人教版 数学 必修1函数的基本性质 教案

合集下载

1.3函数的基本性质教学设计教案(最终5篇)

1.3函数的基本性质教学设计教案(最终5篇)

1.3函数的基本性质教学设计教案(最终5篇)第一篇:1.3 函数的基本性质教学设计教案教学准备1. 教学目标(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质;2. 教学重点/难点教学重点:函数的最大(小)值及其几何意义.教学难点:利用函数的单调性求函数的最大(小)值.3. 教学用具投影仪等. 4. 标签数学,函数教学过程一、引入课题画出下列函数的图象,并根据图象解答下列问题:1、说出y=f(x)的单调区间,以及在各单调区间上的单调性;2、指出图象的最高点或最低点,并说明它能体现函数的什么特征?(1)(3)(4)二、新课教学(一)函数最大(小)值定义2)(1.最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0) = M那么,称M是函数y=f(x)的最大值(Maximum Value).思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义.(学生活动)注意:1函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M; 2函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).2.利用函数单调性的判断函数的最大(小)值的方法1)利用二次函数的性质(配方法)求函数的最大(小)值2)利用图象求函数的最大(小)值3)利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);(二)典型例题例1.(教材P30例3)利用二次函数的性质确定函数的最大(小)值.解:(略)说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.巩固练习:如图,把截面半径为625px的圆形木头锯成矩形木料,如果矩形一边长为x,面积为y试将y表示成x的函数,并画出函数的大致图象,并判断怎样锯才能使得截面面积最大?例2.(新题讲解)旅馆定价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设为为旅馆一天的客房总收入,元时,住房率为为与房价160相比降低的房价,因此当房价,于是得=150··.由于≤1,可知0≤≤90.的最大值的问题.因此问题转化为:当0≤将≤90时,求的两边同除以一个常数0.75,得1=-2+50x+17600.由于二次函数1在x=25时取得最大值,可知y也在=25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的)例3.(教材P37例4)求函数解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式.巩固练习:(教材P38练习4)三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论四、作业布置1.书面作业:课本P45 习题1.3(A组)第6、7、8题.2、提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?在区间[2,6]上的最大值和最小值.课堂小结归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论课后习题1.书面作业:课本P45 习题1.3(A组)第6、7、8题.2、提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?板书略第二篇:1.3 函数的基本性质教学设计教案教学准备1. 教学目标(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性.2. 教学重点/难点教学重点:函数的单调性及其几何意义.教学难点:利用函数的单调性定义判断、证明函数的单调性.3. 教学用具投影仪等. 4. 标签数学,函数教学过程一、引入课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:1 随x的增大,y的值有什么变化?2 能否看出函数的最大、最小值?3 函数图象是否具有某种对称性?2.画出下列函数的图象,观察其变化规律: 1.f(x) = x1 从左至右图象上升还是下降______?2 在区间____________ 上,随着x的增大,f(x)的值随着 ________ .2.f(x) = -2x+11 从左至右图象上升还是下降______?2 在区间____________ 上,随着x的增大,f(x)的值随着 ________ . 3.f(x) = x21 在区间 ____________ 上,f(x)的值随着x的增大而 ________ .2 在区间____________ 上, f(x)的值随着x的增大而 ________ .二、新课教学(一)函数单调性定义 1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2必须是对于区间D内的任意两个自变量x1,x2;当x1 如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间: 3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:1 任取x1,x2∈D,且x12 作差 f(x1)-f(x2); 3变形(通常是因式分解和配方); 4定号(即判断差f(x1)-f(x2)的正负);5下结论(即指出函数f(x)在给定的区间D上的单调性).一、新课教学(一)函数单调性定义 1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2必须是对于区间D内的任意两个自变量x1,x2;当x1 如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:1任取x1,x2∈D,且x12作差f(x1)-f(x2); 3变形(通常是因式分解和配方); 4定号(即判断差f(x1)-f(x2)的正负);5下结论(即指出函数f(x)在给定的区间D上的单调性).(二)典型例题例1.(教材P34例1)根据函数图象说明函数的单调性.解:(略)巩固练习:课本P38练习第1、2题例2.(教材P34例2)根据函数单调性定义证明函数的单调性.解:(略)巩固练习:1课本P38练习第3题; 2证明函数在(1,+∞)上为增函数.例3.借助计算机作出函数y =-x2 +2 | x | + 3的图象并指出它的的单调区间.解:(略)思考:画出反比例函数的图象.1这个函数的定义域是什么?2它在定义域I上的单调性怎样?证明你的结论.说明:本例可利用几何画板、函数图象生成软件等作出函数图象.一、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论二、作业布置1.书面作业:课本P45 习题1.3(A组)第1- 5题. 2.提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),1求f(0)、f(1)的值;2若f(3)=1,求不等式f(x)+f(x-2)>1的解集.课堂小结1、归纳小结,强化思想2、函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论课后习题作业布置1.书面作业:课本P45 习题1.3(A组)第1- 5题. 2.提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),(1)求f(0)、f(1)的值;(2)若f(3)=1,求不等式f(x)+f(x-2)>1的解集.板书略第三篇:1.3函数的基本性质教学设计1.3 函数的基本性质一、教材分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其他性质提供了方法依据。

高中数学函数的基本性质教案人教版必修1A

高中数学函数的基本性质教案人教版必修1A

1.3 函数的基本性质1.3.1 单调性与最大〔小〕值第一课时 函数的单调性三维目标定向〖知识与技能〗〔1〕结合具体函数,理解函数的单调性及其几何意义;〔2〕能利用函数图象理解和研究函数的单调性;〔3〕能利用定义判定一些简单函数的单调性。

〖过程与方法〗借助二次函数体验单调性概念的形成过程,领会数形结合的数学思想,学会运用概念进行判断推理,养成细心观察,严谨论证的良好思维习惯。

〖情感、态度与价值观〗渗透由具体到抽象的认识,通过合作交流,培养学生反思学习、善于思考的习惯。

教学重难点〖重点〗函数单调性的概念。

〖难点〗熟练运用定义判断、证明函数的单调性。

教学过程设计一、问题情境设疑引例:画出一次函数x x f =)(和二次函数2)(x x f =的图象。

〔几何画板〕问题:以上两个图象有什么特征?——“上升〞、“下降〞上升:随着x 的增大,相应的f (x )也增大;下降:随着x 的增大,相应的f (x )减小。

二、核心内容整合1、函数的单调性的概念:问题:如何用数学语言描述“随着x 的增大,相应的f (x )也增大〞?——学生探究。

增函数:如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1 , x 2,当x 1 < x 2时,都有f (x 1) < f (x 2),那么就说函数f (x )在区间D 上是增函数。

学生类比得出减函数:如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1 , x 2,当x 1 < x 2时,都有f (x 1) > f (x 2),那么就说函数f (x )在区间D 上是减函数。

〖知识提炼〗同增异减注意:〔1〕函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 〔2〕必须是对于区间D 内的任意两个自变量x 1,x 2;当12x x <时,总有12()()f x f x <或12()()f x f x >,分别是增函数和减函数。

函数的基本性质教案

函数的基本性质教案

函数的基本性质教案一、教学目标1. 让学生理解函数的概念,掌握函数的基本性质,包括单调性、奇偶性、周期性等。

2. 能够运用函数的基本性质解决实际问题,提高学生的数学应用能力。

3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

二、教学内容1. 函数的概念及定义2. 函数的单调性3. 函数的奇偶性4. 函数的周期性5. 函数的基本性质在实际问题中的应用三、教学重点与难点1. 教学重点:函数的基本性质,包括单调性、奇偶性、周期性。

2. 教学难点:函数性质的证明和应用。

四、教学方法1. 采用讲授法,系统地讲解函数的基本性质。

2. 利用实例进行分析,帮助学生理解函数性质的应用。

3. 引导学生进行自主学习,培养学生的逻辑思维能力。

4. 利用小组讨论,提高学生的合作能力。

五、教学过程1. 导入:通过生活中的实例,引导学生认识函数,激发学生的学习兴趣。

2. 讲解:讲解函数的概念,定义,并引入函数的单调性、奇偶性、周期性等基本性质。

3. 分析:分析函数性质的证明方法,并通过实例进行分析,让学生理解函数性质的应用。

4. 练习:布置练习题,让学生巩固所学内容。

5. 总结:对本节课的内容进行总结,强调函数基本性质的重要性。

6. 作业布置:布置课后作业,巩固所学知识。

7. 课后辅导:针对学生学习中遇到的问题进行辅导,提高学生的学习能力。

六、教学评价1. 评价方式:采用课堂表现、课后作业和单元测试相结合的方式进行评价。

2. 评价内容:(1) 函数概念的理解和运用;(2) 函数单调性、奇偶性、周期性的理解和证明;(3) 函数性质在实际问题中的应用能力。

七、教学资源1. 教材:《数学分析》;2. 教学课件;3. 实例素材;4. 练习题库;5. 课后辅导资料。

八、教学进度安排1. 第1周:讲解函数的概念及定义;2. 第2周:讲解函数的单调性;3. 第3周:讲解函数的奇偶性;4. 第4周:讲解函数的周期性;5. 第5周:函数性质在实际问题中的应用。

人教版高中数学1函数教案

人教版高中数学1函数教案

人教版高中数学1函数教案一、教学目标1. 知识目标(1) 了解函数的基本概念和符号表示;(2) 掌握函数的性质和基本类型;(3) 掌握函数的运算规则和应用。

2. 能力目标(1) 能够熟练运用函数的概念解决实际问题;(2) 能够分析不同函数类型的特点,进行综合运用。

3. 情感目标(1) 培养学生对数学的兴趣和热爱;(2) 培养学生的逻辑思维和分析能力;(3) 培养学生的合作精神和团队意识。

二、教学重点1. 函数的基本概念和性质;2. 函数的运算规则和应用。

三、教学难点1. 函数的综合运用;2. 函数的实际问题解决。

四、教学过程1. 导入新课通过一个简单的实际问题引入函数的概念,激发学生对函数的兴趣。

2. 讲解函数的概念和性质讲解函数的定义、符号表示和性质,引导学生理解函数的基本概念。

3. 学习函数的基本类型和特点学习常见的线性函数、二次函数、指数函数等函数类型的特点和图像,分析它们的特性。

4. 学习函数的运算规则和应用学习函数的四则运算规则、复合函数等运算方式,通过实例应用进行操练。

5. 练习与巩固布置相关练习,巩固学生对函数的理解和应用能力。

6. 总结与拓展总结本节课的重点知识,并引导学生进行相关思考和拓展。

五、作业布置1. 完成课堂练习题;2. 阅读相关教材内容,复习本次课的知识点;3. 拓展练习题,提高题难度。

六、教学反思通过本节课的教学,学生对函数的基本概念和运用有了初步理解,但仍需继续加强实际问题的应用能力。

下节课将进一步加强练习和案例讲解,帮助学生更好地掌握函数的运用。

高中数学教案《函数的基本性质》

高中数学教案《函数的基本性质》

教学计划高:《函数的基本性质》一、教学目标1.知识与技能:学生能够理解并掌握函数单调性、奇偶性的定义及判断方法;能够运用函数图像理解并阐述这些性质;能够识别并解决与函数基本性质相关的简单问题。

2.过程与方法:通过观察、分析、比较等数学活动,引导学生发现函数的基本性质;通过小组讨论、合作探究等学习方式,培养学生团队协作和问题解决的能力;通过练习和实践,提高学生应用函数性质解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的数学审美意识和严谨的科学态度;通过探索函数性质的过程,让学生体会数学中的对称美、和谐美,增强对数学美的感受力。

二、教学重点和难点教学重点:函数单调性、奇偶性的定义、性质及判断方法;函数图像在理解函数性质中的应用。

教学难点:理解函数单调性、奇偶性的本质,能够灵活运用这些性质解决问题;通过函数图像准确判断函数的性质。

三、教学过程1. 引入新课(约5分钟)情境导入:通过生活中的实例(如气温变化、股票价格波动等)引出函数的概念,让学生感受到函数在生活中的广泛应用。

提出问题:设问“这些函数有哪些共同的特点或性质?”引导学生思考并引出函数的基本性质——单调性和奇偶性。

明确目标:介绍本节课的学习目标,即掌握函数单调性、奇偶性的定义、性质及判断方法,并能够通过函数图像理解这些性质。

2. 讲授新知(约15分钟)定义讲解:详细讲解函数单调性(增函数、减函数)和奇偶性(奇函数、偶函数)的定义,结合实例帮助学生理解。

性质阐述:阐述函数单调性和奇偶性的基本性质,如单调函数的图像特征、奇偶函数的图像对称性等。

示例分析:通过具体函数示例(如一次函数、二次函数、反比例函数等),分析它们的单调性和奇偶性,加深学生的理解。

3. 观察探究(约10分钟)图像观察:利用多媒体展示不同函数的图像,引导学生观察图像的特点,尝试从图像中判断函数的单调性和奇偶性。

小组讨论:组织学生进行小组讨论,分享各自观察到的图像特征和判断结果,相互纠正错误,共同探究函数性质的图像表示方法。

必修一 函数的基本性质 教案

必修一 函数的基本性质 教案

必修一 1.3 函数的基本性质 教案1.3.1 单调性与最大(小)值1、 引入观察如下函数图象,说说它们的图象是单调上升,还是单调下降,有没有最大值或最小值。

P272、 研究函数单调性函数图象的单调上升或是单调下降,我们统称为这是函数的单调性。

那么我们怎样研究判断函数的单调性?首先,研究一次函数)(x f =x 和二次函数)(x f =2x 的单调性。

P27 如图所示由图,可观察到函数)(x f =x 的图象由左到右是上升的;而函数)(x f =2x 的图象在对称轴左侧是下降的,在对称轴右侧是上升的。

所说的图象“上升”或“下降”反映的就是函数的单调性,那么,如何描述函数图象的“上升”“下降”呢?以二次函数)(x f =2x 为例,结合图象,不难发现,图象在对称轴左侧是“下降”的,也就是在区间(∞-,0]内,随着x 的增大,相应的)(x f (即y 值)反而减小;相反地,在对称轴的右侧图象是“上升”的,也就是在区间(]∞+,0内,随着x 的增大,相应的)(x f (即y 值)也随着增大。

那么该如何去描述“在区间(]∞+,0内,随着x 的增大,相应的)(x f (即y 值)也随着增大”?描述如下:在区间(]∞+,0内,任取两个21,x x ,并且21x x <,得到)(1x f =21x ,)(2x f =22x ,有)(1x f <)(2x f ,这时,我们就说函数)(x f =2x 在区间(]∞+,0上是增函数。

3、 增函数、减函数的定义一般地,设函数)(x f 的定义域为I :如果对于定义域I 内某个区间D 上任取的两个值21,x x ,当21x x <时,都有)(1x f <)(2x f ,那么就说函数)(x f 在区间D 上是增函数。

这时区间D 就叫单调增区间。

相反地,如果对于定义域I 内某个区间D 上任取的两个值21,x x ,当21x x <时,都有)(1x f >)(2x f ,那么就说函数)(x f 在区间D 上是减函数。

人教版高中数学《函数的基本性质》优质教案

人教版高中数学《函数的基本性质》优质教案

2.1函数的基本性质一、教学目标1.结合具体函数,了解函数单调性的含义;2.会运用函数奇偶性的定义和函数的图象理解研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、教学重点1.回顾和理解函数的三大性质单调性、奇偶性以及周期性基础知识,掌握其概念的应用,一般是判断单调性、求参数或求值;2.掌握运用基础知识处理函数性质的综合应用题的解题思路. 其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.三、教学难点掌握周期性与抽象函数结合类的题型.高考对函数周期性的考查,常与抽象函数结合,题型主要以选择题或填空的形式出现,常涉及函数求值问题,且与函数的单调性、奇偶性相结合命题.四、教学过程(一)考情解读设计意图:对2016年广东开始高考卷之后的全国卷类型题进行整合,以表格形式呈现,一目了然,分析可得函数的基本性质是高考的常考内容,题型一般为选择填空,占分一般为5-10分.紧接着分析考点内容,明确复习方向.(二)知识梳理设计意图:对函数的单调性、奇偶性、周期性的定义、图像特点等进行梳理,把重点内容标红,并进行相应讲解,为后面的题型讲解奠定知识基础.1.单调函数的定义及几何意义2.函数的最值3.函数的奇偶性4.周期性(三)典例分析题型一:函数的单调性设计意图:精选了两道单调性的题目作为例题,例1为简单地应用单调性定义及函数图像特征判断单调性的题目,通过此题老师可带领学生总结判断函数单调性的方法:定义法、图像法等;例2为已知分段函数单调性求参数范围的题目,通过此题巩固应用单调性求参数、不等式等题型.【例1】(2021·全国甲卷)下列函数中是增函数的为()A .()f x x =-B .()23x f x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x 【例2】已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( )A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭ 题型二:函数的奇偶性设计意图:精选了两道奇偶性的题目作为例题,例1为简单地应用奇偶性定义求参数的题目,通过此题老师可带领学生巩固奇偶性的定义及图像特征;例2为奇偶性与分段函数结合的题目,但只要把握奇偶性的定义,可很快解决,通过此题再次强化奇偶性相关知识.【例1】(2021·全国Ⅰ卷)已知函数()()322x x x a f x -=⋅-是偶函数,则a =______.【例2】(2019·全国Ⅰ卷)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+题型三:函数的周期性设计意图:由于周期性一般与抽象函数及奇偶性相结合,题目比较综合.这里选取了一道直接利用周期性定义进行求值的题目,教师通过此题引导学生回顾求值由内到外的原则及分段函数求值的相关知识,巩固周期性的定义,为下一题型综合题奠定基础.【例1】(2018·江苏卷)函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________. 题型四:函数性质的综合应用设计意图:精选了两道函数性质的综合应用的题型.例1为单调性与奇偶性相结合解不等式 的相关问题,教师可引导学生将此类已知单调性和奇偶性的抽象函数问题具体化画图来思考,紧紧扣住定义解题.例2为奇偶性与周期性相结合求值的题,通过此题再次巩固奇偶性和周期性的定义,将题目已知条件转化为熟悉的定义再去解题.()2017(,)(1)11(2)1A.[2,2] B.[1,1] C.[0,4] D.[1,3]f x f f x x ⋅-∞+∞ =- -- --【例1】(全国Ⅰ卷)函数在单调递减,且为奇函数,若,则满足的的取值范围是()≤≤ ()(,)(1)(1).(1)2(1)(2)(3)(502018A.50 B.0 C.2 D.0)5f x f x f f f f f f x -∞+∞ -=+=++++= ⋅-若,则…(【例2】(全国Ⅱ卷)已知是定义域为的奇函数,满足)(四)巩固练习设计意图:精选了三道题作为练习题.第一题考查单调性的判断和奇偶性定义,再次巩固函数基本性质的概念,为基础题.第二题为单调性与奇偶性相结合解不等式的相关问题,巩固数形结合思想.第三题为奇偶性和周期性相结合求值的题,为自编题,难度系数不高,巩固学生对周期性和奇偶性的概念理解,提高信心.1.(2020·全国Ⅰ卷)设函数()331f x x x =-,则()f x ( )A .是奇函数,且在()0,+∞单调递增B .是奇函数,且在()0,+∞单调递减C .是偶函数,且在()0,+∞单调递增D .是偶函数,且在()0,+∞单调递减2.(2014·全国Ⅰ卷)已知偶函数f x ()在[0,)+∞单调递减,f (2)0=.若f x >(-1)0,则x 的取值范围是__________.()()()()()3R ,R,4,22,2022=A.2022 B.2 C.2022 D.2f x x f x f x f f ∈ +=-= --.已知函数是上的奇函数对任意都有若则()(五)总结提升设计意图:制作了本节课的思维导图,引导同学们再次巩固函数基本性质高考重点考查的题型及其对应方法.五、作业设计设计意图:作业选取了两道单选题,一道多选题,四道填空题.题一考查单调性判断和奇偶性定义;题二考查奇偶性的定义,深化概念;题三考查单调性解不等式,为单调性的应用类题;题四考查奇偶性应用求解析式;题五考查偶函数的定义,跟2021出现的题目非常相像,说明研究高考题的重要性,值得深思;题六考查周期性的定义,为周期性和奇偶性的简单综合题;题七需要将题目所给等式经过化简才能变为周期性的定义的模式,进一步深化周期性与奇偶性的概念及其应用.。

新课标人教版高中数学必修一 1.3函数的基本性质 教学设计

新课标人教版高中数学必修一 1.3函数的基本性质 教学设计

1.3 函数的基本性质[教学目标]1.理解函数的单调性,初步掌握函数单调性的判别方法.2.理解函数的最大值、最小值及其几何意义.3.结合具体函数了解奇偶性的含义.4.能够运用函数图象理解和研究函数的性质.[教学要求]讨论函数的基本性质,就是要研究函数的重要特征:函数的增与减,最大值与最小值,增长率与衰减率,增长(减少)的快与慢,对称性(奇偶性),函数的零点,函数值的循环往复(周期性)等.引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.[教学重点]函数的单调性的概念;判断、证明函数的单调性;形成奇偶性的定义.[教学难点]1.函数的单调性和奇偶性定义的形式化表达.2.利用增(减)函数的定义判断函数的单调性.[教学时数]3课时[教学过程]第一课时1.3.1单调性与最大(小)值——函数的单调性新课导入一、情景问题如图为2008年北京奥运会奥林匹克公园场馆自动气象站某日一天24小时内的气温变化图(24时与0时气温相同为32︒C ),观察这张气温变化图:问:该图形是否为函数图象?定义域是什么?问:如何用数学语言来刻画温度随时间变化而变化的趋势呢?由“函数在某个区间内随着自变量的增加函数值增大或减小”引入课题——函数的单调性.二、观察函数图象,认识“上升”与 “下降”请同学们画出函数x x f =)(和2)(x x f =的图象,并观察图象的变化特征,说说自己的看法.(呈现这两个函数的图象,课本第27页图)可观察到的图象特征:(1)函数x x f =)(的图象由左至右是上升的;(2)函数2)(x x f =的图象在y 轴左侧是下降的,在y 轴右侧是上升的;也就是图象在区间]0,(-∞上,随着x 的增大,相应的)(x f 随着减小,在区间),0(+∞上,随着x 的增大,相应的)(x f 也随着增大.归纳:从上面的观察分析可以看出:不同的函数,其图象的变化趋势不同,同一函数在不同区间上的变化趋势也不同.函数图象的这种变化规律就是函数性质的反映.新课进展一、函数的单调性1.如何用函数解析式2)(x x f =描述“随着x 的增大,相应的)(x f 随着减小”,“随着x 的增大,相应的)(x f 也随着增大”?在区间),0(+∞上任取x 1,x 2,函数值的大小变化与自变量的大小变化有何关系?如何用数学符号语言来描述这种关系呢?对于函数2)(x x f =,经过师生讨论得出:在区间),0(+∞上,任取两个21,x x ,当21x x <时,有)()(21x f x f <.这时,我们就说函数2)(x x f =在区间),0(+∞上是增函数.课堂练习请你仿照刚才的描述,说明函数2)(x x f =在区间]0,(-∞上是减函数.2.增函数和减函数的定义设函数)(x f 的定义域为I :(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数)(x f 在区间D 上是增函数(increasing function ).(2)请你仿照增函数的定义给出函数)(x f 在区间D 上是减函数的定义.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f >,那么就说函数)(x f 在区间D 上是减函数(decreasing function ).3.对定义要点分析问:(1)你能分析一下增函数定义的要点吗?(2)你能分析一下减函数定义的要点吗?引导学生分析增(减)函数定义的数学表述,体会定义中“区间D 上的任意两个自变量都有…”的含义.课堂例题例1 (课本第29页例1)课堂练习课本第39页习题1.3A 组第4题.课本第32页练习第1、2、3题.课堂例题例2 (课本第29页例2)课堂练习课本第32页练习第4题.4.本课小结(1)增减函数的图象有什么特点?增减函数的图象从左自右是上升的,减函数的图象从左自右是下降的.(2)用定义证明函数的单调性,需要抓住要点“在给定区间任意取两个自变量”去比较它们的函数值的大小.(3)如果函数)(x f y =在区间D 上是增函数或减函数,那么就说函数)(x f y =在这一区间具有(严格的)单调性,区间D 叫做)(x f y =的单调区间.5.布置作业课本第39页习题1.3A 组第1、2、3题.课本第44页复习参考题A 组第9题.第二课时1.3.1单调性与最大(小)值——函数的最大(小)值复习导入通过提问复习上节课主要学习内容.问:如何判断函数的单调性?观察上节课例1中的图象(课本第29页),发现,函数图象在2-=x 时,其函数值最小,而在1=x 时,其函数值最大.函数2)(x x f =的图象有一个最低点)0,0(,函数2)(x x f -=的图象有一个最高点)0,0(,而函数x x f =)(的图象没有最低点,也没有最高点.新课进展二、函数的最大(小)值1.函数的最大(小)值的定义设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≤)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最大值(maximum value).请你仿照函数最大值的定义,给出函数)(x f y =的最小值的定义.设函数)(x f y =的定义域为I ,如果存在实数M 满足:(1)对于任意的I x ∈,都有M x f ≥)(;(2)存在I x ∈0,使得M x f =)(0.那么,我们称M 是函数)(x f y =的最小值(minimum value).课堂例题例1 (课本第30页例3)说明:本例题是一个实际应用题,教学时应让学生体会问题的实际意义.例2 (课本第30页例4)说明:本例题表明,高一阶段利用函数的单调性求函数的最大(小)值是常用的方法.通过本例题的教学,再一次让学生体会用函数的单调性定义证明函数的单调性的方法.课堂练习课本第32页练习第5题2.函数的最大(小)值与单调性的关系从上面的例题可以看到,函数的最大(小)值与单调性有非常紧密的关系.我们再看一个例子.例3观察下图,用函数的单调性研究以下问题:(1) 若函数()y f x =的定义域为[],x b e ∈,求最大值和最小值;(2) 若函数()y f x =的定义域为[],x a e ∈,求最大值和最小值;(3) 若函数()y f x =的定义域为[),x b d ∈,求最大值和最小值;解:(1)在定义域[],b e 上,函数()y f x =在区间[],b c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f e f c <,则函数()y f x =在[],b e 上的最大值为()f c ,最小值为()f d ;(2) 在定义域[],a e 上,函数()y f x =在区间[],a c 上是增函数,在区间[],c d 上是减函数, 在区间[],d e 上是增函数,且()()f a f d <,则函数()y f x =在[],a e 上的最大值为()f c ,最小值为()f a ;(3) 在定义域[),b d 上,函数()y f x =在区间[],b c 上是增函数,在区间[),c d 上是减函数, 由于函数在x d =处没有定义,则函数()y f x =在[),b d 上的最大值为()f c ,没有最小值.思考:为什么要讨论)()(c f e f <?说明:从本例中可以看出,在求函数的最值时,除了注意单调区间的变化之外,还要注意定义域的区间端点的函数值.3.本课小结函数的最大(小)值是一个函数在一段区间或者整个定义域上的整体性质.一个函数可能存在最大值也可能不存在最大值,最大值具有唯一性.对于最小值也一样.我们经常利用函数的单调性求函数的最大(小)值.4.布置作业课本第39页习题1.3A 组第5题;课本第39页习题1.3B 组第1、2题第三课时1.3.2 奇偶性创设情景,导入新课从对称的角度,观察下列函数的图象: 函数2()1,().f x x g x x =+=这两个函数图象有什么共同的特征?请列出从-3到3这一段区间上,两个函数的对应值表,并思考:自变量取值互为相反数时,函数值如何变化,有怎样的等量关系?讨论结果:当自变量取值互为相反数时,函数值恰相等.反映在图象上,函数图象关于y 轴对称.新课进展三、函数的奇偶性1.偶函数如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=那么函数()f x 就叫做偶函数(even function).定义域关于坐标原点对称.请你举出偶函数的例子.2)(x x f =,21)(xx f =等等. 2.奇函数 观察函数x x f =)(和x x f 1)(=的图象,说一说这两个函数有什么共同特征?(1)图象看,它们都是关于坐标原点成中心对称;(2)从定义域看,它们的定义域都是关于坐标原点对称;(3)从函数值看,x 与x -的函数值的绝对值相等且符号相反.如果函数()f x 的定义域内任意一个x ,都有()(),f x f x -=-则函数()f x 叫做奇函数(old function).请你举出奇函数的例子.3.函数的奇偶性奇函数和偶函数的这种性质叫做函数的奇偶性.(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.(2)具有奇偶性的函数的图象具有对称性.偶函数的图象关于y 轴对称,奇函数的图象关于坐标原点对称;反之,如果一个函数的图象关于y 轴对称,那么,这个函数是偶函数,如果一个函数的图象关于坐标原点对称,那么,这个函数是奇函数.(3)由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.课堂例题例1 (课本第35页例5)课堂练习课本第36页练习第1(1)——(4)、第2题.4.本课小结本节课学习了函数的奇偶性及其判断方法.我们可以把对称性和奇偶性结合起来思考. 定义域具有对称性,函数值具有对称性,图象具有对称性.由于奇函数和偶函数的对称性质,我们在研究函数时,只要知道一半定义域上的图象和性质,就可以得到另一半定义域上的图象和性质.5.布置作业课本第39页习题1.3A 组第6题,B 组第3题.课本第44页复习参考题A 组第10题.补充:1.已知2(),f x ax bx cx =++∈R 是偶函数,那么32()g x ax bx cx =++是( ).(A)偶函数 (B)奇函数(C)既奇又偶函数 (D)非奇非偶函数 2. 已知函数1,0,()0,0,1,0.x x f x x x x +>⎧⎪==⎨⎪-<⎩试判断并证明它的奇偶性.。

人教版数学必修1函数的基本性质教案

人教版数学必修1函数的基本性质教案

课程标题函数的基本性质学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应用函数的基本性质解决一些问题。

(2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.(3)了解奇偶性的概念,回会利用定义判断简单函数的奇偶性。

重点与难点(1)判断或证明函数的单调性;(2)奇偶性概念的形成与函数奇偶性的判断。

学习过程一、函数的单调性1.单调函数的定义(1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x 2x 时都有12()()f x f x ,那么就说()f x 在这个区间上是增函数。

(2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x 2x 时都有12()()f x f x ,那么就说()f x 在这个区间上是减函数。

(3)单调性:如果函数()yf x 在某个区间是增函数或减函数。

那么就说函数()yf x 在这一区间具有(严格的)单调性,这一区间叫做()yf x 的单调区间。

2、单调性的判定方法(1)定义法:判断下列函数的单调区间:21xy(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。

(3)复合函数的单调性的判断:设)(x f y,)(x g u,],[b a x,],[n m u 都是单调函数,则[()]y f g x 在],[b a 上也是单调函数。

①若)(x f y 是[,]m n 上的增函数,则[()]yf g x 与定义在],[b a 上的函数)(x g u的单调性相同。

②若)(x f y是[,]m n 上的减函数,则[()]yf g x 与定义在],[b a 上的函数)(x g u的单调性相同。

即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的单调性相反时则复合函数为增减函数。

高中数学人教A版必修1教案-1.3_函数的基本性质_教学设计_教案_11

高中数学人教A版必修1教案-1.3_函数的基本性质_教学设计_教案_11

教学准备
1. 教学目标
1.知识与技能:
理解函数的最大(小)值及其几何意义.
学会运用函数图象理解和研究函数的性质.
2.过程与方法:
通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的
纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识.3.情态与价值
利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发
学生学习的积极性.
2. 教学重点/难点
教学重点:函数的最大(小)值及其几何意义
教学难点:利用函数的单调性求函数的最大(小)值.
3. 教学用具
4. 标签
教学过程
四.教学思路
(一)创设情景,揭示课题.
画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什
么特征?
(二)研探新知
1.函数最大(小)值定义
2.利用函数单调性来判断函数最大(小)值的方法.
①配方法②换元法③数形结合法
(三)质疑答辩,排难解惑.
例1.(教材P36例3)利用二次函数的性质确定函数的最大(小)值.
解(略)
例2.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少?。

高一数学上册《函数的基本性质》教案、教学设计

高一数学上册《函数的基本性质》教案、教学设计
2.学生的数学思维能力、逻辑推理能力和直观想象力发展不平衡,部分学生对数形结合的方法还不够熟悉。教师应针对这一情况,设计丰富的教学活动,提高学生的数学素养。
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。

高一数学必修1《函数的基本性质》教案

高一数学必修1《函数的基本性质》教案

高一数学必修1《函数的基本性质》教案教学目标:1. 理解函数以及函数的各种表达方式。

2. 掌握函数的基本性质,包括单调性、奇偶性、周期性和零点。

3. 实现函数的简单变换,例如平移、伸缩和反转等。

4. 能够应用函数的基本性质,解决实际问题。

教学重点:1. 理解函数的概念以及函数的各种表达方式。

2. 掌握函数的基本性质,实现函数的简单变换。

3. 能够应用函数的基本性质,解决实际问题。

教学难点:1. 如何理解函数的概念以及函数的各种表达方式。

2. 如何应用函数的基本性质,解决实际问题。

教学方法:一、讲授法。

二、探究法。

三、案例分析法。

教学过程:一. 引入新知识(5分钟):教师简单介绍函数的概念和历史背景,引导学生关注函数在实际生活中的应用,引出本节课的学习目标,激发学生的学习兴趣。

二. 讲解函数的概念(10分钟):1. 函数的定义:任何能够使$x$值唯一对应一个$y$值的规律都称为函数,可以表示为$y=f(x)$。

$x$为自变量,$y$为因变量,函数$f(x)$表示$y$与$x$之间的关系。

2. 函数的图像:函数可以通过绘制它们的图像进行可视化。

函数的图像是平面直角坐标系上的一条曲线。

3. 函数的表示方法:函数可以用表格、图像、公式等多种方式表示。

例如$f(x)=x^2$就是一种表示方式。

三. 掌握函数的基本性质(30分钟):1. 单调性:单调递增和单调递减;2. 奇偶性:奇函数、偶函数和常函数;3. 周期性:周期函数和非周期函数;4. 零点:零点定义以及求零点的方法。

四. 实现函数的简单变换(10分钟):1. 平移变换:表示为$f(x-a)$或$f(x)+b$,注意$a$和$b$的正负性;2. 伸缩变换:表示为$f(kx)$或$f(x)/k$,注意$k$的正负性;3. 反转变换:表示为$f(-x)$或$f(-y)$,注意反转后的坐标轴位置变化。

五. 应用函数的基本性质(10分钟):1. 求函数的最值。

函数的基本性质教案

函数的基本性质教案

函数的基本性质教案教案标题:函数的基本性质教案教案目标:1. 理解函数的定义及其基本性质;2. 掌握函数的图像、定义域、值域、单调性、奇偶性、周期性等基本性质;3. 能够运用函数的基本性质解决实际问题。

教学准备:1. 教师准备:教案、教学课件、黑板、白板、彩色笔等;2. 学生准备:教材、笔记本、作业本等。

教学过程:一、导入(5分钟)1. 教师通过提问或展示一道函数图像,引发学生对函数的认识和兴趣;2. 教师简要介绍函数的定义,并与学生一起回顾函数的概念和基本符号。

二、讲解函数的基本性质(20分钟)1. 函数的图像:a. 通过示意图展示不同函数图像的特点,如线性函数、二次函数、指数函数等;b. 引导学生观察函数图像的特点,并总结出函数图像的一般规律。

2. 函数的定义域和值域:a. 解释函数的定义域和值域的概念;b. 通过具体函数的例子,引导学生确定函数的定义域和值域。

3. 函数的单调性:a. 定义函数的单调性,并介绍增函数和减函数的概念;b. 通过函数图像和函数表达式,引导学生判断函数的单调性。

4. 函数的奇偶性:a. 解释函数的奇偶性的概念;b. 通过函数图像和函数表达式,引导学生判断函数的奇偶性。

5. 函数的周期性:a. 介绍周期函数的概念;b. 通过具体函数的例子,引导学生判断函数的周期性。

三、练习与巩固(15分钟)1. 学生个人完成练习题,巩固函数的基本性质的判断方法;2. 学生互相交流答案并讨论,教师及时纠正错误。

四、拓展与应用(10分钟)1. 教师提供一些实际问题,要求学生运用函数的基本性质进行分析和解答;2. 学生个人或小组完成拓展应用题,提高对函数基本性质的应用能力。

五、总结与反思(5分钟)1. 教师与学生一起总结函数的基本性质,并强调其在数学和实际问题中的重要性;2. 学生对本节课的学习进行反思,提出问题和建议。

教学反思:通过本节课的教学,学生能够理解函数的基本性质,并能够运用这些性质解决实际问题。

高中数学必修一《函数的基本性质》优质教案

高中数学必修一《函数的基本性质》优质教案

高中数学必修一《函数的基本性质》优质教案教材分析《奇偶性》内容选自人教版A版第一册第三章第三节第二课时;函数奇偶性是研究函数的一个重要策略,因此奇偶性成为函数的重要性质之一,它的研究也为今后指对函数、幂函数、三角函数的性质等后续内容的深入起着铺垫的作用.教学目标与素养课程目标1、理解函数的奇偶性及其几何意义;2、学会运用函数图象理解和研究函数的性质;3、学会判断函数的奇偶性.数学学科素养1.数学抽象:用数学语言表示函数奇偶性;2.逻辑推理:证明函数奇偶性;3.数学运算:运用函数奇偶性求参数;4.数据分析:利用图像求奇偶函数;5.数学建模:在具体问题情境中,运用数形结合思想,利用奇偶性解决实际问题。

重难点重点:函数奇偶性概念的形成和函数奇偶性的判断;难点:函数奇偶性概念的探究与理解.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

教学过程一、 情景导入前面我们用符号语言准确地描述了函数图象在定义域的某个区间上“上升”(或“下降”)的性质.下面继续研究函数的其他性质.画出并观察函数的图像,你能发现这两个函数图像有什么共同特征码?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、 预习课本,引入新课阅读课本82-84页,思考并完成以下问题1.偶函数、奇函数的概念是什么?2.奇偶函数各自的特点是?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、 新知探究1.奇函数、偶函数(1)偶函数(even function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)奇函数(odd function)一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做奇函数.2、奇偶函数的特点(1)具有奇偶性的函数的定义域具有对称性,即关于坐标原点对称,如果一个函数的定义域关于坐标原点不对称,就不具有奇偶性.因此定义域关于原点对称是函数存在奇偶性的一个必要条件。

高中数学人教A版必修1教案-1.3_函数的基本性质_教学设计_教案

高中数学人教A版必修1教案-1.3_函数的基本性质_教学设计_教案

教学准备1. 教学目标求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围;②二次函数法:利用换元法将函数转化为二次函数求值域;③反函数法:将求函数的值域转化为求它的反函数的定义域;④判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;⑤单调性法:利用函数的单调性求值域;⑥不等式法:利用平均不等式求值域;⑦图象法:当一个函数图象可作时,通过图象可求其值域;⑧求导法:当一个函数在定义域上可导时,可据其导数求最值,再得值域;⑨几何意义法:由数形结合,转化斜率、距离等求值域。

2. 教学重点/难点求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围;②二次函数法:利用换元法将函数转化为二次函数求值域;③反函数法:将求函数的值域转化为求它的反函数的定义域;④判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;⑤单调性法:利用函数的单调性求值域;⑥不等式法:利用平均不等式求值域;⑦图象法:当一个函数图象可作时,通过图象可求其值域;⑧求导法:当一个函数在定义域上可导时,可据其导数求最值,再得值域;⑨几何意义法:由数形结合,转化斜率、距离等求值域。

3. 教学用具4. 标签教学过程一.知识点1.函数的值域的定义在函数y=f(x)中,与自变量x的值对应的y的值叫做函数值,函数值的集合叫做函数的值域。

2.确定函数的值域的原则①当函数y=f(x)用表格给出时,函数的值域是指表格中实数y的集合;②当函数y=f(x)用图象给出时,函数的值域是指图象在y轴上的投影所覆盖的实数y的集合;③当函数y=f(x)用解析式给出时,函数的值域由函数的定义域及其对应法则唯一确定;④当函数y=f(x)由实际问题给出时,函数的值域由问题的实际意义确定。

3.求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围;②二次函数法:利用换元法将函数转化为二次函数求值域;③反函数法:将求函数的值域转化为求它的反函数的定义域;④判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;⑤单调性法:利用函数的单调性求值域;⑥不等式法:利用平均不等式求值域;⑦图象法:当一个函数图象可作时,通过图象可求其值域;⑧求导法:当一个函数在定义域上可导时,可据其导数求最值,再得值域;⑨几何意义法:由数形结合,转化斜率、距离等求值域。

函数的基本性质教案

函数的基本性质教案

函数的基本性质教案一、教学目标1. 了解函数的定义及其基本性质,理解函数的概念。

2. 掌握函数的单调性、奇偶性、周期性等基本性质,并能够运用这些性质解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 函数的定义及表示方法2. 函数的单调性3. 函数的奇偶性4. 函数的周期性5. 实际问题中的应用三、教学重点与难点1. 教学重点:函数的基本性质,包括单调性、奇偶性、周期性。

2. 教学难点:函数性质的证明和应用。

四、教学方法1. 采用讲授法,讲解函数的基本性质及其证明方法。

2. 利用例题,展示函数性质在实际问题中的应用。

3. 引导学生进行小组讨论,培养学生的合作能力。

4. 利用信息技术辅助教学,提高教学效果。

五、教学过程1. 引入新课:通过复习初中阶段的知识,如一次函数、二次函数的性质,引出高中阶段函数的基本性质。

2. 讲解函数的定义及表示方法,让学生理解函数的概念。

3. 讲解函数的单调性,引导学生掌握单调性的证明方法,并通过例题展示单调性在实际问题中的应用。

4. 讲解函数的奇偶性,引导学生掌握奇偶性的证明方法,并通过例题展示奇偶性在实际问题中的应用。

5. 讲解函数的周期性,引导学生掌握周期性的证明方法,并通过例题展示周期性在实际问题中的应用。

6. 课堂练习:布置有关函数基本性质的练习题,让学生巩固所学知识。

7. 总结:对本节课的内容进行总结,强调函数基本性质的重要性。

8. 布置作业:布置有关函数基本性质的作业,让学生进一步巩固所学知识。

9. 课后反思:根据学生的课堂表现和作业完成情况,对教学进行反思,为下一步教学做好准备。

10. 教学评价:通过课堂表现、作业完成情况和课后反馈,对学生的学习情况进行评价,为后续教学提供参考。

六、教学评价1. 学生能够准确地描述函数的基本性质,包括单调性、奇偶性和周期性。

2. 学生能够理解并应用函数的基本性质解决实际问题。

3. 学生能够通过实例展示对函数性质的理解,并能够进行简单的证明。

函数的基本性质教案设计

函数的基本性质教案设计

函数的基本性质教案设计这是函数的基本性质教案设计,是优秀的数学教案文章,供老师家长们参考学习。

函数的基本性质教案设计第1篇各位老师,大家好!今天我说课的课题是高中数学人教A版必修一第一章第三节”函数的基本性质”中的“函数的奇偶性”,下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。

一、教材分析(一)教材特点、教材的地位与作用本节课的主要学习内容是理解函数的奇偶性的概念,掌握利用定义和图象判断函数的奇偶性,以及函数奇偶性的几个性质。

函数的奇偶性是函数中的一个重要内容,它不仅与现实生活中的对称性密切相关,而且为后面学习幂函数、指数函数、对数函数的性质打下了坚实的基础。

因此本节课的内容是至关重要的,它对知识起到了承上启下的作用。

(二)重点、难点1、本课时的教学重点是:函数的奇偶性及其几何意义。

2、本课时的教学难点是:判断函数的奇偶性的方法与格式。

(三)教学目标1、知识与技能:使学生理解函数奇偶性的概念,初步掌握判断函数奇偶性的方法;2、方法与过程:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;使学生领会数形结合思想方法,培养学生发现问题、分析问题和解决问题的能力。

3、情感态度与价值观:在奇偶性概念形成过程中,使学生体会数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教法、学法分析1.教学方法:启发引导式结合本章实际,教材简单易懂,重在应用、解决实际问题,本节课准备采用"引导发现法"进行教学,引导发现法可激发学生学习的积极性和创造性,分享到探索知识的方法和乐趣,在解决问题的过程中,体验成功与失败,从而逐步建立完善的认知结构.使用多媒体辅助教学,突出了知识的产生过程,又增加了课堂的趣味性.2.学法指导:引导学生采用自主探索与互相协作相结合的学习方式。

让每一位学生都能参与研究,并最终学会学习.三、教辅手段以学生独立思考、自主探究、合作交流,教师启发引导为主,以多媒体演示为辅的教学方式进行教学四、教学过程为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了五个主要的教学程序:设疑导入,观图激趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程标题 函数的基本性质
学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应
用函数的基本性质解决一些问题。

(2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法.
(3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。

重点与难点 (1)判断或证明函数的单调性;
(2)奇偶性概念的形成与函数奇偶性的判断。

学习过程
一、 函数的单调性
1.单调函数的定义
(1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。

(2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。

(3)单调性:如果函数()y f x =在某个区间是增函数或减函数。

那么就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。

2、单调性的判定方法 (1)定义法:
判断下列函数的单调区间:2
1x
y =
(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。

(3)复合函数的单调性的判断:
设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在]
,[b a 上也是单调函数。

①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。

②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相
同。

即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的 单调性相反时则复合函数为增减函数。

也就是说:同增异减(类似于“负负得正”) 练习:(1)函数2
4x
y -=
的单调递减区间是 ,单调递增区间
为 .
(2)5
412
+-=
x x y 的单调递增区间为 .
3、函数单调性应注意的问题:
①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).
③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在上
是增(或减)函数
4.例题分析 证明:函数1()f x x
=
在(0,)+∞上是减函数。

证明:设任意1x ,2x ∈(0,+∞)且12x x <,
则21121
2
12
11()()x x f x f x x x x x --=
-=,
由1x ,2x ∈(0,+∞),得120x x >,又12x x <,得210x x ->, ∴12()()0f x f x ->,即12()()f x f x > 所以,1()f x x
=
在(0,)+∞上是减函数。

说明:一个函数的两个单调区间是不可以取其并集,比如:x
y 1=
不能说
)0,(-∞ ),0(+∞是原函数的单调递减区间;
练习:1..根据单调函数的定义,判断函数3()1f x x =+的单调性。

2.根据单调函数的定义,判断函数()f x x =
的单调性。

二、函数的奇偶性
1.奇偶性的定义:
(1)偶函数:一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,
那么函数()f x 就叫做偶函数。

例如:函数2
()1f x x =+, 4
()2f x x =-等都是偶函数。

(2)奇函数:一般地,如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,
那么函数()f x 就叫做奇函数。

例如:函数x x f =)(,x
x f 1)(=
都是奇函数。

(3)奇偶性:如果函数()f x 是奇函数或偶函数,那么我们就说函数()f x 具有奇偶性。

说明:从函数奇偶性的定义可以看出,具有奇偶性的函数: (1)其定义域关于原点对称;
(2) ()()f x f x -=或()()f x f x -=-必有一成立。

因此,判断某一函数的奇偶性时,首先看其定义域是否关于原点对称,若对称,再计算()f x -,看是等于()f x 还是等于()f x -,然后下结论;若定义域关于原点不对称,则函数没有奇偶性。

(3)无奇偶性的函数是非奇非偶函数。

(4)函数0)(=x f 既是奇函数也是偶函数,因为其定义域关于原点对称且既满足
)()(x f x f -=也满足)()(x f x f --=。

(5)一般的,奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数。

偶函数的图象关于y 轴对称,反过来,如果一个函数的图形关于y 轴对称,那么这个函数是偶函数。

(6)奇函数若在0x =时有定义,则(0)0f =. 2、函数的奇偶性判定方法 (1)定义法 (2)图像法 (3)性质罚 3.例题分析:
判断下列函数的奇偶性:
(1)2
()||f x x x =- ( ) (2)2
1()2|2|
x
f x x -=
-+( )
说明:在判断()f x -与()f x 的关系时,可以从()f x -开始化简;也可以去考虑()()
f x f x +-或()()f x f x --;当()f x 不等于0时也可以考虑()()
f x f x -与1或1-的关系。

五.小结:1.函数奇偶性的定义; 2.判断函数奇偶性的方法;
3.特别要注意判断函数奇偶性时,一定要首先看其定义域是否关于原点对称,否则将会导致结论错误或做无用功。

二、函数的最大值或最小值
学习评价
※ 自我评价 你完成本节学案的情况为( ).
A. 很好
B. 较好
C. 一般
D. 较差
经典例题
1.下面说法正确的选项
( )
A .函数的单调区间可以是函数的定义域
B .函数的多个单调增区间的并集也是其单调增区间
C .具有奇偶性的函数的定义域定关于原点对称
D .关于原点对称的图象一定是奇函数的图象 2.在区间)0,(-∞上为增函数的是
( )
A .1=y
B .21+-=
x
x y
C .122---=x x y
D .21x y +=
3.函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围 ( ) A .2-≥b B .2-≤b C .2->b D . 2-<b
4.如果偶函数在],[b a 具有最大值,那么该函数在],[a b --有
( )
A .最大值
B .最小值
C .没有最大值
D . 没有最小值
课后作业
1.在区间(0,+∞)上不是增函数的函数是
( )
A .y =2x +1
B .y =3x 2+1
C .y =
x
2
D .y =2x 2+x +1
2.函数y =(x -1)-2的减区间是___ _.
3.偶函数()f x 在[]0,π上单调递增,则(2),(3),()2
f f f π
--
从小到大排列的顺
序是 ;
4.已知()f x 是R 上的偶函数,当0x ≥时,2()2f x x x =-,求()f x 的解析式。

5.(12分)判断下列函数的奇偶性 ①x
x y 13
+=; ②x x y 2112-+-=;。

相关文档
最新文档