21与3的差大于2; (2)2x 与1的和小于零;(3)a 的2倍与4的差是正数; (4)b 的21与c 的和是负数;(5)a 与b 的差是非负数; (6)x 的绝对值与1的和不小于1。
一元一次不等式组导学案
一元一次不等式组导学案1. 了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义2. 会解由两个一元一次不等式组成的一元一次不等式组;能借助数轴准确表示一元一次 不等式组的解集3•能根据实际问题中数量关系,以不等式为工具,建立符合题意的数学模型----不等式组 4.通过探讨一元一次不等式组的解法以及解集的确定,进一步感受数形结合的思想和类比的方法在解决问题中的作用。
1. 一元一次不等组的解法2. 一元一次不等式组解集的确定三过程1. 温故 解一元一次不等式,并在数轴上表示出来。
在数轴上表示如图:。
所以不等式的解集为: __________________ 。
2. 知新用每分可抽30t 的抽水机来抽污水管道里积存的污水,估计积存的污水超过 1200t而不足1500t ,那么将污水抽完所用时间的范围是什么?分析:“不足” 和“超过”是什么意思?解:设x 分钟能够将污水抽完,则 x 的值应同时满足两个不等式 _______________________________________________________ 叫一元一次不等式组 _______________________________________________________ 叫一元一次不等式组的解集 怎样解一元一次不等式组?怎样确定一元一次不等式组的解集?解集的确定是借助 _____________ 来完成的。
3. 例题见PPT4. 当堂练习 见PPT5. 例题见PPT解: (2x-1)/3> (3x-2)/4去分母 :6. 小节:你学到了什么?你悟到了什么?7. 课后练习见课本。
八年级数学下册(新版北师大版)精品导学案【第二章_一元一次不等式和一元一次不等式组】
⼋年级数学下册(新版北师⼤版)精品导学案【第⼆章_⼀元⼀次不等式和⼀元⼀次不等式组】第⼆章⼀元⼀次不等式和⼀元⼀次不等式组第⼀节不等关系【学习⽬标】1.理解不等式的概念,感受⽣活中存在的不等关系。
2.能根据条件列出不等式,增强学⽣的符号感,发展其数学化的能⼒。
3.通过观察、分析、猜想、独⽴思考的过程感受不等式这个重要的过程,发展学⽣归纳、猜想能⼒。
【学习⽅法】⾃主探究与⼩组合作交流相结合.【学习重难点】重点:对不等式概念的理解。
难点:怎样建⽴量与量之间的不等关系。
【学习过程】模块⼀预习反馈⼀.学习准备1.⼀般地,⽤符号“<”(或“≤”),“>”(或“≥”)连成的式⼦叫做。
注意:⽤符号“≠”连接的式⼦也叫不等式。
2.列不等式:列不等式类似于列⽅程,列⽅程依据的是等量关系,列不等式依据的是不等关系,列不等式的关键是找不等关系。
⼤于⽤符号表⽰,⼩于⽤符号表⽰;不⼤于⽤符号表⽰,不⼩于⽤符号表⽰。
3.阅读教材:第⼀节不等关系⼆.教材精读4.例题:如图,⽤两根长度均为l cm的绳⼦,分别围成⼀个正⽅形和圆,(1)如果要使正⽅形的⾯积不⼤于25cm2,那么绳长l应满⾜怎样的关系式?(2)如果要使圆的⾯积不⼩于100 cm2,那么绳长l应满⾜怎样的关系式?(3)当l=8时,正⽅形和圆的⾯积哪个⼤?l=12呢?(4)你能得到什么猜想?改变l的取值再试⼀试?分析:正⽅形的⾯积等于边长的平⽅.圆的⾯积是πR2,其中R是圆的半径.两数⽐较有⼤于、等于、⼩于三种情况,“不⼤于”就是等于或⼩于. “不⼩于”就是⼤于或等于。
做⼀做:通过测量⼀棵树的树围(树⼲的周长),可以计算出它的树龄,通常规定以树⼲离地⾯1.5m的地⽅作为测量部位。
某树栽种时的树围为5㎝,以后树围每年增加约3㎝,这棵树⾄少⽣长多少年其树围才能超过2.4m?(只列关系式)归纳⼩结:⼀般地,⽤符号“〈”(或“≤”),“〉”(或“≥”)连接的式⼦叫做不等式。
实践练习:判断下列各式哪些是不等式,哪些既不是等式也不是不等式。
导学案 9.3.1一元一次不等式组(1)
9.3.1一元一次不等式组(1)姓名________________ 组别_________________ 评价__________________学习目标:1、理解一元一次不等式组,一元一次不等式组的解集,解不等式组等概念;2、会解一元一次不等式组,并会用数轴确定解集.3、感受学习一元一次不等式组的必要性,逐步熟悉数形结合的思想方法,感受类比与化归的思想。
一、复习巩固1、___________________________________________________称为一元一次不等式。
2、_______________________________________________叫做一元一次不等式的解集。
3、______________________________________________叫做解一元一次不等式。
4、解一元一次不等式的一般步骤有(1)______________(2)_________________(3)_________________(4)_________________(5)_________________5、解不等式并在数轴上表示出它们的解集:(1)2-3x>5 (2) 2y+6<3二、自主先学请同学们带着下列问题去自学课本127-128页的内容。
1、什么是一元一次不等式组?2、什么叫做一元一次不等式组的解集?三、自学总结概念:1、一元一次不等式组:含有___________个未知数,且未知数的次数是_________的两个不等式,组成一元一次不等式组.2、一元一次不等式组的解集:一元一次不等式组中的两个不等式的________部分,叫做这个一元一次不等式组的解集.3.利用数轴直接求出不等式的解集(对应总结口诀):(1)x4x2⎧<⎨<-⎩的解集是_______; (2)x4x2⎧>⎨>⎩的解集是_______;(3)x3x1⎧<⎨>-⎩的解集是______;(4)x2x1⎧<-⎨>-⎩的解集是_______.四、总结分享1、总结一下你自学过程中的收获,你觉得有哪些内容是本节课需要掌握的。
《一元一次不等式组》 导学案
《一元一次不等式组》导学案一、学习目标1、理解一元一次不等式组的概念。
2、掌握一元一次不等式组的解集的确定方法。
3、会解一元一次不等式组,并能用数轴表示其解集。
二、学习重点1、一元一次不等式组的解集的确定。
2、解一元一次不等式组。
三、学习难点在数轴上确定一元一次不等式组的解集。
四、知识链接1、一元一次不等式的概念及解法。
2、数轴的概念及数轴上表示数的方法。
五、学习过程(一)引入同学们,我们之前已经学习了一元一次不等式,知道了如何求解一元一次不等式。
那么,如果有多个一元一次不等式组合在一起,又该如何处理呢?这就是我们今天要学习的一元一次不等式组。
(二)一元一次不等式组的概念1、观察下列不等式组:(1)\(\begin{cases}x > 3 \\ x < 5\end{cases}\)(2)\(\begin{cases}2x 1 > 0 \\ 3x + 2 < 8\end{cases}\)2、思考:这些不等式组有什么共同特点?3、总结:几个含有同一个未知数的一元一次不等式合起来,就组成一个一元一次不等式组。
(三)一元一次不等式组的解集1、对于不等式组\(\begin{cases}x > 3 \\ x < 5\end{cases}\)(1)分别解每个不等式:\(x > 3\),\(x < 5\)(2)思考:同时满足这两个不等式的\(x\)的取值范围是什么?(3)结论:同时满足两个不等式的\(x\)的取值范围,叫做这个不等式组的解集。
2、对于不等式组\(\begin{cases}2x 1 > 0 \\ 3x + 2 <8\end{cases}\)(1)解不等式\(2x 1 > 0\),得:\(x >\frac{1}{2}\)(2)解不等式\(3x + 2 < 8\),得:\(x < 2\)(3)那么这个不等式组的解集就是\(\frac{1}{2} < x < 2\)(四)在数轴上表示不等式组的解集1、例如,不等式组\(\begin{cases}x > 3 \\ x < 5\end{cases}\)的解集为\(3 < x < 5\)在数轴上表示为:先画数轴,标出 3 和 5 这两个点。
(完整word版)一元一次不等式组导学案
《一元一次不等式组》导学案一.学习目标及重难点:1.学习理解一元一次不等式组、不等式组的解集的定义及其意义;2.学会利用一元一次不等式解集的数轴表示求不等式组的解和解集的方法。
二.课前预习:1.一元一次不等式组的定义:______________________________________________。
2.一元一次不等式组的解集的定义:________________________________________。
3.什么是解不等式组?____________________________________________________。
4.在数轴上表示下列不等式组的解集,并写出其解集.(1)23x x >⎧⎨≥⎩ (2)12.5x x >⎧⎨≤⎩ (3)1213x x ><⎧⎪⎪⎨⎪⎪⎩ (4)21x x <⎧⎨<-⎩[归纳总结]:一元一次不等式组解集的几种取法1._______2._______3._________.⎧⎪⎪⎨⎪⎪⎩同大取。
同小取。
左大右小取。
4左小右大__________。
三.基础巩固1.在数轴上表示下列不等式组的解集,并写出其解集.(1)32x x >⎧⎨>⎩ (2)21x x <⎧⎨<-⎩ (3)21x x >-⎧⎨<-⎩ (4)10x x >⎧⎨<⎩2.解下列不等式组,并在数轴上表示出来。
(1)22841x x x x >+⎧⎨+>-⎩ (2)240320x x +>⎧⎨-≥⎩ (3)5123x x -<⎧⎨>⎩(4)25031x x ->⎧⎨-<-⎩ (5)1123431x x x >-≥⎧⎪⎨⎪⎩ (6)112789x x x +>-<⎧⎪⎨⎪⎩(5)2(2)53(2)+82x x x x +<+⎧⎨->⎩ (6)203060x x x +>⎧⎪->⎨⎪-<⎩3.某数的3倍大于2,它的23不大于1,设某数为x ,列出不等式组为_______________。
《一元一次不等式组》 导学案
《一元一次不等式组》导学案一、学习目标1、理解一元一次不等式组的概念。
2、掌握一元一次不等式组的解集的求法。
3、会利用一元一次不等式组解决简单的实际问题。
二、学习重难点1、重点(1)理解一元一次不等式组的概念。
(2)掌握一元一次不等式组的解集的求法。
2、难点(1)利用数轴求一元一次不等式组的解集。
(2)应用一元一次不等式组解决实际问题。
三、学习过程(一)知识回顾1、什么是一元一次不等式?形如“$ax + b > 0$(或$< 0$,$\geq 0$,$\leq 0$),其中$a \neq 0$”的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步骤:(1)去分母(根据不等式的性质 2 或 3);(2)去括号(根据去括号法则);(3)移项(根据不等式的性质 1);(4)合并同类项;(5)系数化为 1(根据不等式的性质 2 或 3)。
(二)新课导入问题:用每分钟可抽30 吨水的抽水机来抽污水管道里积存的污水,估计积存的污水超过 1200 吨而不足 1500 吨,那么将污水抽完所用时间的范围是什么?设需要$x$分钟才能将污水抽完,因为积存的污水超过 1200 吨而不足 1500 吨,所以可以列出不等式:$30x > 1200 \quad (1)$$30x < 1500 \quad (2)$像这样,把两个或两个以上的一元一次不等式合起来,就组成了一个一元一次不等式组。
(三)一元一次不等式组的概念1、定义:由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组。
2、例如:$\begin{cases} x 1 > 0 \\ 2x + 1 < 5 \end{cases}$,$\begin{cases} 3x 2 \geq 0 \\ 5 x > 0 \end{cases}$都是一元一次不等式组。
(四)一元一次不等式组的解集1、定义:几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。
一元一次不等式教案(精选9篇)
作者为你精心整理了9篇《一元一次不等式教案》的内容,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《一元一次不等式教案》相关的内容。
篇1:一元一次不等式教案实际问题与一元一次不等式教案教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。
知识重点寻找实际问题中的不等关系,建立数学模型。
教学过程(师生活动)设计理念提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?(多媒体展示商场购物情景)通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。
探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:(1)什么情况下,到甲商场购买更优惠?(2)什么情况下,到乙商场购买更优惠?(3)什么情况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,如果到甲商场购买更优惠.问题1:如何列不等式?问题2:如何解这个不等式?在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x 去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优惠.4、让学生自己完成方案(2)与方案(3),并汇报完成情况.教师最后作适当点评.鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模。
一元一次不等式全章导学案
8.1.1不等式及其解集(第一课时)[学习目标]1.知道不等式的定义。
2.理解不等式的解和方程的解的异同。
3.会根据问题列不等式4.会将实际问题抽象成数学问题,并用学到的知识解决问题,从而培养学生分析问题、解决问题的能力。
[学习过程][复习]用“>”或“<”填空(1)0 ―1; (2)―2 ―4; (3)―4 3;(4)2______-3; (5)21 31; (6)32- 43-. [自学提纲]用圈、点、勾、划、记的方法有效预习113—115页 完成下列问题:1. 数量有大小之分,它们之间有相等关系,也有不等关系,请你用恰当的式子表示出下列数量关系:(1)a 与1的和是正数; (2)y 的2倍与1的和大于3; (3)x 的一半与x 的2倍的和是非正数; (4)c 与4的和的30%不大于-2; (5)x 除以2的商加上2,至多为5; (6)a 与b 两数的和的平方不可能大于3.解:(1)__________(2)___________(3)_____________(4)___________ (5)_____________(6)2.完成下列思考(1)什么叫做不等式及不等式的解?(2)什么叫做不等式的解集?什么叫做一元一次不等式?(3)怎样在数轴上表示不等式的解集?【训练检测,目标探究】1.不等式的定义:用不等号“<”(或“≤”),“>”(或“≥”),“≠”表示不等关系的式子,叫做不等式。
常用的不等号主要有以下几种:2.不等式的解:3.不等式的解集:4.不等式解集在数轴上表示:[练一练]1.你能画出数轴并在数轴上表示出下列不等式的解集吗?(1)x﹥3 (2)x﹤2 (3)y≥-12.下列数学表达式中,不等式有()①-3﹤0;②4x+3y﹥0;③x=3;④x≠2;⑤x+2﹥y+3(A) 1个. (B)2个. (C)3个. (D)4个.3.当x=-3时,下列不等式成立的是()(A)x-5﹤-8. (B)2x+2﹥0. (C)3+x﹤0. (D)2(1-x)﹥7.4.用不等式表示:(1)a的相反数是正数;(2)y的2倍与1的和大于3;(3)a的一半小于3;(4)d与5的积不小于0;(5)x的2倍与1的和是非正数.5.直接写出下列不等式的解集,并把解集在数轴上表示出来:(1)x+3﹥5;(2)2x﹤8;(3)x-2≥0.6.不等式x﹤4的非负整数解的个数有()(A)4个. (B)3个. (C)2个. (D)1个.7.已知(a-2)x -5﹥3是关于x的一元一次不等式试求a的值.二、小结与反思我的收获:我的困惑:9.1.2不等式的性质(1)学习目标1.理解不等式的性质,掌握不等式的简单变形方法。
1.9一元一次不等式组导学案9
一元一次不等式组班 学号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆一元一次不等式组导学案9课前准备.重点:巩固解一元一次不等式组.难点:讨论求不等式解集的公共部分中出现的所有情况,并能清晰地阐述。
学习准备解一元一次不等式组的步骤是什么?课中导学 阅读感知:1.阅读教材第30页——第33页 小组活动:在什么条件下,长度为3cm,7cm,xcm 的三条线段可以围成一个三角形? 合作探究探究1:如何确定不等式组的解集 1.解下列不等式组(1)⎩⎨⎧+>++<-145123x x x x (2)⎩⎨⎧<>-621113x x探究2:完成下面的解不等式组(1)⎪⎩⎪⎨⎧<->+xx x 987121 )2()1(解:解不等式(1),得解不等式(2),得 在同一条数轴上表示不等式(1),(2)的解集图1-33所以,原不等式组的解集是(2)⎩⎨⎧+>++<-145123x x x x )2()1(解:解不等式(1),得解不等式(2),得 在同一条数轴上表示不等式(1),(2)的解集图1-34所以,原不等式组的解集是(3)⎪⎩⎪⎨⎧-≤-+>-x x x x 237121)1(325 )2()1( 解:解不等式(1),得解不等式(2),得 在同一条数轴上表示不等式(1),(2)的解集图1-35所以,原不等式组的解集为一元一次不等式组(4)⎩⎨⎧<>-621113x x )2()1(解:解不等式(1),得解不等式(2),得 . 在同一条数轴上表示不等式(1),(2)的解集图1-36所以,原不等式组的解集为熟记口诀:大中取大,小中取小,不大不小,中间正好,大的大,小的小,解集没法比大小。
七年级下册《9.2 一元一次不等式》教案、导学案、同步练习
《9.2 一元一次不等式》教案一第1课时 一元一次不等式的解法【教学目标】1、使学生熟练掌握一元一次不等式的解法,初步认识一元一次不等式的应用价值;2、对比一元一次不等式的解法与一元一次方程的解法,让学生感知不等式和方程的不同作用与内在联系,体会其中渗透的类比思想;3、让学生在分组活动和班级交流的过程中,积累数学活动的经验并感受成功的喜悦,从而增强学习数学的自信心。
【教学重点】:熟练并准确地解一元一次不等式。
【教学难点】:熟练并准确地解一元一次不等式。
【教学过程】(师生活动)提出问题:某地庆典活动需燃放某种礼花弹.为确保人身安全,要求燃放者在点燃导火索后于燃放前转移到10米以外的地方.已知导火索的燃烧速度为0.02m/s,人离开的速度是4m/s ,导火索的长x(m)应满足怎样的关系式?你会运用已学知识解这个不等式吗?请你说说解这个不等式的过程.探究新知1、在学生充分发表意见的基础上,师生共同归纳出这个不等式的解法.教师规范地板书解的过程.2、例题.解下列不等式,并在数轴上表示解集:(1)32x ≤50 (2)-4x<3 (3)7-3x ≤10(4)2x-3<3x +1分组活动.先独立思考,然后请4名学生上来板演,其余同学组内相互交流,作出记录,最后各组选派代表发言,点评板演情况.教师作总结讲评并示范解题格式.3、教师提问:从以上的求解过程中,你比较出它与解方程有什么异同? 让学生展开充分讨论,体会不等式和方程的内在联系与不同之处。
巩固新知1、解下列不等式,并在数轴上表示解集:(1)7671 x (2)-8x<102、用不等式表示下列语句并写出解集:(1)x 的3倍大于或等于1;(2)y 的41的差不大于-2.解决问题测量一棵树的树围(树干的周长)可以计算它的树龄一般规定以树干离地面1.5m 的地方作为测量部位.某树栽种时的树围为5cm,以后树围每年增加约3cm.这棵树至少生一长多少年,其树围才能超过2.4m?总结归纳:围绕以下几个问题:1、这节课的主要内容是什么?2、通过学习,我取得了哪些收获?3、还有哪些问题需要注意?让学生自己归纳,教师仅做必要的补充和点拨.布置作业:教科书第120页 习题9.1第6题9.2实际问题与一元一次不等式(一)【教学目标】1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
一元一次不等式组教案6篇
一元一次不等式组教案6篇(实用版)编制人:__审核人:__审批人:__编制单位:__编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!一元一次不等式组教案6篇通过教案的内容是可以看出教师的教学能力的,教案是教师与学生和家长进行有效的沟通和交流,共同关注学生的学习进展,本店铺今天就为您带来了一元一次不等式组教案6篇,相信一定会对你有所帮助。
人教版七年级下册-一元一次不等式组的解法导学案
第1课时 一元一次不等式组的解法【学习目标】1.了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义,会解一元一次不等式组,并会用数轴确定解集;2.经历知识的拓展过程,感受学习一元一次不等式组的必要性;3.逐步熟悉数形结合的思想方法,感受类比与化归的思想。
【学习重难点】1、一元一次不等式组的有关概念及解法。
2、一元一次不等式组解集的理解。
【学习过程】一、自主学习1、现有两根木条a 和b ,a 长10 cm ,b 长3 cm.如果再找一根木条。
,用这三根木条钉成一个三角形木框,那么对木条的长度有什么要求?如果设木条长x cm ,那么根据三角形的三边关系,则x 必须同时满足 和 . 类似于方程组,得出一元一次不等式组的定义。
定义:由 组成的不等式组,叫做一元一次不等式组。
2、判断下列不等式是不是一元一次不等式组:(1)3.做一做:不等式x>4x-9的解集是 ,不等式 的解集是 并把每个解集表示在数轴上:4 猜猜看,不等式组 的解集是 。
⎩⎨⎧>+<-233612)3(x y ⎩⎨⎧≤≥40)2(x x ⎩⎨⎧≥-=+12313)4(x x ⎩⎨⎧-<++>-148112x x x x 12+≤x x ⎩⎨⎧+≤->1294x x x x一般地,几个一元一次不等式的解集的 叫做由它们所组成的一元一次不等式组的 。
求 的过程叫做解不等式组。
二、合作探究1.试一试:你能找到下面几个不等式组的解集吗?新|课 |标|第 |一| 网根据练习总结:不等式组解集的四种情况:(1) ;(2) ;(3) ;(4) .上面的表示可以用口诀来概括:大大取大,小小取小,大小小大中间找,大大小小不找。
2. 典型例题:解下列不等式组 (1) (2)你能说说解一元一次不等式组的一般步骤吗?(1) ;(2) ;⎩⎨⎧-<++>-148112x x x x ⎪⎩⎪⎨⎧-<-++≥+x x x x 213521132(3)。
《一元一次不等式》精品导学案 人教版七年级数学下册导学案
9.2 一元一次不等式【总结解题方法 提升解题能力】 【知识点梳理】一、一元一次不等式的概念只含有一个未知数, 未知数的次数是一次的不等式, 叫做一元一次不等式, 例如,2503x >是一个一元一次不等式. 二、一元一次不等式的解法1、解不等式:求不等式解的过程叫做解不等式.2、一元一次不等式的解法:与一元一次方程的解法类似, 其根据是不等式的根本性质, 将不等式逐步化为:a x <〔或a x >〕的形式, 解一元一次不等式的一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)化为ax b >〔或ax b <〕的形式〔其中0a ≠〕;(5)两边同除以未知数的系数, 得到不等式的解集.3、不等式的解集在数轴上表示:在数轴上可以直观地把不等式的解集表示出来, 能形象地说明不等式有无限多个解, 它对以后正确确定一元一次不等式组的解集有很大帮助.三、常见的一些等量关系1、行程问题:路程=速度×时间2、工程问题:工作量=工作效率×工作时间, 各局部劳动量之和=总量3、利润问题:商品利润=商品售价-商品进价,4、和差倍分问题:增长量=原有量×增长率5、银行存贷款问题:本息和=本金+利息, 利息=本金×利率6、数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+.四、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似, 通常也需要经过以下几个步骤:(1)审:认真审题, 分清量、未知量及其关系, 找出题中不等关系要抓住题中的关键字眼, 如“大于〞、“小于〞、“不大于〞、“至少〞、“不超过〞、“超过〞等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系, 列出不等式;(4)解:解所列的不等式;(5)答:写出答案, 并检验是否符合题意.一、一元一次不等式的概念 1、以下式子中, 是一元一次不等式的是〔 〕.A 、x 2<1B 、y –3>0C 、a +b =1D 、3x =22、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x≥2 〔5〕2x+y ≤8 3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -= 二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.5、解不等式:≤﹣1, 并把解集表示在数轴上. 6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?3、水果店进了某种水果1t, 进价是7元/kg .售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元. 〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔 〕.A 、5+4>8B 、2x -1C 、2x ≤5D 、1x-3x ≥0 2、不等式3x ≤2〔x ﹣1〕的解集为〔 〕.A 、x ≤﹣1B 、x ≥﹣1C 、x ≤﹣2D 、x ≥﹣2 3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、55、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕.A 、0B 、2C 、 -2D 、-46、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤4010、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分二、填空题.1、不等式>x ﹣1的解集是. 2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________.4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地.三、解答题.1、解不等式:3x >1–36x -. 2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品, 准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m 的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?4、今年3月12日植树节期间, 学校预购进A , B 两种树苗.假设购进A 种树苗3棵, B 种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.参考答案一、一元一次不等式的概念1、以下式子中, 是一元一次不等式的是〔〕.A、x2<1B、y–3>0C、a+b=1D、3x=2【答案】B【解析】A 、未知数次数是2, 属于一元二次不等式, 故本选项错误;B 、符合一元一次不等式的定义, 故本选项正确;C 、含有2个未知数, 属于二元一次方程, 故本选项错误;D 、含有1个未知数, 是一元一次方程, 故本选项错误; 应选B .2、以下式子中, 是一元一次不等式的有哪些?〔1〕3x+5=0 〔2〕2x+3>5 〔3〕384x < 〔4〕1x ≥2 〔5〕2x+y ≤8【解析】解:(2)、(3)是一元一次不等式.3、以下式子哪些是一元一次不等式?哪些不是一元一次不等式?为什么?〔1〕0x > 〔2〕1x 1-> 〔3〕2x 2> 〔4〕3y x ->+ 〔5〕1x -=【解析】解:(1)是一元一次不等式.〔2〕〔3〕(4)(5)不是一元一次不等式, 因为:〔2〕中分母中含有字母, 〔3〕未知量的最高次项不是1次, 〔4〕不等式左边含有两个未知量, 〔5〕不是不等式, 是一元一次方程.二、一元一次不等式的解法1、不等式2(x+1)<3x+1的解集在数轴上表示出来应为( ).【答案】C2、关于x 的不等式2x-a ≤-1的解集为x ≤-1, 那么a 的值是_________.【答案】-1【解析】由得:12a x -≤, 由112a -=-, 得1a =-.3、如果关于x 的不等式(a+1)x <a+1的解集是x >l, 那么a 的取值范围是________.【答案】1a -<4、解不等式2〔x+1〕﹣1≥3x+2, 并把它的解集在数轴上表示出来.【解析】解:去括号, 得2x+2﹣1≥3x+2,移项, 得2x ﹣3x ≥2﹣2+1,合并同类项, 得﹣x ≥1,系数化为1, 得x ≤﹣1,这个不等式的解集在数轴上表示为:5、解不等式:≤﹣1, 并把解集表示在数轴上.【解析】解:去分母得, 4〔2x ﹣1〕≤3〔3x+2〕﹣12,去括号得, 8x ﹣4≤9x+6﹣12,移项得, 8x ﹣9x ≤6﹣12+4,合并同类项得, ﹣x ≤﹣2,把x 的系数化为1得, x ≥2.在数轴上表示为:.6、假设3511+-=x y ,14522--=x y ,问x 取何值时, 21y y >. 【解析】解:∵3511+-=x y ,14522--=x y , 假设21y y >,那么有1452351-->+-x x 即 6101<x ∴当6101<x 时, 21y y >. 7、关于x 的方程2233x m x x ---=的解是非负数, m 是正整数, 求m 的值. 【解析】解:由2233x m x x ---=, 得x =22m -, 因为x 为非负数, 所以22m -≥0, 即m ≤2, 又m 是正整数, 所以m 的值为1或2.8、关于y ,x 的方程组⎩⎨⎧-=++=+1p y 3x 41p y 2x 3的解满足y x >, 求p 的取值范围. 【解析】解:由⎩⎨⎧-=++=+1p y 3x 41p y 2x 3, 解得:⎩⎨⎧--=+=7p y 5p x ∵y x >∴7p 5p -->+解得6p ->; ∴p 的取值范围为6p ->.三、列不等式解决实际问题1、爆破施工时, 导火索燃烧的速度是0.8cm/s, 人跑开的速度是5m/s, 为了使点火的战士在施工时能跑到100m 以外〔包括100m 〕的平安地区, 导火索至少需要多长?【解析】解:设导火索要xcm 长, 根据题意得:解得:16x ≥答:导火索至少要16cm 长.2、某人方案20天内至少加工400个零件, 前5天平均每天加工了33个零件, 此后, 该工人平均每天至少需加工多少个零件, 才能在规定的时间内完成任务?【解析】解:设以后平均每天加工x个零件,由题意的:5×33+〔20﹣5〕x≥400,解得:x≥2 153.∵x为正整数,∴x取16.答:该工人以后平均每天至少加工16个零件.3、水果店进了某种水果1t, 进价是7元/kg.售价定为10元/kg, 销售一半以后, 为了尽快售完, 准备打折出售.如果要使总利润不低于2000元, 那么余下的水果至少可以按原定价的几折出售?【解析】解:设余下的水果可以按原定价的x折出售,根据题意得:1t=1000kg解得:8x≥答:余下的水果至少可以按原定价的8折出售.4、某体育用品专卖店销售7个篮球和9个排球的总利润为355元, 销售10个篮球和20个排球的总利润为650元.〔1〕求每个篮球和每个排球的销售利润;〔2〕每个篮球的进价为200元, 每个排球的进价为160元, 假设该专卖店方案用不超过17400元购进篮球和排球共100个, 且要求篮球数量不少于排球数量的一半, 请你为专卖店设计符合要求的进货方案.【解析】解:〔1〕设每个篮球和每个排球的销售利润分别为x元, y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元, 20元;〔2〕设购进篮球m个, 排球〔100﹣m〕个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个, 或购进篮球35个排球65个两种购置方案.5、响应“家电下乡〞的惠农政策, 某商场决定从厂家购进甲、乙、丙三种不同型号的电冰箱80台, 其中甲种电冰箱的台数是乙种电冰箱台数的2倍, 购置三种电冰箱的总金额不超过132000元.甲、乙、丙三种电冰箱的出厂价格分别为:1200元/台、1600元/台、2000元/台.〔1〕至少购进乙种电冰箱多少台?〔2〕假设要求甲种电冰箱的台数不超过丙种电冰箱的台数, 那么有哪些购置方案?【解析】解:〔1〕设购置乙种电冰箱x台, 那么购置甲种电冰箱2x台, 丙种电冰箱〔80-3x〕台, 根据题意得1200×2x+1600x+〔80-3x〕×2000≤132000解这个不等式得x≥14∴至少购进乙种电冰箱14台;〔2〕根据题意得2x≤80-3x解这个不等式得 x≤16由〔1〕知 x≥14∴14≤x≤16又∵x为正整数∴x=14, 15, 16.所以, 有三种购置方案方案一:甲种电冰箱为28台, 乙种电冰箱为14台, 丙种电冰箱为38台.方案二:甲种电冰箱为30台, 乙种电冰箱为15台, 丙种电冰箱为35台.方案三:甲种电冰箱为32台, 乙种电冰箱为16台, 丙种电冰箱为32台.【稳固练习】一、选择题.1、以下各式中, 是一元一次不等式的是〔〕.A、5+4>8B、2x-1C、2x≤5D、1x-3x≥0【答案】C;2、不等式3x≤2〔x﹣1〕的解集为〔〕.A、x≤﹣1B、x≥﹣1C、x≤﹣2D、x≥﹣2【答案】C ;【解析】去括号得, 3x ≤2x ﹣2, 移项、合并同类项得, x ≤﹣2, 应选:C .3、不等式6x 2x 34-≥-的非负整数解有〔 〕.A 、 1个B 、2个C 、3个D 、4个【答案】C ;【解析】先求得解集为2x ≤, 所以非负整数解为:0,1,2;4、不等式475x a x ->+的解集是1x <-, 那么a 为〔 〕.A 、-2B 、2C 、8D 、5【答案】A ;【解析】由475x a x ->+, 可得53a x +<-, 它与1x <-表示同一解集, 所以513a +-=-, 解得2a =-; 5、关于x 的不等式2a x 2≥+-的解集如下图, 那么a 的值是〔 〕. A 、0 B 、2 C 、 -2 D 、-4【答案】A ;【解析】因为不等式2a x 2≥+-的解集为22a x -≤, 再观察数轴上表示的解集为1x -≤, 因此122a -=-, 解得0a =6、小明用100元钱去购置三角板和圆规共30件, 三角板每副2元, 每个圆规5元, 那么小明最多能买圆规〔 〕.A 、12个B 、13个C 、14个D 、15个【答案】B ;【解析】设买圆规x 件, 由题意得:52(30)x x +-≤100, 得x ≤1133, 且x 为正整数, 所以x 最大取13.7、某商品进价为800元, 售价为1200元, 由于受市场供求关系的影响, 现准备打折销售, 但要求利润率100%-⎛⎫=⨯ ⎪⎝⎭售价进价利润率进价不低于5%, 那么至少可打( ). A 、六折 B 、七折 C 、八折 D 、九折【答案】B ;【解析】解:设打x 折, 由题意得:1200800105%800x ⨯-≥, 解得x ≥7, 所以至少应打7折. 8、某风景区招待所有一两层客房, 底层比二层少5间, 一旅行团共有48人, 假设全部安排住底层, 每间住4人, 房间不够;而每间住5人, 有的房间未住满;假设全部安排住二层, 每间住3人, 房间也不够;每间住4人, 有的房间未住满.这家招待所的底层共有房间 ( ) .A 、9间B 、10间C 、11间D 、12间【答案】B ;【解析】设底层有房间x 间, 由题意得:4485483(5)484(5)48x x x x <⎧⎪>⎪⎨+<⎪⎪+>⎩得:39115x <<, 又x 为正整数, 所以10x =.9、一个两位数, 某个位数字比十位数字大2, 这个两位数不小于20, 不大于40, 那么这个两位数是多少?为了解决这个问题, 我们可设个位数字为x, 那么可列不等式〔 〕.A 、20≤10〔x-2〕+x ≤40B 、20<10〔x-2〕+x <40C 、20≤x-2+x ≤40D 、20≤10x+x-2≤40 【答案】A ;10、张红家离学校1600米, 一天早晨由于有事耽误, 结果吃完饭时只差15分钟就上课, 忙中出错, 出门时又忘了带书包, 结果回到家又取书包共用3分钟, 只好坐小汽车去上学, 小汽车的速度是36千米/时, 小汽车行驶了1分30秒时又发生堵车, 她等了半分钟后, 路还没有畅通, 于是下车又开始步行, 问:张红步行速度至少是( )时, 才不至于迟到.A 、60米/分B 、70米/分C 、80米/分D 、90米/分 【答案】B ;【解析】设张红步行速度x 米/分才不至于迟到, 由题意可列不等式引11[153(1)]22x --+≥1160060012-⨯,化简得10x ≥700, x ≥70, 应选B .二、填空题.1、不等式>x ﹣1的解集是.【答案】 x <4 ;【解析】去分母得1+2x >3x ﹣3, 移项得2x ﹣3x >﹣3﹣1, 合并得﹣x >﹣4, 系数化为1得x <4.2、12(x –m )>3–32m 的解集为x >3, 那么m 的值为________. 【答案】32【解析】去括号得:12x −12m >3−32m , 移项得:12x >3−32m +12m , 合并同类项得12x >3−m ,系数化为1得x >6–2m , ∵不等式的解集为x >3, ∴6–2m =3, 解得:m =32,故答案为:32.3、假设关于x 的不等式30x a -≤只有六个正整数解, 那么a 应满足________. 【答案】1821a ≤<; 【解析】由得:3a x ≤, 673a≤<, 即1821a ≤<. 4、某种肥皂零售价每块2元, 对于购置两块以上(含两块), 商场推出两种优惠销售方法:第一种为一块按原价, 其余按原价的七折优惠;第二种为全部按原价的八折优惠.在购置相同数量的情况下, 要使第一种方法比第二种方法得到的优惠多, 最少需要购置肥皂______块. 【答案】4;••2x, 得:x >3.最少需要购置肥皂4块时, 第一种方法比第二种方法得到的优惠多.5、一艘轮船上午6:00从长江上游的A 地出发, 匀速驶往下游的B 地, 于11:00到达B 地, 方案下午13:00从B 地匀速返回, 如果这段江水流速为3km/h, 且轮船在静水中的往返速度不变, 那么该船至少以 km/h 的速度返回, 才能不晚于19:00到达A 地. 【答案】33;【解析】解:设船xkm/h 的速度返回, 根据题意得出:6〔x ﹣3〕≥5〔x+3〕 解得:x ≥33,∴该船至少以33km/h 的速度返回, 才能不晚于19:00到达A 地. 故答案为:33.三、解答题.1、解不等式:3x >1–36x -. 解:3136x x ->-,去分母, 得()263x x >--, 去括号, 得263x x >-+, 移项, 合并同类项, 得39x >, 系数化为1, 得3x >.2、解以下不等式:2x –5≤232x ⎛⎫-⎪⎝⎭. 解:去括号得2x –5≤x –6,移项得, 2x –x ≤–6+5,合并同类项, 系数化为1得x ≤–1.3、解不等式2x –3<13x +, 并把解集在数轴上表示出来. 解:3〔2x –3〕<x +1, 在数轴上表示为: 6x –9<x +1, 5x <10,x<2,∴原不等式的解集为x<2,四、应用题.1、某工人方案在15天里加工408个零件, 前三天每天加工24个, 问以后每天至少加工多少个零件才能在规定时间内超额完成任务?【解析】解:设三天后每天加工x个零件, 根据题意得:24×3+(15-3)x>408,解得 x>28.因为x为正整数,所以以后每天加工的零件数至少为29个.2、某商店在一次促销活动中规定:消费者消费满200元或超过200元就可享受打折优惠.一名同学为班级买奖品,准备买6本影集和假设干支钢笔.影集每本15元, 钢笔每支8元, 问他至少买多少支钢笔才能打折?【解析】解:设该同学买x支钢笔, 根据题题意, 得:15×6+8x≥200,解得x≥3 134.故该同学至少要买14支钢笔才能打折.3、某村为解决村民出行难的问题, 村委会决定将一条长为1200m的村级公路硬化, 并将该项工程承包给甲、乙两工程队来施工.并将该项工程承包给甲、乙两工程队来施工, 假设甲、乙两队做需12天完成此项工程;假设甲队先做了8天后, 剩下的由乙队单独做还需18天才能完工.〔1〕问甲、乙两队单独完成此项工程各需多少天?〔2〕又甲队每施工一天需要费用2万元, 乙队每施工一天需要费用1万元, 要使完成该工程所需费用不超过35万元, 那么乙工程队至少要施工多少天?【解析】解:〔1〕设甲单独做需要用x天, 乙单独做需要y天, 根据题意可得:,解得:.答:甲单独做需要用20天, 乙单独做需要30天;〔2〕甲的工效:1200÷20=60, 乙的工效:1200÷30=40,∵2×20=40>35,∴设乙需要做a天, 由题意可得:2×+a≤35,解得:a≥15.答:乙工程队至少要施工15天.4、今年3月12日植树节期间, 学校预购进A, B两种树苗.假设购进A种树苗3棵, B种树苗5棵, 需2100元;假设购进A种树苗4棵, B种树苗10棵, 需3800元.〔1〕求购进A, B两种树苗的单价;〔2〕假设该学校准备用不多于8000元的钱购进这两种树苗共30棵, 求A种树苗至少需购进多少棵.【解析】〔1〕设A种树苗的单价为x元, 那么B种树苗的单价为y元,可得:3521004103800x yx y+=⎧⎨+=⎩, 解得:200300xy=⎧⎨=⎩.答:A种树苗的单价为200元, B种树苗的单价为300元.〔2〕设购置A种树苗a棵, 那么B种树苗为〔30–a〕棵,可得:200a+300〔30–a〕≤8000,解得:a≥10.答:A种树苗至少需购进10棵.5、某冷饮店用200元购进A, B两种水果共20kg, 进价分别为7元/kg和12元/kg.〔1〕这两种水果各购进多少千克?〔2〕该冷饮店将所购进的水果全部混合制成50杯果汁, 要使售完后所获利润不低于进货款的50%, 那么每杯果汁的售价至少为多少元?【解析】〔1〕设A种水果购进了x千克, 那么B种水果购进了〔20–x〕千克,根据题意得:7x+12〔20–x〕=200,解得:x=8,那么20–x=12.答:购进A种水果8千克, B种水果12千克;〔2〕设每杯果汁的售价至少为y元,根据题意得, 50y–200≥200×50%,解得y≥6.答:每杯果汁的售价至少为6元.6、青年志愿者爱心小分队赴山村送温暖, 准备为困难村民购置一些米面.购置1袋大米、4袋面粉, 共需240元;购置2袋大米、1袋面粉, 共需165元.〔1〕求每袋大米和面粉各多少元;〔2〕如果爱心小分队方案购置这些米面共40袋, 总费用不超过2140元, 那么至少购置多少袋面粉?【解析】〔1〕设每袋大米x元, 每袋面粉y元,7、某公司为了扩大经营, 决定购进6台机器用于生产某种活塞, 现有甲、乙两种机器供选择, 其中每种机器的价格和每台机器日生产活塞的数量如下表所示, 经过预算, 本次购置机器耗资不能超过34万元.(1)按该公司要求可以有几种购置方案?(2)假设该公司购进的6台机器的日生产能力不低于380个, 那么为了节约资金应选择哪种方案?【解析】解:(1)设购置甲种机器x台, 乙种机器〔6-x〕台.由题意, 得7x+5(6-x)≤34.解不等式, 得x≤2, 故x可以取0, l, 2三个值,所以, 该公司按要求可以有以下三种购置方案:方案一:不购置甲种机器, 购置乙种机器6台;方案二:购置甲种机器1台, 购置乙种机器5台;方案三:购置甲种机器2台, 购置乙种机器4台;(2)按方案一购置机器, 所耗资金为30万元, 日生产量6×60=360(个);按方案二购置, 所耗资金为1×7+5×5=32〔万元〕, 日生产量为1×100+5×60=400〔个〕, 按方案三购置, 所耗资金为2×7+4×5=34(万元);日生产量为2×100+4×60=440〔个〕.因此, 选择方案二既能到达生产能力不低于380〔个〕, 又比方案三节约2万元资金, 故应选择方案二.8、沃尔玛超市销售每台进价为320元和250元的A、B两种型号的电器, 下表是两天的销售情况:〔进价、售价均保持不变, 利润=销售收入﹣进货本钱〕〔1〕求A、B两种型号的电器的销售单价;〔2〕假设超市准备用不多于8200元的金额再采购这两种型号的电器共30台, 求A种型号的电器最多能采购多少台?〔3〕在〔2〕的条件下, 超市销售完这30台电器能否实现利润至少为2100元的目标?请给出相应的采购方案;假设不能, 请说明理由.【解析】解:〔1〕设A、B两种型号电器的销售单价分别为x元和y元,由题意, 得:2x+3y=1700,3x+y=1500,解得x=400元, y=300元,∴A、B两种型号电器的销售单价分别为400元和300元;〔2〕设采购A种型号电器a台, 那么采购B种型号电器〔30﹣a〕台,依题意, 得320a+250〔30﹣a〕≤8200,解得a≤10, a取最大值为10,∴超市最多采购A种型号电器10台时, 采购金额不多于8200元;〔3〕依题意, 得〔400﹣320〕a+〔300﹣250〕〔30﹣a〕≥2100,解得 a≥20,∵a的最大值为10,∴在〔2〕的条件下超市不能实现利润至少为2100元的目标.第四单元第1课函数一、根底稳固1.一般地, 如果在一个变化过程中有两个变量x和y, 并且对于变量x的每一个值, 变量y都有________的值与它对应, 那么我们称y是x的________, 其中________是自变量.2.下面选项中给出了某个变化过程中的两个变量x和y, 其中y不是..x的函数的是()A .y :正方形的面积, x :这个正方形的周长B .y :等边三角形的周长, x :这个等边三角形的边长C .y :圆的面积, x :这个圆的直径D .y :一个正数的平方根, x :这个正数 3.以下关系式中, y 不是..x 的函数的是( )A .y =xB .y =x 2+1C .y =|x |D .|y |=2x4.(泸州)以下曲线中不能..表示y 是x 的函数的是( ) 5.表示函数的方法一般有________、__________和__________;函数的表示方法可以互相转化, 应用中要根据具体情况选择适当的方法.6.在下表中, 设x 表示乘公共汽车的站数, y 表示应付的票价.x /站 1 2 3 4 5 6 7 8 9 10 y /元1112233344根据此表, 以下说法正确的选项是( ) A .y 是x 的函数 B .y 不是x 的函数C .x 是y 的函数D .以上说法都不对7.假设每上6个台阶就升高1 m, 那么上升高度h (单位:m)与上的台阶数m (单位:个)之间的函数关系式是( ) A .h =6m B .h =6+mC .h =m -6D .h =m68.(随州)“龟兔赛跑〞这那么寓言故事讲述的是比赛中兔子开始领先, 但它因为骄傲在途中睡觉, 而乌龟一直坚持爬行最终赢得比赛, 以下函数图象可以表达这一故事过程的是( )9.对于一个的函数, 自变量的取值范围是使这个函数________的一切值;对于一个实际问题, 自变量的取值必须使____________有意义.如果当x =a 时y =b , 那么b 叫做当自变量x 的值为a 时的__________. 10.(内江)函数y =x +1x -1, 那么自变量x 的取值范围是( ) A .-1<x <1 B .x ≥-1且x ≠1C .x ≥-1D .x ≠111.函数y =2x -1x +2中, 当x =a 时的函数值为1, 那么a 的值是( )A .-1B .1C .-3D .312.函数y =⎩⎪⎨⎪⎧x 2-3〔x ≤2〕x -1〔x >2〕当函数值y =6时, 自变量的值是( )A .7B .-3C .-3或7D .±3或7。
第八章 一元一次不等式(组)复习导学案
3、x 的 2 倍与 1 的差是非负数, 用不等式表示为
2 x 7 5 2 x 4、不等式组 3 x 的整数解是: x 1 2
.
求 a 的取值范围.
x y 3 x 2 y a 3
5、 (湖南株洲)不等式组的解集在数轴上表示如图所示,则 该不等式组可能: ( )
回顾:解一元一次不等式的步骤为:
且不高于 8000 元的资金订购 30 套甲、 乙两款运动服,该店 订购这两款运动服,共有哪几种方案?
其关键点是: 【变式训练】 1、解不等式:
解:设该店订购甲款运动服 x 套,则订购乙款运动 服 (30
x) 套,依题意得:
x 1 2x 1 1 2 3
A. C.
x 1 1 x 3
B. 1 D. x
3
x3
晋江市第二中学
初一数学集备组
2
1、了解一元一次不等式(组)的有关概念,掌握不等式的 性质;2、会用数轴表示不等式(组)的解集,会求特殊解; 3、掌握一元一次不等式(组)的解法;4、能根据具体问题 中的不相等关系列出一元一次不等式(组)解决实际问题.
重点:一元一次不等式(组)的解法. 难点:运用一元一次不等式(组)解决实际问题.
【知识要点】 (你理解并掌握了吗?)
■2013 年七下单元复习导学案
主备人:Hale Waihona Puke 国龙第八章复习目标:
一元一次不等式(组)复习
3.一元一次不等式组的解法:
2 x 1 x 1, ① 【例 2】解不等式组: ,并将不等式组的 3x 1 10 ② 解集表示在数轴上. 解: 由①得, 由②得, 不等式①②的解集在数轴上表示如下:
学后反思:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图443图36-17
2图2
图18-59.3.1一元一次不等式组
学习目标:1、理解一元一次不等式组及其解集的定义。
2、会借助数轴求一元一次不等式组的解集
一、复习回顾(目的:类比二元一次方程组学习一元一次不等式组)
1:含有__个未知数,并且未知数的指数都是___的方程,叫做二元一次方程. 2:把___个二元一次方程合在一起,就组成了一个二元一次方程组 3、二元一次方程组的两个方程的_______叫做二元一次方程组的解.
4、“ ”表示_____意思(填“且”“或”)也就是同时成立。
二、探索新知(目的:学习一元一次不等式组的定义及其解集)
1、几个 合在一起,就组成了一个一元一次不等式组,这些不等式必须含同一个
未知数.
2、一元一次不等式组的解集是指一元一次不等式组里所有一元一次不等式的解集的公共
部分.
3.在数轴上分别找不等式组中每个不等式的解集:
14x x ≥⎧⎨≤⎩ 32x x ≥-⎧⎨>⎩ 43x x ≤-⎧⎨<⎩ 43
x x ≤-⎧⎨≥⎩
解集为_______ 解集为________ 解集为________ 解集为空集或无解 析:一元一次不等式组的解集 通过以上对数轴的探究,我们发现不等式组 的解集表示在数轴上存在公共..部分..,记为14x ≤≤(读作x 大于等于1小于等于4),即只有这个范围内的未知数x 的值使得不等式①成立同时使得不等式②也成立,这个公共部分....就叫做不等式组 的解集。
归纳:由两个一元一次不等式组成的不等式组的解集,可归纳为以下四种基本类型: 设a <b
①⎩⎨⎧>>b x a x 的解集为 ; ②⎩⎨⎧<<b x a x 的解集为 ; ③⎩⎨⎧<>b x a x 的解集为 ;④⎩
⎨⎧><b x a x 的解集为 .
口诀为:同大取 ,同小取 ,大小小大两边夹,大大小小无解答
4、一元一次不等式组的解法:
(1)求出不等式组中每个不等式的解集;(2)在数轴上把每个不等式的解集表示出来; (3)写出不等式组的解集.
例题.解不等式组.211841x x x x -≥+⎧⎨
+≤-⎩
,.
解:解不等式①,得 .
解不等式②,得 .
把不等式①和②的解集在数轴上表示出来.
∴不等式组的解集为: .
三、学以致用(目的:强化本节课的学习目标。
)2、提升灵活运用本节所学知识) 1、利用数轴找不等式组的解集:请写出下面各图所表示的不等式组的解集:
____________ ____________ ______________ _____________
2、用数轴画出下列不等式组的解集并写出解集
20x x >-⎧⎨>⎩ 51x x <-⎧⎨<⎩ 30x x >-⎧⎨<⎩ 1
2x x <⎧⎨>-⎩ 3、根据口诀直接写出下列不等式组的解集
3
x x >⎧⎨>7
⎩ 3
2x x <⎧⎨<⎩ 3
5x x >⎧⎨<⎩ 3
2
x x >⎧⎨<⎩ 解集为: 解集为: 解集为: 解集为:
3
x x >-⎧⎨>-5⎩
11
2x x <-⎧⎨
<-⎩ 2
1x x >-⎧⎨<-⎩ 1
3x x >-⎧⎨<-⎩
解集为: 解集为: 解集为: 解集为:
3
1x x >-⎧⎨>⎩ 1
2x x <⎧⎨<-⎩ 2
7x x >-⎧⎨<⎩ 5
2x x >⎧⎨<-⎩
解集为: 解集为: 解集为: 解集为:
3-42-33-44-1② ① 14
x x ≥⎧⎨≤⎩②①1
4x x ≥⎧⎨≤⎩①
②
3-23-23-23-2
4、按步骤解下列不等式组
(1)105105236x x x x +>-⎧⎨-<-⎩3 (2)32525261x x x x ->-⎧⎨-<-+⎩
四、能力提升(目的:提升灵活运用本节所学知识的能力) 5.把不等式组⎩⎨
⎧>-≥-3
60
42x x 的解集表示在数轴上,正确的是( )
6.等式组2752312
x x x x -<-⎧⎪
⎨++>⎪⎩的整数解是
.
7、若不等式组⎩
⎨
⎧<<n x m
x 的解集为m x <,则m n ,的大小关系是 8、若不等式组⎩⎨
⎧><n
x m
x 的解集为m x n <<,则m n ,的大小关系是 .
9、、设a <b ,则不等式组⎩
⎨⎧><b x a
x 的解集为______.[ ]A 、x >b B 、x <a C 、b <x <a D 、无解
10、已知关于x 的不等式组521
x x a
-≥-⎧⎨
>⎩无解,则a 的取值范围是_________.
五、学后反思(目的:课下完成,让学生学会复习反馈) 1、本节课都学了哪几点知识。
2、哪一点知识你认为比较难?
3、你认为都有哪些典型题型需要积累?
学习知识要善于思考,思考,再思考。
—— 爱因斯坦
百米短跑,需要冲劲;万米长跑,需要耐力。
求知,不仅需要有百米短跑的冲劲,却扫除一又一个的拦路虎;又要具有万米长跑的耐力,去长期地一点一滴地积累知识。