正弦余弦曲线图

合集下载

1.4.1正弦函数、余弦函数的图像

1.4.1正弦函数、余弦函数的图像
B
y 1
7 6
描图:用光滑曲线 将这些正弦线的终 点连结起来
3 2 11 6
O1
A O
-1
6
3
2
2 3
5 6

4 3
5 3
2
x
y=sinx ( x [0, 2 ] )
问题2:如何画函数y =sinx(x∈R)的图象?
f ( x 2k ) f ( x)
利用图象平移
(1)写出满足不等式cos x 0, x 0,2 的x的取值集合;
1 (2)写出满足不等式 sin x , x 0,2 的x的取值集合; 2
练习讲解: (1)写出满足不等式cos x 0, x 0,2 的x的取值集合;
y 1
2

o -1
2

3 2

y
1
2
o
-1
2

3 2
2
x
y cos x

y 1
2
o -1
2

3 2
2
x
例2.画出函数
x
0
y 1
y cos x,x [0,2 ] 的简图: 3
2
0 0

cosx - cosx
1 -1
-1 1
2 0 0

2
1 -1
y=cosx,x[0, 2]
2
几何画法
五点描图法
2.注意与诱导公式、三角函数线等知识的联系
y 1
2
y=cosx,x [0, 2π]
2
o -1

3 2
2
x
y=sinx,x [0, 2π]

5.4.1 正弦函数、余弦函数的图象(解析版)

5.4.1 正弦函数、余弦函数的图象(解析版)

5.4.1 正弦函数、余弦函数的图象一、正弦函数、余弦函数图象的画法1.描点法:按照列表、描点、连线三步法作出正弦函数、余弦函数图象的方法. 2.几何法:利用三角函数线作出正弦函数和余弦函数在]2,0[π内的图象,再通过平移得到x y sin =和cos y x =的图象.3.五点法:先描出正弦曲线和余弦曲线的波峰、波谷和三个平衡位置这五个点,再利用光滑曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象.在确定正弦函数x y sin =在]2,0[π上的图象时,关键的五点是:)0,2(),1,23(),0,(),1,2(),0,0(ππππ-【注意】(1)若x R ∈,可先作出正弦函数、余弦函数在]2,0[π上的图象,然后通过左、右平移可得到x y sin =和cos y x =的图象.(2)由诱导公式cos sin()2y x x π==+,故cos y x =的图象也可以将x y sin =的图象上所有点向左平移2π个单位长度得到. 二、正(余)弦函数的图象 函数y =sin xy =cos x图象图象画法五点法五点法关键五点 (0,0),π(,1)2,(,0)π,3π(,1)2-,(2,0)π (0,1),π(,0)2,(,1)π-,3π(,0)2,(2,1)π正(余)弦曲线正(余)弦函数的图象叫做正(余)弦曲线三、用三角函数图象解三角不等式的方法1、作出相应正弦函数或余弦函数在[0,2π]上的图象;2、写出适合不等式在区间[0,2π]上的解集;3、根据公式一写出不等式的解集.题型一 五点法作三角函数的图象【例1】用“五点法”作y =2sin2x 的图象,首先描出的五个点的横坐标是( ) A .30,,,,222ππππ B . 30,,,,424ππππ C .0,,2,3,4ππππD .20,,,,6323ππππ【答案】B【解析】由“五点法”作图知:令2x =0,2π,π,32π,2π,解得x =0,4π,2π,34π,π,即为五个关键点的横坐标,故选:B.【变式1-1】用“五点法”作函数cos 1y x =-,[]0,2x π∈的大致图像,所取的五点是______.【答案】(0,0),,12π⎛⎫- ⎪⎝⎭,(,2)π-,3,12π⎛⎫- ⎪⎝⎭,(2,0)π【解析】由“五点法”作函数cos 1y x =-,[0x ∈,2]π的图象时的五个点分别是(0,0),,12π⎛⎫- ⎪⎝⎭,(,2)π-,3,12π⎛⎫- ⎪⎝⎭,(2,0)π.【变式1-2】用“五点法”画出下列函数的简图:(1)cos 1y x =-,[],x ππ∈-; (2)sin y x =,3,22x ππ⎡⎤∈-⎢⎥⎣⎦; (3)sin y x =-,[]0,2x π∈.【答案】(1)见解析;(2)见解析;(3)见解析 【解析】(1)按五个关键点列表xπ-2π-2ππcos x1-0 11cos 1x -2- 1- 01- 2-(2)按五个关键点列表x2π-0 2ππ32πsin x1- 011-描点并将它们用光滑的曲线连接起来如下图(3)按五个关键点列表x0 2ππ32π2πsin x11-sin x -0 1-0 1 0【变式1-3】用“五点法”作下列函数的简图. (1)2sin ([0,2])y x x π=∈;(2)5sin()([,])222y x x πππ=-∈. (3)2sin(2)3y x π=-(x ∈R ).【答案】(1)图象答案见解析;(2)图象答案见解析;(3)图象答案见解析. 【解析】(1)列表如下:x2ππ 32π2π 2sin x 02 0 -2 0描点连线如图:(2)列表如下:x2ππ 32π2π 52πsin()2x π-0 1 0 -1 0(3)函数π2sin 23y x ⎛⎫=- ⎪⎝⎭在长为一个周期π的区间上的图象,列表如下:x6π512π23π1112π76π23x π-0 2ππ32π2πy 02 0 -2 0再向左右两边扩展,其图象如下:题型二 含绝对值的三角函数【例2】函数y =|cos x |的一个单调增区间是( )A .,22ππ⎡⎤-⎢⎥⎣⎦B .[0,π]C .3,2ππ⎡⎤⎢⎥⎣⎦D .3,2π2π⎡⎤⎢⎥⎣⎦【答案】D【解析】将y =cos x 的图像位于x 轴下方的图像关于x 轴对称翻折到x 轴上方,x 轴上方(或x 轴上)的图像不变,即得y =|cos x |的图像根据各选项判断只有D 选项正确. 故选:D.【变式2-1】作出函数2sin sin y x x =+,[],x ππ∈-的大致图像. 【答案】图见解析【解析】函数[][]3sin ,0,2sin sin sin ,,0x x y x x x x ππ⎧∈⎪=+=⎨-∈-⎪⎩, 其图如下所示:【变式2-2】作出函数sin ||,[2,2]=∈-y x x ππ的大致图像. 【答案】图象见解析 【解析】列表x0 2ππ32π2πsin ||y x =1 0 -1 0作图:先作出(]0,2π的图像,又原函数是偶函数,图像关于y 轴对称, 即可作出[)2,0π-的图像.【变式2-3】作函数3sin 2y x π⎛⎫=+ ⎪⎝⎭的图象.【答案】图象见解析.【解析】3sin cos 2y x x π⎛⎫=+= ⎪⎝⎭ cos 22,Z 223cos 22,Z 22x k x k k x k x k k ππππππππ⎧⎛⎫-+≤≤+∈ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+<<+∈ ⎪⎪⎝⎭⎩故|cos |y x =的图象是cos y x =的图象在x 轴下方的部分翻折到x 轴上方后得到的图象,如图题型三 三角函数识图问题【例3】函数1sin =+y x x的大致图象是( )A .B .C .D .【答案】A【解析】函数1sin =+y x x是定义域(,0)(0,)-∞+∞上的奇函数∴其图象关于原点对称,排除选项D ;当(0,)x π∈时,sin 0x >,此时1sin 0x x+>,∴当(0,)x π∈时,()f x 的图象在x 轴上方,排除选项B ; 当32x π=时,322sin 10233πππ+=-+<,()f x 的图象在x 轴下方,排除选项C ;综上所述,函数1sin =+y x x的大致图象为选项A .故选:A .【变式3-1】函数2sin 2xy x =-的图象大致是( )A .B .C .D .【答案】A【解析】令0x =,则02sin 01y =-=,排除C 、D ;令1x =-,则()112sin 2sin 202y -=--=+>,排除B.故选:A【变式3-2】已知函数()y f x =的图象如图所示,则此函数可能是( )A .()sin ln ||f x x x =⋅B .()sin ln ||f x x x =-⋅C .()sin ln f x x x =⋅D .()|sin ln |f x x x =⋅ 【答案】A【解析】图象关于原点对称,为奇函数,CD 中定义域是0x >,不合,排除,AB 都是奇函数,当(0,1)x ∈时,A 中函数值为负,B 中函数值为正,排除B .故选:A .【变式3-3】已知函数()f x 的部分图象如图所示,则()f x 的解析式可能为( )A .()sin πf x x x =B .()(1)sin πf x x x =-C .[]()cos π(1)f x x x =+D .()(1)cos πf x x x =- 【答案】B【解析】对于A ,()()sin πsin π()f x x x x x f x -=--==,所以函数()sin πf x x x =为偶函数,故排除A ; 对于D ,()010f =-≠,故排除D ;对于C ,[]()cos π(1)cos πf x x x x x =+=-,则()()cos πf x x x f x -==-, 所以函数[]()cos π(1)f x x x =+为奇函数,故排除C.故选:B.题型四 利用图象解三角不等式【例4】不等式2sin ,(0,2)2xx π∈的解集为( ) A .,62ππ⎡⎤⎢⎥⎣⎦ B .3,44ππ⎡⎤⎢⎥⎣⎦ C .423,ππ⎡⎤⎢⎥⎣⎦ D .,64ππ⎡⎤⎢⎥⎣⎦【答案】B 【解析】2sin ,(0,2)2xx π∈ sin y x =函数图象如下所示:∴344ππ≤≤x ,∴不等式的解集为:3,44ππ⎡⎤⎢⎥⎣⎦.故选:B .【变式4-1】在()0,2x π∈上,满足cos sin x x >的x 的取值范围( )A .5,44ππ⎛⎫ ⎪⎝⎭B .0,4π⎛⎫ ⎪⎝⎭C .50,,244πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ D .5,24ππ⎛⎫⎪⎝⎭【答案】C【解析】作出sin y x =和cos y x =在()0,2x π∈的函数图象,根据函数图象可得满足cos sin x x >的x 的取值范围为50,,244πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭.故选:C.【变式4-2】在[]0,2π内,不等式3sin x < ) A .(0,π) B .3,34ππ⎛⎫ ⎪⎝⎭C .45,33ππ⎛⎫ ⎪⎝⎭ D .5,23ππ⎛⎫⎪⎝⎭【答案】C【解析】画出y =sin x ,[]0,2x π∈的草图如下.[]0,2x π∈内,令3sin x =43x π=或53x π=,结合图象可知不等式3sin x <的解集为45,33ππ⎛⎫ ⎪⎝⎭.故选:C .【变式4-3】若函数()2sin13f x x π=- )A .56,622k k ππππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) B .156,622k k ⎡⎤++⎢⎥⎣⎦(k ∈Z )C .56,644k k ππππ⎡⎤++⎢⎥⎣⎦(k ∈Z ) D .156,644k k ⎡⎤++⎢⎥⎣⎦(k ∈Z ) 【答案】B【解析】要使函数有意义,则2sin103x π-≥,即1sin32x π≥, 即522636k x k πππππ+≤≤+,k ∈Z ,得156622k x k +≤≤+,k ∈Z , 即函数的定义域为156,622k k ⎡⎤++⎢⎥⎣⎦(k ∈Z ).故选:B【变式4-4】已知()f x 的定义域是3⎡-⎢⎣⎦,则(sin 2)f x 的定义域为( ) A .2,36k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈ B .,63k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈C .22,236k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈ D .2,263k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈【答案】A 【解析】()f x 的定义域是3⎡-⎢⎣⎦,故由31sin 2x -≤≤解得()422233k x k k Z ππππ-+≤≤+∈, ()236k x k k Z ππππ∴-+≤≤+∈ 因此,函数(sin 2)f x 的定义域为()22,236k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.故选:A.【变式4-5】函数y 12log sin x________. 【答案】{}22,x k x k k Z πππ<<+∈ 【解析】由1122log sin 0log 1x ≥=知,0sin 1x <≤,由正弦函数图象特征知,22,k x k k Z πππ<<+∈. 故定义域为{}22,x k x k k Z πππ<<+∈. 故答案为:{}22,x k x k k Z πππ<<+∈.题型五 与正余弦函数有关的零点【例5】函数sin y x =,[]0,2πx ∈的图像与直线23y =-的交点的个数为( ) A .0 B .1 C .2 D .3 【答案】C【解析】在同一平面直角坐标系内,先画函数sin y x =,[]0,2πx ∈的图像,再画直线23y =-,可知所求交点的个数为2.故选:C .【变式5-1】已知函数f (x )=12x⎛⎫⎪⎝⎭-sin x ,则f (x )在区间[0,2π]上的零点个数为( )A .1B .2C .3D .4 【答案】B【解析】令sin 01()2xf x x ⎛⎫-=⎪⎝⎭= ,则1()sin 2x x =, 在同一坐标系中,作出1(),sin 2xy y x ==,如下图所示:由图知,f (x )在区间[0,2π]上的零点个数为2个.故选:B.【变式5-2】()f x 是定义在R 上的偶函数,且()()11f x f x -=+,[]1,0x ∈-时,()sin 2f x x ππ⎛⎫=+⎪⎝⎭,则函数()()e x g x f x -=-在区间[]2021,2022-上零点的个数为( )A .2021B .4043C .2020D .4044 【答案】B 【解析】(1)(1)f x f x -=+,()(2)f x f x ∴=+,即函数()f x 的周期为2,当[]1,0x ∈-时,()sin()sin()22f x x x πππ=+=-,则当[]0,1x ∈时,()()sin()sin()22f x f x x x ππ=-=--=, 由此可作出函数()f x 与函数e -=xy 的大致图象如下,由图象可知,每个周期内有两个交点, 所以函数((e))xg x f x -=-在区间[]2021,2022-上零点的个数为2021214043⨯+=个.故选:B .【变式5-3】函数()sin 3|sin |,[0,2]f x x x x π=+∈的图象与直线y k =有且仅有两个不同的交点,则k 的取值范围是( )A .[2,2]-B .(1,0)(0,3)-C .(2,4)D .(1,4) 【答案】C【解析】当[0,]x π∈时,()sin 3sin 4sin f x x x x =+=,当(],2x ππ∈时,()sin 3sin 2sin f x x x x =+=-, 所以函数()f x 的图像如图所示,所以函数()f x 的图象与直线y k =有且仅有两个不同的交点时,(2,4)k ∈.故选:C【变式5-4】已知函数()1sin ,0,21cos ,0,2x x f x x x ⎧+<⎪⎪=⎨⎪+≥⎪⎩若()f x 在区间3,2a π⎡⎤-⎢⎥⎣⎦上至少有5个零点,()f x 在区间[],a π-上至多有5个零点,则正数a 的取值范围是( )A .138,63ππ⎡⎤⎢⎥⎣⎦ B .1310,63ππ⎡⎫⎪⎢⎣⎭ C .1910,63ππ⎡⎫⎪⎢⎣⎭ D .819,36ππ⎡⎤⎢⎥⎣⎦【答案】B【解析】因为方程1sin 2x =-在[),0π-上的解为56π-,6π-, 所以当()f x 在区间[],a π-上至多有5个零点时,100.3a π<<因为方程1cos 2x =-在30,2π⎡⎤⎢⎥⎣⎦上的解为23π,43π, 所以当()f x 在区间3,2a π⎡⎤-⎢⎥⎣⎦上至少有5个零点时,136a π-≤-,即136a π≥综上,正数a 的取值范围是1310,63ππ⎡⎫⎪⎢⎣⎭,故选:B。

正余弦函数的图象

正余弦函数的图象

-4 -3
-2
(0,11)
3
( 2 ,1)
-
(-o12 ,0)
( 2 ,0)
2
( ,-1)
3
线
4
5 6 x
正弦、余弦函数的图象
练习:在同一坐标系内,用五点法分别画出函数
y= sinx,x[0, 2] 和 y= cosx,x[ , 3 ]的简图:
22
x
02
20
csionsx
10
01
向左平y 移 个单位长度 22
2 ,0) x
2 ,0)
( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0)
正弦、余弦函数的图象
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦函数的图象 y=cosx=sin(x+ ), xR
2
正弦曲 线
形状完全一样 只是位置不同
余弦函数的图象
y
余弦曲
1.列表 2.描点 3.连线
3
2
x
2
2 y=sinx,x[0, 2]
正弦、余弦函数的图象
例2 画出函数y= - cosx,x[0, 2]的简图:
x
0
2
3
2
2
cosx
1
0
-1
0
1
- cosx -1
0
1
0
-1
y 1
o
2
2
-1
y=cosx,x[0, 2]
3
2
2
x
y= - cosx,x[0, 2]

常见三角函数图像及其性质

常见三角函数图像及其性质

常见三角函数图像及其性质三角函数介绍正弦函数主词条:正弦函数格式:sin(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比斜边长度的比值求出,函数值为上述比的比值,也是csc(θ)的倒数函数图像:波形曲线值域:[]1,1-余弦函数主词条:余弦函数格式:cos(θ)作用:在直角三角形中,将大小为(单位为弧度)的角邻边长度比斜边长度的比值求出,函数值为上述比的比值,也是sec(θ)的倒数函数图像:波形曲线值域:[]1,1-正切函数主词条:正切函数格式:tan(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角对边长度比邻边长度的比值求出,函数值为上述比的比值,也是cot(θ)的倒数。

函数图像:上图平面直角坐标系反映值域:()∞-∞,+余切函数主词条:余切函数格式:cot(θ)作用:在直角三角形中,将大小为θ(单位为弧度)的角邻边长度比对边长度的比值求出,函数值为上述比的比值,也是tan(θ)的倒数值域:()∞-∞,+正割函数主词条:正割函数格式:sec(θ)作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角邻边长度的比值求出,函数值为上述比的比值,也是cos(θ)的倒数函数图像:上图平面直角坐标系反映值域:(][)∞-1-,1∞,+余割函数主词条:余割函数格式:csc(θ)作用:在直角三角形中,将斜边长度比大小为θ(单位为弧度)的角对边长度的比值求出,函数值为上述比的比值,也是sin(θ)的倒数值域:(][)∞-1-∞,+,1。

正弦函数、余弦函数的图像(完整)

正弦函数、余弦函数的图像(完整)

(
3 2
,1)
(1) 列表(列出对图象形状起关键作用的五点坐标)
(2) 描点(定出五个关键点)
(3) 连y线(用光滑的曲线顺次连结五个点)
图象的最高点
1-
-
(0,1) (2 ,1)
与x轴的交点
-
-1
o
6
2
3
2 3
5
7
6
6
4 3
3 5
2
3
11 6
2
x
(
2
,0)
(
3 2
,0)
-1 -
图象的最低点 ( ,1)
三角函数
三角函数线
正弦函数 余弦函数 正切函数
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
-1
O
M A(1,0) x
正弦函数的图象
问题:如何作出正弦函数的图象?
途径:利用单位圆中正弦线来解决。
描图:用光滑曲线
y
B
1
将这些正弦线的 终点连结起来
A
O1
O
2
4
5
2
x
4
5 6 x
正弦、余弦函数的图象
如何由正弦函数图像得y 到余弦函数图像?
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦函数的图象
y=cosx=sin(x+ ), xR
2
余弦函数的图象
y
1
正弦曲 线
形状完全一样 只是位置不同
余弦曲 线
-4 -3
-2
- o
-1

正弦函数、余弦函数的图象PPT优秀课件

正弦函数、余弦函数的图象PPT优秀课件

y=sinx ,x[0,2]
y
1 -4 -3 -2 -

y=sinx , xR
正弦曲线
o
-1

2
3
4
5
6
x
学生活动
o sx 的图象. 用“五点法”画余弦函数yc
★观察图象特征
★找关键点 ★作y=cosx,x∈[0,2π]的图象 ★由周期性作出整个图象
Enter
1.5 1 0.5 0 0 -0.5 -1 -1.5 1 2 3 4 5 6 7 系列1
y
1
2
y=cosx,x[0, 2]
2
o
-1

3 2
2
x
y=sinx,x[0, 2]
课后思考
如何画下列函数的简图? (1)y= cos2x
(2)y=sinx - 1
谢谢大家!
85.每一年,我都更加相信生命的浪费是在于:我们没有献出爱,我们没有使用力量,我们表现出自私的谨慎,不去冒险,避开痛苦,也失去了快乐。――[约翰· B· 塔布] 86.微笑,昂首阔步,作深呼吸,嘴里哼着歌儿。倘使你不会唱歌,吹吹口哨或用鼻子哼一哼也可。如此一来,你想让自己烦恼都不可能。――[戴尔· 卡内基] 87.当一切毫无希望时,我看着切石工人在他的石头上,敲击了上百次,而不见任何裂痕出现。但在第一百零一次时,石头被劈成两半。我体会到,并非那一击,而是前面的敲打使它裂开。――[贾柯· 瑞斯] 88.每个意念都是一场祈祷。――[詹姆士· 雷德非] 89.虚荣心很难说是一种恶行,然而一切恶行都围绕虚荣心而生,都不过是满足虚荣心的手段。――[柏格森] 90.习惯正一天天地把我们的生命变成某种定型的化石,我们的心灵正在失去自由,成为平静而没有激情的时间之流的奴隶。――[托尔斯泰] 91.要及时把握梦想,因为梦想一死,生命就如一只羽翼受创的小鸟,无法飞翔。――[兰斯顿· 休斯] 92.生活的艺术较像角力的艺术,而较不像跳舞的艺术;最重要的是:站稳脚步,为无法预见的攻击做准备。――[玛科斯· 奥雷利阿斯] 93.在安详静谧的大自然里,确实还有些使人烦恼.怀疑.感到压迫的事。请你看看蔚蓝的天空和闪烁的星星吧!你的心将会平静下来。[约翰· 纳森· 爱德瓦兹] 94.对一个适度工作的人而言,快乐来自于工作,有如花朵结果前拥有彩色的花瓣。――[约翰· 拉斯金] 95.没有比时间更容易浪费的,同时没有比时间更珍贵的了,因为没有时间我们几乎无法做任何事。――[威廉· 班] 96.人生真正的欢欣,就是在于你自认正在为一个伟大目标运用自己;而不是源于独自发光.自私渺小的忧烦躯壳,只知抱怨世界无法带给你快乐。――[萧伯纳] 97.有三个人是我的朋友爱我的人.恨我的人.以及对我冷漠的人。 爱我的人教我温柔;恨我的人教我谨慎;对我冷漠的人教我自立。――[J·E·丁格] 98.过去的事已经一去不复返。聪明的人是考虑现在和未来,根本无暇去想过去的事。――[英国哲学家培根] 99.真正的发现之旅不只是为了寻找全新的景色,也为了拥有全新的眼光。――[马塞尔· 普劳斯特] 100.这个世界总是充满美好的事物,然而能看到这些美好事物的人,事实上是少之又少。――[罗丹] 101.称赞不但对人的感情,而且对人的理智也发生巨大的作用,在这种令人愉快的影响之下,我觉得更加聪明了,各种想法,以异常的速度接连涌入我的脑际。――[托尔斯泰] 102.人生过程的景观一直在变化,向前跨进,就看到与初始不同的景观,再上前去,又是另一番新的气候――。[叔本华] 103.为何我们如此汲汲于名利,如果一个人和他的同伴保持不一样的速度,或许他耳中听到的是不同的旋律,让他随他所听到的旋律走,无论快慢或远近。――[梭罗] 104.我们最容易不吝惜的是时间,而我们应该最担心的也是时间;因为没有时间的话,我们在世界上什么也不能做。――[威廉· 彭] 105.人类的悲剧,就是想延长自己的寿命。我们往往只憧憬地平线那端的神奇【违禁词,被屏蔽】,而忘了去欣赏今天窗外正在盛开的玫瑰花。――[戴尔· 卡内基] 106.休息并非无所事事,夏日炎炎时躺在树底下的草地,听着潺潺的水声,看着飘过的白云,亦非浪费时间。――[约翰· 罗伯克] 107.没有人会只因年龄而衰老,我们是因放弃我们的理想而衰老。年龄会使皮肤老化,而放弃热情却会使灵魂老化。――[撒母耳· 厄尔曼] 108.快乐和智能的区别在于:自认最快乐的人实际上就是最快乐的,但自认为最明智的人一般而言却是最愚蠢的。――[卡雷贝· C· 科尔顿] 109.每个人皆有连自己都不清楚的潜在能力。无论是谁,在千钧一发之际,往往能轻易解决从前认为极不可能解决的事。――[戴尔· 卡内基] 110.每天安静地坐十五分钟· 倾听你的气息,感觉它,感觉你自己,并且试着什么都不想。――[艾瑞克· 佛洛姆] 111.你知道何谓沮丧---就是你用一辈子工夫,在公司或任何领域里往上攀爬,却在抵达最高处的同时,发现自己爬错了墙头。--[坎伯] 112.「伟大」这个名词未必非出现在规模很大的事情不可;生活中微小之处,照样可以伟大。――[布鲁克斯] 113.人生的目的有二:先是获得你想要的;然后是享受你所获得的。只有最明智的人类做到第二点。――[罗根· 皮沙尔· 史密斯] 114.要经常听.时常想.时时学习,才是真正的生活方式。对任何事既不抱希望,也不肯学习的人,没有生存的资格。 ――[阿萨· 赫尔帕斯爵士] 115.旅行的精神在于其自由,完全能够随心所欲地去思考.去感觉.去行动的自由。――[威廉· 海兹利特] 116.昨天是张退票的支票,明天是张信用卡,只有今天才是现金;要善加利用。――[凯· 里昂] 117.所有的财富都是建立在健康之上。浪费金钱是愚蠢的事,浪费健康则是二级的谋杀罪。――[B·C·福比斯] 118.明知不可而为之的干劲可能会加速走向油尽灯枯的境地,努力挑战自己的极限固然是令人激奋的经验,但适度的休息绝不可少,否则迟早会崩溃。――[迈可· 汉默] 119.进步不是一条笔直的过程,而是螺旋形的路径,时而前进,时而折回,停滞后又前进,有失有得,有付出也有收获。――[奥古斯汀] 120.无论那个时代,能量之所以能够带来奇迹,主要源于一股活力,而活力的核心元素乃是意志。无论何处,活力皆是所谓“人格力量”的原动力,也是让一切伟大行动得以持续的力量。――[史迈尔斯] 121.有两种人是没有什么价值可言的:一种人无法做被吩咐去做的事,另一种人只能做被吩咐去做的事。――[C·H·K·寇蒂斯] 122.对于不会利用机会的人而言,机会就像波浪般奔向茫茫的大海,或是成为不会孵化的蛋。――[乔治桑] 123.未来不是固定在那里等你趋近的,而是要靠你创造。未来的路不会静待被发现,而是需要开拓,开路的过程,便同时改变了你和未来。――[约翰· 夏尔] 124.一个人的年纪就像他的鞋子的大小那样不重要。如果他对生活的兴趣不受到伤害,如果他很慈悲,如果时间使他成熟而没有了偏见。――[道格拉斯· 米尔多] 125.大凡宇宙万物,都存在着正、反两面,所以要养成由后面.里面,甚至是由相反的一面,来观看事物的态度――。[老子] 126.在寒冷中颤抖过的人倍觉太阳的温暖,经历过各种人生烦恼的人,才懂得生命的珍贵。――[怀特曼] 127.一般的伟人总是让身边的人感到渺小;但真正的伟人却能让身边的人认为自己很伟大。――[G.K.Chesteron] 128.医生知道的事如此的少,他们的收费却是如此的高。――[马克吐温] 129.问题不在于:一个人能够轻蔑、藐视或批评什么,而是在于:他能够喜爱、看重以及欣赏什么。――[约翰· 鲁斯金]

1126三角函数图像及性质

1126三角函数图像及性质

4-1.4.1正弦、余弦函数的图象(1)函数y=sinx 的图象 (2)余弦函数y=cosx 的图象正弦函数y=sinx 的图象和余弦函数y=cosx 的图象分别叫做正弦曲线和余弦曲线. 2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的五个点关键是 (0,1) (2π,0) (π,-1) (23π,0) (2π,1) 讲解范例:例1 作下列函数的简图(1)y=1+sinx ,x ∈[0,2π], (2) y=|sinx |, (3)y=sin |x |例2 用五点法作函数2cos(),[0,2]3y x x ππ=+∈的简图.例3 分别利用函数的图象和三角函数线两种方法,求满足下列条件的x 的集合:1(1)sin ;2x ≥ 15(2)cos ,(0).22x x π≤<<课后作业:作业:补充:1.分别用单位圆中的三角函数线和五点法作出y=sinx 的图象 2.分别在[-4π,4π]内作出y=sinx 和y=cosx 的图象 3.用五点法作出y=cosx,x ∈[0,2π]的图象“五点(画图)法”-----描点、连线,画出简图。

例1. 画出下列函数的简图:(1) y =1+sinx ,x∈〔0,2π〕 (2) y=-cosx ,x∈〔0,2π〕 一、 合作学习 ●探究1如何利用y=sinx ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到(1)y =1+sinx ,x∈〔0,2π〕的图象;(2)y=sin(x- π/3)的图象?小结:函数值加减,图像上下移动;自变量加减,图像左右移动。

●探究2如何利用y=cos x ,x∈〔0,2π〕的图象,通过图形变换(平移、翻转等)来得到y =-cosx ,x∈〔0,2π〕的图象?小结:这两个图像关于X 轴对称。

1.4.1(公开课课件)正弦函数、余弦函数的图像

1.4.1(公开课课件)正弦函数、余弦函数的图像

实 一 一对应
唯一确定

正 弦

一对多 值
定义:任意给定的一个实数x,有唯一确定的值sinx与 之对应。由这个法则所确定的函数 y=sinx叫做正弦
函数,y=cosx叫做余弦函数,二者定义域为R。
第3页,共28页。
二、正弦函数 y =sinx(x∈R)的图象
1.几何法作图:
问题:如何作出正弦函数的图象?
(3) 连线(用光滑的曲线顺次连结五个点)
1-
-
-
-1
o
6
2
3
2 3
5
7
6
6
4 3
3 5 23
-1 -
第26页,共28页。
图象的最高点
(0,1) (2 ,1)
与x轴的交点
11 6
2
x
(
2
,0)
(
3 2
,0)
图象的最低点 ( ,1)
课堂小结
1.正、余弦函数的图象每相隔2π个单位重复出现,因此, 只要记住它们在[0,2π]内的图象形态,就可以画出正弦 曲线和余弦曲线.
正弦函数、余弦函数的图象
第1页,共28页。
1.正弦线、余弦线的概念
设任意角α的终 边与单位圆交于点P. 过点P做x轴的垂线, 垂足为M.
则有向线段MP叫做角α的正弦线. 有向线段OM叫做角α的余弦线.
2. 三角函数值的符号判断
y α 的终边
P(x,y)
oMx
第2页,共28页。
一、正弦函数的定义:
有何联系?
第17页,共28页。
练习:(1)作函数 y=1+3cosx,x∈[0,2π]的简图 (2)作函数 y=2sinx-1,x∈[0,2π]的简图

5.4.1正弦函数、余弦函数的图象(共36张PPT)

5.4.1正弦函数、余弦函数的图象(共36张PPT)
作直线 y=12,根据特殊角的正弦值,可知该直线与 y=sin x,x∈[0,2π] 图象的交点横坐标为π6和56π;作直线 y= 23,该直线与 y=sin x,x∈[0,2π] 图象的交点横坐标为π3和23π,则不等式的解集为π6,π3∪23π,56π.
1.函数 y=sin(-x),x∈[0,2π]的简图是
第五章 三角函数
5.4 三角函数的图象与性质 5.4.1 正弦函数、余弦函数的图象
数学
01
预习案 自主学习
02
探究案 讲练互动
03
测评案 达标反馈
04
应用案 巩固提升
教材考点
学习目标
了解利用正弦线作正弦函数图象
正弦函数、余弦函 的方法,
数的图象 会用“五点法”画正弦函数、余
弦函数的图象
正、余弦函数图象 会用正弦函数、余弦函数的图象
解析:选 A.由“五点法”知五个关键点分别为(0,0),π2,1,(π,0),32π,-1, (2π,0),故选 A.
3.函数 y=cos x,x∈R 图象的一条对称轴是
A.x 轴
B.y 轴
C.直线 x=π2 答案:B
D.直线 x=32π
()
4.请补充完整下面用“五点法”作出函数 y=-sin x(0≤x≤2π)的图象时的 列表.
的简单应用 解简单问题
核心素养 数学抽象、
直观想象
直观想象
问题导学 预习教材 P196-P200,并思考以下问题: 1.如何把 y=sin x,x∈[0,2π]的图象变换为 y=sin x,x∈R 的图象? 2.正、余弦函数图象五个关键点分别是什么?
正弦函数、余弦函数的图象
函数
y=sin x
图象

1.4.1_正弦函数、余弦函数的图象

1.4.1_正弦函数、余弦函数的图象

正弦函数:y sin x

xR


正弦曲线
y
1


-1






x
余弦函数:y cos x


(2 ,1)
( , 1)

2 , 0)
3 ( , 0) 2
与x轴的交点: (
第一章 三角函数
题型探究
五点作图法

例1
用“五点法”作出下列函数的简图. y=sinx+1,x∈[0,2π].
x
sinx 1+sinx
y 2 1

0
0 1
π 2 1 2
π
0 1
3π 2 -1 0

0 1
y=1+sinx,x[0, 2]
第一章 三角函数
函数图象的应用
例4 (本题满分 10 分)根据正弦函数的图象, 1 求满足 sinx≥ 的 x 的范围. 2
1 【解】 在同一坐标系内画出 y=sinx 和 y= 2 的图象,如图所示: 3分
第一章 三角函数
由图看到在 x∈[0,2π]内, 1 π 5π 满足 sinx≥ 的 x 为 ≤x≤ . 2 6 6 7分
描点作图法的步骤: (1)列表(2)描点(3)连线
沙漏试验
探究一:函数y sin x, x 0, 2 图象的作法
作法: (1) 等分; (2) 作正弦线; y
第一章 三角函数
(3) 平移; (4) 连线.
1P 1

/ p1
o1
6
M1
-1A

1.4.1正弦、余弦函数的图象

1.4.1正弦、余弦函数的图象
y=sinx是一个函数,称为正弦函数;同 样y=cosx也是一个函数,称为余弦函数, 这两个函数的定义域是什么?
正弦函数的图象
y=sinx ( x∈[0,2] )
2 y
5
6
3
2
31
6
● ●

7
6 4
2

0
11
3 5 6 -1
632
3 23

7 4 3 5 11

6 3 2 3 6 2
2 5 ●
(2)用五点作图法画正弦、余弦函数的简图
作业:1.课本P46. 1题,《导学案》1题
2.预习1.4.2
函数y=sinx, x[0,2]
y
1
. 函数y=sinx, x[0,2]的图象
.
.
.
o /2 3/2 2
xห้องสมุดไป่ตู้
-1
.
关键点:
(0,0)、(
2
,1)、(
,
0)、(
3
2
,-1)、(
2
,
0)
y=sinx的图象与y=cosx的图象之间的关系
y=cosx=sin(x + ), xR
2
y y = sin x, x∈R 1
x
0
sinx 0
2
3
2
2
1 0 -1 0
1+sinx 1
21 0 1
y
2
y=1+sinx,x[0, 2]
1
o
2
-1●
● 2

y=sinx,x[0, 2]
3
2
x
2

正弦函数、余弦函数的图像

正弦函数、余弦函数的图像

1
o
2
2
3
2
x
2
-1
y= - cosx,x[0, 2]
练习2:在同一坐标系内,用五点法分别画出函数
y= sinx,x[0, 2]

y=
cosx,x[
2
,
3 ]的简图:
2
解:按五个关键点列表:
x
0 2
20
csoinsxx 10
01
3
2
2
232
-01
0-1
10
描点并将它们用光滑曲线连接起来:
y 向左平移 个单位长度

2.注意与诱导公式、三角函数线等知识的联系
y
1
y=cosx,x[0, 2]
o
2
2
3
2
x
2
-1
y=sinx,x[0, 2]
描点并将它们用光滑曲线连接起来:
y
2
y=1-sinx,x[0, 2]
1
o
2
-1
2
3
2
x
2 y=sinx,x[0, 2]
例2 画出函数y= - cosx,x[0, 2]的简图:
解:按五个关键点列表:
x
0
2
3
2
2
cosx 1
0
-1
0
1
- cosx -1
0
1
0
-1
描点并将它们用光滑曲线连接起来:
y
y=cosx,x[0, 2]
A
O1
O
2
4
5
2ห้องสมุดไป่ตู้
x
3
3
3
3

正弦函数、余弦函数的图象 课件

正弦函数、余弦函数的图象  课件
正弦函数、余弦函数的图像
正弦曲线与余弦曲线及其画法
函数
y=sinx
y=cosx
图象
图象 画法
五点法
五点法
关键 五点
(0,0),π2,1 ,(π,0),32π,-1 ,(0,1),π2,0 ,(π,-1),32π,0 ,
(2π,0)
(2π,1)
1.“几何法”和“五点法”画正、余弦函数图象的优缺点 (1)“几何法”就是利用单位圆中正弦线和余弦线做出正、余弦 函数图象的方法.该方法作图较精确,但较为烦琐. (2)“五点法”是画三角函数图象的基本方法,在要求精度不高 的情况下常用此法,要切实掌握好.与五点法作图有关的问题经常 出现在高考试题中.
类型一 用“五点法”作三角函数的图象 [例 1] 用“五点法”作出下列函数的简图:
(1)y=sinx+12,x∈[0,2π]; (2)y=1-cosx,x∈[0,2π].
【解】 (1)按五个关键点列表:
x
0
π -1 0
12+sinx
1 2
3 2
1 2
-12
1 2
1.正弦曲线和余弦曲线的关系
2.“几何法”和“五点法”画正、余弦函数图象的优缺点 (1)“几何法”就是利用单位圆中正弦线和余弦线作出正、余弦 函数图象的方法.该方法作图较精确,但较为烦琐. (2)“五点法”是画三角函数图象的基本方法,在要求精度不高 的情况下常用此法.
1.用“五点法”画 y=sinx,x∈[-2π,0]的简图时,正确的 五个点应为( )
|自我尝试| 1.下列对函数 y=cosx 的图象描述错误的是( ) A.在[0,2π]和[4π,6π]上的图象形状相同,只是位置不同 B.介于直线 y=1 与直线 y=-1 之间 C.关于 x 轴对称 D.与 y 轴只有一个交点

正弦,余弦函数的图像PPT教学课件

正弦,余弦函数的图像PPT教学课件

y= sinx,x[0, 2]

y=
cosx,x[
2
,
3 2
]的简图:
x
0 2
20
csionsx
10
01
3
3
2
2
22
-01
0-1
10
向左y平移 个单位长度 22
1
o
2
-1
3
2
2
y= cosx,x[ , 3 ]
22
y=sinx,x[0, 2]
2
x
正弦、余弦函数的图象
几何画法
小 1. 正弦曲线、余弦曲线 五点法 结
2 ,0)
( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0)
正弦、余弦函数的图象
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦函数的图象 y=cosx=sin(x+ ), xR
2
正弦曲 线
形状完全一样 只是位置不同
余弦函数的图象
y
余弦曲
-4 -3
-2
(0,11)
正弦、余弦函数的图象
X
正弦、余弦函数的图象
三角函数
三角函数线
正弦函数 余弦函数 正切函数
-1
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT
O
M A(1,0) x
注意:三角 函数线是有 向线段!
正弦、余弦函数的图象
问题:如何作出正弦、余弦函数的图象?
途径:利用单位圆中正弦、余弦线来解决。

5..4.1正弦函数、余弦函数的图象 课件

5..4.1正弦函数、余弦函数的图象 课件
弦函数的图象?
高中数学必修第一册
知识小结
3.函数 = , ∈ 的图象:
余弦函数的图象叫做余弦曲线,它是与正弦函数具有相同形状的“波
浪起伏”的连续光滑曲线.
高中数学必修第一册
问题探究
探究:8.类似于“五点法”作正弦函数的图象,如何作出余弦
函数的图象?
高中数学必修第一册
问题探究
探究:8.类似于“五点法”作正弦函数的图象,如何作出余弦
(1) = 1 + , ∈ [0,2];
x
0

2

3
2
2
sin x
0
1
0
-1
0
1 sin x
1
2
1
0
1
高中数学必修第一册
典例精析
例1 画出下列函数的简图:
(2) = −, ∈ [0,2].
x
0

2

3
2
2
cos x
1
0
-1
0
1
cos x
-1
0
1
0
-1
往往起重要的作用.你能画出函数 = , ∈ [0,2]图象的
简图吗?在确定图象形状时,应抓住哪些关键点?
五点(画图)法:
高中数学必修第一册
问题探究
探究:7.由三角函数的定义可知,正弦函数、余弦函数是一对
密切关联的函数.你认为应该利用正弦函数和余弦函数的哪些
关系,通过怎样的图形变换,才能将正弦函数的图象变换为余
R
R
[-1,1]
[-1,1]
奇偶性
奇函数
偶函数
对称中心
对称轴
高中数学必修第一册

1.4.1正弦函数余弦函数的图像4

1.4.1正弦函数余弦函数的图像4

(2)描点作图
Y
y=2sinx
2
y=sinx
1
0

2 X
(2)y=sin2x , x∈[0,π]
解: (1)列表 (2)描点作图
2x
x
3 0 24 2 24 2
yy==ssinin2xx 0 1 0 -1 0
Y
y=sin2x
1
0

X
2
正弦、余弦函数的图象
几何画法
小 1. 正弦曲线、余弦曲线 五点法 结
1.4.1 正弦函数,余 弦函数的图像
正弦、余弦函数的图象
三角函数
三角函数线
正弦函数 余弦函数 正切函数
-1
sin=MP
正弦线MP cos=OM 余弦线OM tan=AT 正切线AT
y PT

O
M A(1,0) x
注意:三角 函数线是有
向线段!
在直角坐标系中如何作点(

,sin

)?
33
y
1

o
2
2

3
2
x
2
-1
y= - cosx,x[0, 2]
正弦、余弦函数的图象
练习:在同一坐标系内,用五点法分别画出函数
y= sinx,x[0, 2]

y=
cosx,x[
2
,
3 2
]的简图:
x
0 2

20
csionsx
10
01

3
3
2
2
2 2
-0 1
0-1
与x轴的交点
-1
o
6
-

正弦余弦函数的图像

正弦余弦函数的图像

二、正弦函数y=sinx(x R)的图象
5 6 2 3
2
3 6
y
1
● ● ● ● ●
y=sinx ( x [0, 2 ] )


.
7 6 4 3
.
3 2
5 3
11 6
2
0
6
3
2
2 3
5 6


7 4 3 5 11 6 3 2 3 6
● ● ● ● ●
0
2 2
描点作图
0 -1 11
3 3 2 2
2 2
yy
2-
10 1 -1
01 02
01 00
1 0 1 -1
1- 1
oo 1 1 - 2
y 1 sin x, x [0,2 ] y cos x, x [0,2 ]
2

3 3 2
2
2 2
2

x
-1 几何作法: (1) 等分 (2) 作正弦线 (3) 平移 (4) 连线
1.如何画出正弦函数
y=sin x(x∈R) 的图象呢?
y
1
4
3
2

3 2


2
2
3
4

7 2

5 2
0
-1
2
3 2
5 2
7 2
x
因为终边相同的角的三角函数值相同,所以y=sinx的图象在……, 4 ,2 , 2 ,0, 0,2 , 2 ,4 , …与y=sinx,x∈[0,2π]的图象相同
xx
y sin x, x [0,2 ]

正弦,余弦函数的图像PPT课件

正弦,余弦函数的图像PPT课件

途径:利用单位圆中正弦、余弦线来解决。
描图:用光滑曲线
y
B
1
将这些正弦线的 终点连结起来
A
O1
O
2
4
5
2
x
3
3
3
3
-1
y=sinx
终边相同角的三角函数值相等 即: sin(x+2k)=sinx, kZ
x[0,2]
f(x2k)f(x)利用图象平移
y=sinx xR
正弦、余弦函数的图象
y 1
o
2
2
-1
y=sinx x[0,2]
y
y=sinx xR
1
-4 -3
-2
- o
-1
3
2
x
2
正弦曲 线
2
3
4
5 6 x
正弦、余弦函数的图象
如何作出正弦函数的图象(在精确度要求不太高时)?
y
五点画图法
1
(2
,1)
( 2 ,1)
( ,0)
( 2 ,0)
五点法——
2
(
(0,0)o
(0,0)
2
(0,0)
-1
(0,0)
汇报人:XXX 汇报日期:20XX年10月10日
2 ,0) x
2 ,0)
( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0) ( 2 ,0)
正弦、余弦函数的图象
y
1
-4 -3
-2
- o
-1
2
3
4
5 6 x
正弦函数的图象 y=cosx=sin(x+ ), xR
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档