正余弦公式

合集下载

高中数学正弦余弦公式大全

高中数学正弦余弦公式大全

正弦定理和余弦定理一:基础知识理解1 .正弦定理分类内容定理===2 R ( R 是△ ABC 外接圆的半径 )变形公式① a = 2 R sin _ A , b = 2 R sin _ B , c = 2 R sin _ C ,② sin A ∶ sin B ∶ sin C =a ∶ b ∶ c ,③ sin A =,sin B =,sin C =解决的问题① 已知两角和任一边,求其他两边和另一角,② 已知两边和其中一边的对角,求另一边的对角2 .余弦定理分类内容定理在△ ABC 中,有 a 2 = b 2 + c 2 -2 bc cos _ A ;b 2 = a 2 +c 2 -2 ac cos _ B ; c 2 = a 2 + b 2 -2 ab cos _ C 变形公式cos A =;cos B =;cos C =解决的问题① 已知三边,求各角;② 已知两边和它们的夹角,求第三边和其他两个角3 .三角形中常用的面积公式( 1 ) S = ah ( h 表示边 a 上的高 );( 2 ) S = bc sin A = ac sin B = ab sin C ;( 3 ) S = r ( a + b + c )( r 为三角形的内切圆半径 ).二:基础知识应用演练1 .( 2012·广东高考 ) 在△ ABC 中,若∠ A = 60°,∠ B = 45°, BC = 3 ,则 AC =()A . 4B . 22 .在△ ABC 中, a =, b = 1 , c = 2 ,则 A 等于 ()A . 30°B . 45°C . 60°D . 75°3 .( 教材习题改编 ) 在△ ABC 中,若 a = 18 , b = 24 , A = 45°,则此三角形有 ()A .无解B .两解C .一解D .解的个数不确定4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c .若 a = 2 , B =, c = 2 ,则 b = ________.5 .△ ABC 中, B = 120°, AC = 7 , AB = 5 ,则△ ABC 的面积为________ .解析:1 选B 由正弦定理得:=,即=,所以 AC = × =2 .2 选C ∵ cos A ===,又∵ 0°< A <180°,∴ A =60°.3 选B ∵ =,∴ sin B = sin A = sin 45°,∴ sinB = .又∵ a < b ,∴ B 有两个.4 由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B =4+12-2×2×2 × =4,所以 b =2.答案:25、解析:设 BC = x ,由余弦定理得49=25+ x 2 -10 x cos 120°,整理得 x 2+5 x -24=0,即 x =3.因此 S △ ABC = AB × BC ×sin B = ×3×5× = . 答案:小结: ( 1 ) 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ ABC 中,A > B ⇔ a > b ⇔ sin A >sin B .( 2 ) 在△ ABC 中,已知 a 、 b 和 A 时,解的情况如下:A 为锐角 A 为钝角或直角图形关系式 a = b sin A b sin A < a < b a ≥ b a > b解的个数一解两解一解一解三、典型题型精讲(1)利用正弦、余弦定理解三角形[例1] ( 2012·浙江高考 ) 在△ ABC 中,内角 A , B , C 的对边分别为 a , b ,c ,且 b sin A = a cos B .( 1 ) 求角 B 的大小; ( 2 ) 若 b = 3 , sin C = 2sin A ,求 a , c 的值.解析: ( 1 ) 由 b sin A = a cos B 及正弦定理=,得sinB = cos B ,所以tan B =,所以 B = .(2) 由 sin C =2sin A 及=,得 c = 2 a . 由 b =3 及余弦定理 b 2 = a 2 + c 2 -2 ac cos B ,得 9= a 2 + c 2 - ac . 所以 a =, c =2 .思考一下:在本例 ( 2 ) 的条件下,试求角 A 的大小.方法小结:1 .应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2 .已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.试题变式演练 1 .△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c , a sin A sin B + b cos 2 A = a .( 1 ) 求;( 2 ) 若 c 2 = b 2 + a 2 ,求 B .解: ( 1 ) 由正弦定理得,sin 2 A sin B +sin B cos 2 A = sin A ,即 sin B ( sin 2 A +cos 2 A ) = sin A .故 sin B = sin A ,所以= .( 2 ) 由余弦定理和 c 2 = b 2 + a 2 ,得 cos B = .由 (1) 知 b 2 = 2 a 2 ,故 c 2 =(2+ ) a 2 . 可得 cos 2 B =,又 cos B >0,故 cos B =,所以 B =45°.(2)利用正弦、余弦定理判定三角形的形状[例2] 在△ ABC 中 a , b , c 分别为内角 A , B , C 的对边,且2 a sin A =( 2 b + c ) sin B +( 2 c + b ) sin C .( 1 ) 求 A 的大小;( 2 ) 若sin B + sin C = 1 ,试判断△ ABC 的形状.[ 解析 ] ( 1 ) 由已知,根据正弦定理得 2 a 2 = ( 2 b + c ) · b + ( 2 c + b ) c ,即a 2 = b 2 + c 2 + bc .由余弦定理得 a 2 = b 2 + c 2 -2 bc cos A ,故 cos A =-,∵ 0< A <180°,∴ A =120°.(2) 由 (1) 得 sin 2 A =sin 2 B +sin 2 C +sin B sin C =又 sin B +sin C =1,解得 sin B =sin C = .∵ 0°< B <60°,0°< C <60°,故 B = C ,∴△ ABC 是等腰的钝角三角形.方法小结:依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:( 1 ) 利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;( 2 ) 利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用 A + B + C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.试题变式演练 ( 2012·安徽名校模拟 ) 已知△ ABC 的三个内角 A , B , C 所对的边分别为 a , b , c ,向量 m =( 4 ,- 1 ), n =,且m · n = .( 1 ) 求角 A 的大小;( 2 ) 若 b + c = 2 a = 2 ,试判断△ ABC 的形状.解:( 1 ) ∵ m = ( 4,-1 ) , n =,∴ m · n =4cos 2 -cos 2 A =4·- ( 2cos 2 A -1 ) =-2cos 2 A +2cos A +3.又∵ m · n =,∴ -2cos 2 A +2cos A +3=,解得 cos A =. ∵ 0< A < π ,∴ A = .(2) 在△ ABC 中, a 2 = b 2 + c 2 -2 bc cos A ,且 a =,∴ ( ) 2 =b 2 +c 2 -2 bc ·= b 2 + c 2 -bc . ①又∵ b + c =2 ,∴ b =2 - c ,代入① 式整理得 c 2 - 2 c +3=0,解得 c =,∴ b =,于是 a = b = c =,即△ ABC 为等边三角形.(3)与三角形面积有关的问题[例3] ( 2012·新课标全国卷 ) 已知 a , b , c 分别为△ ABC 三个内角 A , B ,C 的对边, a cos C + a sin C - b - c = 0.( 1 ) 求 A ;( 2 ) 若 a = 2 ,△ ABC 的面积为,求 b , c .[ 解 ] ( 1 ) 由 a cos C + a sin C - b - c =0及正弦定理得sin A cos C + sin A sin C -sin B -sin C =0.因为 B =π- A - C ,所以 sin A sin C -cos A sin C -sin C =0.由于sin C ≠0,所以sin = . 又0< A <π,故 A = .( 2 ) △ ABC 的面积 S = bc sin A =,故 bc =4.而 a 2 = b 2 + c 2 -2 bc cos A ,故 b 2 + c 2 =8. 解得 b = c =2.方法小结:1 .正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2 .在解决三角形问题中,面积公式 S = ab sin C = bc sin A = ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.试题变式演练 ( 2012·江西重点中学联考 ) 在△ ABC 中, cos 2 A = cos 2 A -cos A .( 1 ) 求角 A 的大小;( 2 ) 若 a = 3 , sin B = 2sin C ,求 S △ ABC .解: ( 1 ) 由已知得 ( 2cos 2 A -1 ) =cos 2 A -cos A ,则cos A = .因为0< A <π,所以 A = .( 2 ) 由=,可得==2,即 b = 2 c .所以cos A ===,解得 c =, b =2 ,所以 S △ ABC = bc sin A = ×2 × × = .课后强化与提高练习(基础篇-必会题)1 .在△ ABC 中, a 、 b 分别是角 A 、 B 所对的边,条件“ a < b ”是使“cosA >cosB ”成立的 ()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2 .( 2012·泉州模拟 ) 在△ ABC 中, a , b , c 分别是角 A , B , C 所对的边.若 A =, b = 1 ,△ ABC 的面积为,则 a 的值为 ()A . 1B . 23 .( 2013·“江南十校”联考 ) 在△ ABC 中,角 A , B , C 所对的边分别为 a , b ,c ,已知 a = 2 , c = 2 , 1 +=,则 C =()A . 30°B . 45°C . 45°或135°D . 60°4 .( 2012·陕西高考 ) 在△ ABC 中,角 A , B , C 所对边的长分别为 a , b , c ,若 a 2 + b 2 = 2 c 2 ,则cos C 的最小值为 ()D .-5 .( 2012·上海高考 ) 在△ ABC 中,若sin 2 A + sin 2 B <sin 2 C ,则△ ABC 的形状是 ()A .锐角三角形B .直角三角形C .钝角三角形D .不能确定6 .在△ ABC 中,角 A 、 B 、 C 所对的边分别是 a 、 b 、 c .若 b = 2 a sin B ,则角 A 的大小为________ .解析:由正弦定理得sin B =2sin A sin B ,∵ sin B ≠0,7 .在△ ABC 中,若 a = 3 , b =, A =,则 C 的大小为________ .8 .( 2012·北京西城期末 ) 在△ ABC 中,三个内角 A , B , C 的对边分别为 a ,b ,c .若 b = 2 , B =, sin C =,则 c = ________ ; a = ________.9 .( 2012·北京高考 ) 在△ ABC 中,若 a = 2 , b + c = 7 , cos B =-,则 b = ________.10 .△ ABC 的内角 A , B , C 的对边分别为 a , b , c , a sin A + c sin C -a sin C =b sin B .( 1 ) 求 B ;( 2 ) 若 A = 75°, b = 2 ,求 a , c .11 .( 2013·北京朝阳统考 ) 在锐角三角形 ABC 中, a , b , c 分别为内角 A , B ,C 所对的边,且满足 a - 2 b sin A = 0.( 1 ) 求角 B 的大小;( 2 ) 若 a + c = 5 ,且 a > c , b =,求 ·的值.12 .( 2012·山东高考 ) 在△ ABC 中,内角 A , B , C 所对的边分别为 a , b ,c ,已知sin B ( tan A + tan C )= tan A tan C .( 1 ) 求证: a , b , c 成等比数列;( 2 ) 若 a = 1 , c = 2 ,求△ ABC 的面积 S .课后强化与提高练习(提高篇-选做题)1 .( 2012·湖北高考 ) 设△ ABC 的内角 A , B , C 所对的边分别为 a , b , c .若三边的长为连续的三个正整数,且 A > B > C , 3 b = 20 a cos A ,则sin A ∶ sin B ∶ sin C 为 ()A .4 ∶ 3 ∶ 2B .5 ∶ 6 ∶ 7C .5 ∶ 4 ∶ 3D .6 ∶ 5 ∶ 42 .( 2012·长春调研 ) 在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,已知4sin 2 - cos 2 C =,且 a + b = 5 , c =,则△ ABC 的面积为________ .3 .在△ ABC 中,角 A , B , C 的对边分别为 a , b , c ,且满足 ( 2 b - c ) cos A - a cos C = 0.( 1 ) 求角 A 的大小;( 2 ) 若 a =, S △ ABC =,试判断△ ABC 的形状,并说明理由.选做题1 .已知 a , b , c 分别是△ ABC 的三个内角 A , B , C 所对的边.若 a = 1 ,b =, A + C = 2 B ,则sin C = ________.2 .在△ ABC 中, a = 2 b cos C ,则这个三角形一定是 ()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形3 .在△ ABC 中,角 A , B , C 所对的边分别为 a , b , c ,已知cos 2 C =- .( 1 ) 求sin C 的值;( 2 ) 当 a = 2 , 2sin A = sin C 时,求 b 及 c 的长.4 .设△ ABC 的内角 A , B , C 所对的边长分别为 a , b , c ,且cos B =, b = 2.( 1 ) 当 A = 30°时,求 a 的值;( 2 ) 当△ ABC 的面积为3时,求 a + c 的值.课后强化与提高练习(基础篇-必会题)解析1 解析:选C a < b ⇔ A < B ⇔ cos A >cos B .2 解析:选D 由已知得 bc sin A = ×1× c ×sin =,解得 c = 2 ,则由余弦定理可得 a 2 = 4 + 1 - 2×2×1×cos =3 ⇒ a = .3 解析:选B 由1 +=和正弦定理得 cos A sin B +sin A cos B=2sin C cos A ,即 sin C =2sin C cos A ,所以 cos A =,则 A =60°. 由正弦定理得=,则 sin C =,又 c < a ,则 C <60°,故 C =45°.4 解析:选 C 由余弦定理得 a 2 + b 2 - c 2 =2 ab cos C ,又 c 2 =( a 2 + b 2 ),得 2 ab cos C = ( a 2 + b 2 ),即 cos C =≥ = .6 解析:选 C 由正弦定理得 a 2 + b 2 < c 2 ,所以 cos C =<0,所以 C 是钝角,故△ ABC 是钝角三角形.∴ sin A =,∴ A =30°或 A =150°. 答案:30°或 150°7 解析:由正弦定理可知 sin B ===,所以 B =或 ( 舍去 ),所以 C =π - A - B =π --= . 答案:8 解析:根据正弦定理得=,则 c ==2 ,再由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,即 a 2 - 4 a -12=0,( a +2)( a -6)=0,解得 a =6 或 a =-2( 舍去 ).答案:2 69 解析:根据余弦定理代入 b 2 =4+(7- b ) 2 -2×2×(7- b )× ,解得b =4. 答案:410 解:(1) 由正弦定理得 a 2 + c 2 - ac = b 2 . 由余弦定理得 b 2 = a 2 +c 2 -2 ac cos B .故cos B =,因此 B =45°.(2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°= .故 a = b × ==1+, c = b × =2×= .1 1 解:(1) 因为 a -2 b sin A =0,所以 sin A -2sin B sin A =0,因为sin A ≠0,所以 sin B = . 又 B 为锐角,所以 B = .( 2 ) 由 ( 1 ) 可知, B = .因为 b = .根据余弦定理,得7= a 2 + c 2 -2 ac cos ,整理,得 ( a + c ) 2 - 3 ac =7.由已知 a + c =5,得 ac =6.又 a > c ,故 a =3, c =2.于是cos A ===,所以 ·=| |·| |cos A = cb cos A=2× × =1.12 解: ( 1 ) 证明:在△ ABC 中,由于sin B ( tan A +tan C ) =tan A tan C ,所以sin B = ·,因此sin B ( sin A cos C +cos A sin C ) =sin A sin C ,所以 sin B sin( A + C )=sin A sin C .又 A + B + C =π ,所以 sin( A + C )=sin B ,因此 sin 2 B =sin A sin C .由正弦定理得 b 2 = ac ,即 a , b , c 成等比数列.( 2 ) 因为 a =1, c =2,所以 b =,由余弦定理得cos B ===,因为0< B <π,所以sin B ==,故△ ABC 的面积 S = ac sin B = ×1×2× = .课后强化与提高练习(提高篇-选做题)解析1 解析:选D 由题意可得 a > b > c ,且为连续正整数,设 c = n , b = n +1,a = n +2 ( n >1,且n ∈ N * ) ,则由余弦定理可得3 ( n +1 ) =20 ( n +2 ) ·,化简得7 n 2 -13 n -60=0,n ∈ N * ,解得 n =4,由正弦定理可得sin A ∶ sin B ∶ sin C =a ∶ b ∶ c =6 ∶ 5 ∶ 4.2 解析:因为4sin 2 -cos 2 C =,所以2[1-cos( A + B )]-2cos 2 C +1=,2+2cos C -2cos 2 C +1=,cos 2 C -cos C +=0,解得cos C = .根据余弦定理有cos C ==,ab = a 2 + b 2 -7 , 3 ab = a 2 + b 2 +2 ab -7= ( a + b ) 2 -7=25-7=18,ab =6,所以△ ABC 的面积 S △ ABC = ab sin C = ×6× =.答案:3 解: ( 1 ) 法一:由 ( 2 b - c ) cos A - a cos C =0及正弦定理,得(2sin B -sin C )cos A -sin A cos C =0,∴ 2sin B cos A -sin( A + C )=0,sin B (2cos A -1)=0. ∵ 0< B < π ,∴ sin B ≠0,∴ cos A =. ∵ 0< A < π ,∴ A= .法二:由 (2 b - c )cos A - a cos C =0,及余弦定理,得 (2 b - c )·- a ·=0,整理,得 b 2 + c 2 - a 2 = bc ,∴ cos A ==,∵ 0<A < π ,∴ A = .(2) ∵ S △ ABC = bc sin A =,即 bc sin =,∴ bc =3,①∵ a 2 = b 2 + c 2 -2 bc cos A , a =, A =,∴ b 2 + c 2 =6,② 由①② 得 b = c =,∴△ ABC 为等边三角形.选择题解析1 解析:在△ ABC 中, A + C =2 B ,∴ B =60°. 又∵ sin A ==,∴ A =30°或 150°( 舍 ),∴ C =90°,∴ sin C =1.答案:12 解析:选A 法一: ( 化边为角 ) 由正弦定理知:sin A =2sin B cos C ,又 A =π -( B + C ),∴ sin A =sin( B + C )=2sin B cos C .∴ sin B cos C +cos B sin C =2sin B cos C ,∴ sin B cos C -cos B sin C =0,∴ sin ( B - C ) =0.又∵ B 、 C 为三角形内角,∴ B = C .法二: ( 化角为边 ) 由余弦定理知cos C =,∴ a =2 b ·=,∴ a 2 = a 2 + b 2 - c 2 ,∴ b 2 = c 2 ,∴ b = c .3 解: ( 1 ) 因为cos 2 C =1-2sin 2 C =-,且0< C <π,所以sin C = .( 2 ) 当 a =2 , 2sin A =sin C 时,由正弦定理=,得 c =4.由cos 2 C =2cos 2 C -1=-,及0< C <π得cos C =± .由余弦定理 c 2 = a 2 + b 2 -2 ab cos C ,得 b 2 ± b -12=0,解得 b =或2 ,所以或4 解: ( 1 ) 因为cos B =,所以sin B = .由正弦定理=,可得=,所以 a = .( 2 ) 因为△ ABC 的面积 S = ac ·sin B ,sin B =,所以 ac =3, ac =10.由余弦定理得 b 2 = a 2 + c 2 -2 ac cos B ,得4= a 2 + c 2 - ac = a 2 + c 2 -16,即 a 2 + c 2 =20.所以 ( a + c ) 2 - 2 ac =20, ( a + c ) 2 =40.所以 a + c =2 .。

正余弦公式大全

正余弦公式大全

正余弦公式大全正弦和余弦是三角函数中最基本的两个函数,它们在数学和物理学中有着广泛的应用。

正弦和余弦函数的公式是我们学习三角函数的重要内容之一。

在本文中,我们将全面介绍正弦和余弦函数的公式,帮助读者更好地理解和掌握这两个函数的性质和运用。

首先,我们来看正弦函数的公式。

正弦函数通常用sin表示,其公式可以表示为:sinθ = 对边 / 斜边。

其中,θ代表角度,对边表示与这个角度相对的直角三角形的对边长度,斜边表示这个直角三角形的斜边长度。

这个公式告诉我们,正弦函数实际上是描述了一个角度与其对边和斜边之间的关系。

通过这个公式,我们可以计算出任意角度的正弦值,从而更好地理解三角形的性质和角度的变化。

接下来,我们再来看余弦函数的公式。

余弦函数通常用cos表示,其公式可以表示为:cosθ = 邻边 / 斜边。

与正弦函数类似,余弦函数也是描述了一个角度与其邻边和斜边之间的关系。

通过余弦函数的公式,我们可以计算出任意角度的余弦值,从而更好地理解三角形的性质和角度的变化。

在实际应用中,正弦和余弦函数的公式经常被用于解决各种问题。

例如,在物理学中,正弦和余弦函数可以描述波的运动规律;在工程学中,正弦和余弦函数可以描述机械振动的规律。

因此,掌握正弦和余弦函数的公式对于理解和应用这些领域的知识都是非常重要的。

除了基本的正弦和余弦函数的公式外,我们还可以通过一些数学关系推导出一些常见的正弦和余弦函数的恒等式。

例如,我们可以通过正弦和余弦函数的定义,推导出它们之间的关系式:sin²θ + cos²θ = 1。

这个恒等式被称为三角恒等式,它表明了正弦和余弦函数之间的基本关系。

通过这个恒等式,我们可以进一步推导出其他与正弦和余弦函数相关的数学性质,从而更深入地理解这两个函数。

总之,正弦和余弦函数是三角函数中最基本的两个函数,它们的公式和性质对于数学和物理学领域都有着重要的意义。

通过学习和掌握正弦和余弦函数的公式,我们可以更好地理解和应用三角函数的知识,在实际问题中解决各种复杂的计算和分析。

正切余切正弦余弦公式

正切余切正弦余弦公式
三角函数是基本初等函数之一是以角度为自变量角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数
正切余切正弦余弦公式
正切tanA=对边/邻边;余切cotA=邻边/对边;正弦sinA=对边/斜边;余弦cosA=邻边/斜边。三角函数是基本初等函数之一,是以角度为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数相关公式
积化和差
sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b)=1/2*[sin(a+b)-sin(a-b)]
cot(A+B)=(cotAcotB-1)/(cotB+cotA)
cot(A-B)=(cotAcotB+1)/(cotB-cotA)
两角和公式
sin(A+B)=sinAcosB+cosAsinB
sin(A-B)=sinAcosB-cosAsinB
cos(A+B)=cosAcosB-sinAsinB
cos(A-B)=cosAcosB+sinAsinB
tan(A+anB)
tan(A-B)=(tanA-tanB)/(1+tanAtanB)

三角形正余弦公式

三角形正余弦公式

三角形正余弦公式三角形是几何学中的基本图形之一,它有着丰富的性质和定理。

在研究三角形的性质时,正弦定理和余弦定理是两个非常重要且常用的公式。

本文将详细介绍正弦定理和余弦定理的含义、应用以及推导过程。

一、正弦定理正弦定理是描述三角形边与角之间关系的定理。

对于任意三角形ABC,其三边分别为a、b、c,对应的内角分别为A、B、C。

根据正弦定理,我们可以得到以下公式:a/sinA = b/sinB = c/sinC这个公式告诉我们,一个三角形的任意一边的长度与该边对应的角的正弦值成比例。

换句话说,正弦定理可以用来计算三角形的边长或角度。

例如,已知三角形两边的长度分别为5和8,它们夹角的正弦值为0.6,我们可以利用正弦定理求解第三边的长度。

正弦定理的推导过程基于三角形的面积公式和正弦函数的定义。

当我们仔细推导正弦定理时,可以发现它是基于三角形的面积与正弦函数之间的关系建立的。

二、余弦定理余弦定理是描述三角形边与角之间关系的另一个定理。

对于任意三角形ABC,其三边分别为a、b、c,对应的内角分别为A、B、C。

根据余弦定理,我们可以得到以下三个公式:a² = b² + c² - 2bc * cosAb² = a² + c² - 2ac * cosBc² = a² + b² - 2ab * cosC这些公式告诉我们,一个三角形的任意一边的平方等于另外两边平方之和减去两倍的两边乘以夹角的余弦值。

余弦定理可以用来计算三角形的边长或角度。

例如,已知三角形两边的长度分别为5和8,它们夹角的余弦值为0.3,我们可以利用余弦定理求解第三边的长度。

余弦定理的推导过程基于向量的内积和余弦函数之间的关系。

通过将三角形的边向量分解为水平和垂直方向的分量,我们可以得到余弦定理的形式。

正弦定理和余弦定理是求解三角形相关问题的重要工具。

它们的应用广泛,不仅可以用于解决实际问题,还可以被用于证明其他定理和推论。

数学正切正弦余弦公式

数学正切正弦余弦公式

数学正切正弦余弦公式
我们要了解数学中的正切、正弦和余弦公式。

首先,我们需要知道这些三角函数的基本定义。

正弦(sin)是直角三角形中,对边与斜边的比值。

余弦(cos)是直角三角形中,邻边与斜边的比值。

正切(tan)是直角三角形中,对边与邻边的比值。

正弦、余弦和正切之间的关系可以用以下公式表示:
1. 正弦的平方加上余弦的平方等于1,即:sin^2(θ) + cos^2(θ) = 1
2. 正切等于正弦除以余弦,即:tan(θ) = sin(θ) / cos(θ)
3. 正弦等于余切的倒数,即:sin(θ) = 1 / tan(θ)
4. 余弦等于正切的倒数,即:cos(θ) = 1 / tan(θ)
这些公式是三角函数的基础,它们在解决各种数学问题中非常有用。

正余弦定理三角形一些公式

正余弦定理三角形一些公式

正余弦定理三角形一些公式正弦定理和余弦定理是研究三角形的重要公式,它们可以帮助我们在成比例的三角形中计算角度和边长。

本文将详细介绍这些公式,并提供一些运用案例。

1.正弦定理正弦定理给出了一个三角形中边与其对应角度的关系。

设一个三角形ABC,边长分别为a、b、c,对应的顶点角度为A、B、C。

则正弦定理可以表示为:sin(A) / a = sin(B) / b = sin(C) / c其中,sin(A)表示角A的正弦值。

根据正弦定理,我们可以计算出任意一个角的正弦值,进而计算出其他两个角的正弦值。

同时,我们可以通过边长和对应的角度计算出三角形的面积。

2.余弦定理余弦定理给出了一个三角形中边与其对应角度的关系。

设一个三角形ABC,边长分别为a、b、c,对应的顶点角度为A、B、C。

则余弦定理可以表示为:c^2 = a^2 + b^2 - 2ab*cos(C)b^2 = a^2 + c^2 - 2ac*cos(B)a^2 = b^2 + c^2 - 2bc*cos(A)其中,cos(A)表示角A的余弦值。

根据余弦定理,我们可以计算出一个边的长度,已知其他两边的长度和它们对应的角度。

这个公式也可以用来计算三角形的面积。

3.应用示例3.1 例题一:已知一个三角形的两条边长分别为5cm和8cm,它们的夹角为60°,求另一边长。

解:根据余弦定理,可得:a^2 = b^2 + c^2 - 2bc*cos(A)将已知数据带入公式,得:a^2 = 5^2 + 8^2 - 2*5*8*cos(60°)=25+64-80*0.5=89-40=49得到a的平方为49,因此a = √49 = 7、所以,另一边的长度为7cm。

3.2 例题二:已知一个三角形的三边长分别为6cm、9cm和11cm,计算它的面积。

解:根据正弦定理,可得:sin(A) / a = sin(B) / b = sin(C) / c由此可知,sin(A) = a * sin(C) / c所以,sin(A) = 6 * sin(C) / 11根据正弦函数的性质,我们可以计算出角A的正弦值小于1、因此,角A的度数应该在0°到90°之间。

正弦余弦公式总结

正弦余弦公式总结

正弦余弦公式总结一、正弦公式的概念正弦公式用于计算三角形的边长与角度之间的关系。

对于一个任意三角形ABC,设∠BAC的对边为a,∠ABC的对边为b,∠ACB的对边为c,则有正弦公式:sinA/a=sinB/b=sinC/c其中,A、B、C为三角形的内角,a、b、c为对边的长度。

我们可以利用正弦公式求解未知量,例如已知两个角和一个对边,可以通过正弦公式计算出另外两个对边的长度。

二、正弦公式的推导过程为了了解正弦公式的推导过程,我们可以利用三角形的高度进行推导。

设三角形ABC中,∠ABC为直角,将垂直于∠ABC的边AC作为三角形的高,设为h。

由三角形的内角和为180°可知,∠BAC的度数为180°-90°-∠ABC=90°-∠ABC。

利用正弦函数的定义sinθ=对边/斜边,可以得到:sin(90°-∠ABC)=对边/斜边sin(90°-∠ABC)=h/cos∠ABCsin(90°-∠ABC)=h/b因为sin(90°-∠ABC)=cos∠ABC,上述等式可改写为:cos∠ABC=h/b根据直角三角形的定义,直角三角形的斜边等于斜边上的两条直角边的乘积,即AC=b。

所以可以得到:cos∠ABC=h/b=AC/b=1整理得到:b=h/cos∠ABC根据三角形的面积公式S=1/2*底*高,可得:S=1/2*b*h将上述两个式子代入,得到:S=1/2*b*(h/cos∠ABC)S=1/2*c*sin∠ABC从而推导出正弦公式:sin∠ABC=c/b同样地,利用类似的方法,可以得到正弦公式的其他形式。

三、正弦公式的具体应用正弦公式在几何图形的计算中有着广泛的应用。

下面将介绍正弦公式的几个具体应用。

1.通过已知角度和边长计算其他边长:如已知一个三角形的两个角和一个边的长度,可以利用正弦公式计算出另外两个边的长度。

2.通过已知三角形面积计算边长:如已知三角形的面积S和一个角度,可以利用正弦公式计算出对应边的长度。

正弦余弦公式

正弦余弦公式

正弦余弦公式引言正弦余弦公式是初等数学中一个重要的三角函数公式,主要用于求解三角形的边长和角度。

应用广泛,尤其在几何学和物理学中。

正弦公式对于任意三角形ABC,其三个内角分别为A、B、C,而对应的边长分别为a、b、c。

正弦公式给出了角和边的关系:a b c───── = ───── = ───── = 2R,其中R为三角形外接圆半径sinA sinB sinC该公式表明了三角形的边长与角度之间的关系,当其中一个角的正弦值增大时,对应的边的长度也会增大。

余弦公式对于任意三角形ABC,其三个内角分别为A、B、C,而对应的边长分别为a、b、c。

余弦公式给出了边和角的关系:c² = a² + b² - 2abcosC该公式表明了三角形的边长与角度之间的关系,当两个边的长度增大时,对应的夹角的余弦值会减小。

逆正弦余弦公式逆正弦余弦公式是正弦余弦公式的逆运算,主要用于求解角度。

对于一个已知的三角形ABC,已知边长和角度,可以通过逆正弦余弦公式求解另外一个角度。

逆正弦公式对于任意三角形ABC,其三个内角分别为A、B、C,而对应的边长分别为a、b、c。

逆正弦公式给出了角度和边的关系: sinA sinB sinC───── = ───── = ─────a b c逆余弦公式对于任意三角形ABC,其三个内角分别为A、B、C,而对应的边长分别为a、b、c。

逆余弦公式给出了边长和角的关系: cosC = (a² + b² - c²) / (2ab)该公式主要用于求解一个已知三角形的两个边长和夹角,通过逆余弦公式可以求解缺失的一边长度。

应用示例下面通过一个具体的应用示例来展示正弦余弦公式的使用。

假设在一个三角形ABC中,已知边长a为5,b为7,而夹角C为30°。

我们可以通过正弦公式和余弦公式来求解剩余的两个角度和边长。

首先,通过逆余弦公式可以求解角C的余弦值:cosC = (a² + b² - c²) / (2ab) = (5² + 7² - c²)/ (2 * 5 * 7)将已知的数值代入公式计算,得到cosC的值。

正余弦和正切的换算公式

正余弦和正切的换算公式

正余弦和正切的换算公式
正余弦和正切是三角函数中常见的概念。

它们在解决三角形问题和物理问题时起着重要的作用。

在实际运用中,我们有时需要将正余弦和正切进行换算。

下面介绍一些常用的换算公式。

1. 正余弦换算公式
cos(x) = 1 / sec(x)
sin(x) = 1 / csc(x)
sec(x) = 1 / cos(x)
csc(x) = 1 / sin(x)
其中,sec(x)和csc(x)分别表示余切和正割。

2. 正切换算公式
tan(x) = sin(x) / cos(x)
cot(x) = cos(x) / sin(x)
其中,cot(x)表示余切。

这些换算公式可以在计算中帮助我们快速准确地得出结果。

需要注意的是,在使用换算公式时,要根据实际情况选择最适合的公式,以避免出错。

- 1 -。

正弦余弦换算公式

正弦余弦换算公式

正弦余弦换算公式正弦和余弦是三角函数中的两个重要概念,它们广泛应用于数学、物理、工程和其他科学领域。

正弦函数和余弦函数之间存在着一定的关系,可以通过一些换算公式进行转换。

本文将介绍正弦余弦换算公式,并讨论它们的应用。

首先,我们来定义一下正弦和余弦函数。

在一个直角三角形中,正弦和余弦分别定义为:正弦θ=对边/斜边余弦θ=邻边/斜边根据这个定义,我们可以得到正弦和余弦的换算公式。

换算公式1:正弦函数与余弦函数关系根据三角恒等式sin²θ + cos²θ = 1,可以得到正弦和余弦之间的换算公式:sinθ = √(1 - cos²θ)cosθ = √(1 - sin²θ)通过这个换算公式,我们可以通过已知的一个三角函数值来求解另一个三角函数值。

这对于解题和计算来说非常有用。

换算公式2:正弦余弦换算为直角三角形除了上面的换算公式,我们还可以通过正弦和余弦的换算来进一步求解直角三角形中的边长和角度。

假设已知一个直角三角形(ABC),其中∠B是直角,边BC是斜边。

假设我们已知∠B的角度和BC的长度。

那么我们可以通过正弦余弦换算公式来求解其他边的长度。

1. 如果已知∠B的角度和BC的长度,我们可以通过余弦来求解∠C 的角度。

根据余弦函数cosθ = 邻边/斜边,我们可以得到∠C的角度:∠C = arccos(邻边/斜边) = arccos(AC/BC)2. 通过∠C的角度我们也可以求解其余边的长度。

根据正弦函数sinθ = 对边/斜边,我们可以得到边AC的长度:AC = sin(∠C) * BC通过这两个公式,我们可以根据已知的角度和边长来求解直角三角形中其他未知量。

换算公式3:反余弦函数和反正弦函数除了正弦和余弦之间的换算公式,我们还可以使用反余弦和反正弦函数来求解角度。

例如,已知一个直角三角形中的两个边的长度,我们可以使用反余弦函数来求解夹角的角度。

假设已知两边的长度分别为AC和BC,我们可以使用反余弦函数解出∠C的角度:∠C = arccos(AC/BC)同样地,如果我们已知一个直角三角形中的一边和一个角度,我们可以使用反正弦函数来求解另一个角度。

正弦余弦转换公式大全

正弦余弦转换公式大全

1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
3、公式三:任意角α与-α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
扩展资料:
三角函数口诀:奇变偶不变,符号看象限。

奇变偶不变(对k而言,指k取奇数或偶数),符号看象限(看原函数,同时可把α看成是锐角)。

公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆:水平诱导名不变;符号看象限。

各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”。

这十二字口诀的意思就是说:
1、第一象限内任何一个角的三角函数值都是“+”;
2、第二象限内只有正弦和余割是“+”,其余全部是“-”;
3、第三象限内只有正切和余切是“+”,其余函数是“-”;
4、第四象限内只有正割和余弦是“+”,其余全部是“-”。

5、一全正,二正弦,三双切,四余弦。

三角形正余弦公式大全

三角形正余弦公式大全

三角形正余弦公式大全三角形是几何学中的基本图形之一,其求解方法多种多样,其中正弦、余弦公式是三角形中常用的求解方法之一。

正弦、余弦公式可以帮助我们求解三角形的边长和角度,是解决三角形相关问题的重要工具。

下面将详细介绍三角形正余弦公式的相关知识。

1. 正弦公式。

在三角形ABC中,三角形的三条边分别为a、b、c,对应的三个内角分别为A、B、C。

正弦公式可以表达为:sinA/a = sinB/b = sinC/c。

其中,sinA/a表示三角形内角A的正弦值与边a的比值,sinB/b表示三角形内角B的正弦值与边b的比值,sinC/c表示三角形内角C的正弦值与边c的比值。

通过正弦公式,我们可以根据已知的角度和边长来求解三角形的其他未知量,是解决三角形问题的重要工具之一。

2. 余弦公式。

在三角形ABC中,三角形的三条边分别为a、b、c,对应的三个内角分别为A、B、C。

余弦公式可以表达为:a^2 = b^2 + c^2 2bccosA。

b^2 = a^2 + c^2 2accosB。

c^2 = a^2 + b^2 2abcosC。

其中,a^2 = b^2 + c^2 2bccosA表示边a的平方等于边b的平方加上边c的平方减去2倍边b与边c的乘积再乘以角A的余弦值,b^2 = a^2 + c^2 2accosB表示边b 的平方等于边a的平方加上边c的平方减去2倍边a与边c的乘积再乘以角B的余弦值,c^2 = a^2 + b^2 2abcosC表示边c的平方等于边a的平方加上边b的平方减去2倍边a与边b的乘积再乘以角C的余弦值。

余弦公式也是求解三角形问题的重要工具之一,通过余弦公式,我们可以根据已知的边长和角度来求解三角形的其他未知量。

3. 正余弦公式的应用。

正余弦公式广泛应用于解决各种与三角形相关的问题,例如求解三角形的边长、角度,判断三角形的形状,计算三角形的面积等。

在实际问题中,我们经常会遇到需要求解三角形相关问题的情况,正余弦公式可以帮助我们快速准确地求解问题,提高问题解决的效率。

角度的计算公式

角度的计算公式

角度的计算公式
一、什么是正余弦角度
正余弦角度(sine and cosine angle)是一种角度测量方法,主要用来确定平面上两个向量的夹角。

它可以用数学的方法表达一定的几何形状,是旋转方位的基础。

简而言之,正余弦角度被定义为以弧度为单位的夹角,取值范围为-π≤theta≤pi。

二、正余弦角度的计算公式
正余弦角度的计算公式是:
cos(θ)=(a×b)/|a||b|
sin(θ)=(c×d)/|c||d|
其中θ表示夹角,a,b,c,d分别表示两个向量各自的分量。

|a|和|b|分别表示向量a和向量b的长度,c和d的长度用|c|和|d|表示。

需要注意的是,余弦函数只适用于计算某两个向量夹角大于0小于π的情况,也就是说,余弦函数只考虑那些角度夹角小于π的夹角计算。

三、使用正余弦公式计算结果
使用正余弦角度计算公式只需要提供两个向量的构成数据即可,例如,假设A=(4,1),B=(2,3)是两个向量,其中4和2分别表示A、B
在X轴上的坐标值,1和3分别表示A、B在y轴上的坐标值,以及向量A、B之间构成的夹角θ,则可以使用正余弦角度计算公式计算出2.228rad这样的角度值。

因此,正余弦角度是一种有效的测量平面上两个向量夹角的方法,能够有效地揭示几何形状的变化特征,是旋转方位的基础。

正弦余弦正切公式大全

正弦余弦正切公式大全

正弦余弦正切公式大全正弦公式:正弦函数是指在直角三角形中,对于任意角度θ,对边与斜边的比值。

正弦函数使用sin(θ)表示,其中θ为角度。

正弦公式可以表示为:sin(θ) = 对边/斜边余弦公式:余弦函数是指在直角三角形中,对于任意角度θ,邻边与斜边的比值。

余弦函数使用cos(θ)表示,其中θ为角度。

余弦公式可以表示为:cos(θ) = 邻边/斜边正切公式:正切函数是指在直角三角形中,对于任意角度θ,对边与邻边的比值。

正切函数使用tan(θ)表示,其中θ为角度。

正切公式可以表示为:tan(θ) = 对边/邻边在直角三角形中,还有两个重要的三角函数:余切函数和正割函数。

余切公式:余切函数是指在直角三角形中,对于任意角度θ,邻边与对边的比值。

余切函数使用cot(θ)表示,其中θ为角度。

余切公式可以表示为:cot(θ) = 邻边/对边正割公式:正割函数是指在直角三角形中,对于任意角度θ,斜边与邻边的比值。

正割函数使用sec(θ)表示,其中θ为角度。

正割公式可以表示为:sec(θ) = 斜边/邻边除了以上基本的三角函数公式,还有一些重要的三角函数恒等式:1.和差公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)tan(A ± B) = (tan(A) ± tan(B))/(1 ∓ tan(A)tan(B))2.二倍角公式:sin(2A) = 2sin(A)cos(A)cos(2A) = cos^2(A) - sin^2(A)tan(2A) = 2tan(A)/(1 - tan^2(A))3.三倍角公式:sin(3A) = 3sin(A) - 4sin^3(A)cos(3A) = 4cos^3(A) -3cos(A)tan(3A) = (3tan(A) - tan^3(A))/(1 - 3tan^2(A))4.万能公式:sin^2(A) + cos^2(A) = 11 + tan^2(A) = sec^2(A)1 + cot^2(A) = csc^2(A)这些公式在解决三角函数的运算、证明、及物理模型等问题中起到非常关键的作用。

三角形的正弦余弦和正切的计算

三角形的正弦余弦和正切的计算

三角形的正弦余弦和正切的计算三角函数是数学中重要的基础概念之一,用于解决与三角形相关的计算问题。

其中,正弦、余弦和正切是三角函数中最常用的三个函数。

在本文中,我们将介绍如何计算三角形的正弦、余弦和正切值。

一、正弦的计算正弦函数(sin)表示一个角的对边与斜边之比。

在计算三角形的正弦时,我们可以使用以下公式:sin A = 对边 / 斜边其中,A代表角度,对边是指与这个角相对的边,斜边则是三角形的斜边。

二、余弦的计算余弦函数(cos)表示一个角的邻边与斜边之比。

计算三角形的余弦时,我们可以使用以下公式:cos A = 邻边 / 斜边同样,A代表角度,邻边是指与这个角相邻的边。

三、正切的计算正切函数(tan)表示一个角的对边与邻边之比。

计算三角形的正切时,我们可以使用以下公式:tan A = 对边 / 邻边同样地,A代表角度,对边是指与这个角相对的边,邻边是指与这个角相邻的边。

在实际问题中,我们通常已知三角形的某些边长或角度,然后根据需要计算其他边长或角度的值。

下面通过几个实例来具体说明。

例一:已知一个直角三角形,其中一个角为30度,斜边长度为10,求其他两边的长度。

根据正弦和余弦的定义,可以得出正弦30度等于所求边长x除以斜边长度10,即sin 30度 = x / 10。

解方程可得x ≈ 5。

同样地,余弦30度等于所求边长y除以斜边长度10,即cos 30度 = y / 10。

解方程可得y ≈ 8.66。

因此,在这个直角三角形中,除了斜边长为10,另外两边的长度分别约为5和8.66。

例二:已知一个等边三角形,其中一个角为60度,边长为5,求其他两个角的正弦、余弦和正切值。

在等边三角形中,三个角的大小相等,所以我们要计算的三个角的正弦、余弦和正切值都相等。

根据定义,sin 60度 = 对边 / 斜边,cos 60度 = 邻边 / 斜边,tan 60度 = 对边 / 邻边。

因为等边三角形中各边长度相等,所以对边和邻边的长度也相等,斜边的长度为5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档