实验1-基带信号的常用码型变换实验
实验一数字基带信号的产生及波形变换实验

实验一数字基带信号的产生及波形变换实验一、实验目的(1)了解多种时钟信号的产生方法;(2)了解帧同步信号的产生过程;(3)了解几种常见的数字基带信号;(4)掌握AMI码的编码规则。
二、实验原理通信的根本任务是远距离传递消息,因而如何准确地传输数字信息是数字通信的一个重要组成部分。
在数字传输系统中,其传输对象通常是二元数字信息,它可能来自计算机、电传打字机或其它数字设备的各种数字代码,也可能来自数字电话终端的脉冲编码信号。
对基带传输系统的要求就是选择一组有限的离散波形来表示数字信息。
其中未调制的电脉冲信号所占据的频带通常从直流和低频开始,因而称为数字基带信号。
数字基带信号实际上是消息代码的电波形,不同形式的数字基带信号具有不同的频谱结构。
在某些有线信道中,特别是传输距离不太远的情况下,数字基带信号可以直接传送,但必须合理地设计数字基带信号以使数字信息变换为适合于给定信道传输特性的频谱结构。
通常把数字信息的电脉冲表示过程称为码型变换,在有线信道中传输的数字基带信号又称为线路传输码型。
对于数字基带信号的码型选择通常考虑的原则是:(1)对于传输频带低端受限的信道,其线路传输码型的频谱中应不含直流分量;(2)码型变换过程应对任何信源具有透明性,即与信源的统计特性无关;(3)便于从基带信号中提取位定时信息;(4)便于实时监测传输系统信号传输质量,即应能检测出基带信号码流中错误的信号状态;(5)对于某些基带传输码型,信道中传输的单个误码会扰乱一段译码过程,从而导致译码信息中出现多个错误,这种现象称为误码扩散。
希望这种情况越少越好;(6)当采用分组形式的传递码型时,在接收端不但要从基带信号中提取位定时信息,而且要恢复出分组同步信息,以便将接收到的信号正确地划分成固定长度的码组;(7)尽量减少基带信号频谱中的高频分量;(8)编译码设备应尽量简单。
数字基带信号在通信系统中占有比较重要的位置,本实验是整个通信实验系统的数字发送端,其原理框图如图 1-1 所示。
基带信号的常见码型实验代码

基带信号的常见码型实验代码引言随着通信技术的发展和应用的普及,基带信号的处理变得越来越重要。
在通信领域中,基带信号是指未经过调制的信号,是数字数据或模拟信号的直接表达。
基带信号的常见码型是指在数字通信中常用的信号编码方式。
本文将详细探讨基带信号的常见码型实验代码。
1. 基带信号概述基带信号是指信号通过低通滤波器之后的信号。
它是一种携带有用信息的波形信号,可以表示为一个成对的实数或复数函数。
基带信号常用于数字通信系统中的数据传输和调制解调过程。
2. 基带信号的编码方式基带信号的编码方式有很多种,其中常见的包括:2.1 单极性非归零码(Unipolar Non-Return-to-Zero,UNRZ)单极性非归零码是一种简单的基带信号编码方式。
它的特点是使用一个电平表示数据位,0表示低电平,1表示高电平。
UNRZ码的优点是编码简单,缺点是抗干扰能力较差。
2.2 双极性非归零码(Bipolar Non-Return-to-Zero,BNRZ)双极性非归零码是一种使用正负电平表示数据位的基带信号编码方式。
它的特点是0表示低电平,1表示正负两种高电平。
BNRZ码的优点是抗干扰能力较好,缺点是在传输过程中可能产生直流分量。
2.3 单极性归零码(Unipolar Return-to-Zero,URZ)单极性归零码是一种使用正电平和零电平表示数据位的基带信号编码方式。
它的特点是每个数据位的中间位置都有一个归零点,以实现数据位的识别。
URZ码的优点是抗干扰能力较好,缺点是传输速率较低。
2.4 曼彻斯特编码(Manchester Coding)曼彻斯特编码是一种使用电平转变来表示数据位的基带信号编码方式。
它的特点是每个数据位都包含一个电平转变,0表示电平下降,1表示电平上升。
曼彻斯特编码的优点是时钟恢复容易,缺点是带宽利用率较低。
3. 基带信号码型实验代码为了实现基带信号的编码方式,我们可以使用编程语言编写相应的实验代码。
实验-CMI码型变换实验

实验-CMI码型变换实验实验CMI码型变换实验一、实验原理和电路说明在实际的基带传输系统中,并不是所有码字都能在信道中传输。
例如,含有丰富直流和低频成分的基带信号就不适宜在信道中传输,因为它有可能造成信号严重畸变。
同时,一般基带传输系统都从接收到的基带信号流中提取收定时信号,而收定时信号却又依赖于传输的码型,如果码型出现长时间的连“0”或连“1”符号,则基带信号可能会长时间的出现0电位,从而使收定时恢复系统难以保证收定时信号的准确性。
实际的基带传输系统还可能提出其他要求,因而对基带信号也存在各种可能的要求。
归纳起来,对传输用的基带信号的主要要求有两点:1、对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型;2、对所选码型的电波波形要求,期望电波波形适宜于在信道中传输。
前一问题称为传输码型的选择;后一问题称为基带脉冲的选择。
这是两个既有独立性又有互相联系的问题,也是基带传输原理中十分重要的两个问题。
传输码(传输码又称为线路码)的结构将取决于实际信道特性和系统工作的条件。
在较为复杂的基带传输系统中,传输码的结构应具有下列主要特性:1、能从其相应的基带信号中获取定时信息;2、相应的基带信号无直流成分和只有很小的低频成分;3、不受信息源统计特性的影响,即能适应于信息源的变化;4、尽可能地提高传输码型的传输效率;5、具有内在的检错能力,等等。
满足或部分满足以上特性的传输码型种类繁多,主要有:CMI码、AMI、HDB3等等,下面将主要介绍CMI码。
根据CCITT建议,在程控数字交换机中CMI 码一般作为PCM四次群数字中继接口的码型。
在CMI码模块中,完成CMI的编码与解码功能。
CMI编码规则见表4.2.1所示:表4.2.1 CMI的编码规则输入码字编码结果0 011 00/11交替表示因而在CMI编码中,输入码字0直接输出01码型,较为简单。
对于输入为1的码字,其输出CMI码字存在两种结果00或11码,因而对输入1的状态必须记忆。
基带信号常用码型转换

通信原理大作业用matlab仿真1.幅频失真S(t)=sint+1/3sin3t,S’(t)=sint+sin3t;相频失真S(t)=sint+1/3sin3t,S’(t)=sin(t+2pi)+1/3sin(3t+3pi).程序:x=0:pi/20:3*pi;y1=sin(x)+(sin(3*x))/3;y2=sin(x)+sin(3*x);y3=sin(x+2*pi)+(sin(3*x+3*pi))/3;figure(1)plot(x,y1);hold onplot(x,y2,'r-');legend('S(t)=sint+1/3sin3t','S(t)=sint+sin3t')figure(2)plot(x,y1);hold onplot(x,y3,'r-');legend('S(t)=sint+1/3sin3t','S(t)=sin(t+2*pi)+1/3sin(3t+3*pi)')幅频失真相频失真2. 将输入的一串0,1编码1) 转换成AMI 码 2) 转换成HDB3码 3) 转换成双相码 4) 转换成Miller 码 5) 转换成CMI 码 总流程开始输入数组依次显示五种码形结束转换成AMI 码转换成CMI码转换成HDB3码转换成双相码转换成Miller码转化成五种码具体流程思路:数组xn 中0保持不变;并统计1个数,当为偶数1保持不变;当为奇数1变换为-1 1) 转换成AMI 码 nono no得到数组xnXn (i )是否=1num=num+1num 是否为偶数 得到数组xn 长度k i=1; num=0yn(i)=xn(i)yn(i)=xn(i)yn(i)= -xn(i)i 是否=k 得到数组yn i=i+12) 转换成HDB3码 思路:在AMI 码基础上1. 当出现第一个四个连0 时v=前一个非0数2. 当出现四个连0,v 和-v 交替出现3. 判断破坏脉冲是否成立,如果不成立四个连0的第一个0做相应变换(即添加B ) 以后的1也要取负得到v(1)是否是得到数组yni=1yn (i )是否=0 num=num+1 num=0num 是否=4v=yn(i-4)否否否 否否得到数组yn i=1 sign=1 num=0yn (i )是否=0num=num+1num 是否=4yh(i)=v(sign)sign 是否为偶数 yh(i)= -v(sign)yh(i)是否=yh(i-4) yh(i-3)=yh(i) yh(i:k)=Yh(i:k )i 是否=k 得到数组yhi=i+13) 转换成双相码思路:1.当出现0转换为01 2.当出现1转换为10;nono得到数组xn得到数组xn 长度kys(2i-1)=0;ys(2i-2)=1Xn(i)是否=0i=1ys(2i-1)=1;ys(2i-2)=0i 是否=k 得到数组ys i=i+14) 转换成密勒码 思路:1.当第一个数出现1时转换成10;否则转换为002.以后当出现1时对应的第一个码不变,第二个变化;当出现一个0对应的两个码元都不变;出现连0对应的两个码元都变化。
(一)码型变换实验

实验一码型变换实验一、实验目的1. 了解几种常用的数字基带信号。
2. 掌握常用数字基带传输码型的编码规则。
3. 掌握常用CPLD实现码型变换的方法。
二、实验内容1. 观察NRZ码、RZ码、AMI码、CMI码、HDB3码、BPH码的波形。
2. 观察全0码或全1码时各码型波形。
3. 观察HDB3码、AMI码的正、负极性波形。
4. .观察NRZ码、RZ码、AMI码、CMI码、HDB3码、BPH码经过码型反变换后的输出波形。
5. 自行设计码型变换电路,下载并观察波形。
三、实验器材1. 信号源模块2. ⑥号模块(码型变换)3. ⑦号模块(载波同步)4. 20M双踪示波器5. 连接线(若干)四、实验原理(一)基本原理1、数字通信中,有些场合可不经过载波调制解调而让基带信号直接进行传输。
例如,市区内利用电传机直接电报通信,或者利用中继长距离直接传输PCM 信号等。
这种不使用载波调制装置而直接传送基带信号的系统,称为基带传输系统。
它的基本结构如图1所示:图1 基带传输系统基本结构结构说明:(1)信道信号合成器:产生适合于信传输的基带信号。
(2)信道可以是允许基带信号通过的媒质,如能通过从直流到高频的有线线路。
(3)接收滤波器:用来接收信号和尽可能排除信道噪声和其他干扰。
(4)抽样判决器:在噪声背景下判定与再产生基带信号。
2、基带调制与解调(1)数字基带调制器:把数字基带信号变换成基带信号传输的基带信号。
(2)基带解调器器:把信道基带信号变换成原始数字基带信号。
(3)对传输用的基带信号的主要要求(4)对代码:将原始信息符号编制成适合于传输用的码型;(5)对码型的电波形:电波形适宜于在信道中传输。
(二)编码规则1、NRZ码NRZ (Noreturn-To-Zero)码,全称是单极性不归零码,在这种二元码中用高电平和低电平(这里为零电平)分别表示二进制信息“1”和“0”,在整个码元期间电平保持不变。
例如图2:图2 NRZ码2、RZ码RZ (Return-To-Zero)码,全称是单极性归零码,与NRZ码不同的是,发送“1”时在整个码元期间高电平只持续一段时间,在码元的其余时间内则返回到零电平。
实验1 基带信号的常用码型变换实验

实验1 基带信号的常用码型变换实验一、实验目的1.熟悉RZ 、BNRZ 、BRZ 、CMI 、曼彻斯特、密勒码型变换原理及工作过程;2.观察数字基带信号的码型变换测量点波形;二、实验仪器1.AMI/HDB3编译码模块,位号:F (实物图片如下)2.时钟与基带数据发生模块,位号:G3.20M 双踪示波器1台4.信号连接线3根三、实验工作原理(一)基带信号及其常用码型变换在实际的基带传输系统中,传输码的结构应具有下列主要特性:1) 相应的基带信号无直流分量,且低频分量少;2) 便于从信号中提取定时信息;3) 信号中高频分量尽量少,以节省传输频带并减少码间串扰;4) 不受信息源统计特性的影响,即能适应于信息源的变化;5) 编译码设备要尽可能简单。
1.1 单极性不归零码(NRZ 码)单极性不归零码中,二进制代码“1”用幅度为E 的正电平表示,“0”用零电平表示,单极性码中含有直流成分,而且不能直接提取同步信号。
0000E +1111 图1-1 单极性不归零码1.2 双极性不归零码(BNRZ 码)二进制代码“1”、“0”分别用幅度相等的正负电平表示,当二进制代码“1”和“0”等概出现时无直流分量。
10111000E +E-0图 1-2 双极性不归零码1.3 单极性归零码(RZ 码)单极性归零码与单极性不归零码的区别是码元宽度小于码元间隔,每个码元脉冲在下一个码元到来之前回到零电平。
单极性码可以直接提取定时信息,仍然含有直流成分。
00001111E +0图 1-3 单极性归零码1.4 双极性归零码(BRZ 码)它是双极性码的归零形式,每个码元脉冲在下一个码元到来之前回到零电平。
00001111E +0E-图 1-4 双极性归零 1.5 曼彻斯特码曼彻斯特码又称为数字双相码,它用一个周期的正负对称方波表示“0”,而用其反相波形表示“1”。
编码规则之一是:“0”码用“01”两位码表示,“1”码用“10”两位码表示。
实验一 数字基带编译码实验

实验一数字基带编译码实验Ⅰ.HDB3 编译码实验一.实验内容1.熟悉 HDB3 码型变换编码实验2. 熟悉 HDB3 码型变换译码实验二、实验目的1. 熟悉 HDB3 码编译码原理。
2. 观察 HDB3 码编码和解码的结果,结合原理进一步理解编解码过程。
3. 学习通过软件编程实现 HDB3 编译码实验。
三、实验电路工作原理2、HDB3 编码的原理(1)编码规则:先把二进制序列中的‘0’码变为‘0 ’,而把序列的‘1’交替的变换为+1 ,-1。
再检查序列中是否有 4 个或 4 个以上的连‘0’,若有,则将每 4 个连‘0’小段的第四个‘0’变换成与前一个非‘0’码(指的是+1 和-1 )同极性的码,由于极性不定,不防称之为 V 码(若是+1 用+ V,-1 用-V),为了保持无直流分量的特性,则须将 V 码也交替变换(即和前一个 V 的极性相反),但这样还不能保证+ 极性的码和- 极性的码的数目是一样的,因为当两个 V 码之间有偶数个非‘0’码时,就会+ 极性和- 极性数目不等,所以还要再将该小段的第一个‘0’码变换成+B 码或-B 码(B 符号的极性和前一个非‘0’码的符号极性相反,并让后面的非‘0’码的极性再从 V 符号开始交替变换。
到此编码完成。
如:二进制序列为:1000 0 1000 0 1 1 000 0 1 1-1000 -V +1000 +V -1 +1 –B00 -V +1 -1(这有偶数个非零符号)四、实验内容和步骤拨码开关识别注意点:SWD01 拨上为“1”,拨下为“0”,SWD01 拨上为“0”,拨下为“1”,同时输入信号从高位算起(即第八位向第一位开始算起)。
1.将 SWD02 ( 8 位的拨码开关)拨到你想要输入的数据;2.将 SWD01(4 位的拨码开关)拨为 1100,选择 HDB3 编解码;3.按动 RST 键复位程序;4.用示波器观测 TPD07 的发送信号码元波形,TPD13 的时钟信号,观察发送码元的发光管 DD01,DD02……DD08 的显示;5.观察 TPD02 的 HDB3 的编码波形,记录并分析 HDB3 的编码规则;6.观察 TPD08 处的 HDB3 解码码元,分析 HDB3 的解码算法;7.将 1 步骤中的数据改变,再重复以上步骤,并做记录。
码型变换——精选推荐

码型变换内蒙古⼯业⼤学信息⼯程学院实验报告课程名称:通信原理实验名称:码型变换实验类型:验证性■综合性□设计性□实验室名称:通信实验室班级:电⼦10-1班学号:201080203002 姓名:王红霞组别:同组⼈:成绩:实验⽇期: 2013年6⽉4⽇通信原理课程实验实验⼀码型变换⼀、实验⽬的1、了解⼏种常见的数字基带信号。
2、掌握常⽤数字基带传输码型的编码规则。
⼆、实验内容1.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码的波形。
2.观察全0码或全1码时各码型波形。
1.观察HDB3码、AMI码、BNRZ码正、负极性波形。
2.观察NRZ码、RZ码、BRZ码、BNRZ码、AMI码、CMI码、HDB3码、BPH码经过码型反变换后的输出波形。
⼆、实验过程a)将信号源模块、码型变换模块⼩⼼地固定在主机箱中,确保电源接触良好。
插上电源线,打开主机箱右侧的交流开关,再分别桉下两个模块中的开关POWER1、POWER2,对应的发光⼆极管LED001、LED002、D900、D901发光,按⼀下信号源模块的复位键,两个模块均开始⼯作。
b)将信号源模块的拨码开关SW101、SW102设置为00000101 00000000,SW103、SW104、SW105设置为01110010 00110000 00101010。
此时分频⽐千位、⼗位、个位均为0,百位为5,因此分频⽐为500,此时位同步信号频率应为4KHz。
观察BS、FS、2BS、NRZ各点波形。
实验数据:BS 2BS(注:2BS与BS的频率不⼀样,为2倍同步频率⽅波信号,此2图的频率不同,如果两次⽤同⼀频率就会形成鲜明的对⽐了,需要改进)FS NRZc)分别将信号源模块和码型变换模块上以下四组输⼊/输出接点⽤连接线连接:BS与BS、FS与FS、2BS与2BS、NRZ与NRZ。
观察码型变换模块上其余各点波形。
实验数据:1、RZ测试点输出的RZ码2、BPH测试点输出的BPH码3、CMI测试点输出的CMI码4、HDB3测试点输出的HDB3码5、BRZ测试点输出的BRZ码6、BNRZ测试点输出的BNRZ码7、AMI测试点输出的AMI码8、AMI—1测试点(AMI编码正极性(帧同步开关控制拨位“有”)信号输出点)输出的码型9、AMI—2测试点(AMI编码负极性10、HDB3—1测试点(HDB3编码正信号输出点)输出的码型极性信号输出点)输出的码型11、HDB3—2测试点(HDB3编码负12、BNRZ—1测试点(BNRZ编码正极性信号输出点)极性信号输出点,与NRZ码反相)13、BNRZ—2测试点(BNRZ编码负14、BRZ—1测试点(BRZ编码单极性信号输出点,与NRZ码同相)极性信号输出点)输出的码型15、ORZ测试点(RZ解码信号输出点,16、OBPH测试点(BPH解码信号输出点,与NRZ码⼀起双踪观察)与NRZ码⼀起双踪观察)输出的码型(滞后⼀个半码元)输出的码型(滞后⼀个码元)17、OCMI测试点(CMI解码信号输出点,18、OBRZ测试点(BRZ解码信号输出点,与NRZ码⼀起双踪观察)与NRZ码⼀起双踪观察)输出的码型(滞后两个码元)输出的码型(滞后半个码元)19、OBNRZ测试点(BNRZ解码信号输20、OAMI测试点(AMI解码信号输出点,与NRZ码⼀起双踪观察)出点,与NRZ码⼀起双踪观察)输出的码型(滞后半个码元)输出的码型(滞后半个码元)21、OHDB3测试点(HDB3解码信号输出点,与NRZ码⼀起双踪观察)输出的码型(滞后七个半码元)d)任意改变信号源模块上的拨码开关SW103、SW104、SW105的设置,以信号源模块的NRZ码为内触发源,⽤双踪⽰波器观察码型变换模块各点波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验1-基带信号的常用码型变换实验
信息工程学院实验报告
课程名称: 通信原理 实验项目名称:实验1 基带信号的常用码型变换实验 实验时间:2016.11.1 班级: 姓名: 学号:
一、实验目的 1.熟悉RZ 、BNRZ 、BRZ 、CMI 、曼彻斯特、密勒码型变换原理及工作过程; 2.观察数字基带信号的码型变换测量点波形;
二、实验仪器
1.AMI/HDB3编译码模块,位号:F 2.时钟与基带数据发生模块,位号:G 3.20M 双踪示波器1台 4.信号连接线3根
三、实验步骤
1.插入有关实验模块
在关闭系统电源的情况下,按照下表放置实验模块:
模块名称 放置位号
时钟与基带数据发生模块
G 对应位号可见底板右上角的“实验模块位置分布表”,
注意模块插头与底板插座的防呆口一致。
2.加电 打开系统电源开关,底板的电源指示灯正常显示。
若电源指示灯显示不正常,请立即关闭电源,查找异常
成 绩:
指导老师(签名):
原因。
3.实验内容设置
将“4SW02”(G)拨码开关设置为“1XXXX”,则选择了模块的线路编码功能,具体编码方式参考下表的码型选择表:
表格 4SW02开关码型选择表:
1X XX X 1X
00
1X
00
1
1X
01
1X
01
1
1X10
1X
10
1
1X
11
码型RZ
BN
RZ
BR
Z
CM
I
曼彻
斯特
密
勒
PS
T
注:第2位,X=0时基带数据为4SW01拨码器设置数据,X=1时基带数据为15位m序列,设置的基带数据可以在4P01铆孔测试。
4.编码观测
5.关机拆线
实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。
四、实验观测及分析:
1.RZ(单极性归零码)
(1)将4SW02设置为“10000”,选择RZ(单极性归零码)模式;
(2)用示波器同时观测4P01和4TP01,观察码型变换前的基带数据和码型变换后的数据。
(3)将4SW02设置为“11000”,选择RZ(单极性归零码)模式;
(4)用示波器同时观测4P01和4TP01,观察码型变换前的基带数据和码型变换后的数据。
波形分析:由实验结果可知,单极性归零码的波形中,电脉冲的宽度小于码元宽度,每个有电脉冲在小于码元长度的内总要回到零电平,所以称为归零码,单极性归零码可以直接提取定时信息,仍然含有直流成分。
2.BNRZ(双极性不归零码)
(1)将4SW02设置为“10001”,选择BNRZ(双极性不归零码)模式;
(2)用示波器同时观测4P01和4TP01,观察码型变换前的基带数据和码型变换后的数据。
(变换后有一个码元的延时)
(3)将4SW02设置为“11001”,选择BNRZ(双极性不归零码)模式;
(4)用示波器同时观测4P01和4TP01,观察码型变换前的基带数据和码型变换后的数据。
(变换后有一个码元的延时)
波形分析:由实验结果可知,在双极性不归零码的波形中,二进制代码“1”、“0”分别用幅度相等的正、负电平表示,由于它是幅度相等的极性相反的双极性波形,故当二进制代码“1”和“0”等概出现时无直流分量。
3.BRZ(双极性归零码)
(1)将4SW02设置为“10010”,选择BRZ(双极性归零码)模式;
(2)用示波器同时观测4P01和4TP01,观察码型变换前的基带数据和码型变换后的数据。
(变换后有一个码元的延时)
(3)将4SW02设置为“11010”,选择BRZ(双极性归零码)模式;
(2)用示波器同时观测4P01和4TP01,观察码型变换前的基带数据和码型变换后的数据。
(变换后有一个码元的延时)
波形分析:由实验结果可知,在双极性归零码的波形中,它兼有双极性和不归零性波形的特点,二进制代码“1”、“0”分别用幅度相等的正、负电平表示,且每个码元脉冲在下一个码元到来之前回到零电平。
4.CMI码
(1)将4SW02设置为“10011”,选择CMI码模式;
(2)记录由4SW01设置的8bit基带数据,根据教材理论写出对应的CMI编码;
(3)用示波器同时观测4P01和4TP01,观察码型变换前的基带数据和码型变换后的数据,并与理论编码进行对比验证。
(变换后有一个码元的延时)
波形验证:CMI码是传号反转码的简称,与曼彻斯特码类似,也是一种双极性二电平码,其编码规则:“1”码交替的用“11“和”“00”两位码表示;“0”码固定的用“01”两位码表示。
当4SW01(8bit码型变换前的基带数据)为11010010,根据CMI编码编码规则,码型变换后的数据为:11 00 01 11 01 01 00 01,其波形与实验结果波形一致。
5.曼彻斯特码
(1)将4SW02设置为“10100”,选择曼彻斯特码模式;
(2)记录由4SW01设置的8bit基带数据,根据教材理论写出对应的CMI编码;
(3)用示波器同时观测4P01和4TP01,观察码型变换前的基带数据和码型变换后的数据,并与理论编码进行对比验证。
(变换后有一个码元的延时)
波形验证:曼彻斯特码又称为数字双相码,它用一
个周期的正负对称方波表示“0”,而用其反相波形表示“1”。
编码规则之一是:“0”码用“01”两位码表示,“1”码用“10”两位码表示。
当4SW01(8bit基带数
据)的值为11010010,根据曼彻斯特码编码规则,码型变换后的数据为:10 10 01 10 01 01 10 01,其波形与实验结果波形一致。
6.密勒码
(1)将4SW02设置为“10101”,选择密勒码模式;
(2)记录由4SW01设置的8bit基带数据,根据教材理论写出对应的CMI编码;
(3)用示波器同时观测4P01和4TP01,观察码型变换前的基带数据和码型变换后的数据,并与理论编码进行对比验证。
(变换后有一个码元的延时)
波形验证:密勒码又称延迟调制码,它是双向码的在一种变形。
编码规则是:“0”码用“01”两位码表示,“1”码用“10”两位码表示。
当4SW01(8bit基带数据)的值为11010010,根据密勒码编码规则,码型变换
后的数据为:10 01 11 10 00 11 10 00,其波形与实验结果波形一致。
五、实验总结:
通过此次实验的学习,熟悉了RZ、BNRZ、BRZ、CMI、曼彻斯特码、密勒码的码型特征以及码型变换原理,通过观察数字基带信号的前后码型变换,让我对码型的各种编码规则更加的理解;。