高频电路实验的设备选择与实验操作指南

合集下载

高频实验指导书正文

高频实验指导书正文
(2) 频率特性仪零dB校正
a. 频标方式选择外标或10/1MHZ,扫频方式选择窄扫,
图4-3频率特性仪调回路谐振曲线方框图
b. dB衰置X1、dB衰减键全弹出.
c.将RF输出、Y输入端与被测电路输入、输出端连,出现双平行线,调Y增益旋钮,并读0dB校正线高度:H=5格。完成0dB校正后,Y增益旋钮在以后的实验步骤里不要再调动.
AV=
Q=
(2) R=2KΩ,VOP-P=0.21V,BW2=2Δf0.7=
AV=
Q=
(3) R=470Ω,VOP-P=0.12V,BW3=2Δf0.7=
b.接通被测电路电源,以波峰高度满5大格为1计算读出其幅频曲线0.707高的频带宽度T0.7=______小格,则0.707通频带宽度Δf0.7=Δf×T0.7=______MHz。同理,可测0.1高的频带宽度T0.1=_____小格, 则0.1通频带宽度Δf0.1=Δf×T0.1=______MHz。计算出此电路的矩形系数Kr0.1=Δf0.1/Δf0.7=______.
(4)通频带测量
a.用外接频标法:
断开电源,频标外接,SIZE旋钮旋至最右,“MARKER OUT/IN”与“YM8177A”相连,输出电平99dBμV ,调频率从9MHz到8MHz,频标移动小格数T=______小格,则每小格的频宽Δf=1000KHz/T=_______KHz/T,中心频率f0=______MHz.接通被测电路电源, 扫频仪波峰高度H=___5___大格, 中心频率9MHz.
表4-1三极管静态工作点
实测
实测
实测
据Vce判断V是否工作在放大区
原因
Re(R54)
Vb
Ve
Ic
Vce

高频实验指导书.

高频实验指导书.

实验1 单调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性2.做本实验时所用到的仪器:●单调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。

三、实验内容1.用万用表测量晶体管各点(对地)电压V B、V E、V C,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。

单调谐回路谐振放大器原理电路如图1-1所示。

图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。

C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。

为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图32.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。

其基本部分与图1-1相同。

图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。

1W01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

1Q02为射极跟随器,主要用于提高带负载能力。

《高频电子线路》实验指导书

《高频电子线路》实验指导书

《高频电子线路》实验指导书南昌工学院人工智能学院前言本高频电子试验箱共包含十个标配实验单元模块和三个选配实验单元模块.其中标配模块包含有信号源模块、频率计模块、小信号选频放大模块、正弦波振荡及VCO模块、AM调制及检波模块、FM鉴频1模块、收音机模块、混频及变频模块、高频功放模块、综合实验模块。

选配模块包含有FM鉴频2、码型变换模块和谐振回路及滤波模块。

本实验系统的实验内容是根据高等教育出版社的《高频电子线路》一书而设计的。

本试验箱共设置了二十个重要实验和四个选做实验:其中有十五个单元实验,是为配合课程而设计的,主要帮助学生理解和加深课堂所学的内容;五个系统实验是让学生了解每个复杂的无线收发系统都是由一个个单元电路组成的。

此外,还有选做实验,学生也可以根据我们所提供的单元电路自行设计系统实验。

本实验系统力求电路原理清楚,重点突出,实验内容丰富。

其电路设计构思新颖、技术先进、波形测量点选择准确,具有一定的代表性。

同时,注重理论分析与实际动手相结合,以理论指导实践,以实践验证基本原理,旨在提高学生分析问题、解决问题的能力已及动手能力。

由于编者水平有限,书中难免存在一些缺点和错误,希望广大读者批评指正。

编者实验注意事项1、本实验系统接通电源前,请确保电源插座接地良好。

2、每次安装实验模块之前,应确保主机箱右侧的交流开关处于断开状态。

为保险起见,建议拔下电源线后再安装实验模块。

3、安装实验模块时,模块右边的电源开关要拨置上方,将模块四角的螺孔和母板上的铜支柱对齐,然后用螺钉固定。

确保四个螺钉拧紧,以免造成实验模块与电源或者地接触不良。

经仔细检查后方可通电实验。

4、各实验模块上的电源开关、拨码开关、复位开关、自锁开关、手调电位器和旋转编码器均为磨损件,请不要频繁按动或旋转。

5、请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。

6、各模块中的贴片可调电容是出厂前调试使用的。

出厂后的各实验模块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成严重影响。

《高频电子线路》实验指导书

《高频电子线路》实验指导书
整理并分析原因。 5.本放大器的动态范围是多少(放大倍数下降 1dB 的折
弯点 V0 定义为放大器动态范围),讨论 IC 对动态范围的影响。
五、预习要求、思考题 1.复习谐振回路的工作原理。了解谐振放大器的电压放大
倍数、动态范围、通频带及选择性相互之间关系。
-3-
2.谐振放大器的工作频率与哪些参数有关? 3.实验电路中, 若电感量 L=1μH,回路总电容 C=220pf (分布电容包括在内),计算回路中心频率 f0 。
-1-
表 1.1
实测
VB
VE
实测计算
根据 VCE 判断 V 是否工作在 放大区
IC
VCE


原因
* VB,VE 是三极管的基极和发射极对地电压。
3.动态研究 (1). 测放大器的动态范围 Vi~V0(在谐振点) 选 R=10K,Re=1K。把高频信号发生器接到电路输入端,电 路输出端接毫伏表,选择正常放大区的输入电压 Vi,调节频率 f 使其为 10.7MHz,调节 CT 使回路谐振,使输出电压幅度为最 大。此时调节 Vi 由 0.03 伏变到 0.6 伏,逐点记录VO 电压,并 填入 表 1.2。Vi 的各点测量值可根据(各自)实测情况来振荡器
实验项目名称:LC 电容反馈式三点式振荡器 实验项目性质:验正性实验 所属课程名称:高频电子线路 实验计划学时:2 学时
一、实验目的 1.掌握 LC 三点式振荡电路的基本原理,掌握 LC 电容反馈
式三点振荡电路设计及电参数计算。 2.掌握振荡回路 Q 值对频率稳定度的影响。 3.掌握振荡器反馈系数不同时,静态工作电流 IEQ 对振荡器
《高频电子线路》 实验指导书
桂玉屏
广东工业大学信息工程学院 二0一五年十一月印刷

高频电子电路实验操作步骤及要点

高频电子电路实验操作步骤及要点

高频电子电路实验操作步骤及要点实验一、高频电子仪表的使用一、数字万用表1.开机后若显示屏左下出现小电池的图标,表示需更换电池后才能使用。

2.开机后若显示屏左上出现“H”图标,表示万用表处于屏幕保持状态,需解锁后使用。

3.利用万用表的直流电压测试功能完成电路静态工作电压的测试;静态工作电流是通过测试相应元件的电压再运用欧姆定律计算得到。

4.利用万用表的“×200”欧姆档完成电路连接导线及仪表连接线的测试,以判断其好坏状态。

5.不要用万用表测试动态指标。

二、高频电子电路实验箱1.能熟练地找到实验所用模块电路。

2.能正确地搭接实验电路。

(1)先将信号源板和电路板共地:将两块板中靠得最近的两个接地点用最短导线连通(建议将信号源板的右下角和电路板的左下角的两个接地点连通),这样实验箱中所有接地点都连通了;地线使用时注意“就近接地”的原则。

(2)用最合适的导线将电路所需直流工作电源从信号源板引入到电路。

(3)电路中元器件的连接及交流信号的引入选用最合适的导线。

(4)仪表连接线应直接接至测试点附近的接线柱上;不要使用导线接连接线。

3.能正确输出实验所需的交流信号。

(1)将显示功能设置为“低频”,同时将高频信号源的“频率粗调”旋钮放在与输出低频信号频率相适应的档位上,此时频率计将正确显示低频信号源输出信号的频率(若使用示波器测试频率,则此步可以不做)。

(2)将显示功能设置为“外测”,同时将高频信号源的“频率粗调”旋钮放在与被测信号频率相适应的档位上,此时频率计将正确显示被测信号的频率(若使用示波器测试频率,则此步可以不做)。

(3)将显示功能设置为“高频”,同时将高频信号源的“频率粗调”旋钮放在与输出高频信号频率相适应的档位上,此时频率计将正确显示高频信号源输出信号的频率(若使用示波器测试频率,则此步可以不做)。

(4)用示波器调测信号时,建议先把“幅度调节”旋钮右旋到底使输出信号幅度最大,此时来进行频率的调节;调节好频率后,再把“幅度调节”旋钮左旋以减小幅度至实验要求的大小(由于幅度减小时波形将会变差,因此调节幅度时可不管示波器上测试频率的变化)。

高频电路实验一 操作指导书

高频电路实验一 操作指导书

实验1 高频小信号调谐放大器实验—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性●双调谐回路●电容耦合双调谐回路谐振放大器●放大器动态范围2.做本实验时所用到的仪器:●单、双调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。

6.熟悉耦合电容对双调谐回路放大器幅频特性的影响;7.了解放大器动态范围的概念和测量方法。

三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

5.采用点测法测量双调谐放大器的幅频特性;7.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;8.用示波器观察放大器动态范围。

四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。

单调谐回路谐振放大器原理电路如图1-1所示。

图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。

C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。

为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

图1-1 单调谐回路放大器原理电路图1-2 单调谐回路谐振放大器实验电路图2.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。

高频电路实验指导书2012(新)资料

高频电路实验指导书2012(新)资料

高频电路实验第5章 高频电路实验5.1 高频小信号调谐放大器实验5.1.1 实验目的1、 掌握小信号调谐放大器的基本工作原理;2、 掌握谐振放大器电压增益、通频带及选择性的定义、测试及计算;3、 了解高频小信号放大器动态范围的测试方法;5.1.2实验内容1、测量单调谐、双调谐小信号放大器的静态工作点2、 测量单调谐、双调谐小信号放大器的增益3、测量单调谐、双调谐小信号放大器的通频带5.1.3实验仪器1、 高频信号发生器 1台2、 高频毫伏表 1台3、 高频小信号调谐放大器(2号板) 1块4、 双踪示波器 1台5、 万用表 1块6、 扫频仪 1台5.1.4实验原理1、单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。

其实验单元电路如图5.1.1所示。

该电路由晶体管Q 1、选频回路T 1二部分组成。

它不仅对高频小信号进行放大,而且还有一定的选频作用。

本实验中输入信号的频率f S =10.7MHz 。

基极偏置电阻W 3、R 22、R 4和射极电阻R 5决定晶体管的静态工作点。

调节可变电阻W 3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。

表征高频小信号调谐放大器的主要性能指标有谐振频率f 0,谐振电压放大倍数A v0,放大器的通频带BW 及选择性(通常用矩形系数K r0.1来表示)等。

放大器各项性能指标及测量方法如下: (1)谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图5.1.1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LC f π210式中,L 为调谐回路电感线圈的电感量;∑C 为调谐回路的总电容,∑C 的表达式为ie oe C P C P C C 2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。

图5.1.1 单调谐小信号放大电路谐振频率f 0的测量方法是:用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。

高频电子的实验报告

高频电子的实验报告

一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。

2. 熟悉高频电子线路中常用元件的性能和特点。

3. 培养实验操作技能,提高分析问题和解决问题的能力。

三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。

本实验主要研究高频放大器、振荡器和调制解调器等基本电路。

四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。

(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。

(3)测量放大器的输入输出阻抗,分析匹配网络的设计。

2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。

(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。

(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。

3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。

(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。

(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。

六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。

(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。

(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。

2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。

(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。

(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。

高频电路实验指导书(图)

高频电路实验指导书(图)

实验一高频小信号调谐放大器一、实验目的小信号调谐放大器是高频电子线路中的基本单元电路,主要用于高频小信号或微弱信号的线性放大。

在本实验中,通过对谐振回路的调试,对放大器处于谐振时各项技术指标的测试(电压放大倍数,通频带,矩形系数),进一步掌握高频小信号调谐放大器的工作原理。

学会小信号调谐放大器的设计方法。

二、实验内容1、调节谐振回路使谐振放大器谐振在10.7MHz。

2、测量谐振放大器的电压增益。

三、实验仪器1、20MHz模拟示波器一台2、数字万用表一块2、实验参考电路图1-4 单级调谐放大器五、实验步骤参考所附电路原理图G2。

先调静态工作点,然后再调谐振回路。

1、在主箱上正确插好接收模块,按照所附电路原理图G2,对照接收模块中的高频小信号调谐放大器部分,连接好跳线JA1,正确连接电路电源线,+12V孔接+12V,+5V孔接+5V,GND接GND(从电源部分+12V和+5V插孔用连接线接入),接上电源通电(若正确连接了,扩展板上的电源指示灯将会亮)。

2、K1向右拨;3、调整晶体管的静态工作点:在不加输入信号(即u i=0),将测试点INA1接地,用万用表直流电压档(20V档)测量三极管QA1射极的电压(即测R4靠近QA1端的电压),调整可调电阻WA1,使EQ U =2.25V (即使E I =1.5mA ),根据电路计算此时的BQ U ,CEQ U ,EQ U 及EQ I 值。

4、调谐放大器的谐振回路使它谐振在10.7MHz方法是用BT-3频率特性测试仪的扫频电压输出端和检波探头,分别接电路的信号输入端INA1及测试端TTA2,通过调节y 轴,放大器的“增益”旋钮和“输出衰减”旋钮于合适位置,调节中心频率刻度盘,使荧光屏上显示出放大器的“幅频谐振特性曲线”,根据频标指示用绝缘起子慢慢旋动变压器的磁芯,使中心频率o f =10.7MHz 所对应的幅值最大。

用示波器来观察调谐过程,方法是:在INA1处由高频信号源提供频率为10.7MHz 的载波(参考高频信号源的使用),大小为Vp-p-=20~100mV 的信号,用示波器探头在TTA2处测试(在示波器上看到的是正弦波),调节变压器磁芯使示波器波形最大(即调好后,磁芯不论往上或往下旋转,波形幅度都减小)。

实验一仪器使用高频实验指导书

实验一仪器使用高频实验指导书

温州大学城市学院高频电子线路实验一高频仪器使用班级:____________ 姓名:____________ 同组人员:_____________ 实验时间:______________一、实验目的:掌握常用高频实验仪器的使用方法二、仪器使用说明1、QF1055A型信号发生器面板控键说明如下:在以下说明中用“3=AM”简化表示调制方式控键3置于AM位置,其余类推。

⑴电源开关。

⑵调制量程开关:在“3=AM或FM”时有效。

开关置为100、30、10且“14=满刻度”时,AM模式表示调幅度m a不小于100%、30%和10%,FM模式表示频偏△f不小于100kHz、30kHz和10kHz。

⑶输出信号类型开关:开关在OFF、AM、FM位置时,分别输出载波、调幅波和调频波。

⑷调制信号选择开关:在“3=AM或FM”时选择调制信号。

开关在400Hz、1000Hz时调制信号为内部产生的400Hz和1000Hz正弦波信号,且“5”同时输出该调制信号;开关在EXT时使用从“5”端口输入的外部信号作为调制信号。

⑸调制信号输入/输出开关:当“3=AM或FM”,且“4=400Hz或1000Hz时”本端口有400Hz或1000Hz,幅度0—1V rms(有效值)可调的正弦信号输出;当“3=AM或FM”,且“4=EXT时”,使用从本端口输入的信号对载波进行调制。

使用外部调制信号时,调幅输入频率范围30Hz—10KHz,m a=30%时,输入电压<;调频输入频率范围30Hz—100KHz,频偏100KHz时,输入电压<。

⑹载频频率选择开关:从左到右五列的权值分别为100MHz、10MHz、1MHz、100KHz、10KHz和1KHz;上中下三排按键对应载频各位的升、降、清零。

⑺FINE载波输出幅度细调,“3=OFF”时有效。

“11和10”确定最大输出幅度档位后,本旋钮用于将输出从0-最大幅度之间进行调节,旋动本旋钮时“14”电平表指针有相应摆动。

高频电子线路实验指导书

高频电子线路实验指导书

高频电子线路实验箱简介THCGP-1型仪器介绍●信号源:本实验箱提供的信号源由高频信号源和音频信号源两部分组成,两种信号源的参数如下:1)高频信号源输出频率范围:0.4MHz~45MHz(连续可调);频率稳定度:10E–4;输出波形:正弦波;输出幅度:1Vp-p 输出阻抗:75Ω。

2)低频信号源:输出频率范围:0.2kHz~20 kHz(连续可调);频率稳定度:10E–4;输出波形:正弦波、方波、三角波;输出幅度:5Vp-p;输出阻抗:100Ω。

信号源面板如图所示使用时,首先按下“POWER”按钮,电源指示灯亮。

高频信号源的输出为RF1、RF2,频率调节步进有四个档位:1kHz、20kHz、500kHz、1MHz档。

按频率调节选择按钮可在各档位间切换,为1kHz、20kHz、500kHz档时相对应的LED亮,当三灯齐亮时,即为1MHz档。

旋转高频频率调节旋钮可以改变输出高频信号的频率。

另外可通过调节高频信号幅度旋钮来改变高频信号的输出幅度。

音频信号源可以同时输出正弦波、三角波、方波三种波形,各波形的频率调节共用一个频率调节旋钮,共有2个档位:2kHz、20kHz档。

按频率档位选择可在两个档位间切换,并且相应的指示灯亮。

调节音频信号频率调节旋钮可以改变信号的频率。

分别改变三种波形的幅度调节旋钮可以调节输出的幅度。

本信号源有内调制功能,“FM”按钮按下时,对应上方的指示灯亮,在RF1和RF2输出调频波,RF2可以外接频率计显示输出频率。

调频波的音频信号为正弦波,载波为信号源内的高频信号。

改变“FM频偏”旋钮调节输出的调频信号的调制指数。

按下“AM”按钮时,RF1、RF2输出为调幅波,同样可以在RF2端接频率计观测输出频率。

调节“AM调幅度”可以改变调幅波的幅度。

面板下方为5个射频线插座。

“RF1”和“RF2”插孔为400kHz ——45MHz的正弦波输出信号,在做实验时将RF1作为信号输出,RF2接配套的频率计观测频率。

高频电子线路实验报告

高频电子线路实验报告

高频电子线路学生实验报告二学院信息工程学院课程名称高频电子线路专业电子信息工程实验名称Multisim使用及基本单、双调谐回路放大器仿真班级0319409 小组情况姓名张术实验时间 20 年 6 月 17 日学号031940921 指导教师报告内容一、实验目的和任务1. 熟悉Multisim的使用2.熟悉谐振回路的建立及仿真分析二、实验原理介绍1. 启动PC机,安装好Multisim软件。

2. 熟悉Multisim界面、元器件库、虚拟仪器的使用。

3. 熟悉Multisim分析方法。

三、实验设备介绍1. 系统需求:安装有windowsXP以上版本的操作系统2. 软件需求: Multisim12.0及以上版本四、实验内容和步骤1.高频小信号放大器的仿真高频小信号放大器收到的信号包含了有用信号、信号干扰和噪音,输入电路的功能是筛选出有用的信号,过滤出噪音和干扰。

图1 高频小信号放大器电路2.单调谐回路放大器仿真单调屑放大器是由单调谐回路作为交流负载的放大器。

图2所示为一个共发射极的单调谐放大器,它是接收机中的一种典型的高频小信号调谐放大器电路。

在电路图中,R1、R2是放大器的偏置电路,R4是直流负反馈电阻,C1是旁路电容,它们起到稳定放大静态工作点的作用。

L1、R3、C5组成并联谐振回路,它与晶体管一起起着选频放大作用。

电路仿真如图所示图2 单调谐放大器电路3、双调谐回路放大器仿真双调谐回路放大器具有较好的选择性、较宽的通频带、并能较好地解决增益和通频带之间的矛盾,因而广泛用于高增益、宽频带、选择性要求高的场合。

但双调谐回路放大器的调整较为困难。

双调谐回路放大器电路如图3所示,是由L1、L2、C4、C5、C6组成的双调谐回路。

并联谐振回路调谐在放大器的工作频率上,则放大器的增益就很高,偏离这个频率放大器的放大作用就下降。

图3 双调谐回路放大器电路五、实验数据及结果分析1.高频小信号放大器(1)按下仿真开关,可得到高频小信号放大器的仿真实验数据如图4所示。

高频电子线路实验指导书

高频电子线路实验指导书

实验一高频小信号调谐放大器实验一、实验目的1、掌握谐振放大器静态工作点、电压增益、通频带及选择性的测试、计算;2、掌握高频小信号放大器动态范围的测试方法;3、熟悉高频实验箱、示波器、信号源及万用表的使用方法。

二、实验仪器高频实验箱1台;双踪示波器1台;数字万用表1块;高频信号发生器1台;G1实验板一块。

三、实验内容及步骤(一)、单调谐回路谐振放大器1、电路连线根据电路原理图弄清实验板电路,并在电路板上找出与原理图相对应的的各测试点及可调器件,电路原理图参见图1。

图1单调谐回路谐振放大器电路图2、静态测量选Re = 1K,在不加输入信号时用万用表测量各静态工作点,将测量数据填入表1中。

根据表1测试结果判断三极管(9018)是否工作在放大区并说明原因。

提示:I CQ ≈I EQ;I EQ = V E / Re (Re = 1K)。

3、输入动态范围和Re变化对放大性能影响的测试(1)将谐振回路电阻R(10K)接入谐振回路,选R e = 1k。

将高频信号发生器输出接到电路输入端(IN段),高频信号发生器波形选择正弦波,频率调整到10.7MHz(谐振回路的谐振频率),把示波器探头接到电路的输出端(OUT端)。

(2)从小到大调整高频信号发生器输出信号,观察示波器显示波形,分别记下开始出现正常信号(正弦波)和最后出现失真时的输入信号值,将出现最小信号的输入信号值填入表2输入电压(U i)栏的第一个格里,出现失真时的电压值填入最后一个格里(两者之差即为放大器的输入动态范围),中间的格按等分填入。

(3)用信号源输入表2中输入电压(U i)的值,在Re为1K、500Ω、2K时将示波器显示的输出值(U o)填入表2中。

(4)根据测试结果分析Re变化对放大性能的影响。

4、放大器频率特性测试(1)选回路电阻R=10K,输入电压Ui取表2中的中间值,将高频信号发生器输出端接至电路输入端。

调节频率f使其为10.7MHz,调节C T(微调电容器)使回路谐振(输出电压幅度为最大),此时的回路谐振频率为f0=10.7MHz(为中心频率)。

高频电子线路实验指导书

高频电子线路实验指导书

⾼频电⼦线路实验指导书第⼀部分实验内容实验⼀调谐放⼤器⼀、实验⽬的1.熟悉电⼦元器件和⾼频电路实验箱;2. 通过实验进⼀步熟悉⾼频⼩信号调谐放⼤器的⼯作原理;3. 掌握调谐放⼤器的电压放⼤倍数、动态范围、通频带及选择性的测试⽅法;4. 掌握使⽤频率特性测试仪调整调谐放⼤器谐振特性的⽅法。

⼆、实验仪器1.双踪⽰波器(TDS2012)2.扫频仪(BT-3GⅡ)3.⾼频信号发⽣器(QF1055A)4.毫伏表(DA36A)5.万⽤表6.实验板1三、预习要求1.复习谐振回路的⼯作原理;2.了解谐振放⼤器的电压放⼤倍数、动态范围、通频带及选择性相互之间的关系;3.频率特性测试仪调整调谐放⼤器谐振特性的⽅法;4.实验⽤电⼦仪器的基本原理和使⽤⽅法。

四、实验原理(⼀)实验电路⼩信号调谐放⼤器的主要特点是晶体管的集电极负载不是纯电阻,⽽是由LC组成的并联谐振回路。

由于LC并联谐振回路的阻抗是随频率⽽变的,在谐振频率处其阻抗是纯电阻,达到最- 1 -- 2 -⼤值。

因此,⽤并联谐振回路作集电极负载的调谐放⼤器在回路的谐振频率上具有最⼤的放⼤电压增益。

稍离开此频率,电压增益迅速减⼩。

我们⽤这种放⼤器可以放⼤所需要的某⼀频率范围的信号,⽽抑制不需要的信号或外界⼲扰信号。

因此,调谐放⼤器在⽆线电通信系统中被⼴泛⽤作⾼频和中频放⼤器。

图1-1所⽰电路为实验电路,它是由共发射极组态的晶体管和并联谐和振回路组成的单级单调谐放⼤器。

本实验电路要求完成单级调谐放⼤器的技术指标:中⼼频率MHz f o 7.10=,通频带MHz f 127.0=?,增益dB A uo 20≥。

电路主要元件参数:晶体管C DG 63,查⼿册知在MHz f o 30=,mA I EQ 2=,V V ce 9=条件下测得Y 参数为mS g ie 2=,pF C ie 12=,S g oe µ250=,pF C oe 4=,mS y fe 40=,S y re µ350=。

高频电子线路实验指导书

高频电子线路实验指导书

《高频电子线路》实验指导书湖南工业大学电气与信息工程学院实验一高频单调谐回路放大器一、实验类型验证型实验二、实验目的与任务1、熟悉谐振放大器的幅频特性、通频带和选择性;2、熟悉信号源内阻及负载对谐振回路的影响,了解展宽频带的方法;3、掌握放大器的动态范围及其测试方法。

三、实验基本原理1. 单调谐回路放大器实验电路如图 1-1 所示图1-1单调谐小信号放大器在图 1-1 中 ,L2、C5、C6为π型滤波电路,其作用是为了减少交流高频信号对直流电源的影响。

+12V电源、R1、R2和R6、R7、R8为放大电路提供直流静态工作点,C3为发射极旁路电容。

L1、C2和Ct为选频回路(也称为谐振回路),改变Ct的值,可以改变回路的谐振频率。

三极管T及其输出阻抗相当于谐振回路的信号源和信号源内阻,R3、R4、R5相当于负载,改变R3、R4、R5的阻值,将对谐振回路产生影响。

C4为隔直电容,它能够有效防止不同放大级之间直流信号的相互影响,又可使交流信号顺利通过。

若忽略三极管输出电容和负载电容的影响,谐振频率为:LCf o π21=对于放大电路而言,L1、C2和Ct 回路相当于负载,当发生谐振时,选频回路的阻抗最大,为纯电阻性,这时放大电路的电压放大倍数最大;改变信号源频率,选频回路就会失谐,其阻抗值迅速减小,电压放大倍数也迅速减小,通常小信号调谐放大器就工作在谐振频率处,它允许与其频率一致的信号通过并进行放大,对于与其谐振频率不一致的频率信号,则不进行放大而被禁止通过,这就是“选频”的含义。

改变电容Ct ,可以改变选频回路的谐振频率,从而使得不同频率的信号通过。

调谐放大器的谐振频率,一般有两种测量方法,一是扫频法 ;一种是逐点法。

所谓扫频法,一般采用频率特性测试仪,先将频率特性测试仪提供的扫频信号接到单级放大器的输入端,单级放大器的输出端接到频率特性测试仪的输入端,然后调节中心频率旋钮,屏幕上就可显示出放大器的谐振曲线。

高频实验指导书

高频实验指导书

实验一电视信号单向传输系统一、实验目的1.掌握微波电视信号单向传输系统电路连接。

2.掌握微波电视信号单向传输系统调整。

二、实验内容1.正确进行系统电路连接;搞清全电视信号流向及信号频谱的变换过程。

2.进行视频、音频信号调试,试听、试看微波电视信号。

3. 评价电视信号传输质量。

三、实验仪器1. RZ-99O5微波通信实验系统2. 彩色摄像头或DVD或VCD播放机一台3. 彩色电视机或监视器一台四、实验电路连接图1-1微波电视信号单向传输系统框图五、实验步骤1. 按上述电路连接好各设备,保证连接正确、可靠。

2. 接通所有设备电源(中频振荡器电源不加),调节天线方向和距离,仔细微调微波压控振荡器频率,直到彩色电视机上显示清晰的图像,并评价图像、声音质量。

3. 移动收发天线方向及距离,观察彩色电视图像的变化。

六、实验注意事项1.电路连接应正确,特别注意摄像头及DVD、VCD电视机的视频、音频线不要接错。

2.电视机应用TV接口。

3.仔细微调微波压控振荡器频率,直到彩色电视机上显示清晰的图像。

七、实验报告要求1.写出实验目的和内容。

2.简述电视信号微波传输系统工作原理,并画出实验框图。

3. 写出实验体会。

实验二 单调谐回路谐振放大器及通频带展宽实验一、实验目的:1. 熟悉高频电路实验箱的组成及其电路中各元件的作用;2. 熟悉并联谐振回路的通频带与选择性等相关知识;3. 熟悉负载对谐振回路的影响,从而了解频带扩展;4. 熟悉和了解单调谐回路谐振放大器的性能指标和测量方法。

二、预习要求:1. 复习选频网络的特性分析方法;2. 复习谐振回路的工作原理;3. 了解谐振放大器的电压放大倍数、动态范围、通频带及选择性等分析方法和知识。

三、实验电路说明:本实验电路如图1-3所示。

图1-3W 、R1、R2和Rel(Re2)为直流偏置电路,调节W 可改变直流工作点。

C2、L1构成谐振回路,R3为回路电阻,RL 为负载电阻。

实验4.1常用高频电子仪器的使用

实验4.1常用高频电子仪器的使用

4 高频电子(电路)实验实验4.1 常用高频电‎子仪器的使‎用一、实验目的(1)阅读仪器说‎明书,了解仪器的‎主要技术性‎能指标和使‎用方法。

(2)掌握高频电‎子实验箱中‎的低频信号‎发生器、高频信号源‎的使用方法‎。

(3)熟练使用示‎波器测量信‎号电压波形‎的幅值(峰值)、周期(频率)和相位。

﹙4﹚熟练掌握射‎频信号发生‎器MA G-450(100kH‎z—150MH‎z)的使用方法‎。

(5)熟悉高频电‎子线路实验‎箱各单元电‎路的功能。

二、实验设备及‎材料实验箱及实‎验箱配置的‎低频信号源‎、高频信号源‎,双踪示波器‎(M OS-620/640型),MAG-450(100kH‎z—150MH‎z)型射频信号‎发生器,交流毫伏表‎,数字万用表‎等。

三、实验原理高频电子线‎路实验箱整‎机分布如图‎4.1.1所示。

实验箱常用‎的单元测试‎仪器有:频率计、低频信号源‎、高频信号源‎。

高、低频信号源‎是为实验箱‎单元电路提‎供调制、载波、调频信号。

频率计用来‎测试高频实‎验单元电路‎的频率值。

1、频率计的使‎用方法实验所用的‎频率计是基‎于实验箱的‎实验需要而‎设计。

它适用于频‎率低于15‎MHz、信号幅度V‎p-p=100 mV~5 V的信号。

频率计电路‎原理图如图‎4.1.2所示。

使用的方法‎:按下频率计‎单元的电源‎开关KG1‎,当测试信号‎频率低于1‎00kHz‎时,必须连接短‎接片JG3‎、JG4(此时JG2‎不接短接片‎为断开状态‎)。

当测试信号‎频率高于1‎00kHz‎时,必须连接短‎接片JG2‎,JG3、JG4不接‎短接片为断‎开状态,一般情况下‎接J G2。

图4.1.2 频率计电路‎原理图148149将需要测量‎的信号(信号输出端‎)用连线与频‎率计的输入‎端(ING1)相连,由频率计数‎码管显示信‎号频率的大‎小。

数码管有8‎个,前6个显示‎有效数字,第8个显示‎10的幂,单位为Hz ‎(如显示10‎.7000-6时,频率为10‎.7 MHz )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高频电路实验的设备选择与实验操作指南
在进行高频电路实验时,正确选择适合的设备和采取正确的实验操
作是确保实验顺利进行的重要环节。

本文将为您提供设备选择和实验
操作的指南。

一、设备选择
1.信号源:在高频电路实验中,需要选择一款稳定的信号源。

常见
的信号源有函数发生器、信号源发生器等。

根据实验需求选择频率范
围广、信号稳定性好的信号源。

2.示波器:示波器是高频电路实验中常用的测量仪器,用于观察电
路中信号的波形和幅度。

选择带宽较高、采样率适中的示波器,以确
保测量的准确性。

3.频谱仪:频谱仪用于分析信号的频谱特性,对于高频电路实验中
信号的频率分布分析至关重要。

选择频率范围广、分辨率高的频谱仪,以获取准确的频谱信息。

4.功率放大器:高频电路实验中,常常需要对信号进行放大处理。

选择合适的功率放大器,确保放大后的信号质量不降低。

5.阻抗匹配网络:在高频电路实验中,为了实现最大功率传递和防
止信号反射,需要选择合适的阻抗匹配网络,确保电路的匹配性能。

6.滤波器:根据实验需求选择合适的滤波器,用于滤除不需要的干
扰信号,保证实验信号的纯净性。

二、实验操作指南
1.实验前准备:在进行高频电路实验前,需要仔细阅读实验指导书,并做好实验预备工作。

检查所需设备的连接线是否齐全,设备是否正
常工作。

2.电路搭建:根据实验要求,按照电路图设计搭建实验电路。

注意
电路元件的连接方式和极性,确保搭建正确。

3.信号输入:连接信号源到实验电路的输入端,调节信号源的频率
和幅度,使其符合实验要求。

注意调节信号源时的稳定性和准确性。

4.测量与观察:使用示波器或频谱仪对实验电路中的信号进行测量
和观察。

调整示波器的参数,选择合适的测量通道和测量方式。

观察
信号的波形、幅度和频谱分布,记录测量结果。

5.参数调节:根据实验要求,逐步调节实验电路中的参数,如改变
电阻、电容或电感的数值,观察信号的变化。

记录参数调节的影响和
实验结果。

6.数据分析:根据实验结果,进行数据的分析和处理。

比较不同参
数下实验结果的差异,总结实验规律。

7.实验收尾:实验结束后,关闭设备电源,拔除连接线,清理实验
现场。

将设备归还到指定位置,并妥善保管。

结语:
高频电路实验的设备选择和操作对于实验结果的准确性和可靠性至关重要。

在选择设备时,需要考虑频率范围、稳定性等因素。

在实验操作中,需注意实验前的准备工作,正确搭建电路,准确输入信号,合理调整参数,仔细测量与观察,并进行数据分析。

希望本文能够为您的高频电路实验提供一些有用的指导!。

相关文档
最新文档