单项式与单项式相乘随堂练习题
单项式乘单项式试题精选(一)附答案
单项式乘单项式试题精选(一)一.选择题(共26小题)1.(2014•日照)下列运算正确的是()A.3a3•2a2=6a6B.(a2)3=a6C.a8÷a2=a4D.x3+x3=2x6 2.(2014•盘锦)计算(2a2)3•a正确的结果是()A.3a7B.4a7C.a7D.4a63.(2014•从化市一模)计算a2•2a3的结果是()A.2a6B.2a5C.8a6D.8a54.(2012•路南区一模)下列运算中,正确的是()A.2m+m=2m2B.﹣m(﹣m)=﹣2m C.(﹣m3)2=m6D.m2m3=2m55.(2012•海曙区模拟)计算(﹣2a3)(﹣a2)结果是()A.2a6B.﹣2a6C.2a5D.﹣2a56.(2011•呼和浩特)计算2x2•(﹣3x3)的结果是()A.﹣6x5B.6x5C.﹣2x6D.2x67.(2009•保定一模)计算(﹣2a2)×(﹣3a3)的结果为()A.6a5B.﹣6a5C.6a6D.﹣6a68.(2001•重庆)若(a m+1b n+2)•(a2n﹣1b2m)=a5b3,则m+n的值为()A.1B.2C.3D.﹣39.化简:(﹣3x2)2x3的结果是()A.﹣3x5B.18x5C.﹣6x5D.﹣18x510.计算(﹣x3)2•x的结果是()A.﹣x7B.x7C.﹣x6D.x611.下列计算正确的是()A.2a3•3a2=6a6B.4x3•2x5=8x8C.2x•2x5=4x5D.5x3•4x4=9x712.下列计算正确的是()A.5a2b•2b2a=10a4b2B.3x4•3x4=9x4C.7x3•3x7=21x10D.4x4•5x5=20x2013.下列计算,正确的是()A.a6÷a2=a3B.3a2×2a2=6a2C.(ab2)2=a2b4D.5a+3a=8a2 14.下列计算中正确的是()C.(﹣3a2)•2a3=﹣6a6D.a2m=(﹣a m)2(其中m为正整数)15.计算x2•y2(﹣xy3)2的结果是()A.x5y10B.x4y8C.﹣x5y8D.x6y1216.计算﹣(a2b)3+2a2b•(﹣3a2b)2的结果为()A.﹣17a6b3B.﹣18a6b3C.17a6b3D.18a6b317.计算(﹣2a)(﹣3a)的结果是()A.﹣5a B.﹣a C.6a D.6a218.下列各式计算正确的是()A.(a2)4=(a4)2B.2x3•5x2=10x6C.(﹣c)8÷(﹣c)6=D.(ab3)2=ab6﹣c219.计算(ab2)(﹣3a2b)2的结果是()A.6a5b4B.﹣6a5b4C.9a5b4D.9a3b420.2x•(﹣3xy)2•(﹣x2y)3的计算结果是()A.﹣6x4y5B.﹣18x9y5C.6x9y5D.18x8y521.一种计算机每秒可做4×108次运算,它工作3×103秒运算的次数为()A.12×1024B.1.2×1012C.12×1012D.12×10822.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3中,结果等于66的是()A.①②③B.②③④C.②③D.③④23.计算(﹣2ab)(3a2b2)3的结果是()A.﹣6a3b3B.54a7b7C.﹣6a7b7D.﹣54a7b724.单项式与24x5y的积为()A.﹣4x7y4z B.﹣4x7y4C.﹣3x7y4z D.3x7y4z25.计算:3x2y•(﹣2xy)结果是()A.6x3y2B.﹣6x3y2C.﹣6x2y D.﹣6x2y226.8b2(﹣a2b)=()A.8a2b3B.﹣8b3C.64a2b3D.﹣8a2b3二.填空题(共4小题)27.(2014•山西)计算:3a2b3•2a2b=_________.28.计算(﹣3a3)•(﹣2a2)=_________.30.计算:2x2y•(﹣3y2z)=_________.单项式乘单项式试题精选(一)参考答案与试题解析一.选择题(共26小题)1.(2014•日照)下列运算正确的是()A.3a3•2a2=6a6B.(a2)3=a6C.a8÷a2=a4D.x3+x3=2x6考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.专题:计算题.分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、3a3•2a2=6a5,故A选项错误;B、(a2)3=a6,故B选项正确;C、a8÷a2=a6,故C选项错误;D、x3+x3=2x3,故D选项错误.故选:B.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.2.(2014•盘锦)计算(2a2)3•a正确的结果是()A.3a7B.4a7C.a7D.4a6考点:单项式乘单项式;幂的乘方与积的乘方.专题:计算题.分析:根据幂的乘方与积的乘方、单项式与单项式相乘及同底数幂的乘法法则进行计算即可.解答:解:原式==4a7,故选:B.点评:本题考查了同底数幂的乘法法则,同底数幂相乘,底数不变指数相加;幂的乘方的法则,幂的乘方,底数不变,指数相乘.3.(2014•从化市一模)计算a2•2a3的结果是()A.2a6B.2a5C.8a6D.8a5考点:单项式乘单项式.分析:本题需根据单项式乘以单项式的法则进行计算,即可求出答案.解答:解:a2•2a3=2a5故选B.点评:本题主要考查了单项式乘以单项式,在解题时要注意单项式的乘法法则的灵活应用是本题的关键.4.(2012•路南区一模)下列运算中,正确的是()考点:单项式乘单项式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据合并同类项法则,单项式的乘法法则,积的乘方法则,同底数幂的乘法的运算方法,利用排除法求解.解答:解:A、应为2m+m=3m,故本选项错误;B、应为﹣m(﹣m)=m2,故本选项错误;C、(﹣m3)2=m6,故本选项正确;D、m2m3=m5,故本选项错误.故选C.点评:本题主要考查了合并同类项,单项式的乘法法则,积的乘方法则,同底数幂的乘法,熟练掌握运算法则是解题的关键.5.(2012•海曙区模拟)计算(﹣2a3)(﹣a2)结果是()A.2a6B.﹣2a6C.2a5D.﹣2a5考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:(﹣2a3)(﹣a2)=2a3+2=2a5.故选:C.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.6.(2011•呼和浩特)计算2x2•(﹣3x3)的结果是()A.﹣6x5B.6x5C.﹣2x6D.2x6考点:同底数幂的乘法;单项式乘单项式.分析:根据单项式乘单项式的法则和同底数幂相乘,底数不变,指数相加计算后选取答案.解答:解:2x2•(﹣3x3),=2×(﹣3)•(x2•x3),=﹣6x5.故选A.点评:本题主要考查单项式相乘的法则和同底数幂的乘法的性质.7.(2009•保定一模)计算(﹣2a2)×(﹣3a3)的结果为()A.6a5B.﹣6a5C.6a6D.﹣6a6考点:单项式乘单项式.专题:计算题.分析:利用单项式相乘的运算性质计算即可得到答案.解答:解:(﹣2a2)×(﹣3a3)=(﹣2)×(﹣3)a2•a3=6a5,故选A.点评:本题考查了单项式的乘法,属于基础题,比较简单.8.(2001•重庆)若(a m+1b n+2)•(a2n﹣1b2m)=a5b3,则m+n的值为()A.1B.2C.3D.﹣3考点:单项式乘单项式;同底数幂的乘法.分析:根据单项式的乘法的法则,同底数幂相乘,底数不变,指数相加的性质计算,然后再根据相同字母的次数相同列出方程组,整理即可得到m+n的值.解答:解:(a m+1b n+2)•(a2n﹣1b2m),=a m+1+2n﹣1•b n+2+2m,=a m+2n•b n+2m+2,=a5b3,∴,两式相加,得3m+3n=6,解得m+n=2.故选B.点评:本题主要考查单项式的乘法的法则和同底数幂的乘法的性质,根据数据的特点两式相加求解即可,不需要分别求出m、n的值.9.化简:(﹣3x2)2x3的结果是()A.﹣3x5B.18x5C.﹣6x5D.﹣18x5考点:单项式乘单项式.分析:利用单项式的乘法法则,同底数幂的乘法的性质,计算后直接选取答案.解答:解:(﹣3x2)2x3=[2×(﹣3)](x3•x2)=﹣6x5.故选C.点评:本题考查了单项式乘以单项式的知识,单项式乘法法则:把系数和相同字母分别相乘.同底数幂的乘法,底数不变指数相加.10.计算(﹣x3)2•x的结果是()A.﹣x7B.x7C.﹣x6D.x6考点:单项式乘单项式;幂的乘方与积的乘方.分析:本题需根据单项式乘以单项式的法则进行计算,即可求出答案.解答:解:(﹣x3)2•x=x3×2•x=x7.故选B.点评:本题主要考查了单项式乘以单项式,在解题时要注意单项式的乘法法则的灵活应用是本题的关键.11.下列计算正确的是()A.2a3•3a2=6a6B.4x3•2x5=8x8C.2x•2x5=4x5D.5x3•4x4=9x7考点:单项式乘单项式.分析:根据同底数幂的乘法的知识求解即可求得答案.解答:解:A、2a3•3a2=6a5,故A选项错误;B、4x3•2x5=8x8,故B选项正确;C、2x•2x5=4x6,故C选项错误;D、5x3•4x4=20x7,故D选项错误.故选:B.点评:此题考查了同底数幂的乘法等知识,解题的关键是熟记法则.12.下列计算正确的是()A.5a2b•2b2a=10a4b2B.3x4•3x4=9x4C.7x3•3x7=21x10D.4x4•5x5=20x20考点:单项式乘单项式.分析:运用单项式乘单项式的法则计算.解答:解:A、5a2b•2b2a=10a3b3,故A选项错误;B、3x4•3x4=9x8,故B选项错误;C、7x3•3x7=21x10,故C选项正确;D、4x4•5x5=20x9,故D选项错误.故选:C.点评:本题主要考查了单项式乘单项式,解题的关键是熟记法则.13.下列计算,正确的是()A.a6÷a2=a3B.3a2×2a2=6a2C.(ab2)2=a2b4D.5a+3a=8a2考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:利用同底数幂相除、单项式乘以单项式、积的乘方、合并同类项法则逐一判断即可.解答:解:A、a6÷a2=a4,故本项错误;B、3a2×2a2=6a4,故本项错误;C、(ab2)2=a2b4,故本项正确;D、5a+3a=8a,故本项错误.故选:C.点评:本题主要考查了同底数幂相除、单项式乘以单项式、积的乘方、合并同类项,熟练掌握法则是解题的关键.14.下列计算中正确的是()A.a5﹣a2=a3B.|a+b|=|a|+|b|C.(﹣3a2)•2a3=﹣6a6D.a2m=(﹣a m)2(其中m为正整数)考点:单项式乘单项式;绝对值;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:依据绝对值的意义、幂的乘方、同底数幂的乘法、合并同类项的法则即可解决.解答:解:A、a5与a2不是同类项,不能合并,故本选项错误;B、|a+b|≤|a|+|b|,故本选项错误;C、应为(﹣3a2)•2a3=﹣6a5,故本选项错误;D、正确.故选D.点评:(1)本题综合考查了整式运算的多个考点,包括合并同类项、幂的乘方、单项式乘单项式,需熟练掌握且区分清楚,才不容易出错;(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.15.计算x2•y2(﹣xy3)2的结果是()A.x5y10B.x4y8C.﹣x5y8D.x6y12考点:单项式乘单项式;幂的乘方与积的乘方.解答:解:x2y2•(﹣xy3)2,=x2y2•x2y3×2,=x2+2y2+6,=x4y8.故选B.点评:本题考查乘方与乘法相结合:应先算乘方,再算乘法.要用到乘方法则:幂的乘方,底数不变,指数相乘.同底数幂的乘法法则:底数不变,指数相加.16.计算﹣(a2b)3+2a2b•(﹣3a2b)2的结果为()A.﹣17a6b3B.﹣18a6b3C.17a6b3D.18a6b3考点:单项式乘单项式;幂的乘方与积的乘方.分析:先按照单项式乘单项式以及积的乘方与幂的乘方法则计算,再合并整式中的同类项即可.解答:解:﹣(a2b)3+2a2b•(﹣3a2b)2=﹣a6b3+2a2b•9a4b2=﹣a6b3+18a6b3=17a6b3.故选:C.点评:本题主要考查了单项式乘单项式以及积的乘方与幂的乘方法则,本题的关键是熟练掌握运算法则.17.计算(﹣2a)(﹣3a)的结果是()A.﹣5a B.﹣a C.6a D.6a2考点:单项式乘单项式.分析:根据单项式的乘法法则,计算后直接选取答案.解答:解:(﹣2a)(﹣3a),=(﹣2)×(﹣3)a•a,=6a2.故选D.点评:本题主要考查单项式的乘法法则,熟练掌握法则是解题的关键,是基础题.18.下列各式计算正确的是()D.(ab3)2=ab6A.(a2)4=(a4)2B.2x3•5x2=10x6C.(﹣c)8÷(﹣c)6=﹣c2考点:单项式乘单项式;幂的乘方与积的乘方;同底数幂的除法.分析:根据幂的乘方、积的乘方、单项式乘单项式、同底数幂相除的法则计算即可.解答:解:A、(a2)4=(a4)2=a8,故本项正确;B、2x3•5x2=10x5,故本项错误;C、(﹣c)8÷(﹣c)6=c2,故本项错误;D、(ab3)2=a2b6,故本项错误,故选:A.点评:本题主要考查了幂的乘方、积的乘方、单项式乘单项式、同底数幂相除的法则,熟练运用法则是解题的关键.A.6a5b4B.﹣6a5b4C.9a5b4D.9a3b4考点:单项式乘单项式.分析:首先利用积的乘方进行化简,进而利用单项式乘以单项式法则求出即可.解答:解:(ab2)(﹣3a2b)2=ab2•9a4b2=9a5b4,故选:C.点评:此题主要考查了单项式乘以单项式,正确把握单项式乘以单项式法则是解题关键.20.2x•(﹣3xy)2•(﹣x2y)3的计算结果是()A.﹣6x4y5B.﹣18x9y5C.6x9y5D.18x8y5考点:单项式乘单项式;幂的乘方与积的乘方.分析:根据单项式的乘法及幂的乘方与积的乘方法则,直接得出结果.解答:解:2x•(﹣3xy)2•(﹣x2y)3=2x•9x2y2•(﹣x6y3)=﹣18x9y5,故选:B.点评:本题主要考查了单项式乘单项式及幂的乘方与积的乘方,单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.注意相同字母的指数相加.21.一种计算机每秒可做4×108次运算,它工作3×103秒运算的次数为()A.12×1024B.1.2×1012C.12×1012D.12×108考点:单项式乘单项式;科学记数法—表示较大的数;同底数幂的乘法.专题:应用题.分析:根据题意列出代数式,再根据单项式的乘法法则以及同底数幂的乘法的性质进行计算即可.解答:解:它工作3×103秒运算的次数为:(4×108)×(3×103),=(4×3)×(108×103),=12×1011,=1.2×1012.故选B.点评:本题主要利用单项式的乘法法则以及同底数幂的乘法的性质求解,科学记数法表示的数在运算中通常可以看做单项式参与的运算.22.下列四个算式:①63+63;②(2×63)×(3×63);③(22×32)3;④(33)2×(22)3中,结果等于66的是()A.①②③B.②③④C.②③D.③④考点:单项式乘单项式;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同类项、同底数幂的乘法、积的乘方、幂的乘方、单项式的乘法法则,对各项计算后利用排除法求解.解答:解:①63+63=2×63;②(2×63)×(3×63)=6×66=67;③(22×32)3=(62)3=66;④(33)2×(22)3=36×26=66.所以③④两项的结果是66.点评:本题主要考查单项式的乘法,积的乘方的性质,幂的乘方的性质,熟练掌握运算法则和性质是解题的关键.23.计算(﹣2ab)(3a2b2)3的结果是()A.﹣6a3b3B.54a7b7C.﹣6a7b7D.﹣54a7b7考点:单项式乘单项式;幂的乘方与积的乘方.分析:先运用积的乘方,再运用单项式乘单项式求解即可.解答:解:(﹣2ab)(3a2b2)3=﹣2ab•27a6b6=﹣54a7b7,故选:D.点评:本题主要考查了幂的乘方与积的乘方及单项式乘单项式,解题的关键是熟记运算法则.24.单项式与24x5y的积为()A.﹣4x7y4z B.﹣4x7y4C.﹣3x7y4z D.3x7y4z考点:单项式乘单项式.分析:先列出算式,再根据单项式乘单项式的法则:把系数、同底数的幂分别相乘,即可得出答案.解答:解:•24x5y=(﹣×24)x2+5y3+1z=﹣3x7y4z,故选C.点评:本题考查了单项式乘单项式的法则和同底数幂的乘法,能熟练地运用法则进行计算是解此题的关键,注意:z也是积的一个因式.25.计算:3x2y•(﹣2xy)结果是()A.6x3y2B.﹣6x3y2C.﹣6x2y D.﹣6x2y2考点:单项式乘单项式.分析:根据单项式的乘法法则,直接得出结果.解答:解:3x2y•(﹣2xy)=﹣6x3y2,故选B.点评:单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.本题考查了单项式的乘法法则,注意相同字母的指数相加.26.8b2(﹣a2b)=()A.8a2b3B.﹣8b3C.64a2b3D.﹣8a2b3考点:单项式乘单项式.分析:根据单项式的乘法法则求解.解答:解:8b2(﹣a2b)=﹣8a2b3.故选D.点评:本题考查了单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式.二.填空题(共4小题)27.(2014•山西)计算:3a2b3•2a2b=6a4b4.word格式-可编辑-感谢下载支持考点:单项式乘单项式.专题:计算题.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:3a2b3•2a2b=(3×2)×(a2•a2)(b3•b)=6a4b4.故答案为:6a4b4.点评:此题考查了单项式乘以单项式,熟练掌握运算法则是解本题的关键.28.计算(﹣3a3)•(﹣2a2)=6a5.考点:单项式乘单项式;同底数幂的乘法.分析:根据单项式的乘法法则;同底数幂相乘,底数不变,指数相加的性质计算即可.解答:解:(﹣3a3)•(﹣2a2),=(﹣3)(﹣2)•(a3•a2),=6a5.点评:本题考查单项式的乘法法则,同底数幂的乘法的性质,熟练掌握运算法则和性质是解题的关键.29.若单项式﹣3x4a﹣b y2与3x3y a+b是同类项,则这两个单项式的积为﹣9x6y4.考点:单项式乘单项式;同类项.分析:首先同类项的定义,即同类项中相同字母的指数也相同,得到关于a,b的方程组,然后求得a、b的值,即可写出两个单项式,从而求出这两个单项式的积.解答:解:根据同类项的定义可知:,解得:.∴﹣3x4a﹣b y2与3x3y a+b分别为﹣3x3y2与3x3y2,∴﹣3x3y2•3x3y2=﹣9x6y4.故答案为:﹣9x6y4.点评:本题考查了单项式的乘法及同类项的定义,属于基础运算,要求必须掌握.30.计算:2x2y•(﹣3y2z)=﹣6x2y3z.考点:单项式乘单项式.分析:利用单项式乘单项式的运算法则进行计算即可得到正确的答案.解答:解:2x2y•(﹣3y2z)=[2×(﹣3)]x2y•y2z=﹣6x2y3z;故答案为:﹣6x2y3z.点评:本题考查了单项式乘以单项式的运算,单项式乘以单项式就是将系数相乘作为结果的系数,相同字母相乘作为结果的因式.。
单项式与单项式、多项式相乘精品导学案及练习附解析
品名单价(元)数量笔记本 5.2015钢笔3.4015贺卡0.7015⑴有几种算法计算共花了多14.1.4 整式的乘法第 1 课时单项式与单项式、多项式相乘学习目标1.能熟练、正确地运用法则进行单项式与单项式单项式与多项式的乘法运算.3.经历探索乘法运算法则的过程,让学生体验从“特殊”到“一般”的分析问题的方法,感受“转化思想”、“数形结合思想”,发展观察、归纳、猜测、验证等能力.4.初步学会从数学角度提出问题,运用所学知识解决问题,发展应用意识. 通过反思, 获得解决问题的经验.发展有条理的思考及语言表达能力.学习重点:在经历法则的探究过程中,深刻理解法则从而熟练地运用法则. 学习难点:正确判断单项式与多项式相乘的积的符号.学习过程:一、联系生活设境激趣问题一: 1.在一次绿色环保活动中购买奖品如下表,请列式:方法1: ; 方法2:.联系⋯⋯ ①2.将等式15(5.20+3.40+0.70) =15 5.2×0+15 ×3.40+15×0.70 中的数字用字母代替也可得到等式:m(a+b+c)=ma+mb+mc;⋯⋯②⑵各种算法之间有什么问题二:如图长方形操场,计算操场面积?方法1: .3.讨论解决:(1)单项式与多项式相乘,运用的数同号相乘,异号相乘4. 抢答 :下列各题的解法是否正确,1 2 1 3 1 21a(a 2+a+2)= 1 a 3+ 1 a 2+1正确的请打∨错的请打 × ,并说明原因 (1)22 23 3(2)3a 2b(1-ab 2c)=-3a 3b 33)23 5x(2x 2-y)=10x 3-5xy (24) (-2x).(ax+b-3)=-2ax 2-2bx-6x5.计算: ⑴ (5a 2-·()⑵ 2a 2(1ab b 2) 5a(a 2b ab 2)2方法 2:.可得到等式 (乘法分配律); 二、探究学习,获取新知 .1.等式②左右两边有什么特点 ? 2.提炼法则:3.符号语言: a (b+c )=ab+ac 或 m ( a+b+c )=ma+mb+mc 4.思想方法:剖析法则 m (a+b+c ) =ma+mb+mc ,得出: 转化 单项式 ×多项式 —— → 单项式 ×单项式 乘法分配律 三、理解运用,巩固提高问 题 三 : 1.计 算 : ⑴ ( 2a 2) (3ab 2 5ab 3) ⑵ ( 2 ab 2-2ab ) ?ab⑶ 2(-2a ).(2a 2-3a+1) 2.单项式与多项式相乘的步骤:①按乘法分配律把乘积写 成;②单项式的乘法运算 .思想是2)单项式乘多项式的结果仍是多项式,积的项数与原多项式的项3)单项式分别与多项式的每一项相乘时,要注意积的各项符号的确定:四. 题型探索中考链接问题四:(2011中考题)先化简,再求值.2a3b2(2ab3-1)-(- 2 a2b2)(3a- 9 a2b3)其中a= 1 ,b=-3.3 2 3归纳小结:1.用单项式乘多项式法则去括号和单项式乘单项式法则进行计2.合并同类项化简. 3.把已知数代入化简式,计算求值.五、联系现实升华思维问题五:1. 某长方形足球场的面积为(2x2+500)平方米,长为(2x+10) 米和宽为x米,这个足球场的长与宽分别是多少米?2.你能用几种方法计算下面图形的面积S?五、总结反思,归纳升华知识梳理:六、达标检测,体验成功 (时间 6 分钟,满分100 分)1、填空:(每小题7 分,共28分)(1) a (2 a 2一3a+1)= _________ ;(2)3 a b(2a 2b- a b+1) = ____________ ;3 2 1 1(3) _____________________________ (3a b2+3a b一2b)(1a b)= _________ ;(4)(一2 x2)( x2-1 x一1) = ______________ .4 3 2 2当你的才华还撑不起你的野心时,那你就应该静下心来学习。
单项式与单项式相乘
a a-1 )=3a ; (1) 3(
2 3 2 2 x ( x y ) = 2 x 2 x ; ( 2)
( 3) (-3x ) (x-y)=-3x -3x y; ( 4) (-5a) (a 2 -b)=-5a3 +5ab. 单项式与多项式相乘
第十四章 整式的乘法
练习2 计算下列各式: a 5a-2b); (1) 3(
2a 5a 10a 3x y (2 xy ) 6 x 3 y n3 13 2 4 4 4 (2 107 ) (3 103 ) (5 102 ) 3 10 2a ab 3a 6a b
3
4
2
n
3
八年级 数学 单项式与多项式相乘
第十四章 整式的乘法
我们来回顾引言中提出的问题:为了扩大 绿地的面积,要把街心花园的一块长p 米,宽b 米的长 方形绿地,向两边分别加宽a 米和c 米,你能用几种方 法表示扩大后的绿地的面积?
单项式与多项式相乘,只要将单项式分别 乘以多项式的各项 , 再将所得的积相加 . 2 . 2 . 2 2 2 (-2a ) (-5b) (-2a ) 3ab (-2a )(3ab -5b)= +
单项式与多项式相乘的法则:
=-6a3b2+10a2b
八年级 数学 单项式与多项式相乘
第十四章 整式的乘法
2 2 3 2
解:原式 x 4 x3 x 2 x 4 x3 x 2 5x
5x
1 当x 时 25
1 1 原式 5 25 5
八年级 八年级 数学 数学 单项式与多项式相乘
第十四章 整式的乘法
继续探索----试一试
1.先化简,再求值 2 2 2 9 2 3 2a b (2ab 1) ( a b )(3a a b ) 3 2 1 其中a , b 3 3
9.1单项式乘单项式(解析版)
9.1单项式乘单项式单项式乘单项式单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
题型1:单项式乘单项式1.计算:2ab2•a2b= 2a3b3 .【分析】根据单项式乘单项式的运算法则计算.【解答】解:2ab2•a2b=2(a•a2)•(b2•b)=2a3b3,故答案为:2a3b3.【变式1-1】计算(﹣2a3b2)•(﹣3a)2= ﹣18a5b2 .【分析】根据单项式乘单项式,积的乘方运算法则求解即可.【解答】解:(﹣2a3b2)•(﹣3a)2=(﹣2a3b2)•9a2=﹣18a5b2,故答案为:﹣18a5b2.【变式1-2】计算(a2b﹣3)﹣2•(a﹣2b3)2= a﹣8b12 .【分析】根据积的乘方、幂的乘方、同底数幂的乘法解答.【解答】解:(a2b﹣3)﹣2•(a﹣2b3)2=a﹣4b6•a﹣4b6=a﹣8b12.故答案为:a﹣8b12.题型2:与幂的运算结合2.若(a m+1b n+2)•(a2n﹣1b2n)=a5b3,则m﹣n的值为 4 .【分析】先利用单项式乘单项式法则计算(a m+1b n+2)•(a2n﹣1b2n),再根据等式得到指数间关系,最后求出m﹣n.【解答】解:∵(a m+1b n+2)•(a2n﹣1b2n)=a m+1+2n﹣1b n+2+2n=a m+2n b3n+2,∴a m+2n b3n+2=a5b3.∴m+2n=5①,3n=1②.∴①﹣②,得m﹣n=5﹣1=4.故答案为:4.【变式2-1】若1+2+3+…+n=m,且ab=1,m为正整数,则(ab n)(a2b n﹣1)…(a n﹣1b2)(a n b)= 1 .【分析】根据单项式乘单项式的计算法则计算,得到(ab n)(a2b n﹣1)…(a n﹣1b2)(a n b)=a m b m,再根据积的乘方得到原式=(ab)m,再根据ab=1,m为正整数,代入计算即可求解.【解答】解:∵ab=1,m为正整数,∴(ab n)(a2b n﹣1)…(a n﹣1b2)(a n b)=a1+2+…+n﹣1+n b n+n﹣1+…+2+1=a m b m=(ab)m=1m=1.故答案为:1.【变式2-2】若﹣2x3m+1y2n与4x n﹣6y﹣3﹣m的积与﹣4x4y是同类项,求m、n.【分析】先求出﹣2x3m+1y2n与4x n﹣6y﹣3﹣m的积,再根据同类项的定义列出方程组,求出m,n的值即可.【解答】解:∵﹣2x3m+1y2n•4x n﹣6y﹣3﹣m=﹣8x3m+n﹣5y2n﹣3﹣m,一.选择题(共4小题)1.下列计算正确的是( )A.(﹣3a2)3=﹣9a6B.(a2)3=a5 C.a2b•(﹣2ba2)=﹣2a4b2D.a9÷a3=a3【分析】各式计算得到结果,即可作出判断.【解答】解:A、原式=﹣27a6,不符合题意;B、原式=a6,不符合题意;C 、原式=﹣2a 4b 2,符合题意;D 、原式=a 6,不符合题意.故选:C .2.现有下列算式:(1)2a +3a =5a ;(2)2a 2•3a 3=6a 6;(3)(b 3)2=b 5;(4)(3b 3)3=9b 9;其中错误的有( )A .1个B .2个C .3个D .4个【分析】利用合并同类项的法则,单项式乘单项式的法则,幂的乘方与积的乘方的法则对各项进行运算即可.【解答】解:(1)2a +3a =5a ,故(1)不符合题意;(2)2a 2•3a 3=6a 5,故B 符合题意;(3)(b 3)2=b 6,故C 符合题意;(4)(3b 3)3=27b 9,故D 符合题意;则符合题意的有3个.故选:C .3.若(﹣2a m •b m +n )3=﹣8a 9•b 15,则( )A .m =3,n =2B .m =3,n =3C .m =5,n =2D .m =2,n =4【分析】根据积的乘方的法则,可得计算结果.【解答】解:∵(﹣2a m ⋅b m +n )3=﹣8a 3m ⋅b 3m +3n =﹣8a 9⋅b 15,∴3m =9,3m +3n =15,∴m =3,n =2,故选:A .4.下列运算正确的是( )A .(a 3)4=a 7B .a 6a 3=a 2C .3a 2•4a 3=12a 5D .(a 2b )2=a 2b 2【分析】利用同底数幂的除法的法则,单项式乘单项式的法则,幂的乘方与积的乘方的法则对各项进行运算即可.【解答】解:A 、(a 3)4=a 12,故A 不符合题意;B 、a 6a 3=a 3,故B 不符合题意;C 、3a 2•4a 3=12a 5,故C 符合题意;D 、(a 2b )2=a 4b 2,故D 不符合题意;故选:C .二.填空题(共4小题)5.计算2x 2•(﹣3x )3= ﹣6x 5 .【分析】根据单项式乘单项式的法则:系数的积作为积的系数,同底数的幂分别相乘也作为积的一个因式,进行计算即可.【解答】解:2x 2•(﹣3x 3)=(﹣2×3)x 2•x 3=﹣6x 5.故答案为:﹣6x 5.6.若x 3y n +1•x m +n •y 2n +2=x 9y 9,则4m ﹣3n = 10 .【分析】利用单项式乘单项式的法则进行运算即可.【解答】解:∵x 3y n +1•x m +n •y 2n +2=x 9y 9,∴x 3+m +n y n +1+2n +2=x 9y 9,∴3+m +n =9,n +1+2n +2=9,解得:n =2,m =4,∴4m ﹣3n=4×4﹣3×2=16﹣6=10.故答案为:10.7.已知x n =2,y n =3.(1)(xy )2n 的值为 36 ;(2)若x 3n +1•y 3n +1=64,则xy 的值为 827 .【分析】(1)利用幂的乘方与积的乘方的法则进行计算,即可得出结果;(2)利用幂的乘方与积的乘方的法则进行计算,即可得出结果.【解答】解:(1)∵x n=2,y n=3,∴(xy)2n=x2n y2n=(x n)2(y n)2=22×32=4×9=36,故答案为:36;(2)∵x3n+1•y3n+1=64,∴x3n•y3n•xy=64,∴(x n)3•(y n)3•xy=64,∵x n=2,y n=3,∴23•33•xy=64,∴xy=8 27,故答案为:8 27.8.单项式3x2y与﹣2x3y3的积为mx5y n,则m+n= ﹣2 .【分析】根据单项式的乘法:系数乘系数,同底数的幂相乘,可得答案.【解答】解:由题意,得m=3×(﹣2)=﹣6,n=3+1=4,m+n=﹣6+4=﹣2,故答案为:﹣2.三.解答题(共3小题)9.计算:(1)(﹣2x2y3)2•xy;(2)a﹣2b2•(ab﹣1).【分析】(1)根据同底数幂的乘除法的计算方法进行计算即可;(2)根据负整数指数幂以及分式乘除法的计算方法进行计算即可.【解答】解:(1)原式=4x4y6•xy=4x5y7:(2)原式=b2a2×ab=ba.10.(1)计算:(2a2)3•a3(2)计算:(a3)2÷a4(3)计算:(﹣3a3)2•a3+(﹣4a)2•a7﹣(5a3)3.【分析】(1)先根据积的乘方的计算法则计算,再根据同底数幂的乘法法则计算即可;(2)先根据积的乘方的计算法则计算,再根据同底数幂的除法法则计算即可;(3)先根据积的乘方的计算法则,同底数幂的乘法法则分别计算,在合并同类项求解即可.【解答】解:(1)(2a2)3•a3=8a6•a3=8a9;(2)(a3)2÷a4=a6÷a4=a2;(3)(﹣3a3)2•a3+(﹣4a)2•a7﹣(5a3)3=9a6•a3+16a2.a7﹣125a9=9a9+16a9﹣125a9=﹣100a9.11.已知x3m=2,y2m=3,求(x2m)3+(y m)6﹣(x2y)3m•y m的值.【分析】直接利用积的乘方运算法则以及幂的乘方运算法则计算得出答案.【解答】解:∵x3m=2,y2m=3,∴(x2m)3+(y m)6﹣(x2y)3m•y m=(x3m)2+(y2m)3﹣(x6m y3m×y m)=(x3m)2+(y2m)3﹣(x3m y2m)2=22+33﹣(2×3)2=﹣5.。
4 整式的乘法 第1课时 单项式与单项式相乘
曹杨二中高三(14)班学生
班级职务:学习委员
高考志愿:北京 大学中文系
高考成绩:语文121分数学146分
英语146分历史134分
综合28分总分
575分 分)
(另有附加分10
上海高考文科状元---
常方舟
“我对竞赛题一样发怵”
总结自己的成功经验,常方舟认为学习的高 效率是最重要因素,“高中三年,我每天晚 上都是10:30休息,这个生活习惯雷打不动。 早晨总是6:15起床,以保证八小时左右的睡 眠。平时功课再多再忙,我也不会‘开夜 车’。身体健康,体力充沛才能保证有效学 习。”高三阶段,有的同学每天学习到凌晨 两三点,这种习惯在常方舟看来反而会影响 次日的学习状态。每天课后,常方舟也不会
D.3xy
6.若三角形的底边为 2a3b,底边上的高为12ab2,则三角形的面积为 __12_a4_b_3____.
易错点:混淆幂的运算法则,弄错运算顺序而出错 7.计算: (1)(-2a2)·(-ab2)3·(2a2b3); 解:4a7b9
(2)(-12x5y2)·(-4x2y)2. 解:-8x9y4
8.在下列算式中,不正确的是( B ) ①( - x)3(xy)2 = - x3y2 ; ② ( - 2x2y3)(6x2y)3 = - 432x8y6 ; ③ (a - b)2(b-a)=-(b-a)3;④(-0.1m)·10m=-m2. A.①② B.①③ C.①④ D.②④ 9.(-5am+1b2n-1)·(2anbm)=-10a4b4,则m-n的值是-__1__. 10.用科学记数法表示(1.2×103)×(2.5×1011)×(4×109)的结果是 ____1_.2_×__1_0_2_4_____.
“用好课堂40分钟最重要。我的经验是,哪怕 是再简单的内容,仔细听和不上心,效果肯 定是不一样的。对于课堂上老师讲解的内容, 有的同学觉得很简单,听讲就不会很认真, 但老师讲解往往是由浅入深的,开始不认真, 后来就很难听懂了;即使能听懂,中间也可 能出现一些知识盲区。高考试题考的大多是 基础知识,正就是很多同学眼里很简单的内 容。”常方舟告诉记者,其实自己对竞赛试 题类偏难的题目并不擅长,高考出色的原因
第4课时单项式与单项式相乘
例:计算
(1) 4 a
3
7a
4
解:原式 =(4×7) =28a7
(a
3
a
4
)
(2 )7 a x ( 2 a b x )
2 2
= [7 ×(-2) ] a a 2 b x x 2 解:原式
14a bx
3 3
例3 计算
(1)(-2a2)3 · 3)2 (-3a
2 a
3 23
例2
计算
3
3 a
2 6 6
3 2
(1) 4 a
7a
2
4
8 9 a a 72a
12
(2 )7 a x ( 2 a b x )
2
观察一下,例3比例2多了什么运算?
注意: (1)先做乘方,再做单项式相乘。 (2)系数相乘不要漏掉负号
注意:这里实质是 同底数幂的乘法的应用
变式2:
5a4 (-1.2a3b2 ) =[ __×(-1.2)] 5
·
●
=-6a (a4a3 )__ 7b2
从以上这些式子中你能发现:
进行单项式与单项式相乘的运算规律吗?
单项式乘以单项式----法则:
单项式相乘,把它们的系数相乘、 字母部分的同底数幂分别相乘, 对于只在一个单项式里含有的字母, 连同它的指数作为积的一个因式。
第十五章整式的乘除与因式分解
单项式与单项式相乘
1 同底数幂的乘法----运算性质是什么?
am • an=am+n(m、n为正整数 ) 同底数幂相乘,底数不变,指数相加.
2 积的乘方----运算性质是什么?
(ab)n=an bn ( n为正整数) 积的乘方等于各因数乘方的积.
华师大版数学八年级上册《单项式与单项式相乘》说课稿
华师大版数学八年级上册《单项式与单项式相乘》说课稿一. 教材分析华师大版数学八年级上册《单项式与单项式相乘》这一节,主要让学生掌握单项式与单项式相乘的运算法则。
在此之前,学生已经学习了单项式的定义、系数、变量和次数等基本概念。
本节课通过实例演示和练习,让学生理解和掌握单项式与单项式相乘的方法,为后续的整式乘法和其他数学知识的学习打下基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对单项式的概念和性质有一定的了解。
但他们在运用单项式相乘的法则时,可能会出现混淆和错误。
因此,在教学过程中,需要关注学生的理解程度,引导学生正确运用所学知识。
三. 说教学目标1.知识与技能:让学生掌握单项式与单项式相乘的运算法则,能够正确进行计算。
2.过程与方法:通过实例分析、小组讨论等方法,培养学生独立思考和合作交流的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养他们勇于探索、积极进取的精神。
四. 说教学重难点1.教学重点:单项式与单项式相乘的运算法则。
2.教学难点:如何引导学生正确理解和运用单项式相乘的法则。
五. 说教学方法与手段1.教学方法:采用启发式教学法、实例分析法、小组讨论法等。
2.教学手段:多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过一个实际问题,引入单项式与单项式相乘的概念。
2.知识讲解:讲解单项式与单项式相乘的运算法则,引导学生理解并掌握。
3.实例演示:通过几个具体的例子,让学生观察和分析,理解单项式相乘的步骤和方法。
4.小组讨论:让学生分成小组,讨论并总结单项式相乘的规律。
5.练习巩固:布置一些练习题,让学生独立完成,检验他们对单项式相乘法则的掌握程度。
6.总结拓展:对本节课的内容进行总结,引导学生思考单项式相乘在其他数学问题中的应用。
七. 说板书设计板书设计要清晰、简洁,突出单项式与单项式相乘的运算法则。
可以采用流程图、列表等形式,帮助学生理解和记忆。
八. 说教学评价通过课堂提问、练习完成情况、小组讨论表现等方式,对学生的学习情况进行评价。
单项式与多项式相乘随堂导练
了.你认为■处应为( A )
A.3xy B.-3xy
C.-1
D. 1
返回
10.要使x(x+a)+3x-2b=x2+5x+4成立,则a,b的值 分别为( C ) A.-2,-2 C.2,-2 B. 2 , 2 D.-2,2
返回
11.要使(x2+nx+1)· (-6x3)的展开式中不含x4项,则
n的值为( D ) A. 6 C.
1 6 1 B.- 6
D. 0
返回
12.a2(-a+b-c)与-a(a2-ab+ac)的关系是( A ) A.相等
B.互为相反数
C.前式是后式的-a倍
D.前式是后式的a倍
返回
13.两个连续奇数,较大的奇数为n,则这两个奇数 的积是( C ) A.n2-n C.n2-2n B.n2+n D.n2+2n
返回
4.下列计算正确的是( D )
A.(-2a)· (3ab-2a2b)=-6a2b-4a3b
B.(2ab2)· (-a2+2b2-1)=-4a3b4
C.(abc)· (3a2b-2ab2)=3a3b2-2a2b3
D.(ab)2· (3ab2-c)=3a3b4-a2b2c
返回
知识点
2 单项式与多项式相乘的法则的应用
a=2, 解得 b=-1, c=1.
故(-3ab)· (a2c-6b2c)=-3a3bc+18ab3c=-3×23× (-1)×1+18×2×(-1)3×1=24-36=-12.
返回
题型
3 单项式与多项式相乘的法则
与待定系数法的综合应用
1 19.当m,n为何值时, 2
x[x(x+m)+nx(x+1)+m]
单项式与单项式相乘(含答案)
第1课时 单项式与单项式相乘一、选择题1.计算(2a )·(ab )的结果为( )A .2abB .2a 2bC .3abD .3a 2b2.计算-a 2b 2·(-2ab 3c )的结果是( )A .2a 3b 5cB .2a 3b 5C .-2a 3b 5cD .-2a 3b 53.如果□×3ab =3a 2b ,那么“□”内应填的代数式是( )A .abB .3abC .aD .3a4.下列计算正确的是 ( )A .6x 2·3xy =9x 3yB .(2ab 2)·(-3ab )=-a 2b 3C .(mn )2·(-m 2n )=-m 3n 3D .(-3x 2y )·(-3xy )=9x 3y 25.计算x 3y 3·(-xy 3)2的结果是( )A .x 5y 10B .x 5y 9C .-x 5y 8D .x 6y 126.若mx 4·4x k =-12x 12,则适合条件的m ,k 的值分别是( )A .3,8B .-3,8C .8,3D .-3,3二、填空题7.计算:(1)(-5a 4)·(-8ab 2)=________; (2)计算:12x ·(-2x 2)3=________. 8.计算:13x 3y ·38xy 2z 2=________. 9.已知(a n b ·ab m )5=a 10b 15,则mn =________. 10.已知单项式2a 3y 2与-4a 2y 4的乘积为ma 5y n,则m +n =________.11.计算:5x 3y ·(-3y )2+(-6xy )2·(-xy )=________.三、解答题 12.计算:(1)(-2x )3·(-3xy 2); (2)(-12a 2bc )·⎝ ⎛⎭⎪⎫-14abc 22;(3)(-2xy 3)·(-xy )2·(14x 2y ); (4)(2x 3y )2·x 3y +(-14x 6)·(-xy )3.13.已知-5x2m -1y n 与-15x 2y 的积与x 3y 2是同类项,试求(-2m 2n )·(-m 2n )2的值.14 某商家为了给新产品做宣传,向全社会征集商标图案,结果如图所示的商标(图中阴影部分)中标.(1)求此商标图案的面积S ; (2)当a =5米时,求此商标图案的面积S (π≈3).【详解详析】1.B2.A [解析] -a 2b 2·(-2ab 3c)=2a 3b 5c.故选A .3.C4.D [解析] A 选项系数计算错误;B 选项系数计算错误;C 选项m 的指数计算错误;D 选项计算正确.故选D .5.B [解析] x 3y 3·(-xy 3)2= x 3y 3·x 2y 6=x 5y 9.故选B .6.B [解析] 由单项式乘单项式的法则可知mx 4·4x k =4mx 4+k ,所以4mx 4+k=-12x 12,根据单项式相等的条件,得⎩⎨⎧4m =-12,4+k =12,解得⎩⎨⎧m =-3,k =8.故选B . 7.(1)40a 5b 2 (2)-4x 78.18x 4y 3z 2 [解析] 13x 3y ·38xy 2z 2=18x 4y 3z 2. 9.2 [解析] 因为(a n b ·ab m )5=a 5n +5b 5m +5= a 10b 15,所以5n +5=10,5m +5=15,解得n =1,m =2,所以mn =2.10.-2 [解析] (2a 3y 2)·(-4a 2y 4)=-8a 5y 6,所以m =-8, n =6,所以m +n =-2.11.9x 3y 3 [解析] 原式=45x 3y 3-36x 3y 3=9x 3y 3.[点评] 此题综合考查了积的乘方、单项式乘单项式、同底数幂的乘法和合并同类项的知识.12.解:(1)(-2x)3·(-3xy 2)=24x 4y 2.(2)(-12a 2bc)·⎝ ⎛⎭⎪⎫-14abc 22=(-12a 2bc)·⎝ ⎛⎭⎪⎫116a 2b 2c 4=-34a 4b 3c 5. (3)(-2xy 3)·(-xy)2·(14x 2y)=(-2xy 3)·x 2y 2·(14x 2y)=(-2×14)·(x ·x 2·x 2)·(y 3·y 2·y)=-12x 5y 6. (4)(2x 3y)2·x 3y +(-14x 6)·(-xy)3=4x 9y 3+14x 9y 3=18x 9y 3.13.解:依题意得(-5x 2m -1y n )·(-15x 2y)=x 2m -1+2y n +1=x 2m +1y n +1=x 3y 2, 所以2m +1=3,n +1=2,解得m =1,n =1.(-2m 2n)·(-m 2n)2=(-2m 2n)·(m 4n 2)=-2m 6n 3.当m =1,n =1时,原式=-2×16×13=-2.14 解:(1)S =2a ·a +14π·a 2-12·3a ·a =2a 2+14πa 2-32a 2=12a 2+14πa 2.1 2×52+14×3×52=252+754=1254(米2).(2)当a=5米时,S≈。
人教版数学八年级上册14.1单项式与单项式、多项式相乘
=-8x3-12x2+4x;
(2)原式
2 3
ab2
1 2
ab
(2ab)
1 2
ab
1 a2b3 a2b2. 3
转化
单项式与多项式相乘
乘法分配律
单项式与单项式相乘
新知应用
例2 先化简,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2. 解:3a(2a2-4a+3)-2a2(3a+4) =6a3-12a2+9a-6a3-8a2 =-20a2+9a. 当a=-2时, 原式=-20×4-9×2=-98.
单项式与多项式相乘,就是用单项式乘多项式的每一项, 再把所得的积相加.
注意 (1)依据是乘法分配律; (2)积的项数与多项式的项数相同.
新知应用
例1 计算:
(1)(-4x)·(2x2+3x-1);
(2)
2 3
ab2
2ab
1 2
ab.
解:(1)原式=(-4x)·(2x2) +(-4x)·3x +(-4x)·(-1)
新知应用
针对训练
计算:
(1) 3x2 ·5x3 ;
(3) (-3x)2 ·4x2 ;
(2)4y ·(-2xy2); (4)4x2y·(-xy2)3.
单独因式x别漏乘漏写
解:(1)原式=(3×5)(x2·x3)=15x5;
(2)原式=[4×(-2)](y·y2) ·x=-8xy3;
(3)原式=9x2·4x2 =(9×4)(x2·x2)=36x4;
单项式与单项式、多项式相乘
知识回顾
1.(1) 同底数幂的乘法 :am·an= am+n ( m,n都是正整数). (2) 幂的乘方:(am)n= amn (m,n都是正整数). (3)积的乘方法则:(ab)n= anbn (m,n都是正整数).
人教版八年级数学上册单项式与单项式、多项式相乘同步练习题
人教版八年级数学试题14.1.4 整式的乘法第1课时 单项式与单项式、多项式相乘1、填空:(每小题7分,共28分)(1) a (2a 2一3a +1)=_________; (2)3a b(2a 2b -a b+1) =_____________; (3)(34a b 2+3a b 一23b )(12a b)=_______;(4)(一22x )(2x -12x 一1) =_____. 2.选择题:(每小题6分,共18分)(1)下列各式中,计算正确的是 ( )A .(a -3b+1)(一6a )= -6a 2+18a b+6aB .()232191313x y xy x y ⎛⎫--+=+ ⎪⎝⎭C .6mn(2m+3n -1) =12m 2n+18mn 2-6mnD .-a b(a 2一a -b) =-a 3b-a 2b-a b 2 (2)计算a 2(a +1) -a (a 2-2a -1)的结果为 ( )A .一a 2一aB .2a 2+a +1C .3a 2+aD .3a 2-a (3)一个长方体的长、宽、高分别是2x 一3、3x 和x ,则它的体积等于 ( )A .22x —32xB .6x -3C .62x -9xD .6x 3-92x 3.计算(每小题6分,共30分)(1)323(23)x y xy xy ⋅-; (2)222(3)x x xy y ⋅-+;(3)222(1)(4)4a b ab a b --+⋅- (4)(2x 3一32x +4x -1)(一3x);(5)()22213632xy y x xy ⎛⎫-+-- ⎪⎝⎭.4.先化简,再求值.(每小题8分,共24分)(1) 22(1)2(1)3(25)x x x x x x-++--;其中12 x=-(2)m2(m+3)+2m(m2—3)一3m(m2+m-1),其中m52 =;⑶4a b(a2b-a b2+a b)一2a b2(2a2—3a b+2a),其中a=3,b=2.习题试解预习法检验预习效果的最佳途径数学学科有别于其他学科的一大特点就是直接用数学知识解决问题。