人教版高中数学必修一函数知识点(精简版)

合集下载

人教版高一数学必修一知识点梳理

人教版高一数学必修一知识点梳理

人教版高一数学必修一知识点梳理(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!人教版高一数学必修一知识点梳理本店铺为你整理的《人教版高一数学必修一知识点梳理》,希望你不负时光,努力向前,加油!1.人教版高一数学必修一知识点梳理函数的奇偶性(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.注意:○1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;函数可能没有奇偶性,也可能既是奇函数又是偶函数。

人教高中数学必修一第五章三角函数知识点归纳总结(精华版)

人教高中数学必修一第五章三角函数知识点归纳总结(精华版)

(名师选题)人教高中数学必修一第五章三角函数知识点归纳总结(精华版)单选题1、若sinα+cosαsinα−cosα=12,则tan (α+π4)的值为( ) A .−2B .2C .−12D .12 答案:C分析:利用弦化切和两角和的正切展开式化简计算可得答案. 因为sinα+cosαsinα−cosα=12.所以tanα+1tanα−1=12,解得tanα=−3, 于是tan (α+π4)= tanα+tanπ41−tanαtanπ4=−3+11−(−3)=−12.故选:C.2、已知sinαcosα=12,则tanα+1tanα的值为( ) A .12B .−12C .−2D .2答案:D解析:根据题中条件,由切化弦,将所求式子化简整理,即可得出结果. ∵sinαcosα=12, ∴tanα+1tanα=sinαcosα+cosαsinα=sin 2α+cos 2αsinαcosα=112=2,故选:D.3、设0<α<π,sinα+cosα=713,则1−tanα1+tanα的值为( )A .177B .717C .−177D .−717 答案:C分析:依题意可知π2<α<π,得到cosα−sinα<0,再利用正余弦和差积三者的关系可求得cosα−sinα的值,将所求关系式切化弦,代入所求关系式计算即可. 由sinα+cosα=713,平方得到1+sin2α=49169,∴sin2α=49169−1=−120169=2sinαcosα,0<α<π, ∴ π2<α<π,∴cosα<0,而sinα>0, ∴cosα−sinα<0; 令t =cosα−sinα(t <0), 则t 2=1−sin2α,∴t 2=1−sin2α=1+120169=289169,t <0∴t =−1713∴ 1−tanα1+tanα=cosα−sinαcosα+sinα=137(cosα−sinα)=137×(−1713)=−177,故选:C .4、若扇形周长为20,当其面积最大时,其内切圆的半径r 为( ) A .5−1sin1B .1sin1+32C .5sin11+sin1D .5+51+sin1 答案:C分析:先根据扇形周长求解出面积取最大值时扇形的圆心角和半径,然后根据图形中的内切关系得到关于内切圆半径r 的等式,由此求解出r 的值.设扇形的半径为R ,圆心角为α,面积为S ,因为2R +αR =20, 所以S =12αR 2=(10−R )R ≤(10−R+R 2)2=25,取等号时10−R =R ,即R =5,所以面积取最大值时R =5,α=2, 如下图所示:设内切圆圆心为O ,扇形过点O 的半径为AP ,B 为圆与半径的切点, 因为AO +OP =R =5,所以r +rsin∠BPO =5,所以r +rsin1=5, 所以r =5sin11+sin1,故选:C.5、设函数f(x)=2sin (ωx +φ)−1(ω>0),若对于任意实数φ,f(x)在区间[π4,3π4]上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .[83,163)B .[4,163)C .[4,203)D .[83,203)答案:B分析:t =ωx +φ,只需要研究sint =12的根的情况,借助于y =sint 和y =12的图像,根据交点情况,列不等式组,解出ω的取值范围. 令f(x)=0,则sin (ωx +φ)=12 令t =ωx +φ,则sint =12则问题转化为y =sint 在区间[π4ω+φ,3π4ω+φ]上至少有两个,至少有三个t ,使得sint =12,求ω的取值范围.作出y =sint 和y =12的图像,观察交点个数,可知使得sint =12的最短区间长度为2π,最长长度为2π+23π,由题意列不等式的:2π≤(3π4ω+φ)−(π4ω+φ)<2π+23π 解得:4≤ω<163.故选:B小提示:研究y =Asin (ωx +φ)+B 的性质通常用换元法(令t =ωx +φ),转化为研究y =sint 的图像和性质较为方便.6、cos 2π12−cos 25π12=( ) A .12B .√33C .√22D .√32 答案:D分析:由题意结合诱导公式可得cos 2π12−cos 25π12=cos 2π12−sin 2π12,再由二倍角公式即可得解. 由题意,cos 2π12−cos 25π12=cos 2π12−cos 2(π2−π12)=cos 2π12−sin 2π12 =cos π6=√32. 故选:D.7、已知函数f(x)=a 2x−6+3(a >0且a ≠1)的图像经过定点A ,且点A 在角θ的终边上,则sinθ−cosθsinθ+cosθ=( ) A .−17B .0C .7D .17 答案:D分析:由题知A(3,4),进而根据三角函数定义结合齐次式求解即可. 解:令2x −6=0得x =3,故定点A 为A(3,4), 所以由三角函数定义得tanθ=43, 所以sinθ−cosθsinθ+cosθ=tanθ−1tanθ+1=43−143+1=17故选:D8、若y =f (x )的图像与y =cosx 的图象关于x 轴对称,则y =f (x )的解析式为( )A.y=cos(−x)B.y=−cosxC.y=cos|x|D.y=|cosx|答案:B分析:根据f(−x)、−f(x)、f(|x|)与|f(x)|的图象特征依次判断即可得到结果.对于A,y=cos(−x)=cosx,图象与y=cosx重合,A错误;对于B,∵y=f(x)与y=−f(x)图象关于x轴对称,∴y=−cosx与y=cosx图象关于x轴对称,B正确;对于C,当x≥0时,y=cos|x|=cosx,可知其图象不可能与y=cosx关于x轴对称,C错误;对于D,将y=cosx位于x轴下方的图象翻折到x轴上方,就可以得到y=|cosx|的图象,可知其图象与y= cosx的图象不关于x轴对称,D错误.故选:B.9、将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A、B、C为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有()(1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB的长;(3)曲线Γ是等宽曲线且宽为弧AB的长;(4)在曲线Γ和圆的宽相等,则它们的周长相等;(5)若曲线Γ和圆的宽相等,则它们的面积相等.A.1个B.2个C.3个D.4个答案:B分析:若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为1,根据定义逐项判断即可得出结论.2若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,(1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为3×16×2π=π,圆的周长为2π×12=π,故它们的周长相等,正确;(5)正三角形的边长为1,则三角形对应的扇形面积为π×126=π6,正三角形的面积S =12×1×1×√32=√34, 则一个弓形面积S =π6−√34, 则整个区域的面积为3(π6−√34)+√34=π2−√32, 而圆的面积为π(12)2=π4,不相等,故错误;综上,正确的有2个, 故选:B.小提示:本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键. 10、f(x)=−sinx−xcosx+x 2在[−π,π]的图象大致为( )A .B .C .D .答案:C分析:先由函数为奇函数可排除A ,再通过特殊值排除B 、D 即可.由f(−x)=−sin(−x)+xcosx+x2=−−sinx−xcosx+x2=−f(x),所以f(x)为奇函数,故排除选项A.又f(π)=−sinπ−πcosπ+π2=−ππ2−1<0,则排除选项B,D故选:C填空题11、如图所示,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P出发,绕圆锥爬行一周后回到点P处,若该小虫爬行的最短路程为4√3,则这个圆锥的体积为___________.答案:128√2π81分析:作出该圆锥的侧面展开图,该小虫爬行的最短路程为PP′,由余弦定理求出cos∠P′OP=2π3,求出底面圆的半径r,从而求出这个圆锥的高,由此能求出这个圆锥的体积.作出该圆锥的侧面展开图,如图所示:该小虫爬行的最短路程为PP′,由余弦定理可得:cos∠P′OP=OP2+OP′2−PP′22OP·OP′=42+42−(4√3)22×4×4=−12∴cos∠P′OP=2π3.设底面圆的半径为r,则有2πr=2π3·4,解得r=43,所以这个圆锥的高为ℎ=√16−169=8√23,则这个圆锥的体积为V=13Sℎ=13πr2ℎ=13π×169×8√23=128√2π81.所以答案是:128√2π81.小提示:立体几何中的翻折叠(展开)问题要注意翻折(展开)过程中的不变量.12、自行车大轮48齿,小轮20齿,大轮转一周小轮转___________周.答案:125分析:通过两个车轮转动的齿数相同,计算即可得出结果.∵两个车轮转动的齿数相同,大轮有48齿,小轮有20齿,∴当大轮转动一周时,大轮转动了48个齿,∴小轮转动4820=125周.所以答案是:125.13、若cosα=−35,α为第二象限的角,则sin(π−α)=__________.答案:45分析:先根据同角三角函数的关系求出sinα,再结合诱导公式即可求出sin(π−α).∵cosα=−35,α为第二象限的角,∴sinα=√1−cos2α=45,∴sin(π−α)=sinα=45.所以答案是:45.小提示:本题考查同角三角函数的关系以及诱导公式的应用,属于基础题.14、若α∈(π2,π),且cos2α−sinα=14,则tanα=_____.答案:−√33分析:根据同角平方和关系可解得sinα=12,进而根据角的范围可得α=5π6,进而可求.因为cos2α−sinα=14,所以4(1-sin2α)-4sinα-1=0即4sin 2α+4sin α-3=0 ,∴解得sin α=12或sin α=−32(舍去).∵α∈(π2,π),∴α=5π6,因此tan α=tan5π6=−√33. 所以答案是:−√33 15、已知cos(α+π6)=35,α∈(0,π2),则cos(2α+7π12)=__.答案:−31√250分析:先求出cos(2α+π3)=−725,sin(2α+π3)=2425,再利用和差角公式即可求解. ∵cos(α+π6)=35,α∈(0,π2). ∴(α+π6)∈(0,π2),(2α+π3)∈(0,π).cos(2α+π3)=2cos(α+π6)−1=2×(35)2−1=−725. ∴sin(2α+π3)=√1−cos(2α+π3)=2425.∴cos(2α+7π12)=cos(2α+π3+π4)=cos(2α+π3)cos π4−sin(2α+π3)sin π4 =−725×√22−2425×√22=−31√250. 所以答案是:−31√250. 解答题16、已知函数y =asin (2x −π3)+b (a >0).(1)求出该函数的单调递减区间;(2)当x ∈[0,π2]时,f (x )的最小值是−2,最大值是√3,求实数a ,b 的值.答案:(1)[k π+5π12,k π+11π12],k ∈Z(2)a =2,b =−2+√3分析:(1)利用整体代入法即可求解y =asin (2x −π3)+b 的单调减区间;(2)结合x ∈[0,π2],利用正弦函数的性质求出sin (2x −π3)的取值范围,然后结合已知条件求解即可. (1)结合已知条件和正弦函数性质,由2k π+π2≤2x −π3≤2k π+3π2,k ∈Z ,解得k π+5π12≤x ≤k π+11π12,k ∈Z ,故函数f (x )的单调递减区间为[k π+5π12,k π+11π12],k ∈Z .(2)令t =2x −π3,∵0≤x ≤π2,∴−π3≤t ≤2π3,∴由正弦函数性质得,−√32≤sint =sin(2x −π3)≤1,故f (x )min =−√32a +b =−2,f (x )max =a +b =√3,由{−√32a +b =−2a +b =√3,解得{a =2b =−2+√3. 17、已知函数f (x )={cosx,−π⩽x <0,sinx,0⩽x ⩽π.(1)作出该函数的图象; (2)若f (x )=12,求x 的值;(3)若a ∈R ,讨论方程f (x )=a 的解的个数.答案:(1)图见解析;(2)x =−π3或π6或5π6;(3)当a >1或a <−1时,解的个数为0;当−1⩽a <0或a =1时,解的个数为1;当0⩽a <1时,解的个数为3. 分析:(1)根据正余弦函数的图象即可画出; (2)讨论x 的范围根据解析式即可求解;(3)方程f (x )=a 的解的个数等价于y =f (x )与y =a 的图象的交点个数,结合图象即可得出. (1)f (x )的函数图象如下:(2)当−π≤x <0时,f (x )=cosx =12,解得x =−π3,当0≤x ≤π时,f (x )=sinx =12,解得x =π6或5π6,综上,x =−π3或π6或5π6; (3)方程f (x )=a 的解的个数等价于y =f (x )与y =a 的图象的交点个数,则由(1)中函数图象可得,当a >1或a <−1时,解的个数为0;当−1⩽a <0或a =1时,解的个数为1;当0⩽a <1时,解的个数为3.18、已知函数f (x )=2cos 2x 2+√3sin x +a −1的最大值为1.(1)求函数f (x )的单调递减区间;(2)若x ∈[0,π2],求函数f (x )的值域.答案:(1)[2kπ+π3,2kπ+4π3],k ∈Z(2)[0,1]分析:(1)利用三角恒等变换化简函数解析式为y =A sin(ωx +φ)+B 的形式,ωx +φ整体替换进行单调区间的求解;(2)求出ωx +φ整体范围,根据正弦型函数图像求其值域﹒(1)f (x )=2cos 2x 2+√3sin x +a −1 =cosx +√3sinx +a =2sin (x +π6)+a .由f(x)max=2+a=1,解得a=−1.又f(x)=2sin(x+π6)−1,则2kπ+π2≤x+π6≤2kπ+3π2,k∈Z,解得2kπ+π3≤x≤2kπ+4π3,k∈Z,所以函数的单调递减区间为[2kπ+π3,2kπ+4π3],k∈Z;(2)由x∈[0,π2],则x+π6∈[π6,2π3],所以12≤sin(x+π6)≤1,所以0≤2sin(x+π6)−1≤1,所以函数f(x)的值域为[0,1].。

高一数学人教版必修一第一单元知识点整理:函数及其表示

高一数学人教版必修一第一单元知识点整理:函数及其表示

高一数学人教版必修一第一单元知识点整理:函数及其表示在人类历史发展和社会生活中,数学发挥着不可替代的作用,小编准备了高一数学人教版必修一第一单元知识点,具体请看以下内容。

函数知识点汇总1.函数的基本概念(1)函数的定义:设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫自变量,x的取值范围A叫做定义域,与x的值对应的y值叫函数值,函数值的集合{f(x)|x∈A}叫值域.值域是集合B的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等;这是判断两函数相等的依据.2.函数的三种表示方法表示函数的常用方法有:解析法、列表法、图象法.3.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.注意:一个方法求复合函数y=f(t),t=q(x)的定义域的方法:①若y=f(t)的定义域为(a,b),则解不等式得a两个防范(1)解决函数问题,必须优先考虑函数的定义域.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。

(2)用换元法解题时,应注意换元前后的等价性.三个要素函数的三要素是:定义域、值域和对应关系.值域是由函数的定义域和对应关系所确定的.两个函数的定义域和对应关系完全一致时,则认为两个函数相等.函数是特殊的映射,映射f:A→B的三要素是两个集合A、B和对应关系f.要练说,得练听。

(完整)高中必修一函数全章知识点整理,推荐文档

(完整)高中必修一函数全章知识点整理,推荐文档

函数复习主要知识点一、函数的概念与表示1、映射(1)映射:设A、B 是两个集合,如果按照某种映射法则f,对于集合A 中的任一个元素,在集合B 中都有唯一的元素和它对应,则这样的对应(包括集合A、B 以及A 到B 的对应法则f)叫做集合A 到集合B 的映射,记作f:A→B。

注意点:(1)对映射定义的理解。

(2)判断一个对应是映射的方法。

一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)指数函数的底数必须大于零且不等于1;2 求函数定义域的两个难点问题(1)已知f (x)的定义域是[ - 2, 5] , 求f ( 2x+3) 的定义域。

(2)已知f (2x-1的) 定义域是[ - 1, 3] , 求f ( x的定义域三.函数的奇偶性1.定义: 设y=f(x),x∈A,如果对于任意x ∈A,都有f (-x) =f (x) ,则称y=f(x)为偶函数。

如果对于任意x ∈A,都有f (-x) =-f (x) ,则称y=f(x)为奇函数。

2.性质:①y=f(x)是偶函数⇔y=f(x)的图象关于y 轴对称, y=f(x)是奇函数⇔y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系b四、函数的单调性1、函数单调性的定义:2 设 y = f [g (x )]是定义在 M 上的函数,若 f(x)与 g(x)的单调性相反,则 y = f [g (x )]在 M 上是减函数;若 f(x)与 g(x)的单调性相同,则 y = f [g (x )]在 M 上是增函数。

人教版高中数学必修一函数知识点总结

人教版高中数学必修一函数知识点总结

高中数学必修一第三章函数的应用知识点总结一、方程的根与函数的零点1、函数零点的概念:对于函数y=f(x),使f(x)=0 的实数x叫做函数的零点。

(实质上是函数y=f(x)与x轴交点的横坐标)2、函数零点的意义:方程f(x)=0 有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点3、零点定理:函数y=f(x)在区间[a,b]上的图象是连续不断的,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)至少有一个零点c,使得f( c)=0,此时c 也是方程f(x)=0 的根。

4、函数零点的求法:求函数y=f(x)的零点:(1)(代数法)求方程f(x)=0 的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.5、二次函数的零点:二次函数f(x)=ax2+bx+c(a≠0).1)△>0,方程f(x)=0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.2)△=0,方程f(x)=0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.3)△<0,方程f(x)=0无实根,二次函数的图象与x轴无交点,二次函数无零点.二、二分法1、概念:对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。

2、用二分法求方程近似解的步骤:⑴确定区间[a,b],验证f(a)f(b)<0,给定精确度ε;⑵求区间(a,b)的中点c;⑶计算f(c),①若f(c)=0,则c就是函数的零点;②若f(a)f(c)<0,则令b=c(此时零点x0∈(a,c))③若f(c)f(b)<0,则令a=c(此时零点x0∈(c,b))(4)判断是否达到精确度ε:即若|a-b|<ε,则得到零点近似值为a(或b);否则重复⑵~⑷三、函数的应用:(1)评价模型:给定模型利用学过的知识解模型验证是否符合实际情况。

人教版高一数学必修一第一章知识点解析:函数及其表示

人教版高一数学必修一第一章知识点解析:函数及其表示

但我们心中永远有一个不灭的心愿。

是雄鹰,要翱翔羽天际!是骏马,要驰骋于疆域!要堂堂正正屹 立于天地!努力!坚持!拼搏!成功!一起来看看包括一对一多对一 考点二、函数的概念 1 函数设和是两个非空的数集,如果按照某种确定的对应关系, 对于集合中的任意一个数,在集合中都存在确定的数与之对应,那么, 就称对应→为集合到集合的一个函数。

记作=,其中叫自变量,的取值范围叫函数的定义域;与的值相对 应的的值函数值,函数值的集合叫做函数的值域。

函数是特殊的映射,是非空数集到非空数集的映射。

2 函数的三要素定义域、值域、对应关系。

这是判断两个函数是否为同一函数的依据。

3 区间的概念设,,且 ①,={ ⑤,+∞={>}⑥[,+∞={≥}⑦-∞,={ 考点三、函数的表示方法 1 函数的三种表示方法列表法图象法解析法 2 分段函数定义域的不同部分,有不同的对应法则的函数。

注意两点①分段函数是一个函数,不要误认为是几个函数。

②分段函数的定义域是各段定义域的并集,值域是各段值域的并 集。

考点四、求定义域的几种情况①若是整式,则函数的定义域是实数集; ②若是分式,则函数的定义域是使分母不等于 0 的实数集; ③若是二次根式,则函数的定义域是使根号内的式子大于或等于 0 的实数集合; ④若是对数函数,真数应大于零。

⑤因为零的零次幂没有意义,所以底数和指数不能同时为零。

⑥若是由几个部分的数学式子构成的,则函数的定义域是使各部 分式子都有意义的实数集合; ⑦若是由实际问题抽象出来的函数,则函数的定义域应符合实际 问题【人教版高一数学必修一第一章知识点解析函数及其表示】。

人教版高中数学必修一一次函数与二次函数知识点归纳超级精简版

人教版高中数学必修一一次函数与二次函数知识点归纳超级精简版

(每日一练)人教版高中数学必修一一次函数与二次函数知识点归纳超级精简版单选题1、下列函数在其定义域内为减函数的是( )A .f (x )=x 3B .f (x )=12x +1C .f (x )=log 3xD .f (x )=(13)x答案:D解析:根据幂指对函数和一次函数的性质进行判定.由幂函数的性质,可知A 中函数为单调增函数,由一次函数性质可知B 中函数为增函数,由对数函数性质可知C 中函数为增函数,由指数函数性质,可知D 中函数为单调减函数,故选:D.2、已知函数f (x )=x 2−2(a +1)x +a 2,g (x )=−x 2+2(a −1)x −a 2+2,记H 1(x )=f (x )+g (x )−|f (x )−g (x )|2,H 2(x )=f (x )+g (x )+|f (x )−g (x )|2,则H 1(x )的最大值与H 2(x )的最小值的差为( )A .−4B .4C .a 2−a +4D .a 2+a +8答案:B解析:先求y =f (x ),y =g(x)交点横坐标,再转化H 1(x )、H 2(x ),结合图象确定H 1(x )的最大值与H 2(x )的最小值的取法,最后作差得结果.令f(x)=g(x),则x2−2(a+1)x+a2=−x2+2(a−1)x−a2+2∴(x−a)2=1∴x=a±1H1(x)=f(x)+g(x)−|f(x)−g(x)|2=min{f(x),g(x)}H2(x)=f(x)+g(x)+|f(x)−g(x)|2=max{f(x),g(x)}作y=f(x),y=g(x)图象,由图可知实线部分为H1(x),虚线部分为H2(x)因此H1(x)的最大值为g(a−1)=3−2a,H2(x)的最小值为f(a+1)=−1−2a,从而H1(x)的最大值与H2(x)的最小值的差为(3−2a)−(−1−2a)=4,故选:B小提示:本题考查二次函数图像、分段函数最值,考查数形结合思想方法以及基本分析求解能力,属中档题.3、若∃x∈[−1,2],使得不等式x2−2x+a<0成立,则实数a的取值范围为()A.a<−3B.a<0C.a<1D.a>−3答案:C解析:由题意可转化为∃x∈[−1,2],使a<−x2+2x成立,求−x2+2x的最大值即可.因为∃x∈[−1,2],使得不等式x2−2x+a<0成立,所以∃x∈[−1,2],使得不等式a<−x2+2x成立,令f(x)=−x2+2x,x∈[−1,2],因为对称轴为x=1,x∈[−1,2]所以f(x)max=f(1)=1,所以a<1,故选:C小提示:本题主要考查了存在性命题的应用,考查了函数最值的求法,转化思想,属于中档题.填空题4、若函数y=√ax2+2ax+3的值域为[0,+∞),则a的取值范围是________.答案:[3,+∞)解析:根据值域为[0,+∞),分析可得,函数f(x)=ax2+2ax+3的最小值要小于等于0,列出方程,即可得结果. 因为函数y=√ax2+2ax+3的值域为[0,+∞),所以函数f(x)=ax2+2ax+3的最小值要小于等于0显然a不为0,所以{a>0Δ=4a2−12a≥0,解得a≥3.所以答案是:[3,+∞).小提示:本题考查二次函数的图像与性质,考查分析理解,求值化简的能力,属中档题.5、已知二次函数f(x)满足f(x)=f(2-x),且f(1)=6,f(3)=2.若不等式f(x)>2mx+1在[-1,3]恒成立,则实数m 的取值范围是______.答案:(-12,16) 解析:根据f (x )=f (2-x ),且f (1)=6,f (3)=2.求解f (x )的解析式,带入不等式,讨论对称轴与区间端点大小,即可求解实数m 的取值范围.由题意,设f (x )=ax 2+bx +c ,由f (x )=f (2-x ),可得−b 2a =1,即b =-2a ;且f (1)=6,f (3)=2.可得{a +b +c =69a +3b +c =2, 解得:c =5,a =-1,b =2∴f (x )=-x 2+2x +5, 则-x 2+2x +5>2mx +1在[-1,3]恒成立,令h (x )=x 2+(2m -2)x -4<0.根据二次函数的性质,可得{ℎ(−1)<0ℎ(3)<0 ,即{1−2m +2−4<09+6m −6−4<0得−12<m <16. 故答案为(-12,16).小提示:本题主要考查一元二次函数最值的求解,以及不等式恒成立问题,利用根的分布是解决本题的关键.。

人教版高中数学必修一函数知识点(精简版)

人教版高中数学必修一函数知识点(精简版)

函数常考知识点汇总1.2.1函数的概念1、函数的概念设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.【定义域补充】求函数的定义域时列不等式组的主要依据是(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底数必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.3、相同函数的判断方法(1)定义域一致;(2)表达式相同 (两点必须同时具备)注意:两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

1.2.2函数的表示法4、函数图象知识(Ⅰ)对称变换①将y= f(x)在x轴下方的图象向上翻得到y=∣f(x)∣的图象如:书上P21例5②y= f(x)和y= f(-x)的图象关于y轴对称。

如③y= f(x)和y= -f(x)的图象关于x轴对称。

如6、函数的解析式 A、如果已知函数解析式的构造时,可用待定系数法;B、已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;C、若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)1.3.1函数单调性与最大(小)值1、函数的单调性定义设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数。

区间D称为y=f(x)的单调增区间;【注意】(1)函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;(2)必须是对于区间D内的任意两个自变量x1,x2;当x1<x2时,总有f(x1)<f(x2) (或f(x1)>f(x2))。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数常考知识点汇总1.2.1函数的概念1、函数的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .【定义域补充】 求函数的定义域时列不等式组的主要依据是 (1)分式的分母不等于零;(2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底数必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合. (6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义. 3、相同函数的判断方法(1)定义域一致;(2)表达式相同 (两点必须同时具备)注意:两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

1.2.2函数的表示法4、函数图象知识 (Ⅰ)对称变换 ①将y= f(x)在x 轴下方的图象向上翻得到y=∣f(x)∣的图象如:书上P21例5②y= f(x)和y= f(-x)的图象关于y 轴对称。

如1xxxy a y aa -⎛⎫=== ⎪⎝⎭与 ③y= f(x)和y= -f(x)的图象关于x 轴对称。

如1log log log a a ay x y x x ==-=与 6、函数的解析式 A 、如果已知函数解析式的构造时,可用待定系数法;B 、已知复合函数f[g(x)]的表达式时,可用换元法,这时要注意元的取值范围;当已知表达式较简单时,也可用凑配法;C 、若已知抽象函数表达式,则常用解方程组消参的方法求出f(x)1.3.1函数单调性与最大(小)值1、函数的单调性定义设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数。

区间D 称为y=f(x)的单调增区间;【注意】(1)函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;(2)必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f(x 1)<f(x 2) (或f(x 1)>f(x 2))。

3、函数单调区间与单调性的判定方法(A) 定义法①任取x 1,x 2∈D ,且x 1<x 2;②作差f(x 1)-f(x 2);③变形(通常是因式分解和配方); ④定号(即判断差f(x 1)-f(x 2)的正负); ⑤下结论(指出函数f(x)在给定的区间D 上的单调性).(B)图象法(从图象上看升降) (C)复合函数的单调性:复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律如下:同增异减 4、判断函数的单调性常用的结论⑤函数()f x 、()g x 都是增(减)函数,则()()f x g x +仍是增(减)函数;⑥若()0,()0f x g x >>且()f x 与()g x 都是增(减)函数,则()()f x g x g 也是增(减)函数; 若()0,()0f x g x <<且()f x 与()g x 都是增(减)函数,则()()f x g x g 也是减(增)函数; 5、函数的最大(小)值定义(ⅰ)一般地,设函数y=f(x)的定义域为I ,如果存在实数M 满足:(1)对于任意的x ∈I ,都有f(x)≤M ;(2)存在x 0∈I ,使得f(x 0) = M 那么,称M 是函数y=f(x)的最大值.6、利用函数单调性的判断函数的最大(小)值的方法 ○1 利用二次函数的性质(配方法)求函数的最大(小)值 ○2 利用图象求函数的最大(小)值 ○3 利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b);1.3.2 函数的奇偶性1、偶函数定义 一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数.【注意】 ②函数可能没有奇偶性,也可能既是奇函数又是偶函数。

③由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是 即定义域关于原点对称.3、有奇偶性的函数图象特征 :偶函数的图象关于y 轴对称;奇函数的图象关于原点对称.且f(0)=0 (在原点处有意义时)4、利用定义判断函数奇偶性的格式步骤 :①首先确定函数的定义域,并判断其定义域是否关于原点对称;②确定f(-x)与f(x)的关系; ③作出结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;同理则是奇函数. 5、函数奇偶性的性质 ①奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数是怎样的?⑥复合函数的奇偶性特点是:“内偶则偶,内奇同外”.第二章 基本初等函数 2.1 指数函数 2.1.1指数与指数幂的运算1、根式的概念: 负数没有偶次方根;0的任何次方根都是0,记作0n =0.【注意】 (1)()nn a a = (2)当 n 是奇数时,n n a a = ,当 n 是偶数时,,0||,0n n a a a a a a ≥⎧==⎨-<⎩2、分数指数幂 (1)正数的正分数指数幂的意义,规定:(0,,,1)m n m naa a m n N n *=>∈>且(2)正数的正分数指数幂的意义:_1(0,,,1)m nm naa m n N n a*=>∈>且(3)0的正分数指数幂等于0,0的负分数指数幂没有意义3、实数指数幂的运算性质 (1)(0,,)rsr sa a aa r s R +=>∈(2)()(0,,)r srsa a a r s R =>∈ (3)(b)(0,0,)rr ra ab a b r R =>>∈ 2、指数函数的图象和性质0<a<1a>1图象性质定义域R ,值域(0,+∞) (1)过定点(0,1),即x=0时,y=1(2)在R 上是减函数 (2)在R 上是增函数 (3)当x>0时,0<y<1;当x<0时,y>1(3)当x>0时,y>1; 当x<0时,0<y<12.2.1对数与对数运算1、对数的概念一般地,如果xa N = ,那么数x 叫做以a 为底N 的对数,记作:log a x N = ( a —底数 N —真数)【注意】 (1)注意底数的限制,a>0且a ≠1;(2)真数N>0;2、两个重要对数(1)常用对数:以10为底的对数, 10log lg N N 记为 ;(2)自然对数:以无理数e 为底的对数的对数 , log ln e N N 记为.e ≈2.713、对数式与指数式的互化 log xa x N a N =⇔=(1)负数和零没有对数 (2)log a a=1, log a 1=0,特别地,lg10=1, lg1=0 , lne=1, ln1=0 (3)对数恒等式:log Na a N =4、如果a > 0,a ≠ 1,M > 0,N > 0 有 【有时可逆向运用公式】(1)log M N log log a a a M N •=+()(2)N M NMa a a log log log -= (3)log log n na a M n M =∈(R ) (一个正数的n 次方的对数等于这个正数的对数n 倍)5、换底公式 :()log lg log 0,1,0,1,0log lg c a c b b b a a c c b a a==>≠>≠>利用换底公式推导下面的结论①a b b a log 1log =③log log m na a nb b m=2.2.2 对数函数及其性质1、对数函数的概念 函数log a y x = (a>0,且a ≠1) 叫做对数函数,其中x 是自变量,函数的定义域是____2、对数函数的图像与性质 对数函数log y x =(a>0,且a ≠1)0 0< a < 1a a > 1图 像 自己画画看性质 定义域:_____ 值域:______过点( , ) 即当x =1时,y =在 (0,+∞)上是减函数 在 (0,+∞)上是增函数 当x>1时,y____ 当x=1时,y____ 当0<x<1时,y____ 当x>1时,y___ 当x=1时,y___ 当0<x<1时,y____【口诀】底真同大于0(底真不同小于0).3、如图,底数 a 对函数x y a log = 的影响. 规律:底大枝头低, 头低尾巴翘 4考点Ⅱ、对数函数的单调性由底数决定的,底数不明确的时候要进行讨论。

掌握利用单调性比较对数的大小、。

Ⅴ、y=a x (a>0且a ≠1) 与y=log a x (a>0且a ≠1) 互为反函数,图象关于y=x 对称。

6 比较大小的方法: (1)利用函数单调性(同底数);(2)利用中间值(如:0,1.);(3)变形后比较;(4)作差比较(5)比商判断2.3幂函数1、幂函数定义一般地,形如y x α=的函数称为幂函数,其中x 是自变量,α为常数.2、幂函数性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0 时,幂函数的图象通过原点,并且在[0,+ ∞)上是增函数.特别地,当α>1时,幂函数的图象下凸;当0<α<1时,幂函数的图象上凸;(3)α<0 时,幂函数的图象在(0,+∞)上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于+∞时,图象在x 轴上方无限地逼近x 轴正半轴.第三章 函数的应用 3.1方程的根与函数的零点1、函数零点的概念:对于函数y=f(x),使f(x)=0 的实数x 叫做函数的零点.(实质上是函数y=f(x)与x 轴交点的横坐标)2、函数零点的意义:方程f(x)=0 有实数根⇔函数y=f(x)的图象与x 轴有交点⇔函数y=f(x)有零点.3、零点定理:函数y=f(x)在区间[a,b]上的图象是连续不断的,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b )至少有一个零点c ,使得f( c)=0,此时c 也是方程 f(x)=0 的根.4、函数零点的求法 求函数y=f(x)的零点: (1)(代数法)求方程f(x)=0 的实数根;(2)(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点. 52两个根都在(m,n )内两个有且仅有一个在(m,n)内x 1∈(m,n) x 2∈(p,q)f(m)f(n)<0两个根都小于K两个根都大于K 一个根小于K ,一个根大于Kkyxkmn p qyx n m2()0()0b m n a f m f n ∆>⎧⎪⎪<-<⎪⎨⎪>⎪>⎪⎩()0()0()0()0f m f n f p f q >⎧⎪<⎪⎨<⎪⎪>⎩2()0b k a f k ⎪⎪-<⎨⎪>⎪⎩k。

相关文档
最新文档