基于单片机的双机通信程序设计

合集下载

51单片机实现双机通信(自己整理的)

51单片机实现双机通信(自己整理的)

左边1号机,右边2号机,,功能实现1号机程序#include<reg51.h>#define uint unsigned int#define uchar unsigned charsbit p10=P1^0;uchar a,b,kk;//uchar code d_c[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xff}; void delay_ms(uchar y){uchar i;while(y--)for(i=0;i<120;i++);}void put(uchar x) //发送函数{SBUF=x; //SBUF:串行口数据缓冲器while(TI==0); //等待发送结束TI=0;}void main(){uchar j;SCON=0x40; //串行口工作方式1,8位通用异步发送器TMOD=0x20; //定时器1工作方式2PCON=0x00; //波特率不倍增TH1=0xf4;TL1=0xf4; //波特率2400TR1=1; //定时器1开始计时P2=0xc0;while(1){if(p10==0&&j==0){delay_ms(15);while(p10==0);kk=1;P2=0xf9;j=1;}if(p10==0&&j==1){delay_ms(15);while(p10==0);kk=2;P2=0xa4;j=2;}if(p10==0&&j==2){delay_ms(15);while(p10==0);kk=3;P2=0xb0;j=0;}if(kk==1)put('A');if(kk==2)put('B');if(kk==3)put('C');delay_ms(10);}}/*********************************************************************** if(p10==0&&j==0){delay_ms(15);while(p10==0);kk=0;P2=~0xf9;j=1;}if(p10==0&&j==1){delay_ms(15);while(p10==0);kk=1;P2=~0xa4;j=2;}if(p10==0&&j==2){delay_ms(15);while(p10==0);kk=2;P2=~0xc0;j=0;}if(kk==0)put('A');if(kk==1)put('B');if(kk==2)put('C');delay_ms(100);*********************************************************** if(p10==0){delay_ms(15);while(p10==0);number=(number+1)%4;}switch(oper){case 0:break;case 1:put('A');P2=~0xf9;break;case 2:put('B');P2=~0xa4;break;case 3:put('C');P2=~0xc0;break;}delay_ms(10);******************************************************************** if(p10==0){delay_ms(15);while(p10==0);j=(j+1)%3;}switch(j){case 0:put('A');P2=~0xf9;break;case 1:put('B');P2=~0xa4;break;case 2:put('C');P2=~0xc0;break;}delay_ms(10);*/2号机程序。

基于单片机的双机通信程序设计

基于单片机的双机通信程序设计

前言单片机的通信接口是各台仪表之间或仪表与计算机之间进行信息交换和传输的联络装置。

主要有五种类型,串行通信接口、并行通信接口、USB接口、现场总线接口以及以太网接口。

串行通讯是单片机的一个重要应用。

本设计就是利用两块单片机来完成一个系统,实现单片机之间的串行通讯。

随着计算机的不断普及,在我们的周围可能会同时出现多台微型计算机,而且这些计算机的牌号,后型号不同,而且有的格式不兼容。

于是利用单片机串行口实现不同计算机之间的相互通信,以达到信息或程序的共享是非常有用的。

从智能家用电器到工业上的控制系统都采用了上位机与下位机基于串行通信的主从工作方式,这样就充分利用了微机分析处理能力强、速度快的特点及下位机(单片机)面向控制、使用灵活方便的优势。

利用多机通讯构成的分布式系统逐渐普及。

本实验就点对点的双机通信进行训练。

学习串口的工作方式,初始化编程,和单片机与单片机点对点通信的编程方法以及硬件电路的设计方法。

1.总体设计方案1.1 串口通信的设计原理复位电路复位电路单片机单片机电源电路电源电路时钟电路时钟电路按键输入1位LED数码管显示电路图1 串口通信的设计原理框图本次设计用于两片89S51,PC机的串行口采用的是标准的RS232接口,单片机的串行口电平是FTL电平,而TTL电平特性与RS232的电气特性不匹配,因此为了使单片机的串行口能与RS232接口通信,必须将串行口的输入/输出电平进行转换。

通常用MAX232芯片来完成电平转换。

单片机的发送方的数据由串行口TXD段输出,经过电平转换芯片MAX232将TTL电平转换为RS232电平输出,经过传输线将信号传送到接收端。

接收方也使用MAX232芯片进行电平转换后,信号到达接收方串行口的接收端。

接收方接收后,在数码管上显示接收的信息,实现串口通讯数据的发送和接收,该系统可采用max232进行串口通讯数据传送。

可用LED显示发送的相应据。

1.2 数据传输方案比较与选折在串行通信中,数据是在两个站之间传送的。

单片机单片机课程设计-双机串行通信

单片机单片机课程设计-双机串行通信

单片机单片机课程设计-双机串行通信单片机课程设计双机串行通信在当今的电子信息领域,单片机的应用无处不在。

而双机串行通信作为单片机系统中的一个重要环节,为实现设备之间的数据交换和协同工作提供了关键的技术支持。

一、双机串行通信的基本原理双机串行通信是指两个单片机之间通过串行接口进行数据传输的过程。

串行通信相较于并行通信,具有线路简单、成本低、抗干扰能力强等优点。

在串行通信中,数据是一位一位地按顺序传输的。

常见的串行通信协议有 UART(通用异步收发器)、SPI(串行外设接口)和 I2C(内部集成电路)等。

在本次课程设计中,我们主要采用 UART 协议来实现双机串行通信。

UART 协议包括起始位、数据位、奇偶校验位和停止位。

起始位用于标识数据传输的开始,通常为逻辑 0;数据位可以是 5 位、6 位、7 位或 8 位,具体取决于通信双方的约定;奇偶校验位用于检验数据传输的正确性,可选择奇校验、偶校验或无校验;停止位用于标识数据传输的结束,通常为逻辑 1。

二、硬件设计为了实现双机串行通信,我们需要搭建相应的硬件电路。

首先,每个单片机都需要有一个串行通信接口,通常可以使用单片机自带的UART 模块。

在硬件连接方面,我们将两个单片机的发送端(TXD)和接收端(RXD)交叉连接。

即单片机 A 的 TXD 连接到单片机 B 的 RXD,单片机 B 的 TXD 连接到单片机 A 的 RXD。

同时,还需要共地以保证信号的参考电平一致。

此外,为了提高通信的稳定性和可靠性,我们可以在通信线路上添加一些滤波电容和上拉电阻。

三、软件设计软件设计是实现双机串行通信的核心部分。

在本次课程设计中,我们使用 C 语言来编写单片机的程序。

对于发送方单片机,首先需要对 UART 模块进行初始化,设置波特率、数据位、奇偶校验位和停止位等参数。

然后,将要发送的数据放入发送缓冲区,并通过 UART 发送函数将数据一位一位地发送出去。

对于接收方单片机,同样需要对 UART 模块进行初始化。

51单片机双机串行通信设计

51单片机双机串行通信设计

51单片机双机串行通信设计51单片机是一款广泛应用于嵌入式系统中的微控制器,具有高性能和低功耗的特点。

在一些场景中,需要使用51单片机之间进行双机串行通信,以实现数据传输和协同工作。

本文将介绍51单片机双机串行通信的设计,包括硬件连接和软件编程。

一、硬件连接1.串行通信口选择:51单片机具有多个串行通信口,如UART、SPI 和I2C等。

在双机串行通信中,可以选择其中一个串行通信口作为数据传输的接口。

一般来说,UART是最常用的串行通信口之一,因为它的硬件接口简单且易于使用。

2.引脚连接:选定UART口作为串行通信口后,需要将两个单片机之间的TX(发送)和RX(接收)引脚相连。

具体的引脚连接方式取决于所使用的单片机和外设,但一般原则上是将两个单片机的TX和RX引脚交叉连接。

二、软件编程1.串行通信初始化:首先需要通过软件编程来初始化串行通信口。

在51单片机中,可以通过设置相应的寄存器来配置波特率和其他参数。

具体的初始化代码可以使用C语言编写,并根据所使用的开发工具进行相应的配置。

2.发送数据:发送数据时,可以通过写入相应的寄存器来传输数据。

在51单片机中,通过将数据写入UART的发送寄存器,即可将数据发送出去。

发送数据的代码通常包括以下几个步骤:(1)设置发送寄存器;(2)等待数据发送完成;(3)清除数据发送完成标志位。

3.接收数据:接收数据时,需要通过读取相应的寄存器来获取接收到的数据。

在51单片机中,可以通过读取UART的接收寄存器,即可获取到接收到的数据。

接收数据的代码通常包括以下几个步骤:(1)等待数据接收完成;(2)读取接收寄存器中的数据;(3)清除数据接收完成标志位。

4.数据处理:接收到数据后,可以进行相应的数据处理。

根据具体的应用场景,可以对接收到的数据进行解析、计算或其他操作。

数据处理的代码可以根据具体的需求进行编写。

5.中断服务程序:在双机串行通信中,使用中断可以提高通信的效率。

单片机双机通信课程设计报告

单片机双机通信课程设计报告

目录1.题目设计要求 (4)2.系统的组成及工作原理 (4)2.1系统组成 (4)2.1工作原理 (4)2.3双机通讯的方案选择 (5)3.器件的功能及作用 (6)3.1硬件设计 (6)3.2电气设置 (8)3.3DB-9连接器 (8)4.系统硬件设计 (10)5.软件设计 (11)6.系统仿真调试 (18)7.设计体会和收获 (18)8.參考资料 (19)1.题目设计要求:甲乙两机串口双向通信设计要求:利用51单片机,RS232芯片,LED灯,数码管进行双机通信设计。

甲机可按键控制乙机的LED显示;乙机可按键控制甲机的数码管显示。

完成以下设计环节:1)使用Altium Desinger开发工具,设计电路原理图。

2)使用Uvision2开发平台,采用C语言或汇编语言设计软件程序。

3)使用PROTEUS仿真软件,设计仿真原理图并运行软件程序,完成系统仿真。

2.系统的组成及工作原理2.1系统组成图2.1 总体框图2.2工作原理双机通信系统通过甲乙单片机的串行口来实现数据的收发。

甲单片机通过开关电路来启动发送程序,甲机当开关按下时向乙机发送一个数据,乙机上蜂咛器发出声音提示有数据发送过来,乙机通过接收中断来接收和开关判断是否接收甲机发送过来的数据,并通过编写好的数据代码在8个发光二极管上显示主机发送过来的数据。

乙单片机通过开关电路来启动发送程序,乙机给甲机发送一数据,甲机上蜂咛器发出声音提示有数据发送过来,甲机通过接收中断来接收和开关判断是否接收乙机发送过来的数据,并通过编写好的数据代码在8个发光二极管上显示乙机发送过来的数据。

2.3 双机通讯的方案选择设计方案:该系统采用主从共两片AT89C52单片机来实现上位机对下位机的控制,由于是近距离的双机通信,我们采用单片机直接交叉连接的方式,上位机发送的数据由串行口TXD端输出,直接由下位机的串行口数据接收端RXD接收。

需要注意的是一定要保证主从机相同的数据传输速率,即要求设置相同的波特率。

基于AT89C51单片机的双机串行通信设计课程设计

基于AT89C51单片机的双机串行通信设计课程设计

课程设计基于AT89C51单片机的双机串行通信设计毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。

据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。

对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。

作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。

有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。

学校可以公布论文(设计)的全部或部分内容。

保密的论文(设计)在解密后适用本规定。

作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。

4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。

图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它前言单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域随着计算机技术的发展及工业自动化水平的提高, 在许多场合采用单机控制已不能满足现场要求,因而必须采用多机控制的形式,而多机控制主要通过多个单片机之间的串行通信实现。

基于51单片机的多机通信系统设计

基于51单片机的多机通信系统设计

基于51单片机的多机通信系统设计多机通信系统是指通过一台主机与多台从机之间进行数据交互和通信的系统。

在本设计中,我们将使用51单片机实现一个基于串行通信的多机通信系统。

系统硬件设计如下:1.主机:使用一个51单片机作为主机,负责发送数据和接收数据。

2.从机:使用多个51单片机作为从机,每个从机负责接收数据和发送数据给主机。

3.串口:主机和从机之间通过串口进行通信。

我们可以使用RS232标准通信协议。

系统软件设计如下:1.主机设计:a.初始化串口:设置串口参数,如波特率、数据位、停止位等。

b.发送数据:将需要发送的数据存储在发送缓冲区中,通过串口发送给从机。

c.接收数据:接收从机发送的数据,并存储在接收缓冲区中。

2.从机设计:a.初始化串口:设置串口参数,如波特率、数据位、停止位等。

b.接收数据:接收主机发送的数据,并存储在接收缓冲区中。

c.发送数据:将需要发送的数据存储在发送缓冲区中,通过串口发送给主机。

系统工作流程如下:1.主机启动,执行初始化操作,包括初始化串口。

2.从机启动,执行初始化操作,包括初始化串口。

3.主机发送数据给从机:主机将需要发送的数据存储在发送缓冲区中,通过串口发送给从机。

4.从机接收并处理数据:从机接收主机发送的数据,并存储在接收缓冲区中,对接收到的数据进行处理。

5.从机发送数据给主机:从机将需要发送的数据存储在发送缓冲区中,通过串口发送给主机。

6.主机接收并处理数据:主机接收从机发送的数据,并存储在接收缓冲区中,对接收到的数据进行处理。

7.主机和从机循环执行步骤3-6,实现多机之间的数据交互和通信。

多机通信系统的设计考虑到以下几个方面:1.硬件设计:需要合理选择单片机和串口的类型和参数,确保系统的稳定性和可靠性。

2.软件设计:需要设计适应系统需求的通信协议和数据处理提取方法,保证数据的准确性和完整性。

3.通信协议:需要定义主机和从机之间的通信协议,包括数据的格式、传输方式等,以便实现正确的数据交互。

单片机实验三双机通信实验程序

单片机实验三双机通信实验程序

单片机实验三双机通信实验程序第一篇:单片机实验三双机通信实验程序实验三双机通信实验一、实验目的UART 串行通信接口技术应用二、实验实现的功能用两片核心板之间实现串行通信,将按键信息互发到对方数码管显示。

三、系统硬件设计实验所需硬件:电脑一台;开发板一块;串口通信线一根; USB线一根;四、系统软件设计实验所需软件:编译软件:keil uvision3;程序下载软件:STC_ISP_V480;试验程序:#include sbit W1=P0^0;sbit W2=P0^1;sbit W3=P0^2;sbit W4=P0^3;sbit D9=P3^2;sbit D10=P3^3;sbit D11=P3^4;sbit D12=P3^5;sbit DP=P1^7;code unsigned char table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};sfr P1M1=0x91;sfr P1M0=0x92;sbit H1=P3^6;sbit H2=P3^7;sbit L1=P0^5;sbit L2=P0^6;sbit L3=P0^7;unsigned char dat;unsigned char keynum;unsigned char keyscan();void display();void delay(void);L1=1;L2=1;L3=1;H1=0;if(L1==0)return 1;else if(L2==0)return 2;else if(L3==0)return 3;H1=1;H2=0;if(L1==0)return 4;else if(L2==0)return 5;else if(L3==0)return 6;H2=1;return 0;} unsigned char keyscan(){ static unsigned int ct=0;static unsigned char lastkey=0;unsigned char key;key=getkey();if(key==lastkey){ct++;if(ct==900){ct=0;lastkey=0;return key;} } else {第二篇:单片机串行通信实验实验四单片机串行通信实验一、实验目的1、掌握单片机串行口工作方式的程序设计,及简易三线式通讯的方法。

基于单片机的双机串行通信课程设计

基于单片机的双机串行通信课程设计

基于A789C51单片机的双机串行通信课程设计一、总体设计1设计目的1.通过设计相关模块充分熟悉A789C51单片机的最小系统的组成和原理;2.通过软件仿真熟悉keil和proteus的配合使用;3.通过软件编程熟悉A789C51的CA789C51编程规范;4.通过实际的硬件电路搭设提高实际动手能力。

2.设计要求:两片单片机之间进行串行通信,A机将0x06发送给B机,在B机的数码管上静态显示1,B机将0~f动态循环发送到A机,并在其数码管上显示。

3.设计方案:软件部分,通过通信协议进行发送接收,A机先送0x06(B机数码管显示1)给B机(B机静态显示),当从机接收到后,向B机发送代表0-f的数码管编码数组。

B收到0x06后就把数码表TAB[16]中的数据送给从机。

二、硬件设计单片机串行通信功能图(52)计算机与外界的信息交换称为通信,常用的通信方式有两种:并行通信和串行通信。

A789C51单片机用4个接口与外界进行数据输入与数据输出就是并行通信,并行通信的特点是传输信号的速度快,但所用的信号线较多,成本高,传输的距离较近。

串行通信的特点是只用两条信号线(一条信号线,再加一条地线作为信号回路)即可完成通信,成本低,传输的距离较远。

A789C51单片机的串行接口是一个全双工的接口,它可以作为UART(通用异步接受和发送器)用,也可以作为同步移位寄存器用。

A789C51单片机串行接口的结构如下:(1)数据缓冲器(SBUF)接受或发送的数据都要先送到SBUF缓存。

有两个,一个缓存,另一个接受,用同一直接地址99H,发送时用指令将数据送到SBUF即可启动发送;接收时用指令将SBUF中接收到的数据取出。

(2)串行控制寄存器(PCON)SCON用于串行通信方式的选择,收发控制及状态指示,各位含义如下:SM0,SM1:串行接口工作方式选择位,这两位组合成00,01,10,11对应于工作方式0、1、2、3。

串行接口工作方式特点见下表SM2:多机通信控制位。

单片机双机通信实验程序

单片机双机通信实验程序

P0|=0xe0; if((P0&0xe0)!=0xe0)
{ P3|=0xc0; P3&=0x7f; switch(P0&0xe0) {
case 0xe0: break; case 0x60: k=6;break; case 0xa0: k=5;break; case 0xc0: k=4;break; }
}
void ser() interrupt 4
{ RI=0;
//软件清零
a=SBUF; a=a-0x30;
//ASCII 码值转换
//W1=0;
flag=1;
}
unsigned char key() { unsigned char k=0; P0|=0xe0; P3&=0x3f; if((P0&0xe0)!=0xe0) { DelayMS(100);
while(!TI);
TI=0;
//软件清零
ES=1;
}
void main()
{
a=0; init(); while(1) {
Display1(); kk=key(); switch(kk) {
case 1: sendchar('1'); break; case 2: sendchar('2'); break; case 3: sendchar('3'); break; case 4: sendchar('4'); break; case 5: sendchar('5'); break; case 6: sendchar('6'); break; default:Display1(); break; } }

单片机双机之间的串行通讯设计报告

单片机双机之间的串行通讯设计报告

单片机双机之间的串行通讯设计报告摘要:本文介绍了一种基于单片机的双机之间的串行通讯设计。

该设计使用两个单片机,通过串行通信协议进行数据传输。

通讯过程中,两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。

同时,本文还介绍了串行口工作方式 0 的应用,以及如何使用移位寄存器进行串行口扩展。

通过该设计,可以实现两台单片机之间的高速数据传输,并且具有良好的稳定性和可靠性。

关键词:单片机,串行通讯,中断方式,移位寄存器,串行口扩展一、引言串行通讯是计算机系统中常用的一种数据传输方式,它可以实现不同设备之间的数据传输。

在单片机应用中,串行通讯也是一种常见的数据传输方式。

本文介绍了一种基于单片机的双机之间的串行通讯设计,该设计使用两个单片机通过串行通信协议进行数据传输。

本文还介绍了串行口工作方式 0 的应用,以及如何使用移位寄存器进行串行口扩展。

通过该设计,可以实现两台单片机之间的高速数据传输,并且具有良好的稳定性和可靠性。

二、设计原理该串行通讯设计使用两个单片机,分别为发送单片机和接收单片机。

发送单片机将数据通过串行口发送到接收单片机,接收单片机再将接收到的数据进行处理。

两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。

在串行通讯中,数据是通过串行口进行传输的。

串行口工作方式0 是一种常见的串行口工作方式,它使用移位寄存器进行数据接收和发送。

在移位寄存器中,数据被移位到寄存器中进行传输,从而实现了数据的串行传输。

三、设计实现1. 硬件设计在该设计中,发送单片机和接收单片机分别使用一个串行口进行数据传输。

发送单片机将数据通过串行口发送到接收单片机,接收单片机再将接收到的数据进行处理。

两台单片机之间通过数据线连接,并使用中断方式进行数据接收和发送。

硬件设计主要包括两个单片机、串行口、数据线和中断控制器。

其中,两个单片机分别拥有自己的串行口,并且都能够接收和发送数据。

数据线将两台单片机连接在一起,中断控制器用于处理数据的接收和发送。

单片机双机点对点通信的主机程序

单片机双机点对点通信的主机程序

单片机双机点对点通信的主机程序单片机双机点对点通信的主机部分程序#ifndef __P2P_M_C__#define __P2P_M_C__#include <AT89X51.H>#include <STRING.H>#define __MAX_LEN_ 64 // 数据最大长度#define _MHZ_ 11 // 设置单片机使用的晶振频率(11.0592MHz)/* 以下为程序协议中使用的握手信号 */#define __RDY_ 0x06 // 主机开始通信时发送的呼叫信号 #define __BUSY_ 0x15 // 从机忙应答#define __OK_ 0x00 // 从机准备好#define __SUCC_ 0x0f // 数据传送成功#define __ERR_ 0xf0 // 数据传送错误void init_serial(); // 串口初始化void send_data(unsigned char *buf); // 发送数据 voiddelay10ms(unsigned int count); // 延时子程序(10ms)void main(){char buf[__MAX_LEN_];unsigned char i = 0;unsigned char tmp = __BUSY_;/* 为缓冲区赋初值 */P0 = 0xff;while(P1 != 0) // 每隔100ms从P0口读取,若读取到0则表明数据采集结束{*(buf+i) = P0;delay10ms(10); // 延时100msP0 = 0xff;i++;}*(buf+i) = 0; // 缓冲区最后一个字节为0表示数据结束/* 串口初始化 */init_serial(); // 初始化串口EA = 0; // 关闭所有中断/* 发送握手信号06H */TI = 0;SBUF = __RDY_;while(!TI);TI = 0;/* 接收应答信息,如果接收的信号为00H,表示从机允许接收 */while(tmp != __OK_){RI = 0;while(!RI);tmp = SBUF;RI = 0;}/* 发送数据并接收校验信息,如果接收的信号为0FH,表示从机接收成功,否则将重新发送该组数据 */tmp = __ERR_;while(tmp != __SUCC_){send_data(buf); // 发送数据RI = 0;while(!RI);tmp = SBUF;RI = 0;}while(1); // 程序结束,进入死循环 }/* 初始化串口 */void init_serial() {TMOD = 0x20; //定时器T1使用工作方式2TH1 = 250; // 设置初值TL1 = 250;TR1 = 1; // 开始计时PCON = 0x80; // SMOD = 1SCON = 0x50; //工作方式1,波特率9600bps,允许接收}/* 发送数据 */void send_data(unsigned char *buf){unsigned char len; // 保存数据长度unsigned char ecc; // 保存校验字节len = strlen(buf); // 计算要发送数据的长度ecc = len; // 开始进行校验字节计算/* 发送数据长度 */TI = 0;SBUF = len; // 发送长度while(!TI);TI = 0;/* 发送数据 */for(i=0; i<len; i++){ecc = ecc^(*buf); // 计算校验字节SBUF = *buf; // 发送数据buf++;while(!TI);TI = 0;}/* 发送校验字节 */SBUF = ecc; // 发送校验字节while(!TI);TI = 0;}/* 延时10ms,精度较低,参数count为延时时间 */ void delay10ms(unsigned int count){unsigned int i, k;unsigned char j;unsigned int tmp;tmp = (int)((100*_MHZ_)/12);for(i=0; i<count; i++)for(j=0; j<100; j++)for(k=0; k<tmp; k++);}#endif。

基于51单片机的双机串行通信设计组单片机课程设计

基于51单片机的双机串行通信设计组单片机课程设计

基于51单片机的双机串行通信设计一、设计任务设计要求:两个AT89C51单片机使用串口进行通信。

1)1机发送,二机接收时。

使用1机发送一个数字0xAA给2机。

2)如果2机收到数据后要给1机回复,回复0xBB。

3)1机收到回复后要下发数据,下发的同时要将数据显示出来,下发的数据通过4*4的矩阵键盘产生,可以由用户进行控制。

4)2机收到后将这些数值显示出来,一次传输完毕要回复0x00。

可以使用点阵显示或者数码管显示或者 LCD显示。

二、硬件设计1、单片机串行通信功能AT89C51计算机与外界的信息交换称为通信,常用的通信方式有两种:并行通信和串行通信。

51单片机用4个接口与外界进行数据输入与数据输出就是并行通信,并行通信的特点是传输信号的速度快,但所用的信号线较多,成本高,传输的距离较近。

串行通信的特点是只用两条信号线(一条信号线,再加一条地线作为信号回路)即可完成通信,成本低,传输的距离较远。

51单片机的串行接口是一个全双工的接口,它可以作为UART(通用异步接受和发送器)用,也可以作为同步移位寄存器用。

51单片机串行接口的结构如下:(1)数据缓冲器(SBUF)接受或发送的数据都要先送到SBUF缓存。

有两个,一个缓存,另一个接受,用同一直接地址99H,发送时用指令将数据送到SBUF即可启动发送;接收时用指令将SBUF中接收到的数据取出。

(2)串行控制寄存器(PCON)SCON用于串行通信方式的选择,收发控制及状态指示,各位含义如下:SM0,SM1:串行接口工作方式选择位,这两位组合成00,01,10, 11对应于工作方式0、1、2、3。

串行接口工作方式特点见下表SM2:多机通信控制位。

REN:接收允许控制位。

软件置1允许接收;软件置0禁止接收。

TB8:方式2或3时,TB8为要发送的第9位数据,根据需要由软件置1或清0。

RB9:在方式2或3时,RB8位接收到的第9位数据,实际为主机发送的第9位数据TB8,使从机根据这一位来判断主机发送的时呼叫地址还是要传送的数据。

单片机双机之间的串行通信设计

单片机双机之间的串行通信设计

单片机双机之间的串行通信设计Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998专业方向课程设计报告题目:单片机双机之间的串行通信设计单片机双机之间的串行通信设计一.设计要求:两片单片机利用串行口进行串行通信:串行通信的波特率可从键盘进行设定,可选的波特率为1200、2400、4800和9600bit/s。

二、方案论证:方案一:以两片51单片机作为通信部件,以4*4矩阵键盘作为数据输入接口,通过16个不同键值输入不同的信息,按照51单片机的方式3进行串口通信,从机采用中断方式接收信息并按照通信协议改变波特率或者用I/O口输出、CD4511译码、数码管显示相关数据,整个系统的软件部分采用C语言编写。

方案二:整个系统的硬件设计与方案一样,但是通信方式采用方式一进行通信,主从机之间的访问采用查询方式,数据输出直接由单片机的译码程序输出译码数据,同时软件编写采用汇编语言。

两种方式从设计上来说各有特色,而且两种方式都应该是可行的。

方案一中按照方式三通信可以输出九位数据而方式一只能输出八位数据,但就本题的要求来说方式一就可以了。

主从机之间的交流采用中断方式是一种高效且保护单片机的选择,但是相比之下本人对查询方式的理解更好一些。

数码管的显示若采用CD4511译码则直接输出数据就可以了,但是这样会增加硬件陈本,而且单片机的资源大部分都还闲置着,所以直接编写一段译码程序是比较好的做法。

另外在软件编写上,采用C语言在后续设计中对硬件的考虑稍少一些,换言之采用汇编可以使自己对整个通信过程及单片机的部分结构有更清晰地认识所以综合考虑采用方案二。

三、理论设计:采用AltiumDesigner绘制的原理图(整图)本系统主要包括五个基本模块:单片机最小系统(包括晶振电路、电源、复位电路及相关设置电路)、4*4矩阵键盘、功能控制电路、数据显示电路、波特率更改指示电路。

本设计的基本思路是通过控制口选择将要实现的功能,然后矩阵键盘输入数据,单片机对数据进行处理(加校验码、设置功能标志位),然后与从机握手,一切就绪之后后就开始发送数据,然后从机对接收数据校验,回发校验结果,主机根据校验结果进行下一步动作,或者重发,或者进入下一数据的发送过程,然后按照此过程不段循环,直到结束。

单片机双机之间的串行通信设计

单片机双机之间的串行通信设计

单片机双机之间的串行通信设计1.引言单片机双机之间的串行通信是指两个或多个单片机之间通过串口进行数据传输和通信的过程。

串行通信是一种逐位传输数据的方式,与并行通信相比,它占用的硬件资源更少,且传输距离较远。

本文将介绍单片机双机之间串行通信的设计过程,包括硬件设计和软件编程。

2.硬件设计串行通信需要使用到两个主要的硬件部件:串口芯片和通信线路。

串口芯片负责将要发送或接收的数据转换成串行数据流,并通过通信线路进行传输。

通信线路通常包括两根传输数据的线路(TX和RX)、地线和时钟线。

2.1串口芯片的选择常用的串口芯片有MAX232、MAX485、CH340等。

选择合适的芯片需要考虑通信距离、通信速率、系统的功耗等因素。

对于较短的通信距离和较低的通信速率,可以选择MAX232芯片;而对于长距离通信和较高的通信速率,可以选择MAX485芯片。

2.2通信线路设计通信线路的设计需要考虑信号的传输质量和抗干扰能力。

通常使用双绞线或者屏蔽线路来减小信号的串扰和干扰。

对于短距离通信,双绞线即可满足需求;而对于长距离通信,需要采用屏蔽线路来减小串扰和干扰。

3.软件设计串行通信的软件设计主要包括通信协议的制定和数据包的格式规定。

3.1通信协议的选择通信协议是指数据传输的一套规则和约定,它规定了数据的格式、传输顺序、误码校验等内容。

常用的通信协议有UART、RS232、SPI、I2C等。

UART是最常用的通信协议,它一般使用异步通信方式,并具有较高的通信速率和稳定性。

3.2数据包的格式规定数据包是一组有意义的数据的集合,它包括起始位、数据位、停止位和校验位等。

起始位用于标识一个数据包的开始,通常为逻辑低电平;数据位用于存储要传输的数据;停止位用于标识数据包的结束,通常为逻辑高电平;校验位用于检测数据传输过程中是否发生错误。

校验位可以是奇校验、偶校验、无校验等。

4.实验步骤4.1连接硬件根据硬件设计部分的要求,将串口芯片和通信线路连接到单片机上。

单片机双机之间的串行通信设计

单片机双机之间的串行通信设计

单片机双机串行实验报告实验报告:单片机双机串行通信实验一、实验目的本实验旨在通过单片机实现双机间的串行通信,包括数据的发送和接收,并利用这种通信方式完成一定的任务。

二、实验原理1.串行通信:串行通信是将数据一个个位发送或接收的方式。

数据通过一个线路逐位发送或接收,可以减少通信所需的线路数目。

2. UART串口通信:UART是通用异步收发传输器(Universal Asynchronous Receiver/Transmitter)的简称,是一种最常用的串口通信方式,通常用于单片机与计算机、单片机与单片机之间的通信。

3.串口模块:串口模块是负责将数据转变为串行传输的硬件模块,包括发送端和接收端。

通过设置波特率、数据位、校验位和停止位等参数,可以实现数据的可靠传输。

4.单片机串口通信:单片机内部集成了UART串口通信接口,只需要通过相应的寄存器配置,可以实现串口通信功能。

5.双机串行通信:双机串行通信是通过串口将两台单片机进行连接,一台单片机作为发送端,负责将数据发送出去;另一台单片机作为接收端,负责接收并处理发送的数据。

三、实验器材与软件1.实验器材:两台单片机、USB转TTL模块、杜邦线若干。

2. 实验软件:Keil C51集成开发环境。

四、实验内容与步骤1.配置发送端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的TXD端连接到单片机的P3口,将GND端连接到单片机的地线。

(2)在Keil C51环境下创建新工程,编写发送端程序。

(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口发送中断。

(4)循环发送指定的数据。

2.配置接收端单片机(1)连接单片机和USB转TTL模块,将USB转TTL模块的RXD端连接到单片机的P3口,将GND端连接到单片机的地线。

(2)在Keil C51环境下创建新工程,编写接收端程序。

(3)配置串口通信的波特率、数据位、校验位和停止位,并打开串口接收中断。

基于AT89C51单片机的双机串行通信设计课程设计

基于AT89C51单片机的双机串行通信设计课程设计

课程设计基于AT89C51单片机的双机串行通信设计毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。

据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。

对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。

作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。

有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。

学校可以公布论文(设计)的全部或部分内容。

保密的论文(设计)在解密后适用本规定。

作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。

4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。

图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它前言单片机广泛应用于仪器仪表、家用电器、医用设备、航空航天、专用设备的智能化管理及过程控制等领域随着计算机技术的发展及工业自动化水平的提高, 在许多场合采用单机控制已不能满足现场要求,因而必须采用多机控制的形式,而多机控制主要通过多个单片机之间的串行通信实现。

单片机双机串口通信程序设计

单片机双机串口通信程序设计

单片机双机串口通信程序设计发布: 2009-4-03 23:56 | 作者: cepark | 查看: 92次利用方式1实现单片机双机通信,主频为6M,波特率为2400bps,电路见图5 -10。

当两个单片机距离较近时,甲、乙两机的发送端与接收端分别直接相联,两机共地。

执行程序,甲机将亮灯信号发送给乙机,若通信正常,乙机接收到信号后点亮20个发光二极管。

乙机采用查询与中断两种工作方式。

当然20个LE D乙机可单独控制,也可接受甲机的控制,并执行甲机指令,还需要进一步完善程序.甲机发送程序:org 0000hsta: mov tmod,#20h ;设置波特率mov tl1,#0FAhmov th1,#0FAhsetb tr1mov scon,#40h ;置工作方式1clr timov a,#00hmov sbuf,a ;发送亮灯信号wait: jbc ti,cont ;发送成功清标志ajmp wait ;等待发送完毕cont: sjmp sta ;重复发送end乙机查询工作方式接收:org 0000hmov tmod,#20h ;设置通信波特率mov tl1,#0FAhmov th1,#0FAhsetb tr1mov scon,#40hclr risetb ren ;允许接收wait: jbc ri,read ;接收成功清标志ajmp wait ;接收未完等待read: mov a ,sbufmov p1,a ;接收亮灯信号送P1口sjmp $end乙机中断工作方式接收org 0000hajmp mainorg 0023hajmp zd ;转串口中断程序START: MOV TMOD,#20hmov tl1,#0FAhmov th1,#0FAhsetb tr1mov scon,#50hclr rimov ie,#90h ;开中断MAIN:sjmp $ 主程序zd: clr ri ;清接收标志;==============中断程序还要再完善============== mov a ,sbuf ;读接收信号mov p1,aMOV R1,A ;将收到的信号送缓存reti ;中断返回end<单片机双机串口通讯原理图>采用方式2 通信,数据帧格式是11位的,TB8为奇偶校验位,接收过程要求判断RB8,若出错置F0标志为1,正确则置F0标志为0,然后返回。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

前言单片机的通信接口是各台仪表之间或仪表与计算机之间进行信息交换和传输的联络装置。

主要有五种类型,串行通信接口、并行通信接口、USB接口、现场总线接口以及以太网接口。

串行通讯是单片机的一个重要应用。

本设计就是利用两块单片机来完成一个系统,实现单片机之间的串行通讯。

随着计算机的不断普及,在我们的周围可能会同时出现多台微型计算机,而且这些计算机的牌号,后型号不同,而且有的格式不兼容。

于是利用单片机串行口实现不同计算机之间的相互通信,以达到信息或程序的共享是非常有用的。

从智能家用电器到工业上的控制系统都采用了上位机与下位机基于串行通信的主从工作方式,这样就充分利用了微机分析处理能力强、速度快的特点及下位机(单片机)面向控制、使用灵活方便的优势。

利用多机通讯构成的分布式系统逐渐普及。

本实验就点对点的双机通信进行训练。

学习串口的工作方式,初始化编程,和单片机与单片机点对点通信的编程方法以及硬件电路的设计方法。

1.总体设计方案1.1 串口通信的设计原理复位电路复位电路单片机单片机电源电路电源电路时钟电路时钟电路按键输入1位LED数码管显示电路图1 串口通信的设计原理框图本次设计用于两片89S51,PC机的串行口采用的是标准的RS232接口,单片机的串行口电平是FTL电平,而TTL电平特性与RS232的电气特性不匹配,因此为了使单片机的串行口能与RS232接口通信,必须将串行口的输入/输出电平进行转换。

通常用MAX232芯片来完成电平转换。

单片机的发送方的数据由串行口TXD段输出,经过电平转换芯片MAX232将TTL电平转换为RS232电平输出,经过传输线将信号传送到接收端。

接收方也使用MAX232芯片进行电平转换后,信号到达接收方串行口的接收端。

接收方接收后,在数码管上显示接收的信息,实现串口通讯数据的发送和接收,该系统可采用max232进行串口通讯数据传送。

可用LED显示发送的相应据。

1.2 数据传输方案比较与选折在串行通信中,数据是在两个站之间传送的。

按照数据传送方向,串行通信可采用三种方案。

方案一:单工制式单工制式是指甲乙双方通信只能单向传送数据。

发送器A 接收器B图2 单工制式方案二:半双工制式半双工制式是指通信双方都具有发送器和接收器,双方既可发送也可接收,但接收和发送不能同时进行,即发送时就不能接收,接收时就不能发送。

图3 半双工制式 方案三:全双工制式全双工制式是指通信双方均设有发送器和接收器,并且将信道划分为发送信道和接收信道,两端数据允许同时收发,因此通信效率比前两种高。

图4 全双工制式 因此,本文选择方案三,全双工制式来实现数据传送。

1.3 控制部分的电路由于单片机集成了运算器电路、控制电路、存储器、中断系统、定时器/计数器以及输入/输出口电路等,所以用单片机设计控制电路省去了很多分立元器件。

由于单片机是可编程芯片,并且它可以运用C 语言编写,对于一些复杂的计算功能,可以调用C 语言库函数,使编写程序变得非常简单。

且经过上学期对单片机课程的学习,我们对单片机的应用比较熟悉,运用灵活,所以用单片机来实现本次课程设计。

2.硬件系统设计本设计选用以89S51单片机为主控单元,显示部分采用8段LED 数码管动态显示。

2.1 时钟电路时钟电路用于产生单片机工作所需要的时钟信号,单片机本身就是一个复杂的同步时序电路,为了保证同步工作方式的实现,电路应在唯一的时钟信号控制下严格地按时序进行工作。

在89S51芯片内部有一个高增益反相放大器,其输入端为芯片引脚X1,输 B 端A端发送 接收发送 接收 B 端 发送 接收A端 发送 接收出端为引脚X2,在芯片的外部跨接晶体振荡器和微调电容,形成反馈电路,就构成了一个稳定的自激振荡器。

此电路采用12MHz的石英晶体。

时钟电路如下图:图5 时钟电路2.2 复位电路复位是单片机的初始化操作,进入系统的正常初始化之外,当由于程序运行出错或操作错误是系统处于死锁状态时,为摆脱困境,也需要按复位键以重新启动。

RST引脚是单片机复位信号的输入端,复位信号是高电平有效,其有效时间应持续24个振荡周期(即2个机器周期)以上,若使用频率为12MHz的晶振,则复位信号持续时间应超过4 s才能完成复位操作。

复位操作有上电自动复位和按键手动复位两种方式。

上电自动复位是通过外部复位电路的电容充电来实现的。

按键电平复位是通过使复位端经电阻与Vcc电源接通而实现的。

在本设计中采用了按键电平方式如下图:图6 按键电平的连接方式2.3 单片机串行通信功能51单片机的串行接口是一个全双工的接口,它可以作为通用异步接受和发送器用,也可以作为同步移位寄存器用。

51单片机串行接口的结构如下图所示:图7 单片机串行接口的结构(1)数据缓冲器(SBUFF)接受或发送的数据都要先送到SBUF缓存。

有两个,一个缓存,另一个接受,用同一直接地址99H,发送时用指令将数据送到SBUF即可启动发送;接收时用指令将SBUF中接收到的数据取出。

(2)串行控制寄存器(SCON)SM0,SM1:串行接口工作方式选择位,串行接口工作方式可有以下四种工作方式:表1 工作方式SM0 SM1 工作方式功能波特率0 0 0 8位同步移位寄存fORC/12器(用于I/O扩展)可变(T1溢出率*2SMOD/32)0 1 1 10位异步串行通信(UART)1 02 11位异步串行通信fORC/64或fORC/32(UART)1 1 3 11位异步串行通信可变(T1溢出率*2SMOD/32)(UART)定时器TI溢出率=(fosc/12)*(1/(2^k-初值)) 式中T1计数率= fORC/12,(2^k-初值)为生溢产出所需机器周期数,K为定时器位数,与定时器设定工作方式有关:方式0时 K=13;方式1时 K=16;方式2时 K=8。

SM2:多机通信控制位。

主要用于方式2,3.当SM2=1时可以利用收到的RB8来控制是否激活RI,当SM2=0时均可以将数据送入缓存器,并激活RI。

REN:接收允许控制位。

软件置1允许接收;软件置0禁止接收。

TB8:方式2或3时,TB8为要发送的第9位数据,根据需要由软件置1或清0。

RB8:在方式2或3时,RB8位接收到的第9位数据,使从机根据这一位来判断主机发送的时呼叫地址还是要传送的数据。

TI:发送中断标志。

发送完一帧数据后由硬件自动置位,并申请中断。

必须要软件清零后才能继续发送。

RI:接收中断标志。

接收完一帧数据后由硬件自动置位,并申请中断。

必须要软件清零后才能继续接收。

(3)输入移位寄存器接收的数据先串行进入输入移位寄存器,8位数据全移入后,再并行送入接收SBUF中。

(4)波特率发生器波特率发生器用来控制串行通信的数据传输速率的,51系列单片机用定时器T1作为波特率发生器,T1设置在定时方式。

(5)电源寄存控制器(PCON)其最高位为SMOD即波特率倍增位,当SMOD=1时波特率提高一倍,复位时,SMOD=0。

2.4 MAX232芯片电平转换芯片MAX232专用于进行将TTL电平转换为RS232电平的芯片,MAX232内部有泵电源,能将+5V电源电压在芯片内提高到RS232电平所需的+10V 或者-10V电平。

引脚介绍:第一部分是电荷泵电路。

由1、2、3、4、5、6脚和4只电容构成。

功能是产生+12v和-12v两个电源,提供给RS-232串口电平的需要。

第二部分是数据转换通道。

由7、8、9、10、11、12、13、14脚构成两个数据通道。

其中13脚(R1IN)、12脚(R1OUT)、11脚(T1IN)、14脚(T1OUT)为第一数据通道。

8脚(R2IN)、9脚(R2OUT)、10脚(T2IN)、7脚(T2OUT)为第二数据通道。

第三部分是供电。

15脚GND、16脚VCC(+5v)。

图8 MAX232芯片2.5整体连接原理图P1.7——P1.0口分别接DP,G,F,E,D,C,B,A,其整体连接图如下:图9 整体连接原理图3.软件设计3.1 串行通信软件设计软件部分,通过通信协议进行发送接收,主机先送AAH 给从机,当从机接收到AAH 后,向主机回答BBH 。

主机收到BBH 后就把数码表TAB[16]中的10个数据送给从机,并发送检验和。

从机收到16个数据并计算接收到数据的检验和,与主机发送来的检验和进行比较,若检验和相同则发送00H 给主机;否则发送FFH 给主机,重新接受。

从机收到16个正确数据后送到一个数码管显示。

3.2 程序流程图(1)发送端图10 发送端程序流程图 主动发送数据,检验和 输出完成 清除标志位主程序开始程序初始化 主机发送AAH 从机是否回答 BBH N N串行口工作于方式1,用定时器1产生9600bit/s 的波特率,工作于方式2,即TMOD=0x20。

功能:将本机ROM 中数码表TAB[16]中的16个数发送到从机,并保存在从机内部ROM 中,从机收到这16个数据后送到一个数码管循环显示。

通信协议:主机首先发送连络信号(AAH),从机接收到之后返回一个连络信号(BBH)表示从机已准备好接收。

(2)接收端通信过程使用校验和校验。

从机接收到16个数据后,进行校验和检查,若数据没有错误,则返回00H ,否则返回FFH 。

主机发送一个数据后,等待从机返回数据;若为00H ,则继续发送下一个数据,若为FFH ,则重新发送数据。

图11 接收端程序流程图 主程序开始程序初始化 接收数据,计算检验和 检验和相等? 发送OOH 至主机 接收完成? 清除标志位 显示N 发送FFH , 并修改 N3.3 LED显示原理LED多数情况用于显示数字,对于十六进制的,要将0~F的数字用7段显示,必须将数字转换为LED对应七段码的信息,比如,要显示“0”,就是让a、b、c、d、e和f段发光,显示“1”,让b和c段发光,等等如表所示。

然后根据LED是共阴极还是共阳极接法确定LED各输入端应接逻辑1还是逻辑0,我选用的是共阴接法,要显示“0”时,a、b、c、d、e和f段就要输入逻辑1,即其段码为3F,通过从机的P1口将编码输出给LED。

4.系统调试与仿真结果4.1 软件调试系统软件设计利用Keil进行C语言编写。

在系统的软件设计中采用了模块化设计,将系统的各部分功能编写成子模块的形式,这样增强了系统软件的可读性和可移植性。

实验的程序通过Keil软件编译,打开Keil软件,首先,建立工程文件,然后新建一文档,输入自己编写的程序,保存为.C文件。

然后再单击Add Files to Group Source Group1。

然后勾选生成.HEX文件,最后点击编译。

图12 编译输出结果此过程是在Keil软件中编写双机通信的C语言程序,通过Keil软件验证程序的对错与否,在此基础上来改正,直至程序编写成功,并由此软件生成HEX 文件,可通过此文件调试开发板,验证所做的双机通信是否成功。

相关文档
最新文档