有限元计算固体力学和有限体积法计算流体力学的本质区别
计算流体力学方法及应用
计算流体力学方法及应用计算流体力学,简称CFD,是一种计算机仿真方法,用于研究液体和气体流动的物理现象。
随着计算机技术的发展,CFD方法在科学研究、工程设计以及产品开发等领域得到了广泛应用。
一、基础理论及方法在CFD方法的研究中,牛顿运动定律与质量守恒、动量守恒和能量守恒理论是基础。
其中最核心的数学模型是导出Navier-Stokes方程组。
通过数值计算方法对Navier-Stokes方程组求解,得到流体运动的速度、压力、温度等重要参数。
CFD方法最重要的两个分支是:有限体积法和有限元法。
有限体积法用于求解区域平均量;而有限元法则更多用于求解点值信息,如速度场。
这些方法的细节介绍超出了本文的范畴,但重要的是知道CFD方法基础理论和数值计算方法是如何结合起来的,以便更好理解CFD的应用。
二、应用领域CFD方法在许多领域的应用引起了广泛的兴趣。
其中之一是汽车工业。
CFD方法可以帮助设计人员更好地理解车辆如何与气流相互作用,选择合适的气动设计,从而提高燃油经济性、空气动力性和行驶稳定性。
另一个应用领域是建筑设计。
CFD模拟可以帮助建筑设计者评估建筑物的风和温度特征,从而改进室内环境质量和降低能耗。
类似的应用还包括通风系统优化、排气设计以及火灾防护等。
当然,CFD在航空航天工业中也有广泛应用。
人们可以通过CFD方法模拟飞机在不同飞行条件下的气动表现,并优化飞机燃油耗费的速率,提高空气动力性能和飞行质量。
CFD方法还可以用于研究火箭引擎的燃烧过程,以及对宇宙飞船的热防护系统的性能进行优化。
三、CFD方法的未来展望CFD方法作为一种高效可靠的物理仿真方法,有望在各个领域的应用中持续发挥重要作用。
随着计算机硬件的不断升级和算法的优化,CFD方法预计将变得更加精确、高效和可操作化。
其中应用于自动化设计与优化是未来重要的应用方向。
此外,随着人工智能技术的崛起,CFD方法将慢慢融入到智能化的决策制定和优化算法中。
结论:综上所述,CFD方法的应用广泛,从汽车工业到航天科技,从建筑设计到通风系统,其表现出了深远的影响。
有限元素法有限体积法有限差分法有限容积法的区别
1.1 概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
1.2 差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。
(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
1.3 构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2. FEM2.1 概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
2.2 原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限元和有限体积
有限元和有限体积引言有限元和有限体积方法是数值计算中常用的一种数值方法,用于求解连续介质力学问题。
有限元方法通过将连续介质分割为无数个小单元,通过对小单元进行分析,来近似求解整个问题。
而有限体积方法使用有限体积元胞对区域进行离散化,通过求解元胞边界上的通量和源项来逼近整体问题的解。
本文将详细讨论这两种方法的基本原理、应用领域和优缺点。
有限元方法基本原理有限元方法是将连续介质划分为一个个小的有限元,每个有限元都有自己的形状函数和自由度。
通过将连续问题离散化为有限个自由度上的代数方程,再通过求解代数方程组来近似求解连续问题的解。
具体步骤如下:1.将连续介质划分为有限个小的有限元;2.在每个有限元上选择适当的形状函数;3.建立有限元刚度矩阵和载荷向量;4.组装有限元刚度矩阵和载荷向量;5.边界条件的处理;6.求解代数方程组得到近似解。
有限体积方法基本原理有限体积方法是将连续介质划分为有限个的离散控制体积,通过对每个控制体积内部的平衡方程进行积分,得到离散控制方程。
以控制体积为基本单位,建立离散方程,通过对自由度进行遍历,求解整个问题。
具体步骤如下:1.将连续介质划分为有限个的离散控制体积;2.在每个控制体积内部建立平衡方程并进行积分;3.得到离散控制方程;4.边界条件的处理;5.求解离散方程组得到近似解。
有限元方法和有限体积方法的区别有限元方法和有限体积方法都是数值计算的重要方法,但在求解连续介质力学问题时有一些差异。
离散化方式不同有限元方法对连续介质进行的离散化是基于几何结构的,将连续域划分为小的有限元。
而有限体积方法则是基于控制体积划分,离散化程度相对较小。
近似程度不同有限元方法是在各个有限元上进行近似,通过调节有限元的数量和自由度的精度来改变近似程度。
有限体积方法是在每个控制体积上进行平衡方程的积分,通过选取不同大小的控制体积来改变近似程度。
单元法程度的力学意义不同有限元方法中的单元法是具有力学意义的,可以通过单元的应力、应变等物理量来反映力学本质。
有限差分,有限元,有限体积等离散方法的区别介绍
有限差分,有限元,有限体积等等离散方法的区别介绍一、区域离散化所谓区域离散化,实质上就是用一组有限个离散的点来代替原来连续的空间。
实施过程是;把所计算的区域划分成许多互不重迭的子区域,确定每个子区域的节点位置及该节点所代表的控制容积。
节点:需要求解的未知物理量的几何位置;控制容积:应用控制方程或守恒定律的最小几何单位。
一般把节点看成是控制容积的代表。
控制容积和子区域并不总是重合的。
在区域离散化过程开始时,由一系列与坐标轴相应的直线或曲线簇所划分出来的小区域称为子区域。
网格是离散的基础,网格节点是离散化物理量的存储位置。
大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。
1. 有限差分法是数值解法中最经典的方法。
它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。
这种方法发展比较早,比较成熟,较多用于求解双曲线和抛物线型问题。
用它求解边界条件复杂、尤其是椭圆型问题不如有限元法或有限体积法方便。
2. 有限元法是将一个连续的求解域任意分成适当形状的许多微小单元,并于各小单元分片构造插值函数,然后根据极值原理(变分或加权余量法),将问题的控制方程转化为所有单元上的有限元方程,把总体的极值作为各单元极值之和,即将局部单元总体合成,形成嵌入了指定边界条件的代数方程组,求解该方程组就得到各节点上待求的函数值。
对椭圆型问题有更好的适应性。
有限元法求解的速度较有限差分法和有限体积法慢,在商用CFD软件中应用并不广泛。
目前的商用CFD软件中,FIDAP采用的是有限元法。
3. 有限体积法又称为控制体积法,是将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积,将待解的微分方程对每个控制体积积分,从而得到一组离散方程。
其中的未知数十网格节点上的因变量。
子域法加离散,就是有限体积法的基本方法。
就离散方法而言,有限体积法可视作有限元法和有限差分法的中间产物。
计算流体力学常用的五大类数值方法简介
计算流体力学常用的五大类数值方法简介流体力学数值方法有很多种,其数学原理各不相同,但有二点是所有方法都具备的,即离散化和代数化。
总的来说其基本思想是:将原来连续的求解区域划分成网格或单元子区域,在其中设置有限个离散点(称为节点),将求解区域中的连续函数离散为这些节点上的函数值;通过某种数学原理,将作为控制方程的偏微分方程转化为联系节点上待求函数值之间关系的代数方程(离散方程),求解所建立起来的代表方程以获得求解函数的节点值。
不同的数值方法,其主要区别在于求解区域的离散方式和控制方程的离散方式上。
在流体力学数值方法中,应用比较广泛的是有限差分法、有限元法、边界元法、有限体积法和有限分析法,现简述如下。
一、有限差分法这是最早采用的数值方法,它是将求解区域划分为矩形或正交曲线网格,在网格线交点(即节点)上,将控制方程中的每一个微商用差商来代替,从而将连续函数的微分方程离散为网格节点上定义的差分方程,每个方程中包含了本节点及其附近一些节点上的待求函数值,通过求解这些代数方程就可获得所需的数值解。
有限差分法的优点是它建立在经典的数学逼近理论的基础上,容易为人们理解和接受;有限差分法的主要缺点是对于复杂流体区域的边界形状处理不方便,处理得不好将影响计算精度。
二、有限元法有限元法的基本原理是把适定的微分问题的解域进行离散化,将其剖分成相连结又互不重叠的具有一定规则几何形状的有限个子区域(如:在二维问题中可以划分为三角形或四边形;在三维问题中可以划分为四面体或六面体等),这些子区域称之为单元,单元之间以节点相联结。
函数值被定义在节点上,在单元中选择基函数(又称插值函数),以节点函数值与基函数的乘积的线性组合成单元的近似解来逼近单元中的真解。
利用古典变分方法(里兹法或伽辽金法)由单元分析建立单元的有限元方程,然后组合成总体有限元方程,考虑边界条件后进而求解。
由于单元的几何形状是规则的,因此在单元上构造基函数可以遵循相同的法则,每个单元的有限元方程都具有相同的形式,可以用标准化的格式表示,其求解步骤也就变得很规范,即使是求解域剖分各单元的尺寸大小不一样,其求解步骤也不用改变,这就为利用计算机编制通用程序进行求解带来了方便。
有限元法和有限体积法的区别
有限元法和有限体积法的区别
有限元法和有限体积法是数值计算中常用的两种方法。
它们的主要区别在于对待物理模型的方式。
有限元法是将物理模型分割成许多小单元,对每个小单元进行建模,并通过求解微分方程组来计算系统的行为。
这种方法可以适用于复杂的几何形状,并且可以对不规则的网格进行处理。
有限体积法则是将物理模型分割成许多小区域,对每个小区域进行建模,并通过所有小区域边界上的通量来计算系统的行为。
这种方法适用于守恒律方程的求解,并可以处理瞬态和非线性情况。
它也可以处理离散几何和不规则网格。
总的来说,这两种方法各有优点,应根据实际问题选择适合的方法来求解。
模拟仿真:有限元分析和计算流体力学的比较
模拟仿真:有限元分析和计算流体力学的比较随着计算机技术的发展,越来越多的工程问题可以通过数值模拟进行分析和解决。
有限元分析和计算流体力学是两种广泛使用的数值模拟方法,它们分别适用于不同的工程问题。
本文将对这两种方法进行比较,以期掌握它们的优缺点和适用范围,为工程应用提供指导。
一、有限元分析有限元分析是一种基于数学模型的工程分析方法,它模拟物体的结构和力学行为,并对其进行计算、预测和优化。
该方法在工程设计、机械制造、土木工程、航空航天、汽车工业等领域得到了广泛应用。
有限元方法的基本原理是将复杂物体划分为若干个离散的有限元,在每个元内建立数学模型,并将其组合成整个物体的数学模型。
有限元法的主要步骤包括建立有限元模型、选择计算参数、进行分析计算和结果评估等。
随着计算机技术的发展,有限元分析已经成为现代工程设计不可或缺的一部分。
有限元分析的优点:1.易于表达复杂结构和力学行为有限元分析可以将复杂而且多变的结构和力学行为进行分解和分析,这让我们避免了对复杂结构进行模拟试验的复杂、昂贵和不可靠。
将真实的物理结构离散成为若干小的有限元,则会简化问题和计算量,集中精力于具体细节的分析。
2.提高了工程设计的效率和准确性有限元分析可以通过改变模型中的材料和几何参数来进行分析和优化,这提高了工程设计的效率和准确性。
因为在物理试验中可能需要改变材料和几何参数,但在有限元分析中不需要。
3.能够分析复杂的非线性材料有限元分析能够分析复杂的非线性材料,如金属、塑料、土壤等。
而其他传统方法可能不适用于这些材料。
有限元分析的缺点:1.计算时间可能较长因为有限元分析需要大量计算,所以在时间和计算机资源有限的情况下,需要控制模型尺寸和计算精度。
如果计算次数过多或模型过大,则需要更长的计算时间。
2.数学模型的准确度未被证明虽然数学模型已经得到了广泛的认可和使用,但它们的准确性还有待验证。
此外,这些模型只是对真实物体的近似,所以准确性有限。
有限差分方法、有限元方法、有限体积方法
有限差分方法、有限元方法、有限体积方法有限差分方法、有限元方法、有限体积方法I.三者简介有限差分方法(Finite Difference Methods)是数值模拟偏微分方程最早采用的方法,至今仍被广泛运用。
该方法包括区域剖分和差商代替导数两个过程。
具体地,首先将求解区域划分为差分网格,用有限个网格节点代替连续的求解区域。
其次,利用Taylor级数展开等方法将偏微分方程中的导数项在网格节点上用函数值的差商代替来进行离散,从而建立以网格节点上的值为未知量的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
差商代替导数后的格式称为有限差分格式,从格式的精度来考虑,有一阶格式、二阶格式和高阶格式。
从差分的空间离散形式来考虑,有中心格式和迎风格式。
对于瞬态方程,考虑时间方向的离散,有显格式、隐格式、交替显隐格式等。
目前常见的差分格式,主要是以上几种格式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于结构网格,网格的步长一般根据问题模型和Courant稳定条件来决定。
有限元方法(Finite Element Methods)的基础是变分原理和分片多项式插值。
该方法的构造过程包括以下三个步骤。
首先,利用变分原理得到偏微分方程的弱形式(利用泛函分析的知识将求解空间扩大)。
其次,将计算区域划分为有限个互不重叠的单元(三角形、四边形、四面体、六面体等)。
再次,在每个单元内选择合适的节点作为求解函数的插值点,将偏微分方程中的变量改写成由各变量或其导数的节点值与所选用的分片插值基函数组成的线性表达式,得到微分方程的离散形式。
利用插值函数的局部支集性质及数值积分可以得到未知量的代数方程组。
有限元方法有较完善的理论基础,具有求解区域灵活(复杂区域)、单元类型灵活(适于结构网格和非结构网格)、程序代码通用(数值模拟软件多数基于有限元方法)等特点。
有限差分,有限元,有限体积等离散方法的区别介绍
有限差分,有限元,有限体积等等离散方法的区别介绍一、区域离散化所谓区域离散化,实质上就是用一组有限个离散的点来代替原来连续的空间。
实施过程是;把所计算的区域划分成许多互不重迭的子区域,确定每个子区域的节点位置及该节点所代表的控制容积。
节点:需要求解的未知物理量的几何位置;控制容积:应用控制方程或守恒定律的最小几何单位。
一般把节点看成是控制容积的代表。
控制容积和子区域并不总是重合的。
在区域离散化过程开始时,由一系列与坐标轴相应的直线或曲线簇所划分出来的小区域称为子区域。
网格是离散的基础,网格节点是离散化物理量的存储位置。
大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。
1. 有限差分法是数值解法中最经典的方法。
它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。
这种方法发展比较早,比较成熟,较多用于求解双曲线和抛物线型问题。
用它求解边界条件复杂、尤其是椭圆型问题不如有限元法或有限体积法方便。
2. 有限元法是将一个连续的求解域任意分成适当形状的许多微小单元,并于各小单元分片构造插值函数,然后根据极值原理(变分或加权余量法),将问题的控制方程转化为所有单元上的有限元方程,把总体的极值作为各单元极值之和,即将局部单元总体合成,形成嵌入了指定边界条件的代数方程组,求解该方程组就得到各节点上待求的函数值。
对椭圆型问题有更好的适应性。
有限元法求解的速度较有限差分法和有限体积法慢,在商用CFD软件中应用并不广泛。
目前的商用CFD软件中,FIDAP采用的是有限元法。
3. 有限体积法又称为控制体积法,是将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积,将待解的微分方程对每个控制体积积分,从而得到一组离散方程。
其中的未知数十网格节点上的因变量。
子域法加离散,就是有限体积法的基本方法。
就离散方法而言,有限体积法可视作有限元法和有限差分法的中间产物。
有限体积法 有限差分法 有限元法
有限体积法有限差分法有限元法
有限体积法、有限差分法、有限元法是数学建模中的常用方法,在数值计算与科学计算中有着重要的应用。
它们都是基于离散化的思想,将连续的问题离散化为有限个离散点,通过对这些点的计算得到问题的近似解。
有限体积法主要用于对流传输问题的求解,它将物理空间划分为一系列控制体积,并在每个控制体积内进行质量、能量守恒方程的求解,从而得到问题的解。
有限差分法则是一种离散化求解偏微分方程的方法,它将求解区域离散化为一系列网格点,利用有限差分公式对方程进行差分近似,从而得到问题的近似解。
有限元法是一种常用的数值分析方法,主要用于求解偏微分方程,特别是与结构力学相关的问题。
它将求解区域分割成一系列小单元,利用数学上的重要定理如拉格朗日定理和虚功原理,将问题转化为求解单元之间的相互作用,最终得到问题的数值解。
这三种方法都有其特点和优缺点,根据具体的问题需要选择合适的方法进行求解。
在实际应用中,它们广泛应用于流体力学、结构力学、电磁学、热传导等领域。
- 1 -。
有限差分-有限元-有限体积等的区别介绍
有限差分,有限元,有限体积等离散方法的区别介绍1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
计算流体力学的数值方法和应用研究
计算流体力学的数值方法和应用研究计算流体力学(CFD)是一种基于数值方法模拟流体流动的学科,通常应用于工程和科学领域中涉及流体流动和热传输的问题。
CFD基于Navier-Stokes方程组来模拟流体的运动,通过离散化的方式将连续的运动方式转换成为离散的算法。
在CFD中,最常见的数值方法是有限元法(FEM)和有限体积法(FVM)。
有限元法将流场分割成无限小的三角形或四边形单元,然后通过求解每个单元上的Navier-Stokes方程组来得到整个流场。
而有限体积法则是通过将流场分割成有限大小的体积,然后在每个体积上进行数值积分,从而获得整个流场的解。
CFD的应用可谓是十分广泛,包括但不限于航空航天、汽车制造、能源开发、化学工程等领域。
其中,航空航天领域的CFD应用最为成熟。
例如,飞机的气动设计需要CFD来优化设计方案和评估效果,飞行器的热传输问题也需要CFD来模拟。
在能源领域中,CFD可以被用来模拟风力机、火力发电厂等设备的流体流动,从而提高效率和降低成本。
除了工程和科学领域,CFD在医学、环境和消防等领域中也有着广泛的应用。
例如,医学领域中CFD可以用来模拟血流,帮助医生诊断疾病和制定治疗方案。
在环境领域,CFD可用于模拟气候变化、水文循环等问题。
消防领域中,CFD可模拟火灾烟气和温度场的传播规律,为消防员提供有效的指导和协助。
尽管CFD在各个领域中都有非常广泛的应用,但是它仍然存在许多的问题和挑战。
首先,CFD在计算复杂的流动现象时会面临模型的不确定性问题。
其次,在数值计算过程中,精度和稳定性也是很大的考验。
此外,CFD所需要的高性能计算资源也是一个挑战,因为计算流体力学需要大量的内存、计算时间和数据处理能力。
总的来说,CFD是一项非常重要的研究领域,其应用远远超过了工程和科学领域的范围。
虽然存在一些挑战和问题,但是随着计算机性能的不断提升和模型不断完善,CFD的应用前景将变得越来越广泛。
计算流体力学基础ppt课件
它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性, 能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、 易燃等真实条件和实验中只能接近而无法达到的理想条件。
8
数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适 用、适合于在计算机上进行计算的离散的有限数学模型,且最终结果 不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并 有一定的计算误差。
对于初始条件和边界条件的处理,直接影响计算结果的精度。
16
划分计算网 采用数值方法求解控制方程时,都是想办法将控制方程在空间区
域上进行离散,然后求解得到的离散方程组。要想在空间域上离 散控制方程,必须使用网格。现已发展出多种对各种区域进行离 散以生成网格的方法,统称为网格生成技术。
不同的问题采用不同数值解法时,所需要的网格形式是有一定区 别的,但生成网格的方法基本是一致的。目前,网格分结构网格 和非结构网格两大类。简单地讲,结构网格在空间上比较规范, 如对一个四边形区域,网格往往是成行成列分布的,行线和列线 比较明显。而对非结构网格在空间分布上没有明显的行线和列线。
数学模型就好理解了,就是对物理模型的数学描写。 比如N-S方程就是对粘性流体动力学的一种数学描写,值得注意的是,数学 模型对物理模型的描写也要通过抽象,简化的过程。
14
建立控制方程 确立初始条件及边界条件 划分计算网格,生成计算节点
建立离散方程
离散初始条件和边界条件
给定求解控制参数
解收敛否
否
显示和输出计算结果
21
给定求解控制参数 在离散空间上建立了离散化的代数方程组,并施加离散化的
计算方法在固体与流体力学问题中的模拟与分析
计算方法在固体与流体力学问题中的模拟与分析概述:计算方法在固体与流体力学问题中的模拟与分析,是现代科学技术发展中的重要领域。
通过数值模拟和分析,可以更好地理解和解决固体与流体力学问题,为工程设计和科学研究提供有力支持。
一、数值模拟在固体力学中的应用1. 有限元法有限元法是一种常见的固体力学数值模拟方法。
它将复杂的连续体划分为有限数量的单元,通过求解单元内的力学方程和边界条件,得到整个体系的应力和位移分布。
有限元法在结构强度分析、振动分析、热传导等问题中具有广泛应用。
2. 边界元法边界元法是另一种常用的固体力学数值模拟方法。
它将问题的边界上的物理量作为未知量,通过求解边界上的积分方程,得到整个体系的应力和位移分布。
边界元法在弹性力学、弹塑性力学等问题中具有较高的精度和效率。
二、数值模拟在流体力学中的应用1. 有限体积法有限体积法是一种常见的流体力学数值模拟方法。
它将流体域划分为有限数量的控制体积,通过求解控制体积内的质量守恒、动量守恒和能量守恒方程,得到流体的速度、压力和温度等分布。
有限体积法在流体流动、传热、传质等问题中具有广泛应用。
2. 有限差分法有限差分法是另一种常用的流体力学数值模拟方法。
它将流体域划分为有限数量的网格点,通过离散化流体力学方程,得到网格点上的流体量值。
有限差分法在计算流体力学、湍流模拟等问题中具有较高的精度和稳定性。
三、数值模拟在固体与流体力学问题中的联合应用1. 流固耦合问题流固耦合问题是固体与流体力学的相互作用问题,涉及到固体的变形与流体的运动之间的相互影响。
通过数值模拟,可以模拟和分析流固耦合问题,如风对建筑物的荷载、水对船舶的阻力等。
数值模拟结果可以提供设计和优化的依据。
2. 多物理场耦合问题多物理场耦合问题是固体与流体力学以及其他物理场之间的相互作用问题,如固体的热传导、流体的传热传质等。
通过数值模拟,可以模拟和分析多物理场耦合问题,为工程设计和科学研究提供全面的分析和优化方法。
有限元和有限体积
有限元和有限体积有限元和有限体积是工程学中常用的数值分析方法,用于求解各种复杂的物理问题。
这两种方法在实际工程应用中具有重要的意义,并在不同领域得到了广泛的应用。
有限元方法是一种数值计算方法,通过将连续的物理问题离散化为有限数量的单元,然后在每个单元内建立近似解来求解整个问题。
在有限元方法中,通常将物理问题的城域分割为许多小的单元,然后在每个单元内建立适当的插值函数,通过对每个单元的方程进行求解,最终得到整个问题的近似解。
有限元方法适用于各种领域,如结构力学、流体力学、热传导等。
与有限元方法类似,有限体积方法也是一种数值计算方法,但其基本思想是在物理问题的每个离散单元上建立方程,然后通过对每个单元的质量、动量、能量守恒等方程进行求解,最终得到整个问题的解。
有限体积方法适用于对流传输、热传导等问题的求解,特别适用于对流问题的模拟。
在实际工程应用中,有限元和有限体积方法都具有各自的优势和局限性。
有限元方法在处理复杂几何形状和边界条件时具有灵活性,适用于各种非线性、非均匀、非稳态问题的求解。
而有限体积方法在处理守恒形式的方程时具有优势,尤其适用于流体力学和热传导等守恒形式的问题。
有限元和有限体积方法也可以结合使用,形成混合方法,以克服各自的不足。
混合方法将有限元和有限体积方法相结合,利用它们各自的优势来提高数值计算的精度和效率。
混合方法在涉及多物理场耦合或复杂边界条件的问题中具有重要的应用价值。
在工程实践中,工程师们常常根据具体问题的特点和求解要求选择合适的数值分析方法。
有限元和有限体积方法作为常用的数值计算方法,在工程领域发挥着重要作用,为工程问题的求解提供了有效的途径和手段。
总的来说,有限元和有限体积方法是工程学中常用的数值分析方法,它们在不同领域的工程应用中具有重要的地位和作用。
工程师们通过运用这两种方法,可以有效地解决各种复杂的物理问题,推动工程技术的发展和进步。
希望通过不断的研究和实践,有限元和有限体积方法能够不断完善和发展,为工程领域的发展做出更大的贡献。
有限体积法和有限元方法之间的比较
有限体积法和有限元方法之间的比较孙佳慧【期刊名称】《长春师范学院学报(自然科学版)》【年(卷),期】2011(030)004【摘要】有限体积法现在已经成为和有限元方法并驾齐驱的一种求解偏微分方程的数值方法。
与有限元方法相比,有限体积法保持物理量的局部守恒性质,并且计算更加简单。
本文主要介绍有限体积法和有限元法之间的一些相同点和不同点。
%As the same as finite element method,the finite volume method is also a numerical method for solving partial differentialpared with finite element method,the finite volume method maintains the local conservation properties of physical quantities and has a simpler calculation.This article mainly introduces some similarities and differences between finite volume method and finite element method.【总页数】2页(P13-14)【作者】孙佳慧【作者单位】空军航空大学基础部,吉林长春130022【正文语种】中文【中图分类】O175【相关文献】1.高精度有限体积法与间断有限元法的比较 [J], 范进之;李桦2.最小二乘有限元法和有限体积法在CFD中的应用比较 [J], 陶莎;杨志刚;江伯南;顾文俊3.反应流模拟的有限体积法的比较 [J], 侯庆志;沈嘉渊;魏建国4.有限体积法和有限元方法之间的比较 [J], 孙佳慧;5.内燃机中一维非定常流动计算的特征线法与有限体积法的比较 [J], 邓康耀因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限元计算固体力学和有限体积法计算流体力学的本质区别有限元计算固体力学和有限体积法计算流体力学的本质区别2010-12-23有限元计算固体力学和有限体积法计算流体力学的本质区别是什么?如题。
回答汇总:可以说一个是基于变分原理,一个是基于守恒原理。
有限体积法其实就是有限元中讲的加权残数法中的子域法。
具体请参考《传热与流体流动的数值计算》第33页。
固体采用拉格朗日方法,流体采用欧拉方法。
1.FDM 1.1概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
1.2差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。
(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
1.3构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2..FEM 2.1概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
2.2原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。
根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。
(1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法;(2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格;(3)从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。
不同的组合同样构成不同的有限元计算格式。
对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。
令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。
插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。
有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。
单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。
常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。
在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。
对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。
2.3基本原理与解题步骤对于有限元方法,其基本思路和解题步骤可归纳为:(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。
(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。
区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。
(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。
有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。
(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。
(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。
(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。
对于自然边界条件,一般在积分表达式中可自动得到满足。
对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。
(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。
3.有限体积法有限体积法(FiniteVolumeMethod)又称为控制体积法。
其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。
其中的未知数是网格点上的因变量的数值。
为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。
从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。
简言之,子区域法属于有限体积发的基本方法。
有限体积法的基本思路易于理解,并能得出直接的物理解释。
离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。
限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。
这是有限体积法吸引人的优点。
有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。
就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。
有限单元法必须假定值既插值函数),并将其作为近似解。
有限差分法只考在网格点之间的变化规律( 虑网格点上的数值而不考虑值在网格点之间如何变化。
有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。
在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数比较一下:有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程)。
有限容积法和有限差分法最本质的区别是,前者是根据积分方程即对每个控制体积分),后者直接根据微分方程推导出来,所以前推导出来的( 者的精度不但取决于积分时的精度,还取决与对导数处理的精度,一般有限容积法总体的精度为二阶,因为积分的精度限制,当然有限容积法对于守恒型方程导出的离散方程可以保持守恒型;而后者直接由微分方程导出,不涉及积分过程,各种导数的微分借助Taylor展开,直接写出离散方程,当然不一定有守恒性,精度也和有限容积法不一样,一般有限差分法可以使精度更高一些。
当然二者有联系,有时导出的形式一样,但是概念上是不一样的。
至于有限容积法和有限元相比,有限元在复杂区域的适应性对有限容积是毫无优势可言的,至于有限容积的守恒性,物理概念明显的这些特点,有限元是没有的。
目前有限容积在精度方面与有限元法有些差距。
有限元方法比有限差分优越的方面主要在能适应不规则区域,但是这只是指的是传统意义上的有限差分,现在发展的一些有限差分已经能适应不规则区域。
对于椭圆型方程,如果区域规则,传统有限差分和有限元都能解,在求解效率,这里主要指编程负责度和收敛快慢、内存需要,肯定有限差分有优势。
计算固体和计算流体其实区别就是有无对流项的问题。
固体的导热问题和流体的对流换热问题,都是可以用对流扩散方程来表示的。
只是固体没有对流项而已,所以简单的多。
有限元解决计算固体和有限体积解决流体问题综合大家的观点区别如下:1。
固体和流体各自方程表述不同(对流项/本构关系)2。
方程离散方法不同确切的说应该是出发点不同(终点未必不同),变分原理和守恒原理3。
在加一点离散方程的求解方法也有一定的不同个人认为区别最大的属第2点,但个人认为本质的区别谈不上,工程角度有区别,两者在数学的角度上不会有本质的区别,守恒积分形式可以看作是一种特殊的加权余量法。
流体问题和固体问题的控制方程在数学上都是微分方程,所以有限元和有限体积都可以看成是微分方程的近似解法。
有限元的数学基础是方程理论,如弱解、插值,有限体积法推导时用到的是经典微积分的结果(体积分到面积分的转换)。