量子力学_参考答案

合集下载

量子力学基础试题及答案

量子力学基础试题及答案

量子力学基础试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中,物质的波粒二象性是由哪位科学家提出的?A. 爱因斯坦B. 普朗克C. 德布罗意D. 海森堡答案:C2. 量子力学的基本原理之一是不确定性原理,该原理是由哪位科学家提出的?A. 玻尔B. 薛定谔C. 海森堡D. 狄拉克答案:C3. 量子力学中,描述粒子状态的数学对象是:A. 波函数B. 概率密度C. 动量D. 能量答案:A4. 量子力学中,哪个方程是描述粒子的波动性质的基本方程?A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 相对论方程答案:A5. 量子力学中,哪个原理说明了粒子的波函数在测量后会坍缩到一个特定的状态?A. 叠加原理B. 波函数坍缩原理C. 不确定性原理D. 泡利不相容原理答案:B二、填空题(每题3分,共15分)1. 在量子力学中,粒子的动量和位置不能同时被精确测量,这一现象被称为______。

答案:不确定性原理2. 量子力学中的波函数必须满足______条件,以确保物理量的概率解释是合理的。

答案:归一化3. 量子力学中的粒子状态可以用______来描述,它是一个复数函数。

答案:波函数4. 量子力学中的______方程是描述非相对论性粒子的波函数随时间演化的基本方程。

答案:薛定谔5. 量子力学中的______原理表明,不可能同时精确地知道粒子的位置和动量。

答案:不确定性三、简答题(每题5分,共20分)1. 简述量子力学与经典力学的主要区别。

答案:量子力学与经典力学的主要区别在于,量子力学描述的是微观粒子的行为,它引入了波粒二象性、不确定性原理和量子叠加等概念,而经典力学主要描述宏观物体的运动,遵循牛顿力学的确定性规律。

2. 描述量子力学中的波函数坍缩现象。

答案:波函数坍缩是指在量子力学中,当对一个量子系统进行测量时,系统的波函数会从一个叠加态突然转变到一个特定的本征态,这个过程是不可逆的,并且与测量过程有关。

量子力学复习题附答案

量子力学复习题附答案

量子力学复习题附答案1. 量子力学的基本假设是什么?答案:量子力学的基本假设包括波函数假设、态叠加原理、测量假设、不确定性原理、薛定谔方程和泡利不相容原理。

2. 描述态叠加原理的内容。

答案:态叠加原理指出,一个量子系统可以处于多个可能状态的线性组合,即叠加态。

系统的态函数可以表示为这些可能状态的叠加。

3. 测量假设在量子力学中扮演什么角色?答案:测量假设指出,当对量子系统进行测量时,系统会从叠加态“坍缩”到一个特定的本征态,其概率由波函数的模方给出。

4. 不确定性原理如何表述?答案:不确定性原理表述为,粒子的位置和动量不能同时被精确测量,它们的不确定性的乘积总是大于或等于某个常数,即 $\Delta x\Delta p \geq \frac{\hbar}{2}$。

5. 薛定谔方程的形式是什么?答案:薛定谔方程的形式为 $i\hbar\frac{\partial}{\partialt}\Psi(r,t) = \hat{H}\Psi(r,t)$,其中 $\Psi(r,t)$ 是波函数,$\hat{H}$ 是哈密顿算符,$\hbar$ 是约化普朗克常数。

6. 泡利不相容原理的内容是什么?答案:泡利不相容原理指出,一个原子中不能有两个或更多的电子处于相同的量子态,即具有相同的一组量子数。

7. 什么是波函数的归一化?答案:波函数的归一化是指波函数的模方在整个空间的积分等于1,即$\int |\psi|^2 d\tau = 1$,其中 $d\tau$ 是体积元素。

8. 描述量子力学中的隧道效应。

答案:隧道效应是指粒子通过一个势垒的概率不为零,即使其动能小于势垒的高度。

这是量子力学中粒子波性质的体现。

9. 什么是自旋?答案:自旋是量子力学中粒子的一种内禀角动量,它与粒子的质量和电荷有关,但与粒子的轨道角动量不同。

10. 什么是能级和能级跃迁?答案:能级是指量子系统中粒子可能的能量状态,能级跃迁是指粒子从一个能级跃迁到另一个能级的过程,通常伴随着能量的吸收或发射。

《量子力学》基本概念考查题目以及答案

《量子力学》基本概念考查题目以及答案

《量子力学》基本概念考查题目以及答案1. 量子力学中,粒子的状态由什么描述?A. 位置B. 动量C. 波函数D. 能量答案:C2. 海森堡不确定性原理表明了什么?A. 粒子的位置和动量可以同时准确知道B. 粒子的位置和动量不能同时准确知道C. 粒子的速度和动量可以同时准确知道D. 粒子的位置和能量可以同时准确知道答案:B3. 量子纠缠是指什么?A. 两个粒子之间的经典相互作用B. 两个粒子之间的量子相互作用C. 两个粒子的量子态不能独立于彼此描述D. 两个粒子的量子态可以独立于彼此描述答案:C4. 在量子力学中,一个粒子通过一个势垒的隧穿概率是由什么决定的?A. 粒子的能量B. 势垒的宽度C. 势垒的高度D. 所有以上因素答案:D5. 量子力学的基本方程是什么?A. 牛顿第二定律B. 麦克斯韦方程组C. 薛定谔方程D. 热力学第二定律答案:C6. 在量子力学中,一个系统的波函数坍缩通常发生在什么情况下?A. 当系统处于叠加态时B. 当系统被测量时C. 当系统与环境相互作用时D. B 和 C答案:D7. 量子力学中的泡利不相容原理指出,一个原子中的两个电子不能具有完全相同的一组量子数,这主要影响什么?A. 电子的质量B. 电子的自旋C. 电子的能级D. 电子的电荷答案:C8. 量子退相干是什么?A. 量子态的相干性增强的过程B. 量子态的相干性丧失的过程C. 量子态的叠加态减少的过程D. 量子态的不确定性减少的过程答案:B9. 在量子力学中,哪个原理说明了全同粒子不能被区分?A. 泡利不相容原理B. 量子叠加原理C. 量子不确定性原理D. 量子对称性原理答案:D10. 量子力学中的“观测者效应”指的是什么?A. 观测者的存在改变了被观测系统的状态B. 观测者的存在增强了被观测系统的能量C. 观测者的存在减小了被观测系统的不确定性D. 观测者的存在导致了被观测系统的量子坍缩答案:A11. 在量子力学中,一个粒子的波函数通常是复数还是实数?A. 实数B. 复数C. 整数D. 可以是复数也可以是实数答案:B12. 量子力学中的“粒子-波动二象性”指的是什么?A. 粒子有时表现为波动,有时表现为粒子B. 粒子和波动是两种完全不同的实体C. 粒子和波动是同一种实体的不同表现形式D. 粒子的存在需要波动作为媒介答案:C13. 在量子力学中,一个粒子的动量和位置可以同时被准确测量吗?A. 是的,可以同时准确测量B. 不可以,这受到海森堡不确定性原理的限制C. 只有在特定条件下可以D. 只有使用特殊仪器才可以答案:B14. 量子力学中的“超定性”是指什么?A. 系统的状态由多个波函数描述B. 系统的多个性质可以独立测量C. 系统的波函数可以有多个解D. 系统的多个状态可以共存答案:A15. 在量子力学中,一个粒子的自旋是什么?A. 粒子旋转的速度B. 粒子的量子态的一个内在属性C. 粒子的角动量D. 粒子的动能答案:B16. 量子力学中的“测量问题”指的是什么?A. 如何测量量子系统的尺寸B. 如何测量量子系统的动量C. 测量过程如何影响量子系统的状态D. 测量结果的统计性质答案:C17. 量子力学中的“波函数坍缩”是指什么?A. 波函数在空间中的扩散B. 波函数在时间中的演化C. 波函数从叠加态突然转变为某个特定的状态D. 波函数的数学表达式变得复杂答案:C18. 在量子力学中,一个系统的能量通常是量子化的,这意味着什么?A. 系统的能量可以连续变化B. 系统的能量可以是任何值C. 系统的能量只能取特定的离散值D. 系统的能量只能增加或减少特定的量答案:C19. 量子力学中的“非局域性”指的是什么?A. 量子系统的状态不能在空间中定位B. 量子系统的状态不能在时间中定位C. 量子系统的状态不受空间距离的限制D. 量子系统的状态不受时间距离的限制答案:C20. 在量子力学中,一个粒子的波函数的绝对值平方代表什么?A. 粒子的总能量B. 粒子的总动量C. 粒子在某个位置被发现的概率密度D. 粒子的电荷密度答案:C这套选择题覆盖了量子力学的多个基本概念,适合用于检验学生对量子力学基础知识的掌握情况。

量子力学作业参考答案(刘觉平)

量子力学作业参考答案(刘觉平)

习题一1. 计算下列情况的Einstein-de Broglie 波长,指出哪种过程要用量子力学处理:(1)能量为0.025eV 的慢中子24n 1.6710g m -=⨯()被铀吸收;(2)能量为5MeV 的α粒子穿过原子246.6410g m α-=⨯();(3)飞行速度为100m /s 质量40g 为的子弹的运动。

解:(1)由242220m c p c E +=注意到:22481851.6710310 1.503109.3810n m c g m s J Mev ---=⨯⨯⨯⋅=⨯=⨯>>0.025ev 所以202k p E m =利用Einstein-de Broglie 关系: hp λ=得: 0.181nm λ=而吸收过程中作用距离(即核半径)约为飞米量级,比0.181nm 小,因此要用量子力学处理。

(2)由242220m c p c E +=注意到:2855.97610 3.7310m c J Mev α-=⨯=⨯>> 6.4fm λ= 得h εν=利用Einstein-de Broglie 关系hp λ=得: 6.4fm λ=这比原子半径小的多,因此不需用量子力学处理。

(3)显然子弹不是相对论的,故可利用p mv =。

代入Einstein-de Broglie 关系hp λ=得:341.6510m λ-=⨯,这比子弹的运动尺度小的多,不需用量子力学处理。

2. 两个光子在一定条件下可以转化为正、负电子对.如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少?解:若会发生这种转化,由能量守恒的限制,两个光子的能量必须要大于正负电子对的静能即202 1.022e E m c Mev ==。

光子能量h εν=,得到min 2.42fm λ=。

3. 考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕。

利用检测器能定出电子撞击屏幕的位置。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。

2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。

3. 描述量子隧道效应,并解释它在实际应用中的重要性。

三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。

求该粒子的能量E。

2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。

求该电子的动量分布。

答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。

这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。

2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。

例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。

3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。

量子力学课后习题答案

量子力学课后习题答案

Wnl (r)dr Rnl2 (r)r 2dr
例如:对于基态 n 1, l 0
W10 (r) R102 (r)r 2

4 a03
r e2 2r / a0
求最可几半径
R e 2 r / a0
10
a03 / 2
dW10 (r) 4 (2r 2 r 2 )e2r / a0
x)

k
2
2
(
x)

0
其解为 2 (x) Asin kx B cos kx
根据波函数的标准条件确定系数A、B,由连续性条件,得
2 (0) 1(0) B 0
2 (a) 3 (a) Asin ka 0
A0
sin ka 0
ka n
(n 1, 2, 3,)
[1 r
eikr
r
(1 r
eikr )

1 r
eikr
r
(1 r
eikr )]er
i1 1 11 1 1

2
[ r
(
r2
ik
) r

r
(
r2
ik
r )]er

k
r2
er
J1与er 同向。 1 表示向外传播的球面波。
习题
(2)
J2

i
2
(
2
* 2
2*
解:U (x)与t 无关,是定态问题
薛定谔方程为

2
2
d2 dx2

(x) U (x) (x)

E (x)
在各区域的具体形式为:
x0

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。

A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。

答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。

答案:±1/23. 薛定谔方程描述的是粒子的_________。

答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。

答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。

答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。

答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。

在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。

波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。

2. 请简要说明量子力学中的不确定性原理。

答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。

量子力学练习题答案

量子力学练习题答案
量子力学练习题参考答案
一、 简答题 1. 简述光电效应中经典物理学无法解释的实验现象。 答:光电效应中经典物理学无法解释的实验现象有: (1)对入射光存在截止频率ν0 ,小于该频率的入射光没有光电子逸出;(2) 逸出的光电子的能量只与入射光的频率ν 有关,入射光的强度无关;(3) 截止频率只与材料有关而与光强无关;(4)入射光的强度只影响逸出的光 电子的数量;(5)无论多弱的光,只要其频率大于截止频率,一照射到金 属表面,就有光电子逸出。 2. 简述 Planck 的光量子假设。 答:Planck 的光量子假设为,对于一定的频率为ν 的辐射,物体吸收或发 射的能量只能以 hν 为单位来进行。 3. 写出 Einstein 光电方程,并阐述 Einstein 对光电效应的量子解释。 答:Einstein 光电方程为 hν = 1 mv2 + W 。
⎤ ⎥ ⎦
16. 简述粒子动量与位置的不确定关系。
答:若要想精确地知道粒子的动量值,就无法得知粒子的具体位置;要想
精确地知道粒子的位置,就无法得知粒子的具体动量值,位置分布的均方
差和动量分布的均方差受到下面关系的制约
Δx ⋅ Δp ≥ = 2
17. 简述量子力学的态叠加原理。
答:量子力学的态叠加原理是指如果ψ1 、ψ 2 、ψ 3 ……均是体系的可能状态,
ψ ( x, t) = eip0x / = ⋅ e−iEt / = = e−i(Et− p0x)/ =
14. 写出动量算符、动能算符以及在直角坐标系中角动量各分量的算符的
表达式。 答:动量算符 lpK = −i=∇
动能算符 Tl = 1 (−i=∇)2
2m
角动量各分量的算符
L x
=
−i=
⎛ ⎜

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、单项选择题(每题2分,共10分)1. 量子力学中的波函数描述了粒子的哪种属性?A. 位置B. 动量C. 能量D. 概率密度答案:D2. 哪个原理表明一个粒子的波函数可以展开成一组完备的本征函数?A. 泡利不相容原理B. 薛定谔方程C. 玻恩规则D. 量子态叠加原理答案:D3. 量子力学中,哪个算符代表粒子的位置?A. 动量算符B. 能量算符C. 位置算符D. 角动量算符答案:C4. 量子力学中,哪个原理描述了测量过程对系统状态的影响?A. 海森堡不确定性原理B. 量子纠缠C. 量子退相干D. 量子测量原理答案:D5. 哪个方程是量子力学中描述粒子时间演化的基本方程?A. 薛定谔方程B. 狄拉克方程C. 克莱因-戈登方程D. 麦克斯韦方程答案:A二、填空题(每题2分,共10分)1. 量子力学中,粒子的状态由______描述,而粒子的物理量由______表示。

答案:波函数;算符2. 根据量子力学,粒子的位置和动量不能同时被精确测量,这被称为______。

答案:海森堡不确定性原理3. 在量子力学中,粒子的波函数在空间中的变化遵循______方程。

答案:薛定谔4. 量子力学中的______原理指出,一个量子系统在任何时刻的状态都可以表示为该系统可能状态的线性组合。

答案:态叠加5. 量子力学中,粒子的波函数必须满足______条件,以保证物理量的概率解释是合理的。

答案:归一化三、计算题(每题10分,共20分)1. 假设一个粒子处于一维无限深势阱中,势阱宽度为L。

求该粒子在基态时的能量和波函数。

答案:粒子在基态时的能量E1 = (π^2ħ^2) / (2mL^2),波函数ψ1(x) = sqrt(2/L) * sin(πx/L),其中x的范围是0 ≤ x ≤ L。

2. 考虑一个粒子在一维谐振子势能中运动,其势能表达式为V(x) = (1/2)kx^2。

求该粒子的能级和相应的波函数。

答案:粒子的能级En = (n + 1/2)ħω,其中n = 0, 1, 2, ...,波函数ψn(x) = (1/sqrt(2^n n!)) * (mω/πħ)^(1/4) * e^(-mωx^2/(2ħ)) * Hn(x),其中Hn(x)是厄米多项式。

量子力学答案完全版

量子力学答案完全版

⒈热辐射的峰值波长与辐射体温度之间的关系被维恩位移定律: 表示,其中。

求人体热辐射的峰值波长(设体温为)。

解:,由题意,人体辐射峰值波长为:。

⒉宇宙大爆炸遗留在宇宙空间的均匀各向同性的背景热辐射相当于黑体辐射。

此辐射的峰值波长是多少?在什么波段?解:T=2.726K ,由维恩位移定律,属于毫米波。

⒊波长为的X 射线光子与静止的电子发生碰撞。

在与入射方向垂直的方向上观察时,散射X射线的波长为多大?碰撞后电子获得的能量是多少eV ?解:设碰撞后,光子、电子运动方向与入射方向夹角分别为θ,α,由能量守恒,,动量守恒:;;整理得:;联立第一式:nm c m h e 01.0;2sin 20201===-λλθλλ ;则X 射线的波长为:01.02sin 221+=θλc m h e ;电子能量:1λλhchc E e -= ⒋在一束电子束中,单电子的动能为,求此电子的德布罗意波长。

解:电子速度远小于光速,故:;则:。

5.设归一化函数: (x )=Aexp(-2x 2)(-)a 为常数,求归一化常数A 。

解:由归一化条件 |2dx=1 得A 2==A=6.设归一化波函数=A(0n为整数,a为常数,求归一化常数A解:由归一化条件|2dx得A2=1解得A=7.自由粒子的波函数为=Aexp()其中和是粒子的动量和能量,和t是空间与时间变量,ℏ是普朗克常数,A是归一化常数,试建立自由粒子波函数所满足的方程。

解:由=Aexp(),将其对时间求偏微商,得到=-E,然后对其空间求偏微商,得到:=-利用自由粒子的能量和动能的关系式:E=就可以得到:i=---------自由粒子波函数所满足的方程8.设一个微观粒子的哈密顿算符的本征方程为Ĥ=该粒子的初始波函数为=+设和是实数,求任意时刻的波函数及粒子的几率密度.解:由=exp()=dx=== exp()+ exp()粒子的几率密度===[ exp()+ exp()][ exp()+ exp()]因为和是实数,利用欧拉公式:原式=9.宽度为a的一维无限深势阱中粒子的本征函数为=求证本征函数的正交性:dx=0(m)证:===[]=0()10.原子核内的质子和中子可以粗略地当成处于无限深势阱中而不能逸出,它们在核中可以认为是自由的,按一维无限深势阱估算,质子从第一激发态(n=2)跃迁到基态(n=1)时,释放的能量是多少MeV?核的线度按a=1.0m计算。

《量子力学》作业参考答案

《量子力学》作业参考答案

《量子力学》作业参考答案一 填空1. 爱因斯坦,h ν或ω ,k n h P==λ2. Ψ=A ()Et r P i e-⋅,Eh Ph μλ2==3. 归一化条件(⎰=∙1τψψd ),相因子(δi e ).4. i ψψH t ˆ=∂∂ ,()()Et i e r t r -=ψψ,. ()()∑-=ψntE in n n e r C t r ψ, 5. 6, () 2,1,0±±=z L .6. ()()()P P d r r P P '-=⎰∞*'δτψψ, 112222223==⎰⎰⎰⎰---*l l l l l l P P dz dy dx L d τψψ.7.实物粒子也应该具有波动性.电子衍射8.E=h ν=ω ,k n h P==λ9.波函数在空间各点的相对强度,强度的绝对大小。

10. i ψψH t ˆ=∂∂ , ψψE H =ˆ或()ψψψμE r V =+∇-222 . 11. ()221 +=l l L , m L z =.12.()()dr r r R dr r W nl nl 22=,()()Ω=Ωd Y d W lm lm 2,,ϕθϕθ13.C=()2321π, C=23-L14.()()dx x u x i x Fx u F q q q q ⎰'*'⎪⎭⎫ ⎝⎛∂∂= ,ˆ, ()x x x i x F F x x '-⎪⎭⎫ ⎝⎛∂∂='δ ,ˆ. 15.()()ti nmn n m mn e H t a dt t da i ω∑'= , ()⎰''='t t i mk m t d e H i t a mk 01ω , 16.mk ωω±=或ω ±=k m E E , ()ωωδπ±=-mk mk m k F w 222, 或()ωδπ±-=-k m mk m k E E F w 22 17.原子光谱线系的精细结构,塞曼效应, 斯特思-盖拉赫实验. 18. FS S 1-, n λλλ+++ 21,19. mk A , ()mk mk B I ω,20. ⎥⎦⎤⎢⎣⎡01ψ, ⎥⎦⎤⎢⎣⎡20ψ,21. ;j j ,j ,jj j j 2121211--++= 21m m m +=;22.由全同粒子构成的体系中,任意两粒子的交换,不引起体系状态的改变;全同粒子体系的波函数,具有确定的交换对称性,且这种交换对称性不随时间改变。

量子力学答案

量子力学答案

量子力学习题及解答 第一章量子理论基础1. 1由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长 比,即m T=b并近似计算b 的数值,准确到二位有效数字。

解根据普朗克的黑体辐射公式hc如果令x=,则上述方程为kT以及这里的 本题关注的是入取何值时, 由此可求得相应的入的值,记作 处的取值是否小于零,如果小于零,v dv8 hv 33~cv vdvhve kTc ,vd ,1 -dv , 1(1) (2) (3)dvd v ()v ()8 hc 5 的物理意义是黑体内波长介于入与入 取得极大值,因此,就得要求m 。

但要注意的是, 那么前面求得的1 hc 11 +d 入之间的辐射能量密度。

对入的一阶导数为零, 还需要验证 对入的二阶导数在 m m 就是要求的,具体如下:hc~6~1hce kT1hc kT hc 1讦丁kT5(11 ehc肓)hc kTm 与温度T 成反(常量);5(1 这是一个超越方程。

首先,易知此方程有解: 个解可以通过逐步近似法或者数值计算法获得: 样则有X) X但经过验证,此解是平庸的;另外的一 e x=0, x=4.97,经过验证,此解正是所要求的,这mThc xk把x以及三个物理常量代入到上式便知m T 2.9 103 4 5m K这便是维恩位移定律。

据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。

1. 2在0K附近,钠的价电子能量约为解根据德布罗意波粒二象性的关系,E=hv,e c 2),那么2p如果我们考察的是相对性的光子,那么E=pc注意到本题所考虑的钠的价电子的动能仅为3eV,远远小于电子的质量与光速平方的乘积, 6即0.51 10 eV,因此利用非相对论性的电子的能量一一动量关系式,这样,便有P_h_H Ehc1.24 102 0.51 106 730.71 10 9m0.71 nm在这里,利用了以及最后,对hc2 e C2E作一点讨论,从上式可以看出,当粒子的质量越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强;同样的,当粒子的动能越大时,这个粒子的波长就越短,因而这个粒子的波动性较弱,而粒子性较强,由于宏观世界的物体质量普遍很大,因而波动31. 3氦原子的动能是E -kT (k为玻耳兹曼常数),求T=1K时,氦原子的德布罗意波2长。

量子力学考试题库及答案

量子力学考试题库及答案

量子力学考试题库及答案一、选择题1. 量子力学中,波函数的平方代表粒子在空间某点出现的概率密度。

下列关于波函数的描述中,哪一项是正确的?A. 波函数的绝对值平方代表粒子在空间某点出现的概率密度B. 波函数的绝对值代表粒子在空间某点出现的概率密度C. 波函数的平方代表粒子在空间某点出现的概率D. 波函数的绝对值平方代表粒子在空间某点出现的概率答案:A2. 海森堡不确定性原理表明,粒子的位置和动量不能同时被精确测量。

以下哪项是海森堡不确定性原理的数学表达式?A. ΔxΔp ≥ ħ/2B. ΔxΔp ≤ ħ/2C. ΔxΔp = ħ/2D. ΔxΔp = ħ答案:A二、填空题3. 在量子力学中,粒子的波函数ψ(x,t)满足________方程,该方程由薛定谔提出,是量子力学的基本方程之一。

答案:薛定谔方程4. 根据泡利不相容原理,一个原子中的两个电子不能具有相同的一组量子数,即不能同时具有相同的________、________、________和________。

答案:主量子数、角量子数、磁量子数、自旋量子数三、简答题5. 简述量子力学中的隧道效应,并给出一个实际应用的例子。

答案:量子隧道效应是指粒子通过一个势垒的概率不为零,即使其能量低于势垒的高度。

这一现象在经典物理学中是不可能发生的。

一个实际应用的例子是扫描隧道显微镜(STM),它利用量子隧道效应来探测物质表面的原子结构。

6. 描述量子力学中的波粒二象性,并解释为什么这一概念是重要的。

答案:波粒二象性是指微观粒子如电子和光子等,既表现出波动性也表现出粒子性。

这一概念重要,因为它揭示了物质在微观尺度上的基本行为,是量子力学的核心概念之一,对理解原子和分子结构、化学反应以及材料的电子性质等方面都有深远的影响。

四、计算题7. 假设一个粒子被限制在一个宽度为L的一维无限深势阱中,求该粒子的基态能量。

答案:基态能量E1 = (π²ħ²)/(2mL²),其中ħ是约化普朗克常数,m是粒子的质量,L是势阱的宽度。

量子力学试题及答案

量子力学试题及答案

量子力学试题及答案一、选择题1. 量子力学中,描述一个量子态最基本的方法是()。

A. 波函数B. 哈密顿算符C. 薛定谔方程D. 路径积分答案:A2. 海森堡不确定性原理表明,粒子的()和()不能同时被精确测量。

A. 位置,速度B. 能量,时间C. 动量,位置D. 时间,动量答案:C3. 波函数的绝对值平方代表的是()。

A. 粒子的速度B. 粒子的能量C. 粒子在某一位置出现的概率密度D. 粒子的动量答案:C4. 薛定谔方程是一个()。

A. 线性偏微分方程B. 非线性偏微分方程C. 线性常微分方程D. 非线性常微分方程答案:A5. 在量子力学中,泡利不相容原理指的是()。

A. 两个费米子不能处于同一个量子态B. 两个玻色子不能处于同一个量子态C. 所有粒子都不能处于同一个量子态D. 所有粒子都必须处于同一个量子态答案:A二、填空题1. 在量子力学中,一个粒子的波函数必须满足__________方程,才能保证波函数的归一化条件。

答案:连续性2. 量子力学的基本原理之一是观测者效应,即观测过程会影响被观测的__________。

答案:系统3. 量子纠缠是量子力学中的一种现象,其中两个或多个粒子的量子态以某种方式相互关联,以至于一个粒子的状态立即影响另一个粒子的状态,这种现象被称为__________。

答案:非局域性三、简答题1. 请简述德布罗意假说的内容及其对量子力学的贡献。

德布罗意假说提出了物质波的概念,即所有物质都具有波粒二象性。

这一假说不仅解释了电子衍射实验的现象,而且为量子力学的发展奠定了基础,使得物理学家开始将波动性质引入到粒子的描述中,从而推动了波函数理论的发展。

2. 什么是量子隧穿效应?请给出一个实际应用的例子。

量子隧穿效应是指粒子在遇到一个能量势垒时,即使其能量低于势垒高度,也有可能穿透势垒出现在另一侧的现象。

这一效应是量子力学中特有的,与经典物理学预测的结果不同。

一个实际应用的例子是半导体器件中的隧道二极管,它利用量子隧穿效应来实现电流的传导,具有非常快的开关速度和低功耗的特性。

高中量子力学试题及答案

高中量子力学试题及答案

高中量子力学试题及答案1. 量子力学的基本原理是什么?答案:量子力学的基本原理包括波粒二象性、不确定性原理、量子态的叠加原理和量子纠缠等。

2. 描述海森堡不确定性原理。

答案:海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性的关系由公式ΔxΔp ≥ ħ/2表示,其中Δx是位置的不确定性,Δp是动量的不确定性,ħ是约化普朗克常数。

3. 什么是量子态的叠加原理?答案:量子态的叠加原理指的是一个量子系统可以同时处于多个可能状态的叠加,这些状态的线性组合构成了系统的完整描述。

4. 简述波函数的物理意义。

答案:波函数是量子力学中描述粒子状态的数学函数,它包含了关于粒子的所有可能信息,如位置、动量等。

波函数的绝对值的平方给出了粒子在特定位置被发现的概率密度。

5. 什么是量子纠缠?答案:量子纠缠是量子力学中的一种现象,指的是两个或多个量子系统之间存在一种特殊的关联,即使它们相隔很远,一个系统的状态改变会立即影响到另一个系统的状态。

6. 描述薛定谔的猫思想实验。

答案:薛定谔的猫思想实验是一个关于量子叠加状态的经典比喻,实验中,一个猫被放置在一个盒子里,盒子内有一个放射性原子、一个盖革计数器、一个锤子和一个毒气瓶。

如果原子衰变,盖革计数器会触发锤子打碎毒气瓶,猫就会死亡。

在没有观察之前,猫的状态是既死又活的叠加态,只有当盒子被打开观察时,猫的状态才会塌缩为确定的死或活。

7. 什么是量子隧穿效应?答案:量子隧穿效应是指粒子能够穿越一个经典物理中不可能穿越的势垒。

这种现象在量子力学中是可能的,因为粒子的波函数在势垒的另一侧并不完全为零,这意味着存在一定的概率粒子能够出现在势垒的另一侧。

8. 简述量子力学中的波函数坍缩。

答案:波函数坍缩是指在量子力学中,当一个量子系统被测量时,系统的波函数会从一个叠加态突然转变为一个特定的状态,这个过程是随机的,并且与测量过程有关。

9. 什么是泡利不相容原理?答案:泡利不相容原理指出,在同一个量子系统中,两个相同的费米子(如电子)不能处于同一个量子态。

30道量子力学知识选择题和答案

30道量子力学知识选择题和答案

30道量子力学知识选择题和答案1. 关于量子态,以下说法正确的是()A. 量子态是可连续变化的B. 量子态是离散的答案:B2. 量子叠加原理是指()A. 多个量子态可以同时存在B. 量子态只能有一个答案:A3. 量子纠缠现象说明了()A. 量子之间存在相互作用B. 量子之间存在非定域性关联答案:B4. 在量子力学中,测量会导致()A. 量子态的改变B. 量子态的保持不变答案:A5. 关于波函数,以下说法正确的是()A. 描述了量子系统的状态B. 是一个实数函数答案:A6. 海森堡不确定性原理涉及到哪两个物理量的不确定性()A. 位置和动量B. 能量和时间答案:A7. 量子力学中的算符表示()A. 物理量B. 对量子态的操作答案:B8. 泡利不相容原理适用于()A. 电子B. 所有费米子答案:B9. 以下哪种现象与量子力学有关()A. 黑体辐射B. 光电效应答案:B10. 在量子力学中,能量的量子化表现为()A. 能量只能取特定的值B. 能量可以连续变化答案:A11. 关于量子隧道效应,以下说法正确的是()A. 粒子可以穿过势垒B. 粒子不能穿过势垒答案:A12. 量子力学中的可观测量对应的是()A. 厄米算符B. 非厄米算符答案:A13. 狄拉克方程描述的是()A. 电子的运动B. 所有粒子的运动答案:B14. 关于量子力学的诠释,以下说法正确的是()A. 只有一种诠释是正确的B. 有多种诠释,且都有实验支持答案:B15. 量子力学中的全同粒子()A. 是完全相同的B. 可以区分答案:A16. 关于量子力学的基本假设,以下说法错误的是()A. 物理量都可以用实数来描述B. 量子态的演化是确定性的答案:AB17. 量子力学中的概率幅表示()A. 概率的大小B. 概率的相位答案:B18. 以下哪种实验验证了量子力学的基本原理()A. 双缝干涉实验B. 迈克尔逊-莫雷实验答案:A19. 量子力学中的守恒量对应的是()A. 不变的物理量B. 随时间变化的物理量答案:A20. 关于量子力学中的对称性,以下说法正确的是()A. 存在多种对称性B. 对称性与物理规律无关答案:A21. 量子力学中的密度算符描述的是()A. 量子系统的概率分布B. 量子系统的能量分布答案:A22. 以下哪种量子系统具有简并性()A. 氢原子B. 自由粒子答案:A23. 量子力学中的散射理论主要研究()A. 粒子的碰撞过程B. 粒子的传播过程答案:A24. 关于量子力学中的表象,以下说法正确的是()A. 有多种表象可以选择B. 表象是唯一确定的答案:A25. 量子力学中的时间演化算符描述的是()A. 量子态随时间的变化B. 物理量随时间的变化答案:A26. 以下哪种量子系统的能级是分立的()A. 谐振子B. 自由电子答案:A27. 量子力学中的角动量算符具有()A. 分立的本征值B. 连续的本征值答案:A28. 关于量子力学中的路径积分表述,以下说法正确的是()A. 是一种量子力学的表述方式B. 与薛定谔方程等价答案:AB29. 量子力学中的对称性破缺会导致()A. 新的物理现象B. 物理规律的改变答案:A30. 以下哪种量子系统的波函数可以用球谐函数来描述()A. 氢原子B. 原子核答案:A。

量子力学考试题讲解及答案

量子力学考试题讲解及答案

量子力学考试题讲解及答案一、单项选择题(每题2分,共10分)1. 量子力学中,波函数的平方代表的是:A. 粒子的位置B. 粒子的动量C. 粒子出现的概率密度D. 粒子的能量答案:C2. 根据海森堡不确定性原理,下列说法正确的是:A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程是用来描述:A. 经典力学系统B. 热力学系统C. 量子力学系统D. 电磁学系统答案:C4. 量子力学中的波粒二象性是指:A. 粒子有时表现为波动性,有时表现为粒子性B. 粒子总是同时具有波动性和粒子性C. 粒子只具有波动性D. 粒子只具有粒子性答案:B5. 量子力学中,哪个假设是关于测量的?A. 叠加原理B. 波函数坍缩C. 泡利不相容原理D. 量子纠缠答案:B二、填空题(每题2分,共10分)1. 量子力学中的波函数通常用希腊字母________表示。

答案:Ψ2. 量子力学中的德布罗意波长公式为λ = ________。

答案:h/p3. 在量子力学中,一个粒子的总能量可以表示为E = ________ + V。

答案:K.E.4. 费米子遵循的统计规律是________统计。

答案:费米-狄拉克5. 量子力学中的测不准原理是由海森堡提出的,其数学表述为ΔxΔp ≥ ________。

答案:h/4π三、简答题(每题5分,共20分)1. 简述量子力学中的波函数坍缩概念。

答案:波函数坍缩是指在量子力学中,当一个量子系统的状态被测量时,系统的波函数会从多个可能的状态中“选择”一个确定的状态,这个过程称为波函数坍缩。

2. 解释量子力学中的叠加原理。

答案:叠加原理是指在量子力学中,一个量子系统可以同时处于多个状态的叠加,即系统的波函数可以是多个不同状态波函数的线性组合。

3. 描述量子力学中的泡利不相容原理。

答案:泡利不相容原理指出,两个相同的费米子(如电子)不能处于同一个量子态,即它们不能具有相同的一组量子数。

量子力学作业答案精选全文完整版

量子力学作业答案精选全文完整版

可编辑修改精选全文完整版量子力学课后习题答案2.1证明在定态中,概率流密度与时间无关。

证:对于定态,可令)]r ()r ()r ()r ([m2i ]e )r (e )r (e )r (e )r ([m2i )(m 2i J e)r ( )t (f )r ()t r (**Et iEt i **Et i Et i **Etiψψψψψψψψψψψψψψψ∇-∇=∇-∇=∇-∇===-----)()(,可见t J 与无关。

2.2 由下列定态波函数计算几率流密度: ikr ikr e re r -==1)2( 1)1(21ψψ 从所得结果说明1ψ表示向外传播的球面波,2ψ表示向内(即向原点) 传播的球面波。

解:分量只有和r J J 21在球坐标中 ϕθθϕθ∂∂+∂∂+∂∂=∇sin r 1e r 1e r r 0 r m r k r m r k r r ik r r r ik r r m i r e rr e r e r r e r m i mi J ikr ikr ikr ikr30202201*1*111 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )1(==+----=∂∂-∂∂=∇-∇=--ψψψψ r J 1与同向。

表示向外传播的球面波。

rm r k r m r k r r ik r r r ik r r m i r e r r e r e r r e r m i mi J ikr ikr ikr ikr3020220*2*222 )]11(1)11(1[2 )]1(1)1(1[2 )(2 )2(-=-=---+-=∂∂-∂∂=∇-∇=--ψψψψ可见,r J与2反向。

表示向内(即向原点) 传播的球面波。

2.3 一粒子在一维势场⎪⎩⎪⎨⎧>∞≤≤<∞=a x a x x x U ,,,0 00)( 中运动,求粒子的能级和对应的波函数。

解:t x U 与)(无关,是定态问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
∫ x cos axdx = a
2
cos ax +
x sin ax a
(7 x cos axdx =

2x x2 2 cos ax + ( − ) sin ax ) a a3 a2 x c ax 2 + c + ln( a x + ax 2 + c ) 2 2 a
(a > 0)
(8)

ax 2 + c dx = x c −a ax 2 + c + arcsin( x) 2 c 2 −a
在边界上,波函数应满足连续性条件,即
ψ ( x) x = − a / 2 = 0 ψ ( x) x = + a / 2 = 0
将通解代入有
− A sin
ka ka + B cos = 0 2 2 ka ka A sin + B cos = 0 2 2
由此可得
ka =0 2 ka B cos = 0 2 A sin
n = 1,3,5,L n = 2,4,6,L
mπ ⎧ ⎪ B cos b x, Ym ( y ) = ⎨ mπ ⎪ B′ sin x, b ⎩ lπ ⎧ ⎪ C cos c x, Z l ( x) = ⎨ lπ ⎪C ′ sin x, c ⎩
由波函数的连续性可知在边界上
X (− a / 2) = X (a / 2) = 0 Y (−b / 2) = Y (b / 2) = 0 Z (−c / 2) = Z (c / 2) = 0
由方程和边界条件可得
nπ ⎧ ⎪ A cos a x, X n ( x) = ⎨ nπ ⎪ A′ sin x, a ⎩
7
天津大学电子信息工程学院 电子科学与技术
1 d2 X = − k x2 2 X dx 1 d2 2 Y = −k y Y dy 2 1 d2 Z = − k z2 Z dz 2

d2 X + k x2 X = 0 dx 2 d2 2 Y + ky Y =0 2 dy d2 Z + k z2 Z = 0 2 dz
ax
(3) (4)
ax ∫ e cos axdx =
e ax (a cos bx + b sin bx) a2 + b2
2
∫ x sin axdx = a
2 ∫ x sin axdx =
1
sin ax −
1 x cos ax a
2
(5) (6)
2x 2 x sin ax + ( 2 − ) cos ax 2 a a a 1
4
天津大学电子信息工程学院 电子科学与技术
3.设把宽为 a 的一维无限深势阱的坐标原点取在势阱中点,有
⎧ 0, U ( x) = ⎨ ⎩∞,
⎧ ⎪ ⎪ ψ n ( x) = ⎨ ⎪ ⎪ ⎩
粒子的能量为
(| x |< a / 2) (| x |≥ a / 2)
nπ 2 x, cos a a 2 nπ sin x, a a
求解,的得 (2)粒子的几率密度
A = 2λ3 / 2
P( x) = ψ ∗ ( x)ψ ( x) = 4λ3 x 2e −2λx
(3)在极值点,由一阶导数
dP( x) =0 dx
可得方程
4λ3 ⋅ 2 x(1 − λx)e −2λx = 0
解得方程的根
x = 0 ; x = ∞ ; x = 1/ λ
即为极值点。几率密度在极值点的值
P(0) = 0 ; lim P( x) = 0 ; P(1 / λ ) = 4λe −2
x →∞
由于 P(x)在区间(0,1/λ)的一阶导数大于零,是升函数;在区间(1/λ,∞)的一阶导数小 于零,是减函数,故几率密度的最大值为 4λe ,出现在 x = 1 / λ 处。
a 2nπ

a/2
0
2nπ ⎞ ⎛ 2nπ ⎞ ⎛ x ⎟d ⎜ x⎟ ⎜1 − cos a ⎠ ⎝ a ⎠ ⎝
a/2
A 2 a ⎡ 2nπ x = ⎢ 2nπ ⎢ a 0 ⎣
2nπ x − sin a 0
a/2
⎤ ⎥ ⎥ ⎦
A2 a A2 a = [nπ − 0] = =1 2nπ 2
求解,可得 A = 同理可得, B 解得
En =
k 2h 2 π 2h 2 2 = n , 2μ 2 μa 2
n = 1,2,3,4,L
6
天津大学电子信息工程学院 电子科学与技术
波函数的两个表达式还可统一为一个表达式
ψ n ( x) =
2 nπ a sin ( x + ), a a 2
2 nπ sin x, a a
n = 1,2,3,L
−2
2. 一维线性谐振子处于状态
ψ ( x, t ) = Ae
(1)求归一化因子 A;
1 1 − α 2 x 2 − i ωt 2 2
(2)求谐振子坐标 x 的平均值; (3)求谐振子势能的平均值。
3
天津大学电子信息工程学院 电子科学与技术
解: (1)由积分公式(12)


0
e −ax dx =

由归一化条件

可知

−∞
∗ ψn ψ n dx = 1
nπ ⎞ ⎛ A ∫ ⎜ sin x ⎟ dx = 1 −a / 2 a ⎠ ⎝
2 a/2
2

A2 ∫
a/2
−a / 2
nπ ⎛ ⎜ sin a ⎝
⎞ x ⎟ dx = 2 A 2 ∫ 0 ⎠ = A2
2
a/2
1 − cos
2nπ x a dx 2
将 k2 已展开为三个分量的表达式,即 k = k x + k y + k z ,并带入上式
2 2 2 2
1 d2 1 d2 1 d2 2 + + Z + k x2 + k y + k z2 = 0 Y X Z dz 2 Y dy 2 X dx 2
要使上面式成立,则要求三个方向的分量也成立,故必然有
在阱内,波函数满足定态薛定谔方程
h2 2 ∇ ψ ( x, y, z ) = Eψ ( x, y, z ) 2μ
| x |≤ a / 2, | y |≤ b / 2, | z |≤ c / 2
2μE ,则方程可化为标准形式 h2
∇ 2ψ ( x, y, z ) + k 2ψ ( x, y, z ) = 0
−∞
x
dx
因被积函数是奇函数,在对称区间上积分应为 0,故
x =0
(3) U =
∞ −∞ ∞
U ( x) P( x)dx
=∫ =
1 2 α −α 2 x 2 kx e dx −∞ 2 π

π ∫

0
x 2 e −α
2 2
x
dx
由积分公式(13)


0
x 2 n e − ax dx =
2
(2n − 1)!! π ,或教材 P429 附录 I,可得 2 n +1 a 2 n +1
2
2/a
a/2
nπ ⎛ cos ∫− a / 2 ⎜ a ⎝
⎞ x ⎟ dx = B 2 a / 2 = 1 ⎠
2
B = 2/a
故在阱内的波函数为
⎧ ⎪ ⎪ ψ n ( x) = ⎨ ⎪ ⎪ ⎩
粒子的能量
2 nπ cos x, a a 2 nπ sin x, a a
n = 1,3,5,L n = 2,4,6,L

上式可变形为
| x |≥ a / 2
在阱内,波函数满足定态薛定谔方程
h2 ψ ′′( x) = Eψψ ′′( x) +
令k =
2
2μE ,则方程化为 h2
2μE ψ ( x) = 0 h2
ψ ′′( x) + k 2ψ ( x) = 0
该方程的通解为
ψ ( x) = A sin kx + B cos kx
U = =
2
2
kα 1 π ⋅ 3 π 4α k
4α 2
将 k = μω 、 α =
μω
h
代入,可得
1 1 U = hω = E0 4 2
即谐振子势能的平均值是总能量的一半,由能量守恒定律
E0 = T + U
可得,动能的平均值为
T = E0 − U =
1 E0 = U 2
即动能平均值和势能平均值相等,也是总能量的一半。
2
1 π ,可得 2 a
2 2


−∞
ψ ∗ψ dx =A 2 ∫ e −α x dx = 2 A 2 ∫ e −α x dx
2 2

−∞
0
= 2 A2 ⋅
1 π 2 α2
=
由归一化的定义
A2 π
α



−∞
ψ ∗ψdx = 1
A=
α π

2 2
(2) x =
∫ ∫

−∞
xP( x)dx = A2 ∫ xe−α
(| x |< a / 2, | y |< b / 2, | z |< c / 2) (| x |≥ a / 2, | y |≥ b / 2, | z |≥ c / 2)
解:势能不含时间是定态问题。在阱外,波函数
ψ ( x, y, z ) = 0,

令k =
2
| x |≥ a / 2, | y |≥ b / 2, | z |≥ c / 2
相关文档
最新文档