山西省太原市中考数学真题试卷

合集下载

太原市2020年中考数学试卷B卷

太原市2020年中考数学试卷B卷

太原市2020年中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2020九下·哈尔滨月考) 如图是由四个小正方体叠成的一个立体图形,那么它的俯视图为()A .B .C .D .2. (2分)(2017·徐州模拟) 在以下图形中,是中心对称图形的是()A . 等边三角形B . 等腰梯形C . 平行四边形D . 正五边形3. (2分)(2017·阿坝) 下列计算正确的是()A . a3+a2=2a5B . a3•a2=a6C . a3÷a2=aD . (a3)2=a94. (2分)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于A . 21°B . 16°C . 20°D . 26°5. (2分)在平面直角坐标系中,把点P(-5,3)向右平移8个单位得到点P1 ,再将点P1绕原点旋转90°得到点P2 ,则点P2的坐标是()A . (3,-3)B . (-3,3)C . (3,3)或(-3,-3)D . (3,-3)或(-3,3)6. (2分)(2019·成都) 分式方程的解为()A .B .C .D .7. (2分)小明在一天晚上帮妈妈洗三个只有颜色不同的有盖茶杯,这时突然停电了,小明只好将茶杯和杯盖随机搭配在一起,那么三个茶杯颜色全部搭配正确的概率是()A .B .C .D .8. (2分)(2020·泉港模拟) 已知抛物线经过点、两点,、是关于的一元二次方程的两根,则的值为().A . 0B .C . 4D . 29. (2分)下列三角形中,不是直角三角形的是()A . 三个角的度数之比是1:2:3B . 三条边长之比是1:2:C . 三条边长之比是1:2:4D . 三条边长之比是3:4:510. (2分)(2011·盐城) 下列运算正确的是()A . x2+x3=x5B . x4•x2=x6C . x6÷x2=x3D . (x2)3=x811. (2分)若式子在实数范围内有意义,则x的取值范围是()A . x≥B . x>C . x≥D . x>12. (2分) (2017九上·寿光期末) 如图,两个同心圆,大圆的弦AB与小圆相切于点P,大圆的弦CD经过点P,且CD=13,PD=4,则两圆组成的圆环的面积是()A . 16πB . 36πC . 52πD . 81π二、填空题 (共6题;共6分)13. (1分)(2011·连云港) 某品牌专卖店对上个月销售的男运动鞋尺码统计如下:码号(码)38394041424344销售量(双)6814201731这组统计数据中的众数是________码.14. (1分)(2017·深圳模拟) 因式分解x3-2x2y+xy2=________.15. (1分)(2018·滨州模拟) 如图,在平面直角坐标系中,点A的坐标为(﹣2,),以原点O为中心,将点A顺时针旋转165°得到点A′,则点A′的坐标为________.16. (1分) (2020九上·景县期末) 一个反比例函数y= (k≠0)的图象经过点P(-2,-1),则该反比例函数的解析式是________。

山西省2023年中考数学试卷((附参考答案))

山西省2023年中考数学试卷((附参考答案))

山西省2023年中考数学试卷一、单选题1.计算的结果为().A.3B.C.D.2.全民阅读有助于提升一个国家、一个民族的精神力量.图书馆是开展全民阅读的重要场所.以下是我省四个地市的图书馆标志,其文字上方的图案是轴对称图形的是()A.B.C.D.3.下列计算正确的是()A.B.C.D.4.山西是全国电力外送基地,2022年山西省全年外送电量达到1464亿千瓦时,同比增长.数据1464亿千瓦时用科学记数法表示为()A.千瓦时B.千瓦时C.千瓦时D.千瓦时5.如图,四边形内接于为对角线,经过圆心.若,则的度数为()A.B.C.D.6.一种弹簧秤最大能称不超过的物体,不挂物体时弹簧的长为,每挂重物体,弹簧伸长.在弹性限度内,挂重后弹簧的长度与所挂物体的质量之间的函数关系式为()A.B.C.D.7.如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心的光线相交于点,点为焦点.若,则的度数为()A.B.C.D.8.已知都在反比例函数的图象上,则a、b、c的关系是()A.B.C.D.9.中国高铁的飞速发展,已成为中国现代化建设的重要标志.如图是高铁线路在转向处所设计的圆曲线(即圆弧),高铁列车在转弯时的曲线起点为,曲线终点为,过点的两条切线相交于点,列车在从到行驶的过程中转角为.若圆曲线的半径,则这段圆曲线的长为().A.B.C.D.10.蜂巢结构精巧,其巢房横截面的形状均为正六边形.如图是部分巢房的横截面图,图中7个全等的正六边形不重叠且无缝隙,将其放在平面直角坐标系中,点均为正六边形的顶点.若点的坐标分别为,则点的坐标为()A.B.C.D.二、填空题11.计算(+)(﹣)的结果为.12.如图是一组有规律的图案,它由若干个大小相同的圆片组成.第1个图案中有4个白色圆片,第2个图案中有6个白色圆片,第3个图案中有8个白色圆片,第4个图案中有10个白色圆片,…依此规律,第n个图案中有个白色圆片(用含n的代数式表示)13.如图,在中,.以点为圆心,以的长为半径作弧交边于点,连接.分别以点为圆心,以大于的长为半径作弧,两弧交于点,作射线交于点,交边于点,则的值为.14.中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是.15.如图,在四边形中,,对角线相交于点.若,则的长为.三、解答题16.(1)计算:;(2)计算:.17.解方程:.18.为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按的比例计算出每人的总评成绩.小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图选手测试成绩/分总评成绩/分采访写作摄影小悦83728078小涵8684▲▲(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是分,众数是分,平均数是分;(2)请你计算小涵的总评成绩;(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.19.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞.该大桥限重标志牌显示,载重后总质量超过30吨的车辆禁止通行.现有一辆自重8吨的卡车,要运输若干套某种设备,每套设备由1个A部件和3个B部件组成,这种设备必须成套运输.已知1个A部件和2个B部件的总质量为2.8吨,2个A 部件和3个B部件的质量相等.(1)求1个A部件和1个B部件的质量各是多少;(2)卡车一次最多可运输多少套这种设备通过此大桥?20.2023年3月,水利部印发《母亲河复苏行动河湖名单(2022-2025年)》,我省境内有汾河、桑干河、洋河、清漳河、浊漳河、沁河六条河流入选.在推进实施母亲河复苏行动中,需要砌筑洛种驳岸(也叫护坡).某校“综合与实践”小组的同学把“母亲河驳岸的调研与计算”作为一项课题活动,利用课余时间完成了实践调查,并形成了如下活动报告.请根据活动报告计算和的长度(结果精确到.参考数据:,)。

太原市2020版中考数学试卷A卷

太原市2020版中考数学试卷A卷

太原市2020版中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分)若a的倒数的相反数是8,b的相反数的倒数也是8,则()A . a=bB . a﹤bC . a﹥bD . ab=12. (2分) (2019七下·哈尔滨期中) 关于x的方程的解是正数,那么m的取值范围是()A .B .C .D .3. (2分)(2017·泰州模拟) 如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是()A .B .C .D .4. (2分)(2020·白云模拟) 一组数据: 3, 4, 5, 6, 6.这组数据的众数是()A . 3B . 4C . 5D . 65. (2分) (2017七下·乐亭期末) 计算a3⋅a2正确的是()A . aB .C .D .6. (2分) (2020九下·吉林月考) 据统计,2020年1至2月份,全国减税降费共计402700000000元,分别来自2020年新出台支持疫情防控和经济社会发展的税费优惠策和2019年更大规模减税降费政策在2020年继续实施形成的减税降费.其中402700000000用科学记数法表示为().A .B .C .D .7. (2分)(2018·海南) 分式方程 =0的解是()A . ﹣1B . 1C . ±1D . 无解8. (2分)下列各组数中,互为相反数的是()A . -3与B . 与C . 与D . 与9. (2分)对于反比例函数y=﹣,下列说法正确的是()A . 它的图象是一条直线B . 它的图象分布在第一、三象限C . 点(﹣1,﹣5)在它的图象上D . 当x>0时,y随x的增大而增大10. (2分)如图,在△ABO中,AB⊥OB,OB= ,AB=1.将△ABO绕O点旋转90°后得到△A1B1O,则点A1的坐标为()A . (﹣1,)B . (﹣1,)或(1,﹣)C . (﹣1,﹣)D . (﹣1,﹣)或(﹣,1)11. (2分) (2020九上·嘉陵期末) 如图,转盘的红色扇形圆心角为120°,让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的概率是()A .B .C .D .12. (2分)给出下列命题:①反比例函数的图象经过一、三象限,且y随x的增大而减小;②对角线相等且有一个内角是直角的四边形是矩形;③我国古代三国时期的数学家赵爽,创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图);④相等的弧所对的圆周角相等.其中正确的是()A . ③④B . ①②③C . ②④D . ①②③④13. (2分)如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为()A . 互余B . 相等C . 互补D . 不等14. (2分) (2019八下·内乡期末) 如图,矩形ABCD中, E是AD的中点,将沿直线BE折叠后得到,延长BG交CD于点F若,则FD的长为()A . 3B .C .D .二、填空题 (共4题;共6分)15. (1分)(2017·惠山模拟) 分解因式:xy﹣x=________16. (1分) (2016七上·江阴期中) 甲数比乙数的2倍大3,若乙数为x,则甲数为________17. (1分) (2016九上·蕲春期中) 如图,AB是⊙O的弦,OC⊥AB于点C,若AB=4cm,OC=2cm,则⊙O的半径长是________.18. (3分) (2017八下·丰台期中) 四边形ABCD中,点E、F、G、H分别为AB、BC、CD、DA边的中点,顺次连接各边中点得到的新四边形EFGH称为中点四边形;画图猜想:无论四边形ABCD怎样变化,它的中点四边形EFGH 都是________四边形。

太原市中考数学试卷

太原市中考数学试卷

年太原市初中毕业、升学数学考试参考资料:抛物线y=a x 2+bx+c(a ≠0)的顶点坐标是(―2b a,244ac b a-),对称轴是x=―2b a;2≈1.4,3≈1.7。

一、选择题:(本大题含10个小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项符合题目要求)1.―4的倒数是( ) A .14B .―14C .4D .―42.如图,两条直线a 、b 被第三条直线c 所截,如果a ∥b ,∠1=50º,那么∠2的度数为( ) A .130º B .100º C .80º D .40º 3.下列图形中,只有两条对称轴的是( ) A .正六边形 B .矩形 C .等腰梯形 D .圆 4.在函数y=34x x +-中,自变量x 的取值范围是( )A .x ≥―3B .x ≠4C .x ≥―3,且x ≠4D .x ≥3,且x ≠4 5.实数a 在数轴上的位置如图所示,化简|a +1|的结果是( )A .a +1B .―a +1C .a ―1D .―a ―16.在反比例函数y=k x中,当x >0时,y 随x 的增大而增大,则二次函数y=kx 2+2kx 的图像大致是( )7.为了解晋龙中学某班学生每天的睡眠情况,随机抽取该班10名学生,在一段时间里,每人平均每天的睡眠时间统计如下(单位:小时):6,8,8,7,7,9,10,7,6,9,由此估计该班多数学生每天的睡眠时间为( )A .7小时B .7.5小时C .7.7小时D .8小时8.A 、B 、C 是平面内的三点,AB=3,BC=3,AC=6,下列说法正确的是( ) A .可以画一个圆,使A 、B 、C 都在圆上B .可以画一个圆,使A 、B 在圆上,C 在圆外 C .可以画一个圆,使A 、C 在圆上,B 在圆外D .可以画一个圆,使B 、C 在圆上,A 在圆内9.如图,在正方形ABCD 中,点E 、F 分别在边BC 、CD 上,如果AE=4,EF=2,AF=5,那么正方形ABCD 的面积等于( ) A .22516B .25615C .25617D .2891610.某污水处理厂的一个净化水池设有2个进水口和1个出水口,三个水口至少打开一个。

2022年山西太原中考数学试卷及答案

2022年山西太原中考数学试卷及答案

2022年山西太原中考数学试卷及答案一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.﹣6的相反数为()A.6 B.C.D.﹣62.2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是()A.B.C.D.3.粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A.6.8285×104吨B.68285×104吨C.6.8285×107吨D.6.8285×108吨4.神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割5.不等式组的解集是()A.x≥1 B.x<2 C.1≤x<2 D.x<6.如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°. 直尺的一边DE经过顶点A,若DE∥CB,则∠DAB 的度数为()A.100°B.120°C.135°D.150°7.化简﹣的结果是()A.B.a﹣3 C.a+3 D.8.如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°9.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界普为“中国第五大发明”,小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大赛”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A.B.C.D.10.如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:×的结果为.12.根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示,当S=0.25m2时,该物体承受的压强p的值为Pa.13. 生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲32 30 25 18 20 25乙28 25 26 24 22 25则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).14.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价元.15.如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;(2)解方程组:.17.如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母),(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.18.2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势,经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.19.首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代·奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告调查主题××中学学生读书情况调查方式抽样调查调查对象××中学学生数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.……调查结论请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.20.阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点. 与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解.请你再举出一例为21.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.73).22.综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.23.综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l ∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.。

山西省太原市2020年中考数学试卷(II)卷

山西省太原市2020年中考数学试卷(II)卷

山西省太原市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)下列各对量中,不具有相反意义的是()A . 胜2局与负2局B . 增产400kg与减产3000kgC . 向东走100m与向北走100mD . 转盘逆时针转6圈与顺时针转6圈2. (2分) (2019九上·武昌期中) 下列图形中既是中心对称又是轴对称图形的是()A . 等边三角形B . 平行四边形C . 正五边形D . 正方形3. (2分)已知方程的两个根为、,那么的值()A . 3B . 1C . -1D . -64. (2分)在100个数据中用适当的方法抽取50个作为样本进行统计,频率分布表中,54.5~57.5这一组的频率为0.12,则估计总体数据落在54.5~57.5之间的约有()A . 6个B . 12个C . 60个D . 120个5. (2分)在△ABC中,画出边AC上的高,下面4幅图中画法正确的是()A .B .C .D .6. (2分)如图,它是一个数值转换机,若输入的a值为,则输出的结果为()A . -B .C . -D . -二、填空题 (共10题;共10分)7. (1分) (2018八上·如皋期中) 若(a﹣1)0=1,则a的取值范围是________.8. (1分)分式有意义的条件是________9. (1分)(2017·佳木斯) “可燃冰”的开发成功,拉开了我国开发新能源的大门,目前发现我国南海“可燃冰”储存量达到800亿吨,将800亿吨用科学记数法可表示为________吨.10. (1分) (2018八下·深圳期中) 不等式组的解集是________.11. (1分)(2011·百色) 如图,在Rt△ABC中,∠A=90°.小华用剪刀沿DE剪去∠A,得到一个四边形.则∠1+∠2=________度.12. (1分) (2016八上·桂林期末) “如果一个数是整数,那么它是有理数”这个命题的条件是________.13. (1分)小窦将本班学生上学方式的调查结果绘制成如图所示的统计图,若步行上学的学生有27人,则骑车上学的学生有________ 人.14. (1分)(2020·舟山模拟) 若关于x的一元二次方程x2+x+k=0有两个不相等的实数根,则k的取值范围是________.15. (1分)如图,在边长为a的正方形ABCD中,分别以B,D分圆心,以a为半径在正方形内部画弧,形成了叶子形图案(阴影部分),则这个叶片形图案的周长为________16. (1分) (2019九上·西城期中) 如图,点D为△ABC外一点,AD与BC边的交点为E , AE=3,DE=5,BE=4,要使△BDE∽△ACE ,且点B , D的对应点为A , C ,那么线段CE的长应等于________.三、解答题 (共10题;共97分)17. (10分) (2018八上·顺义期末) 解关于的方程:18. (7分)上海世博园开放后,前往参观的人非常多.5月中旬的一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.(1)这里采用的调查方式是________;(2)求表中a、b、c的值,并请补全频数分布直方图;(3)在调查人数里,等候时间少于40min的有________人;(4)此次调查中,中位数所在的时间段是________~________min.19. (5分)(2017·广陵模拟) 如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同.20. (10分) (2017七下·晋中期末) “西气东输”是造福子孙后代的创世纪工程.现有两条高速公路和A、B两个城镇(如图),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置.21. (10分)为了方便行人,市政府打算修建如图所示的过街天桥,桥面AD平行于地面BC,立柱AE⊥BC于点E,立柱DF⊥BC于点F,若AB=10 米,tanB= ,∠C=30°.(1)因受地形限制,决定对天桥进行改建,使CD斜面的坡度变陡,将30°坡角改为40°,改建后斜面为DG,试计算此次改建节省路面宽度CG大约是多少?(结果精确到0.1米,参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,≈1.732)(2)在该天桥修建工程中,某工程队每天修建若干米,为了尽量减少施工对周边环境的影响,该队提高施工效率,实际工作效率比原计划每天提高了20%,结果提前两天完成,求原计划几天完成该工程?22. (10分)(2019·苍南模拟) 已知如图,抛物线交x轴于A、C两点,点D是x轴上方抛物线上的点,以A,D为顶点按逆时针方向作正方形ADEF.(1)求点A的坐标和抛物线的对称轴的表达式;(2)当点F落在对称轴上时,求出点D的坐标;(3)连接OD交EF于点G,记OA和EF交于点H,当△AFH的面积是四边形ADEH面积的时,则=________.(直接写出答案)23. (10分)当“双11”购物狂欢结束后,快递小哥们的“狂欢”接踵而至.快递员不仅送件(把货物送到客户手中),也要揽件(帮客户寄出货物).南坪某快递公司针对每年“双11”期间巨大的订单物流量,制定了如表给出的送件阶梯提成激励方案,揽件提成一律按2元/件计算.送件数量x(件)提成(元/件)不超过100件的部分1超过100件不超过200件的部分 1.5超过200件的部分2(1)已知去年该公司每个快递员在“双11”期间平均每天送件和揽件共计200件,当送件数量x件满足150≤x≤200时,求每个快递员每天提成最大时送件数量x的值;(用函数知识说明)(2)去年“双11”期间,该公司安排20个快递员刚好合适.今年同期该快递公司每天送件数量大幅增加,于是加派人手,快递员人数增加了m%,同时每个快递员平均每天送件数量比(1)中所求的提成最大时的送件数量增加m%,揽件数量为(1)中相应揽件数量的一半.已知今年快递员人数多于28人,且今年“双11”期间该片区所有快递员每天获得的总提成比去年所有快递员每天获得的最大总提成多5000元.求m的值.24. (10分)已知:AB是⊙O的直径,点P在线段AB的延长线上,BP=OB=2,点Q在⊙O上,连接PQ.(1)如图①,线段PQ所在的直线与⊙O相切,求线段PQ的长(2)如图②,线段PQ与⊙O还有一个公共点C,且PC=CQ,连接OQ,AC交于点D.①判断OQ与AC的位置关系,并说明理由;②求线段PQ的长.25. (15分)(2017·瑞安模拟) 如图,在△ABC中,AB=AC,D在边BC上,以A为圆心,AD长为半径画圆弧,交边BC的另一点E,交边AC于F,连接AE,EF.(1)求证:△ABD≌△ACE;(2)若∠ADB=3∠CEF,请判断EF与AB有怎样的位置关系?并说明理由.26. (10分)(2019·驻马店模拟) 如图,已知一次函数的图象与反比例函数的图象相交于点,与轴相交于点 .(1)求一次函数和反比例函数的解析式;(2)点是线段上一动点,过点作直线轴交反比例函数的图象于点,连接,若的面积为,求的最大值.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共97分)17-1、18-1、18-2、18-3、18-4、19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。

太原中考数学试题及答案

太原中考数学试题及答案

太原中考数学试题及答案试题一:选择题1. 已知a=4,b=-7,c=-11,则下列哪个数是负数?A) c B) a C) b D) 02. 下面哪个数是0的相反数?A) 5 B) -3 C) 0 D) -83. 甲、乙两个数互为相反数,且甲比乙大10,甲、乙的和是多少?A) -10 B) 10 C) -5 D) 54. 如图,正方形边长为x,内接圆半径为r,那么下面正确的是:(A) x>r (B) x=r (C) x<r (D) x=2r试题二:填空题5. 下面的分式哪个是3/4的两倍?_____/_____6. 已知a=5,b=3,求 a^2 + b^2 = _______7. 若x=6,则 y=_______8. 简化下面的混合数:(5+2/3) ÷ 4 = _______9. 若正方形边长为8cm,求其周长为_______ cm试题三:计算题10. 小明去购物,他买了3个苹果,每个苹果售价5元,还买了2个橘子,每个橘子售价3元。

他总共花了多少钱?11. 口袋里有红、黄、蓝3种颜色的球,比例分别是1:2:3。

如果共有60个球,红色球的个数是多少个?12. 两个相邻的车站之间距离为20km,A、B两辆火车同时从两个车站相对行驶,A车时速80 km/h,B车时速60 km/h。

多长时间后两辆火车会相遇?答案解析:1. A) c 因为c=-11是负数。

2. C) 0 0的相反数仍然是0。

3. B) 10 甲比乙大10,所以甲为正数,乙为负数,它们的和为10。

4. B) x=r 因为正方形内接圆的半径等于边长的一半。

5. 6/4 3/4的两倍为3/4 * 2 = 6/4。

6. 34 a^2 + b^2 = 5^2 + 3^2 = 34。

7. -12 根据x=6,代入 y = 2x - 24 计算得 -12。

8. 47/12 先计算分子5 + 2/3 = 5 + 6/3 = 5 + 2 = 7,然后 7 ÷ 4 = 7/4 = 47/12。

山西省太原市2021版中考数学试卷(II)卷

山西省太原市2021版中考数学试卷(II)卷

山西省太原市2021版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列变形,运用运算律正确的是()A . 2+(−1)=1+2B . 3+(−2)+5=(−2)+3+5C . [6+(−3)]+5=[6+(−5)]+3D . +(−2)+(+ )=( + )+(+2)2. (2分)使分式有意义的x的取值范围为()A . x≠2B . x≠﹣2C . x>﹣2D . x<23. (2分)(2019·永定模拟) 下列运算正确的是()A . 7a﹣a=6B . a2•a3=a5C . (a3)3=a6D . (ab)4=ab44. (2分) (2018八下·永康期末) 永康市某一周的最高气温统计如下单位::27,28,30,31,28,30,28,则这组数据的众数和中位数分别是A . 28,27B . 28,28C . 28,30D . 27,285. (2分) (2020八上·遂宁期末) 若展开后不含的一次项,则与的关系是()A .B .C .D .6. (2分) (2016九上·武胜期中) 在平面直角坐标系中,已知点P(2,1)与点Q(2,﹣1),下列描述正确是()A . 关于x轴对称B . 关于y轴对称C . 关于原点对称D . 都在y=2x的图象上7. (2分)如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是()A . 仅有甲和乙相同B . 仅有甲和丙相同C . 仅有乙和丙相同D . 甲、乙、丙都相同8. (2分)甲、乙两盒中分别放入编号为1、2、3、4的形状相同的4个小球,从甲盒中任意摸出一球,再从乙盒中任意摸出一球,将两球编号数相加得到一个数,则得到数()的概率最大.A . 3B . 4C . 5D . 69. (2分)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=()A . (31,50)B . (32,47)C . (33,46)D . (34,42)10. (2分)如图,⊙O的半径为1,弦AB=1,点P为优弧AB上一动点,AC⊥AP交直线PB于点C,则△ABC 的最大面积是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2020九上·南岗期末) 计算:的结果是________.12. (1分)(2012·阜新) 一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是________.13. (1分)(2017·黄冈模拟) 化简的结果是________.14. (1分)如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1 ,使AA1=BB1=CC1=DD1=a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2 ,使A1A2=B1B2=C1C2=D1D2=A1B2 ,….依次规律继续下去,则正方形AnBnCnDn的面积为________ .15. (1分) (2019九上·尚志期末) 二次函数y=2(x﹣3)2﹣4的图象与y轴的交点坐标为________.16. (1分) (2017九上·滕州期末) 如图,直角三角形纸片的两直角边长分别为4,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是________.三、解答题 (共8题;共80分)17. (5分) (2017七上·醴陵期末) 解方程组:18. (5分)如图,在△ABC和△DEF中,B、E、C、F在同一直线上,已知AB=DE,AC=DF,BE=CF.求证:(1)△ABC≌△DEF;(2)AB∥DE.19. (8分) (2018七上·灵石期末) 某校七年级共有800名学生,准备调查他们对“低碳”知识的了解程度.(1)在确定调查方式时,团委设计了以下三种方案:方案一:调查七年级部分女生;方案二:调查七年级部分男生;方案三:到七年级每个班去随机调查一定数量的学生.请问其中最具有代表性的一个方案是 ________(2)团委采用了最具有代表性的调查方案,并用收集到的数据绘制出两幅不完整的统计图(如图①、图②所示),请你根据图中信息,将两个统计图补充完整;(3)在扇形统计图中,“比较了解”所在扇形的圆心角的度数是________.(4)请你估计该校七年级约有________名学生比较了解“低碳”知识.20. (12分)(2018·襄阳) 襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W元(利润=销售收入﹣成本).(1) m=________,n=________;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?21. (10分) (2017九下·泰兴开学考) 如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF= DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.22. (15分) (2018八下·青岛期中) 如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(-2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(-2,-6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转180°可得到△A1B2C2,请直接写出旋转中心的坐标。

2024年山西省中考数学试卷(附答案)

2024年山西省中考数学试卷(附答案)

2024年山西省中考数学试卷(附答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)中国空间站位于距离地面约400km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作()A.+100℃B.﹣100℃C.+50℃D.﹣50℃【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以,若零上150℃记作+150℃,则零下100℃记作﹣100℃.故选:B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.2.(3分)1949年,伴随着新中国的诞生,中国科学院(简称“中科院”)成立.下列是中科院部分研究所的图标,其文字上方的图案是中心对称图形的是()A.山西煤炭化学研究所B.东北地理与农业生态研究所C.西安光学精密机械研究所D.生态环境研究中心【分析】根据中心对称图形的定义解答即可.【解答】解:A中的图形是中心对称图形,符合题意;B、C、D中的图形不是中心对称图形,不符合题意.故选:A.【点评】本题考查的是中心对称图形,熟知把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形是解题的关键.3.(3分)下列运算正确的是()A.2m+n=2mn B.m6÷m2=m3C.(﹣mn)2=﹣m2n2D.m2•m3=m5【分析】根据合并同类项的法则,同底数幂的乘法与除法法则,幂的乘方与积的乘方法则对各选项进行逐一计算即可.【解答】解:A、2m与n不是同类项,不能合并,原计算错误,不符合题意;B、m6÷m2=m4,原计算错误,不符合题意;C、(﹣mn)2=m2n2,原计算错误,不符合题意;D、m2•m3=m5,正确,符合题意.故选:D.【点评】本题考查的是合并同类项,同底数幂的乘法与除法,幂的乘方与积的乘方,熟知以上运算法则是解题的关键.4.(3分)斗拱是中国古典建筑上的重要部件.如图是一种斗形构件“三才升”的示意图及其主视图,则它的左视图为()A.B.C.D.【分析】左视图是从物体左面看所得到的图形.【解答】解:从左面看,上面部分是矩形,下面部分是梯形,矩形部分有一条看不见的线,应该画虚线,故选:C.【点评】本题考查了三视图的概念,要注意看不见的线应当画虚线.5.(3分)一只杯子静止在斜面上,其受力分析如图所示,重力G的方向竖直向下,支持力F1的方向与斜面垂直,摩擦力F2的方向与斜面平行.若斜面的坡角α=25°,则摩擦力F2与重力G方向的夹角β的度数为()A.155°B.125°C.115°D.65°【分析】根据平行线的性质得到∠3=90°,根据三角形的内角和定理得到∠α+∠1=90°,求得∠2=∠1=90°﹣25°=65°,根据平行线的性质即可得到结论.【解答】解:如图,∵支持力F1的方向与斜面垂直,摩擦力F2的方向与斜面平行,∴∠3=90°,∵重力G的方向竖直向下,∴∠α+∠1=90°,∴∠2=∠1=90°﹣25°=65°,∵摩擦力F2的方向与斜面平行,∴∠β+∠2=180°,∴∠β=180°﹣∠2=180°﹣65°=115°,故选:C.【点评】本题考查了平行线的性质,正确地识别图形是解题的关键.6.(3分)已知点A(x1,y1),B(x2,y2)都在正比例函数y=3x的图象上,若x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.y1≥y2【分析】根据一次函数的图象和性质即可解决问题.【解答】解:因为正比例函数y=3x的比例系数是3>0,所以y随x的增大而增大.又因为x1<x2,所以y1<y2.故选:B.【点评】本题主要考查了一次函数图象上点的坐标特征,熟知一次函数的图象和性质是解题的关键.7.(3分)如图,已知△ABC,以AB为直径的⊙O交BC于点D,与AC相切于点A,连接OD.若∠AOD =80°,则∠C的度数为()A.30°B.40°C.45°D.50°【分析】先根据圆周角定理得出∠B的度数,再由⊙O与AC相切,得出∠BAC=90°,据此可解决问题.【解答】解:∵,∴∠B=.∵以AB为直径的⊙O与AC相切于点A,∴∠BAC=90°,∴∠C=90°﹣40°=50°.故选:D.【点评】本题主要考查了切线的性质及圆周角定理,熟知圆周角定理及切线的性质是解题的关键.8.(3分)一个不透明的盒子里装有一个红球、一个白球和一个绿球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,则两次摸到的球恰好有一个红球的概率是()A.B.C.D.【分析】列表可得出所有等可能的结果数以及两次摸到的球恰好有一个红球的结果数,再利用概率公式可得出答案.【解答】解:列表如下:红白绿红(红,白)(红,绿)白(白,红)(白,绿)绿(绿,红)(绿,白)共有6种等可能的结果,其中两次摸到的球恰好有一个红球的结果有:(红,白),(红,绿),(白,红),(绿,红),共4种,∴两次摸到的球恰好有一个红球的概率为.故选:B.【点评】本题考查列表法与树状图法和概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.9.(3分)生物学研究表明,某种蛇在一定生长阶段,其体长y(cm)是尾长x(cm)的一次函数,部分数据如下表所示,则y与x之间的关系式为()尾长(cm)6810体长y(cm)45.560.575.5A.y=7.5x+0.5B.y=7.5x﹣0.5C.y=15x D.y=15x+45.5【分析】根据题意可设y=kx+b,利用待定系数法求出k,b即得x、y之间的函数关系式.【解答】解:蛇的长度y(cm)是其尾长x(cm)的一次函数,设y=kx+b,把x=6时,y=45.5;x=8时,y=60.5代入得,解得,∴y与x之间的关系式为y=7.5x+0.5.故选:A.【点评】本题主要考查用待定系数法求一次函数关系式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.10.(3分)在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,EG,FH交于点O.若四边形ABCD的对角线相等,则线段EG与FH一定满足的关系为()A.互相垂直平分B.互相平分且相等C.互相垂直且相等D.互相垂直平分且相等【分析】根据题意画出示意图,得出中点四边形的形状与原四边形对角线之间的关系即可解决问题.【解答】解:如图所示,连接BD,AC,∵点H和点E分别是AD和AB的中点,∴HE是△ABD的中位线,∴HE=.同理可得,GF=,∴HE=GF,HE∥GF,∴四边形HEFG是平行四边形.∵HE=,HG=,且AC=BD,∴HE=HG,∴平行四边形HEFG是菱形,∴EG与HF互相垂直平分.故选:A.【点评】本题主要考查了中点四边形、菱形的判定与性质及三角形的中位线定理,能根据三角形的中位线定理得出四边形ABCD的中点四边形是平行四边形及熟知菱形的判定与性质是解题的关键.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)比较大小:>2(填“>”、“<”或“=”).【分析】根据>即可推出>2.【解答】解:∵>,∴>2,故答案为:>.【点评】本题考查了实数的大小比较的应用,主要考查学生的比较能力.12.(3分)黄金分割是汉字结构最基本的规律.借助如图的正方形习字格书写的汉字“晋”端庄稳重、舒展美观.已知一条分割线的端点A,B分别在习字格的边MN,PQ上,且AB∥NP,“晋”字的笔画“、”的位置在AB的黄金分割点C处,且,若NP=2cm,则BC的长为()cm(结果保留根号).【分析】根据题意可得出四边形ANPB是矩形,进而得出AB的长,再根据BC与AB的比值即可解决问题.【解答】解:∵四边形MNPQ是正方形,∴∠N=∠P=90°,又∵AB∥NP,∴∠BAN+∠N=180°,∴∠BAN=90°,∴四边形ABPN是矩形,∴AB=NP=2cm.又∵,∴BC=()cm.故答案为:().【点评】本题主要考查了黄金分割及平行线的性质,熟知黄金分割的定义及平行线的性质是解题的关键.13.(3分)机器狗是一种模拟真实犬只形态和部分行为的机器装置,其最快移动速度v(m/s)是载重后总质量m(kg)的反比例函数.已知一款机器狗载重后总质量m=60kg时,它的最快移动速度v=6m/s;当其载重后总质量m=90kg时,它的最快移动速度v=4m/s.【分析】利用待定系数法求出反比例函数解析式,后再将m=90代入计算即可.【解答】解:设反比例函数解析式为v=,∵机器狗载重后总质量m=60kg时,它的最快移动速度v=6m/s;∴k=60×6=360,∴反比例函数解析式为v=,当m=90kg时,v==4(m/s),答:当其载重后总质量m=90kg时,它的最快移动速度v=4m/s.故答案为:4.【点评】本题考查了反比例函数的应用,待定系数法求反比例函数解析式是关键.14.(3分)如图1是小区围墙上的花窗,其形状是扇形的一部分,图2是其几何示意图(阴影部分为花窗).通过测量得到扇形AOB的圆心角为90°,OA=1m,点C,D分别为OA,OB的中点,则花窗的面积为m2.【分析】用扇形的面积减去△COD的面积即可解决问题.【解答】解:由题知,(m2),∵点C,D分别是OA,OB的中点,∴OC=OD=(m),∴(m2),∴花窗的面积为()m2故答案为:().【点评】本题主要考查了扇形面积的计算,熟知扇形的面积公式是解题的关键.15.(3分)如图,在▱ABCD中,AC为对角线,AE⊥BC于点E,点F是AE延长线上一点,且∠ACF=∠CAF,线段AB,CF的延长线交于点G.若AB=,AD=4,tan∠ABC=2,则BG的长为.【分析】方法一:过点F作FH⊥AC于H,延长AD与GC的延长线交于K,由tan∠ABC==2得AE=2BE,进而得BE=1,AE=2,则CE=3,AC=,再由∠ACF=∠CAF得FA=FC,则AH=CH=,由S△F AC=AC•FH=AF•CE,得FH=,在Rt△AFH中由勾股定理得AF=,则EF=AF﹣AE=,证明△FCE∽△FKA得AK=,则DK=AK﹣AD=,再证明△KDC ∽△KAG得AG=,由此可得BG的长.方法二:过点G作GH⊥BC,交CB的延长线于H,先求出BE=1,AE=2,CE=3,设EF=a,则AF =CF=2+a,由勾股定理求出a=,根据∠GBH=∠ABC得GH=2HB,设HB=b,则GH=2b,CH=BC+HB=4+b,GB=,证明△CEF∽△CHG得b=,由此可得GH的长.【解答】解法一:过点F作FH⊥AC于H,延长AD与GC的延长线交于K,如下图所示:∵四边形ABCD为平行四边形,∴AB=CD=,BC=AD=4,AB∥CD,BC∥AD,又∵AE⊥BC,在Rt△ABE中,tan∠ABC==2,∴AE=2BE,由勾股定理得:AE2+BE2=AB2,即(2BE)2+BE2=()2,∴BE=1,∴AE=2BE=2,∴CE=BC﹣BE=3,在Rt△ACE中,由勾股定理得:AC==,∵∠ACF=∠CAF,∴FA=FC,∵FH⊥AC,∴AH=CH=AC=,=AC•FH=AF•CE,∵S△F AC∴FH=,在Rt△AFH中,由勾股定理得:AF2﹣FH2=AH2,即,∴AF=,∴EF=AF﹣AE=,∵BC∥AD,∴△FCE∽△FKA,∴EF:AF=CE:AK,即,∴AK=,∴DK=AK﹣AD=,∵AB∥CD,∴△KDC∽△KAG,∴DK:AK=CD:AG,即,∴AG=,∴BG=AG﹣AB=.故答案为:.解法二:过点G作GH⊥BC,交CB的延长线于H,如下图所示:∵四边形ABCD为平行四边形,∴AB=CD=,BC=AD=4,AB∥CD,BC∥AD,又∵AE⊥BC在Rt△ABE中,tan∠ABC==,∴AE=2BE,由勾股定理得:AE2+BE2=AB2,即(2BE)2+BE2=()2,∴BE=1,∴AE=2BE=2,∴CE=BC﹣BE=3,设EF=a,则AF=AE+EF=2+a,∵∠ACF=∠CAF,∴AF=CF=2+a,在Rt△CEF中,由勾股定理得:CF2=CE2+EF2,即(2+a)2=32+a2,解得:a=,∵∠GBH=∠ABC,∴在Rt△GBH中,tan∠GBH=,∴GH=2HB,设HB=b,则GH=2b,CH=BC+HB=4+b,在Rt△GBH中,由勾股定理得:GB=,∵GH⊥BC,AF⊥BC,∴EF∥GH,∴△CEF∽△CHG,∴CE:CH=EF:GH,即3:(4+b)=:2b,解得:b=,∴GH==,故答案为:.【点评】此题主要考查了平行四边形的性质,解直角三角形的应用,相似三角形的判定和性质,熟练掌握平行四边形的性质,锐角三角函数的定义是解决问题的关键,正确地添加辅助线构造相似三角形,并利用相似三角形的性质进行计算是解决问题的难点.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:(﹣6)×﹣()﹣2+[(﹣3)+(﹣1)];(2)化简(+)÷.【分析】(1)先算括号里面的,再算乘法,负整数指数幂,最后算加减即可;(2)先算括号里面的,再把除法化为乘法,最后约分即可.【解答】解:(1)(﹣6)×﹣()﹣2+[(﹣3)+(﹣1)]=(﹣6)×﹣()﹣2+(﹣3﹣1)=(﹣6)×﹣()﹣2﹣4=﹣2﹣4﹣4=﹣10;(2)(+)÷==•=.【点评】本题考查的是分式的混合运算,有理数的混合运算及负整数指数幂,熟知运算法则是解题的关键.17.(7分)为加强校园消防安全,学校计划购买某种型号的水基灭火器和干粉灭火器共50个.其中水基灭火器的单价为540元/个,干粉灭火器的单价为380元/个.若学校购买这两种灭火器的总价不超过21000元,则最多可购买这种型号的水基灭火器多少个?【分析】设可购买这种型号的水基灭火器x个,则购买干粉灭火器(50﹣x)个,根据学校购买这两种灭火器的总价不超过21000元,列出一元一次不等,解不等式即可.【解答】解:设可购买这种型号的水基灭火器x个,则购买干粉灭火器(50﹣x)个,根据题意得:540x+380(50﹣x)≤21000,解得:x≤12.5,∵x为整数,∴x取最大值为12,答:最多可购买这种型号的水基灭火器12个.【点评】本题考查了一元一次不等式的应用,找出数量关系,正确列出一元一次不等式是解题的关键.18.(10分)为激发青少年崇尚科学、探索未知的热情,学校开展“科学小博士”知识竞赛.各班以小组为单位组织初赛,规定满分为10分,9分及以上为优秀.数据整理:小夏将本班甲、乙两组同学(每组8人)初赛的成绩整理成如下的统计图.数据分析:小夏对这两个小组的成绩进行了如下分析:平均数(分)中位数(分)众数(分)方差优秀率甲组7.625a7 4.4837.5%乙组7.6257b0.73c请认真阅读上述信息,回答下列问题:(1)填空:a=7.5,b=7,c=25%;(2)小祺认为甲、乙两组成绩的平均数相等,因此两个组成绩一样好.小夏认为小祺的观点比较片面,请结合上表中的信息帮小夏说明理由(写出两条即可).【分析】(1)根据中位数,众数和优秀率的定义和计算公式计算即可;(2)从优秀率,中位数,众数和方差等角度中选出两个进行分析即可.【解答】解:(1)a==7.5(分),b=7(分),c=×100%=25%,故答案为:7.5;7;25%.(2)小祺的观点比较片面.理由不唯一,例如:①甲组成绩的优秀率为37.5%,高于乙组成绩的优秀率25%,∴从优秀率的角度看,甲组成绩比乙组好;②甲组成绩的中位数为7.5,高于乙组成绩的中位数,∴从中位数的角度看,甲组成绩比乙组好;因此不能仅从平均数的角度说明两组成绩一样好,可见,小祺的观点比较片面.【点评】本题考查的是方差,加权平均数,中位数和众数,熟练掌握上述知识点是解题的关键.19.(7分)当下电子产品更新换代速度加快,废旧智能手机数量不断增加.科学处理废旧智能手机,既可减少环境污染,还可回收其中的可利用资源.据研究,从每吨废旧智能手机中能提炼出的白银比黄金多760克.已知从2.5吨废旧智能手机中提炼出的黄金,与从0.6吨废旧智能手机中提炼出的白银克数相等.求从每吨废旧智能手机中能提炼出黄金与白银各多少克.【分析】设从每吨废旧智能手机中能提炼出黄金x克,白银y克,根据从每吨废旧智能手机中能提炼出的白银比黄金多760克.从2.5吨废旧智能手机中提炼出的黄金,与从0.6吨废旧智能手机中提炼出的白银克数相等.列出二元一次方程组,解方程组即可.【解答】解:设从每吨废旧智能手机中能提炼出黄金x克,白银y克,根据题意得:,解得:,即从每吨废旧智能手机中能提炼出黄金240克,白银1000克.答:从每吨废旧智能手机中能提炼出黄金240克,白银1000克.【点评】本题主要考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(7分)研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动.同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE =9米;…数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33).【分析】延长CD交AB于点H,根据矩形的性质得到CM=HB=20,解直角三角形即可得到结论.【解答】解:延长CD交AB于点H,由题意得,四边形CMBH为矩形,∴CM=HB=20,在Rt△ACH中,∠AHC=90°,∠ACH=18.4°,∴,∴,在Rt△ECH中,∠EHC=90°,∠ECH=37°,∴,∴,设AH=x.∵AE=9,∴EH=x+9,∴,解得x≈7.1,∴AB=AH+HB≈7.1+20=27.1≈27(米)答:点A到地面的距离AB的长约为27米.【点评】本题考查解直角三角形的应用—仰角俯角问题、锐角三角函数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(9分)阅读与思考下面是博学小组研究性学习报告的部分内容,请认真阅读,并完成相应任务.关于“等边半正多边形”的研究报告博学小组研究对象:等边半正多边形研究思路:类比三角形、四边形,按“概念﹣性质﹣判定”的路径,由一般到特殊进行研究.研究方法:观察(测量、实验)﹣猜想﹣推理证明研究内容:【一般概念】对于一个凸多边形(边数为偶数),若其各边都相等,且相间的角相等、相邻的角不相等,我们称这个凸多边形为等边半正多边形.如图1,我们学习过的菱形(正方形除外)就是等边半正四边形,类似地,还有等边半正六边形、等边半正八边形…【特例研究】根据等边半正多边形的定义,对等边半正六边形研究如下:概念理解:如图2,如果六边形ABCDEF是等边半正六边形,那么AB=BC=CD=DE=EF=FA,∠A=∠C=∠E,∠B=∠D=∠F,且∠A≠∠B.性质探索:根据定义,探索等边半正六边形的性质,得到如下结论:内角:等边半正六边形相邻两个内角的和为▲°.对角线:…任务:(1)直接写出研究报告中“▲”处空缺的内容:240.(2)如图3,六边形ABCDEF是等边半正六边形.连接对角线AD,猜想∠BAD与∠FAD的数量关系,并说明理由;(3)如图4,已知△ACE是正三角形,⊙O是它的外接圆.请在图4中作一个等边半正六边形ABCDEF (要求:尺规作图,保留作图痕迹,不写作法).【分析】(1)六边形内角和为720°,由等边半正六边形的定义即可得出相邻两内角和为240°;(2)连接BD,FD,通过全等很容易证出∠BAD=∠FAD;(3)作AC、CE、AE的垂直平分线,在圆内线上取一点或者圆外取一点都行,切记不能取圆上,否则就是正六边形了.【解答】解:(2)∠BAD=∠FAD.理由如下:连接BD,FD.∵六边形ABCDEF是等边半正六边形.∴AB=BC=CD=DE=EF=FA,∠C=∠E.∴△BCD≌△FED.∴BD=FD.在△ABD与△AFD中,∴△BAD≌△FAD.∴∠BAD=∠FAD.(3)答案不唯一,作法一:作法二:如图,六边形ABCDEF即为所求.【点评】本题主要考查圆综合题,以等边半正六边形为背景,理解题意以及掌握圆和多边形的相关性质是解题关键.22.(12分)综合与实践问题情境:如图1,矩形MNKL是学校花园的示意图,其中一个花坛的轮廓可近似看成由抛物线的一部分与线段AB组成的封闭图形,点A,B在矩形的边MN上.现要对该花坛内种植区域进行划分,以种植不同花卉,学校面向全体同学征集设计方案.方案设计:如图2,AB=6米,AB的垂直平分线与抛物线交于点P,与AB交于点O,点P是抛物线的顶点,且PO=9米.欣欣设计的方案如下:第一步:在线段OP上确定点C,使∠ACB=90°,用篱笆沿线段AC,BC分隔出△ABC区域,种植串串红;第二步:在线段CP上取点F(不与C,P重合),过点F作AB的平行线,交抛物线于点D,E.用篱笆沿DE,CF将线段AC,BC与抛物线围成的区域分隔成三部分,分别种植不同花色的月季.方案实施:学校采用了欣欣的方案,在完成第一步△ABC区域的分隔后,发现仅剩6米篱笆材料.若要在第二步分隔中恰好用完6米材料,需确定DE与CF的长.为此,欣欣在图2中以AB所在直线为x 轴,OP所在直线为y轴建立平面直角坐标系.请按照她的方法解决问题:(1)在图2中画出坐标系,并求抛物线的函数表达式;(2)求6米材料恰好用完时DE与CF的长;(3)种植区域分隔完成后,欣欣又想用灯带对该花坛进行装饰,计划将灯带围成一个矩形.她尝试借助图2设计矩形四个顶点的位置,其中两个顶点在抛物线上,另外两个顶点分别在线段AC,BC上.直接写出符合设计要求的矩形周长的最大值.【分析】(1)由待定系数法即可求解;(2)在Rt△ABC中,∠ACB=90°,OA=OB,则,得到CF=OF﹣OC=﹣m2+9﹣3=﹣m2+6,即可求解;(3)由矩形周长=2(GH+GL)=2(﹣2m﹣m2+9﹣m﹣3)=﹣(m+1.5)2+≤,即可求解.【解答】解:(1)建立如图所示的平面直角坐标系,∵OP所在直线是AB的垂直平分线,且AB=6,∴.∴点B的坐标为(3,0),∵OP=9,∴点P的坐标为(0,9),∵点P是抛物线的顶点,∴设抛物线的函数表达式为y=ax2+9,∵点B(3,0)在抛物线y=ax2+9上,∴9a+9=0,解得:a=﹣1.∴抛物线的函数表达式为y=﹣x2+9(﹣3≤x≤3);(2)点D,E在抛物线y=﹣x2+9上,∴设点E的坐标为(m,﹣m2+9),∵DE∥AB,交y轴于点F,∴DF=EF=m,OF=﹣m2+9,∴DE=2m.∵在Rt△ABC中,∠ACB=90°,OA=OB,∴.∴CF=OF﹣OC=﹣m2+9﹣3=﹣m2+6,根据题息,得DE+CF=6,∴﹣m2+6+2m=6,解得:m1=2,m=0(不符合题意,舍去),∴m=2.∴DE=2m=4,CF=﹣m2+6=2答:DE的长为4米,CF的长为2米;(3)如图矩形灯带为GHML,由点A、B、C的坐标得,直线AC和BC的表达式分别为:y=x+3,y=﹣x+3,设点G(m,﹣m2+9)、H(﹣m,﹣m2+9)、L(m,m+3)、M(﹣m,m+3),则矩形周长=2(GH+GL)=2(﹣2m﹣m2+9﹣m﹣3)=﹣(m+1.5)2+≤,故矩形周长的最大值为米.【点评】本题考查的是二次函数综合运用,主要涉及到二次函数的图象和性质、矩形的性质,理解题意,建立适当坐标系求出函数表达式是解题的关键.23.(13分)综合与探究问题情境:如图1,四边形ABCD是菱形,过点A作AE⊥BC于点E,过点C作CF⊥AD于点F.猜想证明:(1)判断四边形AECF的形状,并说明理由;深入探究:(2)将图1中的△ABE绕点A逆时针旋转,得到△AHG,点E,B的对应点分别为点G,H.①如图2,当线段AH经过点C时,GH所在直线分别与线段AD,CD交于点M,N.猜想线段CH与MD的数量关系,并说明理由;②当直线GH与直线CD垂直时,直线GH分别与直线AD,CD交于点M,N,直线AH与线段CD交于点Q.若AB=5,BE=4,直接写出四边形AMNQ的面积.【分析】(1)根据矩形的判定方法(有三个角是直角的四边形是矩形)很容易证出;(2)①方法一可先证△HAM≌△DAC,得出AM=AC,减去公共边得出CH=MD.方法二证△CDH ≌△MHD,可直接得出CH=MD;②对于旋转的存在性问题,首先分类讨论,根据情况画出草图,再利用旋转的性质以及锐角三角函数或相似进行计算即可,需要主要的是四边形AMNQ的面积是不规则,需要用去用三角形面积的和差解决.【解答】解:(1)四边形AECF为矩形.理由如下:∵AE⊥BC,CF⊥AD,∴∠AEC=90°,∠AFC=90°,∵四边形ABCD为菱形,∴AD∥BC,∴∠AFC+∠ECF=180°,∠ECF=180°﹣∠AFC=90°∴四边形AECF为矩形.(2)①CH=MD.理由如下:证法一:∵四边形ABCD为菱形,∴AB=AD,∠B=∠D.∵△ABE旋转得到△AHG,∴AB=AH,∠B=∠H.∴AH=AD,∠H=∠D.∵∠HAM=∠DAC,∴△HAM≌△DAC,∴AM=AC,∴AH﹣AC=AD﹣AM,∴CH=MD.证法二:如图,连接HD.∵四边形ABCD为菱形,∴AB=AD,∠B=∠ADC,∵△ABE旋转得到△AHG,∴AB=AH,∠B=∠AHM,∴AH=AD,∠AHM=∠ADC,∴∠AHD=∠ADH,∴∠AHD﹣∠AHM=∠ADH﹣∠ADC,∴∠MHD=∠CDH,∵DH=HD,∴△CDH≌△MHD,∴CH=MD.②情况一:如图,当点G旋转至BA的延长线上时,GH⊥CD,此时S四边形AMNQ=.∵AB=5,BE=4,∴由勾股定理可得AE=3,∵△ABE旋转到△AHG,∴AG=AE=3,GH=BE=4,∠H=∠B,∵GN⊥CD,∴GN=AE=3,∴NH=1,∵AD∥BC,∴∠GAM=∠B,∴tan∠GAM=tan∠B,即,解得GM=,则MH=,∵tan∠H=tan∠B,∴在Rt△QNH中,QN=,=S△AMH﹣S△QNH=MH•AG﹣NH•QN=.∴S四边形AMNQ=.情况二:如图,当点G旋转至BA上时,GH⊥CD,此时S四边形AMNQ同第一种情况的计算思路可得:NH=7,QN=,AG=3,MH=,=S△QNH﹣S△AMH=NH•QN﹣MH•AG=.∴S四边形AMNQ综上,四边形AMNQ的面积为或.。

山西省太原市2020版中考数学试卷B卷

山西省太原市2020版中考数学试卷B卷

山西省太原市2020版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各数中,最小的是()A . 0B . 1C .D . -2. (2分) (2019九下·揭西期中) 如图所示,直线,三角尺的一个顶点在上,若,则∠2=()A .B .C .D .3. (2分)(2019·绍兴) 如图的几何体由六个相同的小正方体搭成,它的主视图是()A .B .C .D .4. (2分)下面是某同学在一次检测中的计算摘录:①3x3•(﹣2x2)=﹣6x5;②4a3b÷(﹣2a2b)=﹣2a ;③(a3)2=a5;④(﹣a)3÷(﹣a)=﹣a2;其中正确的个数有()A . 1个B . 2个C . 3个D . 4个5. (2分)(2018·湛江模拟) 在湛江市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:金额(元)20303550100学生数(人)51081017则在这次活动中,该班同学捐款金额的众数和中位数分别是()A . 20元,30元B . 20元,35元C . 100元,35元D . 100元,50元6. (2分) (2018九上·温州开学考) 菱形的两条对角线长分别为3和4,那么这个菱形的面积为()A . 12B . 6C . 5D . 77. (2分) (2019七下·巴中期中) 某班共有学生49人.一天,某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组符合题意是()A .B .C .D .8. (2分)根据如图所示的排列规律,“?”处应填的运算符号是()A . +B . -C . ×D . ÷9. (2分) (2017七下·萧山期中) 如图,图形W,X,Y,Z是形状和大小相同,能完全重合的图形.根据图中数据可计算的图形W的面积是()A . 4-πB . 1-0.25πC . 4-0.25πD . 1-10. (2分)正比例函数y=(n+1)x图象经过点(2,4),则n的值是()A . -3B . -C . 3D . 1二、填空题 (共6题;共7分)11. (1分) (2019八上·东台月考) 把5087精确到百位,这个近似数是________.12. (1分)(2019·温州模拟) 要使根式有意义,则字母x的取值范围是________.13. (2分)在口ABCD中,∠B=50°,AB=5cm, BC=7cm,则∠D=________°, ABCD的周长为________cm.14. (1分) (2019七上·孝南月考) 现规定一种新的运算:,若,则________.15. (1分)如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是________16. (1分)如图,直角三角形ABC中,∠C=90°,若AC=3cm,BC=4cm,AB=5cm,则点C到AB的最短距离等于________cm。

山西省太原市2020年中考数学试卷(I)卷

山西省太原市2020年中考数学试卷(I)卷

山西省太原市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共12小题,每小题3分,共36分) (共12题;共36分)1. (3分) (2019七上·蚌埠月考) 有下列各数:-(-1),-|-1|,(-1)2 , (-1)3 ,其中是负数的个数为()A . 1B . 2C . 3D . 42. (3分)(2018·黔西南) 如图的几何体是由四个大小相同的正方体组成的,它的俯视图是()A .B .C .D .3. (3分)(2019·衡水模拟) 学校开展捐书活动,以下是5名同学捐书的册数:4,9,5,x,3,已知这组数据的平均数是5,则这组数据的中位数和众数分别是()A . 3和3B . 4和4C . 3和4D . 5和54. (3分) (2016八上·遵义期末) 若分式的值为零,那么x的值为()A . x=1或x=-1B . x=1C . x=-1D . x=05. (3分)(2017·汉阳模拟) 下列运算正确的是()A . (a+b)2=a2+b2B . x3+x3=x6C . (a3)2=a5D . (2x2)(﹣3x3)=﹣6x56. (3分)已知点与点关于坐标原点对称,则实数a、b的值是A . ,B . ,C . ,D . ,7. (3分)以3和-1为两根的一元二次方程是()A . x2+2x-3=0B . x2+2x+3=0C . x2-2x-3=0D . x2-2x+3=08. (3分)下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行.(2)在同一平面内,过一点有且只有一条直线与已知直线垂直.(3)在同一平面内,不重合的两条直线的位置关系只有相交,平行两种.(4)不相交的两条直线叫做平行线.(5)有公共顶点且有一条公共边的两个角互为邻补角.A . 1个B . 2个C . 3个D . 4个9. (3分)(2018·镇平模拟) 如图,⊙O是△ABC的外接圆,∠BOC=120°,则∠BAC的度数是()A . 70°B . 60°C . 50°D . 30°10. (3分)如图,把矩形纸片ABCD纸沿对角线折叠,设重叠部分为AEBD,那么,下列说法错误的是()A . △EBD是等腰三角形,EB=EDB . 折叠后∠ABE和∠CBD一定相等C . 折叠后得到的图形是轴对称图形D . △EBA和△EDC一定是全等三角形11. (3分) (2019九上·淮阴期末) 如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是()A .B .C .D .12. (3分)(2018·南宁) 如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C 落在点E处,PE,DE分别交AB于点O、F,且OP=OF,则cos∠AD F的值为()A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分) (共6题;共18分)13. (3分)(2019·丹阳模拟) 化简﹣(﹣)的结果是________.14. (3分) (2019七下·江阴期中) 人体中红细胞的直径约为0.0000077m,用科学记数法表示为________ m.15. (3分) (2017七下·马山期中) 如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72º,则∠2=________;16. (3分) (2019九上·杭州月考) 2018年10月1日是第70个国庆节,从数串“20181001”中随机抽取一个数字,抽到数字1的概率是________.17. (3分) (2014九上·临沂竞赛) 如果圆锥的底面周长是20πcm,侧面展开后所得的扇形的圆心角为120°,则圆锥的母线长是________.18. (3分) (2019七下·宝安期中) 一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶,设慢车行驶的时间x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据图象回答:(1)甲、乙两地之间的距离为________;(2)两车同时出发后________h相遇;(3)慢车的速度为________千米/小时;快车的速度为________千米/小时;(4)线段CD表示的实际意义是________.三、解答题(本大题共8小题,满分66分。

2020年山西太原中考数学试卷及答案

2020年山西太原中考数学试卷及答案

2020年山西太原中考数学试卷及答案第I 卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.计算1(6)3⎛⎫-÷- ⎪⎝⎭的结果是() A .18-B .2C .18D .2-2.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A .B .C .D .3.下列运算正确的是() A .2325a a a +=B .2842a a a -÷=C .()32628aa -=- D .3264312a a a ⋅=4.下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是()A .B .C .D .5.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。

金字塔的影长,推算出金字塔的高度。

这种测量原理,就是我们所学的()A .图形的平移B .图形的旋转C .图形的轴对称D .图形的相似6.不等式组26041x x ->⎧⎨-<-⎩的解集是()A .5x >B .35x <<C .5x <D .5x >-7.已知点()11,A x y ,()22,B x y ,()33,C x y 都在反比例函数ky x=()0k <的图像上,且1230x x x <<<,则1y ,2y ,3y 的大小关系是()A .213y y y >>B .321y y y >>C .123y y y >>D .312y y y >>8.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为4cm ,圆心角为60︒,则图中摆盘的面积是()图①图② A .280cm πB .240cm πC .224cm πD .22cm π9.竖直上抛物体离地面的高度()h m 与运动时间()t s 之间的关系可以近似地用公式2005h t v t h =-++表示,其中()0h m 是物体抛出时离地面的高度,()0/v m s 是物体抛出时的速度.某人将一个小球从距地面1.5m 的高处以20/m s 的速度竖直向上抛出,小球达到的离地面的最大高度为()A .23.5mB .22.5mC .21.5mD .20.5m10.如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是()A .13B .14C .16D .18第II 卷非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分) 11.计算:2(32)24+-=_______.12.如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形按此规律摆下去,第n 个图案有_______个三角形(用含n 的代数式表示).……第1个第2个第3个第4个13.某校为了选拔一名百米赛跑运动员参加市中学生运动会,组织了6次预选赛,其中甲,乙两名运动员较为突出,他们在6次预选赛中的成绩(单位:秒)如下表所示: 甲12.0 12.0 12.2 11.8 12.1 11.9乙 12.3 12.1 11.8 12.0 11.7 12.1由于甲,乙两名运动员的成绩的平均数相同,学校决定依据他们成绩的稳定性进行选拔,那么被选中的运动员是______.14.如图是一张长12cm ,宽10cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积224cm 是的有盖的长方体铁盒.则剪去的正方形的边长为______cm .15.如图,在Rt ABC ∆中,90ACB ∠=︒,3AC =,4BC =,CD AB ⊥,垂足为D ,E 为BC 的中点,AE 与CD 交于点F ,则DF 的长为_______.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(1)计算:321(4)(41)2⎛⎫-⨯---+ ⎪⎝⎭(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.229216926x x x x x -+-+++ 2(3)(3)21(3)2(3)x x x x x +-+=-++第一步32132(3)x x x x -+=-++第二步 2(3)212(3)2(3)x x x x -+=-++第三步26(21)2(3)x x x --+=+第四步26212(3)x x x --+=+第五步526x =-+第六步任务一:填空:①以上化简步骤中,第_____步是进行分式的通分,通分的依据是____________________或填为_____________________________;②第_____步开始出现错误,这一步错误的原因是_____________________________________; 任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议. 17.2020年5月份,省城太原开展了“活力太原·乐购晋阳”消费暖心活动,本次活动中的家电消费券单笔交易满600元立减128元(每次只能使用一张)某品牌电饭煲按进价提高50%后标价,若按标价的八折销售,某顾客购买该电饭煲时,使用一张家电消费券后,又付现金568元.求该电饭煲的进价.18.如图,四边形OABC 是平行四边形,以点O 为圆心,OC 为半径的O 与AB 相切于点B ,与AO 相交于点D ,AO 的延长线交O 于点E ,连接EB 交OC 于点F ,求C ∠和E ∠的度数.19.2020年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,5G 基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《2020新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”中五大细分领域(5G 基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.下图是其中的一个统计图. 请根据图中信息,解答下列问题:(1)填空:图中2020年“新基建”七大领域预计投资规模的中位数是______亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“5G 基站建设”和“人工智能”作为自己的就业方向,请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为W ,G ,D ,R ,X 的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是编号为W (5G 基站建设)和R (人工智能)的概率.W G D R X 20.阅读与思考下面是小宇同学的数学日记,请仔细阅读并完成相应的任务. ×年×月×日星期日没有直角尺也能作出直角今天,我在书店一本书上看到下面材料:木工师傅有一块如图①所示的四边形木板,他已经在木板上画出一条裁割线AB ,现根据木板的情况,要过AB 上的一点C ,作出AB 的垂线,用锯子进行裁割,然而手头没有直角尺,怎么办呢?办法一:如图①,可利用一把有刻度的直尺在AB 上量出30CD cm =,然后分别以D ,C 为圆心,以50cm 与40cm 为半径画圆弧,两弧相交于点E ,作直线CE ,则DCE ∠必为90︒.图①办法二:如图②,可以取一根笔直的木棒,用铅笔在木棒上点出M ,N 两点,然后把木棒斜放在木板上,使点M 与点C 重合,用铅笔在木板上将点N 对应的位置标记为点Q ,保持点N 不动,将木棒绕点N 旋转,使点M 落在AB 上,在木板上将点M 对应的位置标记为点R .然后将RQ 延长,在延长线上截取线段QS MN =,得到点S ,作直线SC ,则90RCS ∠=︒.图②我有如下思考:以上两种办法依据的是什么数学原理呢?我还有什么办法不用直角尺也能作出垂线呢? …… 任务:(1)填空;“办法一”依据的一个数学定理是_____________________________________; (2)根据“办法二”的操作过程,证明90RCS ∠=︒;(3)①尺规作图:请在图③的木板上,过点C 作出AB 的垂线(在木板上保留作图痕迹,不写作法); ②说明你的作法依据的数学定理或基本事实(写出一个即可)21.图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC 和DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称,BC 和EF 均垂直于地面,扇形的圆心角28ABC DEF ∠=∠=︒,半径60BA ED cm ==,点A 与点D 在同一水平线上,且它们之间的距离为10cm .图①图②(1)求闸机通道的宽度,即BC 与EF 之间的距离(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈); (2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数. 22.综合与实践 问题情境:如图①,点E 为正方形ABCD 内一点,90AEB ∠=︒,将Rt ABE ∆绕点B 按顺时针方向旋转90︒,得到CBE '∆(点A 的对应点为点C ),延长AE 交CE '于点F ,连接DE .猜想证明:图①图②(1)试判断四边形BE FE '的形状,并说明理由;(2)如图②,若DA DE =,请猜想线段CF 与FE '的数量关系并加以证明; 解决问题:(3)如图①,若15AB =,3CF =,请直接写出DE 的长. 23.综合与探究 如图,抛物线2134y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .直线l 与抛物线交于A ,D 两点,与y 轴交于点E ,点D 的坐标为()4,3-.(1)请直接写出A ,B 两点的坐标及直线l 的函数表达式;(2)若点P 是抛物线上的点,点P 的横坐标为m ()0m ≥,过点P 作PM x ⊥轴,垂足为M .PM 与直线l 交于点N ,当点N 是线段PM 的三等分点时,求点P 的坐标; (3)若点Q 是y 轴上的点,且45ADQ ∠=︒,求点Q 的坐标.参考答案1-5:CDCBD 6-10:AABCB 11.512.()31n +13.甲14.215.548516.解:(1)原式116(3)8⎛⎫=⨯--- ⎪⎝⎭23=-+1=(2)任务一:①三;分式的基本性质;分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变; ②五;括号前是“-”号,去掉括号后,括号里的第二项没有变号; 任务二:解;726x -+任务三:解:答案不唯一,如:最后结果应化为最简分式或整式;约分,通分时,应根据分式的基本性质进行变形;分式化简不能与解分式方程混淆,等. 17.解:设该电饭煲的进价为x 元根据题意,得(150%)80%128568x +⋅-= 解,得580x =.答;该电饭煲的进价为580元 18.解:连接OB .AB 与O 相切于点B ,OB AB ∴⊥.90OBA ∴∠=︒.四边形OABC 是平行四边形,//AB OC ∴90BOC OBA ∴∠=∠=︒ OB OC =,()()11180180904522C OBC BOC ∴∠=∠=︒-∠=⨯︒-︒=︒ 四边形OABC 是平行四边形,45A C ∴∠=∠=︒180180459045AOB A OBA ∴∠=︒-∠-∠=︒-︒-︒=︒.1114522.5222E DOB AOB ∠=∠=∠=⨯︒=︒.19.(1)300(2)解:甲更关注在线职位增长率,在“新基建”五大细分领域中,2020年第一季度“5G 基站建设”在线职位与2019年同期相比增长率最高;乙更关注预计投资规模,在“新基建”五大细分领域中,“人工智能”在2020年预计投资规模最大(3)解:列表如下:第二张 第一张WGD R XW(),W G(),W D (),W R (),W X G(),G W(),G D(),G R(),G X D(),D W (),D G(),D R(),D X R(),R W (),R G (),R D(),R XX(),X W(),X G(),X D(),X R或画树状图如下:由列表(或画树状图)可知一共有20种可能出现的结果,且每种结果出现的可能性都相同,其中抽到“W ”和“R ”的结果有2种.所以,P (抽到“W ”和“R ”)212010==. 20.(1)勾股定理的逆定理(或如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形);(2)证明:由作图方法可知:QR QC =,QS QC =,QCR QRC ∴∠=∠,QCS QSC ∠=∠.又180SRC RCS RSC ∠+∠+∠=︒,180QCR QCS QRC QSC ∴∠+∠+∠+∠=︒. 2()180QCR QCS ∴∠+∠=︒. 90QCR QCS ∴∠+∠=︒即90RCS ∠=︒.(3)解:①如图,直线CP 即为所求.作图正确.图③②答案不唯一,如:三边分别相等的两个三角形全等(或SSS );等腰三角形顶角的平分线、底边上的高、底边上的中线重合(或等腰三角形“三线合一”);到一条线段两个端点距离相等的点,在这条线段的垂直平分线上,等. 21.解:连接AD ,并向两方延长,分别交BC ,EF 于点M ,N .由点A 与点D 在同一水平线上,BC ,EF 均垂直于地面可知,MN BC ⊥,MN EF ⊥,所以MN 的长度就是BC 与EF 之间的距离.同时,由两圆弧翼成轴对称可得AM DN =. 在Rt ABM ∆中,90AMB ∠=︒,28ABM ∠=︒,60AB =,sin AMABM AB∠=, sin AM AB ABM ∴=⋅∠60sin 28600.4728.2=⨯︒≈⨯=.228.221066.4MN AM DN AD AM AD ∴=++=+=⨯+=. BC ∴与EF 之间的距离为66.4cm .(1)解法一:设一个人工检票口平均每分钟检票通过的人数为x 人. 根据题意,得18018032x x-= 解,得30x =.经检验30x =是原方程的解 当30x =时,260x =答:一个智能闸机平均每分钟检票通过的人数为60人. 解法二:设一个智能闸机平均每分钟检票通过的人数为x 人. 根据题意,得180180312x x +=.解,得60x =经检验60x =是原方程的解.答:一个智能闸机平均每分钟检票通过的人数为60人.22.解:(1)四边形BE FE '是正方形理由:由旋转可知:90E AEB '∠=∠=︒,90EBE '∠=︒又180AEB FEB ∠+∠=︒,90AEB ∠=︒90FEB ∴∠=︒∴四边形BE FE '是矩形.由旋转可知,BE BE '=.∴四边形BE FE '是正方形.(2)CF FE '=.证明:如图,过点D 作DH AE ⊥,垂足为H ,则90DHA ∠=︒,1390∠+∠=︒DA DE =12AH AE ∴=. 四边形ABCD 是正方形,AB DA ∴=,90DAB ∠=︒.1290∴∠+∠=︒23∴∠=∠90AEB DHA ∠=∠=︒,AEB DHA ∴∆≅∆.AH BE ∴=.由(1)知四边形BE FE '是正方形,BE E F '∴=AH E F '∴=由旋转可得CE AE '=,12FE CE ''∴= CF FE '∴=(3)317.图②23.解:(1)()2,0A -,()6,0B ,直线l 的函数表达式为:112y x =--. (2)解:如图,根据题意可知,点P 与点N 的坐标分别为 21,34P m m m ⎛⎫-- ⎪⎝⎭,1,12N m m ⎛⎫-- ⎪⎝⎭. 22113344PM m m m m =--=-++ 111122MN m m =--=+, 2211111322442NP m m m m m ⎛⎫⎛⎫=-----=-++ ⎪ ⎪⎝⎭⎝⎭, 分两种情况:①当3PM MN =时,得21133142m m m ⎛⎫-++=+ ⎪⎝⎭. 解,得10m =,22m =-(舍去) 当0m =时,21334m m --=-. ∴点P 的坐标为()0,3-②当3PM NP =时,得22111332442m m m m ⎛⎫-++=-++ ⎪⎝⎭. 解,得13m =,22m =-(舍去) 当3m =时,2115344m m --=- ∴点P 的坐标为153,4⎛⎫- ⎪⎝⎭.∴当点N 是线段PM 的三等分点时,点P 的坐标为()0,3-或153,4⎛⎫- ⎪⎝⎭(3)解:直线112y x =--与y 轴交于点E , ∴点E 坐标为()0,1-.分两种情况:①如图,当点Q 在y 轴正半轴上时,记为点1Q . 过点1Q 作1Q H ⊥直线l ,垂足为H .则190Q HE AOE ∠=∠=︒, 1Q EH AEO ∠=∠,1Q HE AOE ∴∆∆. 1Q H HE AO OE∴= 即121Q H HE = 12Q H HE ∴=.又145Q DH ∠=︒,190Q HD ∠=︒,1145HQ D Q DH ∴∠=∠=︒12DH Q H HE ∴==.HE ED ∴=连接CD ,点C 的坐标为()0,3-,点D 的坐标为()4,3-, CD y ∴⊥轴2222[1(3)]425ED EC CD ∴=+=---+=. 25HE =145Q H =.110Q E ∴===. 111019OQ Q E OE ∴=-=-=. ∴点1Q 的坐标为()0,9.②如图,当点Q 在y 轴负半轴上时,记为点2Q .过点2Q 作2Q G ⊥直线l ,垂足为G 则290Q GE AOE ∠=∠=︒, 2Q EG AEO ∠=∠,2~Q GE AOE ∴∆∆. 2Q G EG AO OE∴=. 即221Q G EG = 22Q G EG ∴=.又245Q DG ∠=︒,290Q GD ∠=︒, 2245DQ G Q DG ∴∠=∠=︒22DG Q G EG ∴==.3ED EG DG EG ∴=+=.由①可知,ED =3EG ∴=3EG ∴=.23Q G ∴=2103EQ ∴===.221013133OQ OE EQ ∴=+=+= ∴点2Q 的坐标为130,3⎛⎫- ⎪⎝⎭∴点Q 的坐标为()0,9或130,3⎛⎫- ⎪⎝⎭.。

2020年山西太原中考数学试卷及答案

2020年山西太原中考数学试卷及答案

2020年山西太原口考数学试卷殁答案第1卷诜轻曲(共8分)一.诜曜5《本人题H 】。

个4至,柢d 枭3分,JtR 分.在督布I 融州的四个诜项中,只育一项符2黑门要 求,诘洗出并在答颗卡1■将该项浅黑》1. H 算(-Q,tm 的结奥是()A. T8B. 2C. 18D. -22.自动堂口破疫情发生以乐,全国人民共同抗会,各地积极音及科学版知识•下面是科学防I?犯旧的图片,图 片上有同案和文字说明,越中的思陈是柏对价图形的是<>@\ |@ec «M - Mr MIV • 13 .下列运算正确的是OA. 3a+M 二。

D. -8a? +4a z C. (-2a 2)1: -8a‘ D. 3 ― 12^/4 .下列几何体都R 由4个大小相同的小三方体组成的,文中壬视图与左现图相同的几何体总()史的缶(T0A. /J* B- z #J» C. / J * D. /小力5 .泰劫听是古无鹏时期的思趣家g 科学应,西学永,他最早用出了命领的证明•泰勒由曾通过泗里同ft 刻标杆 的彩长,标杆的"度•金字塔的彩长,推算吊含T 塔的总度,汝耶、国麻轧浙是我们所学的C7.已知点典A 的),6(巧6)) C (,小/法反比例四妙,二:(A <0)的合像上,目.〈巧vOv — W1Xi ,X”内的大小关系是《)B.3国美食诂究型曾叫美,优雅的摆窗詹空也会让美饼$A±:蒜花.图0卬的勇留,H 形状是加的一部分;图②C.国彤的做对称 D ・悠形的相仪 2r «>0 4-x<-l BT 解年是C A. X>5B< 5<x<5 C. *<5 D. x>-5A-外 >区>耳b ・%>必>凫 C.鼻〉心》必 D ・耳 >叫>必B.国形的族转不等式组«是其几何示苜国(明专用分为摆空),通过测量得利器C .。

两点之间的距题为4E ,国心角 力6•。

最近太原中考数学试卷真题

最近太原中考数学试卷真题

最近太原中考数学试卷真题最近太原中考数学试卷真题回顾近年来,中考数学试卷在各地如火如荼地进行,考察着千千万万名中学生的数学素养。

而太原中考数学试卷作为其中的一环,也一直备受关注。

本文将回顾最近太原中考数学试卷的真题,让我们一同来探索其中的难点和考察重点。

一、选择题1. 分数:若1÷a+1/2=a÷2+1/4,则a的值是多少?2. 几何:如图所示,AB是⊙O的直径,点C在⊙O上,⊙O的半径为6cm,且∠ACB=90°,则AC的长度是多少?3. 代数:已知∣x-1∣+∣x-2∣=5,x的取值范围是?4. 函数:若y=2x+1,求y+4x的值是多少?5. 概率:从1至8这8个数字中随机抽取2个不同的数字,且按顺序排列,求使得得到的两位数能够被3整除的概率是多少?二、填空题1. 计算:(12.6—2.24)÷(−1.4)=_____2. 定义:根据定义,对于图形A,它恰好有一条对称轴,则在A上存在的轴对称点是_____3. 推理:若x+2y=7,3x+my=15,解该方程组,使得x的值与y 的值均为整数,则m的值是_____4. 运算:若a=1.2,b=0.6,求(a-b)÷a+b的值是_____5. 实际问题:在一次环境保护活动中,某地共清理30000kg垃圾,其中废纸对废塑料的比值是5:4,那么废纸和废塑料的总质量分别是_____三、解答题1. 解方程组:已知方程组{2x+3y=7{4x-2y=2求解该方程组的解。

2. 几何问题:如图所示,矩形ABCD中,点E在AB边上,且AE:EB=1:3,若矩形的面积为48㎡,求矩形ABCD的周长。

3. 函数问题:已知函数y=ax2+bx+c的图象经过点(1,2),(2,1),(3,3),求函数y的表达式。

4. 立体几何:如图所示,长方体ABCD-A1B1C1D1,点M为AA1的中点,点P在ABCD矩形面上,求证MP⊥AA1。

山西省太原市2020年中考数学试卷A卷

山西省太原市2020年中考数学试卷A卷

山西省太原市2020年中考数学试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) |﹣4|等于()A . 4B . -4C .D . -2. (2分)(2016·宁波) 下列计算正确的是()A .B . 3a﹣a=3C .D .3. (2分) (2016七上·端州期末) 网购越来越多的成为人们的一种消费方式,刚刚过去的2015年11月11日的网上促销活动中,阿里巴巴中国可谓独占鳌头,当天交易额达到了惊人的9720000万元!其中9720000万元用科学记数法表示为()万元.A .B .C .D .4. (2分) (2019八下·北京期末) 在下列图形中,既是轴对称图形,又是中心对称图形的是()A . 等腰梯形B . 正三角形C . 平行四边形D . 菱形5. (2分) (2018八下·花都期末) 某鞋店试销一款学生运动鞋,销量情况如图所示,鞋店经理要关心哪种型号的鞋是否畅销,下列统计量最有意义的是()型号22.52323.52424.5销量(双)5101583A . 平均数B . 中位数C . 众数D . 方差6. (2分) (2019八上·昆山期末) 若分式的值为0,则x的值为A . 3B .C . 3或D . 07. (2分)已知点、是正比例函数图象上关于原点对称的两点,则的值为().A .B .C .D .8. (2分)某工程队铺设一条480米的景观路,开工后,由于引进先进设备,工作效率比原计划提高50%,结果提前4天完成任务.若设原计划每天铺设x米,根据题意可列方程为()A . -=4B . -=4C . −=4D . -=49. (2分) (2017八下·丽水期末) 用两个全等的直角三角形拼下列图形:①矩形;②菱形;③正方形;④平行四边形;⑤等腰三角形;⑥等腰梯形.其中一定能拼成的图形是().A . ①②③B . ①④⑤C . ①②⑤D . ②⑤⑥10. (2分)(2017·泸州) 下列命题是真命题的是()A . 四边都是相等的四边形是矩形B . 菱形的对角线相等C . 对角线互相垂直的平行四边形是正方形D . 对角线相等的平行四边形是矩形11. (2分)(2020·遵义模拟) 已知抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列结论①abc<0,②a+b+c=2,③a>④0<b<1中正确的有()A . ①②B . ①②③C . ①②④D . ①②③④12. (2分) (2017八上·淅川期中) 如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:①△ABD和△ACD面积相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正确的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共4题;共5分)13. (1分)(2013·宜宾) 分解因式:am2﹣4an2=________.14. (1分)(2018·河池模拟) 任取不等式组的一个整数解,则能使关于x的方程:2x+k=-1的解为非负数的可能性为________.15. (1分) (2019七上·余杭月考) 一件商品按成本价提高30%后标价,又以8折销售,售价为208元这种商品的成本价是________元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年山西省太原市中考数学试卷第Ⅰ卷 选择题 (共24分)一、选择题 (本大题共l2个小题,每小题2分,共24分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1. 6-的相反数是( ) A .6- B .16-C .16D . 62.点(一2.1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3.下列运算正确的是( )A .236(2)8a a -=-B .3362a a a +=C .632a a a ÷=D .3332a a a ⋅= 4.2011年第一季度.我省固定资产投资完成475.6亿元.这个数据用科学记数法可表示为( )A .947.5610⨯元B .110.475610⨯元C .104.75610⨯元 D.94.75610⨯元5.如图所示,∠AOB 的两边.OA 、OB 均为平面反光镜,∠AOB=35°,在OB 上有一点E ,从E 点射出一束光线经OA 上的点D 反射后,反射光线DC 恰好与OB 平行,则∠DEB 的度数是( ) A .35° B .70° C .110° D .120°6.将一个矩形纸片依次按图(1)、图(2)的方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所得到的图案是( )7.一个正多边形,它的每一个外角都等于45°,则该正多边形是( )A .正六边形B .正七边形C .正八边形D .正九边形8.如图是一个工件的三视图,图中标有尺寸,则这个工件的体积是( l A .13π2cm B .17π2cm C .66π2cm D .68π2cm9.分式方程1223xx =+的解为( }A .1x =-B .1x =C .2x =D . 3x =10.“五一”节期间,某电器按成本价提高30%后标价,-再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .(130%)80%2080x +⨯= B .30%80%2080x ⋅⋅= C .208030%80%x ⨯⨯= D .30%208080%x ⋅=⨯11.如图,△ABC 中,AB=AC ,点D 、E 分别是边AB 、AC 的中点,点G 、F 在BC 边上,四边形DEFG 是正方形.若DE=2cm ,则AC 的长为 ( ) A .33cm B .4cm C .23cm D .25cm12.已知二次函数2y ax bx c =++的图象如图所尔,对称轴为直线x=1,则下列结论正确的是( )A ,0a c >B .方程20ax bx c ++=的两根是1213x x =-=,C .20a b -=D .当x>0时,y 随x 的增大而减小.第Ⅱ卷 非选择题 (共96分)二、填空题(本大题共6个小题,每小题3分,共l8分.把答案写在题中横线上)13. 计算:11826sin 45-+-=_________14.如图,四边形ABCD 是平行四边形,添加一个条件__________________,可使它成为矩形.15.“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的丰要动力.2010年全省全年旅游总收入大约l000亿元,如果到2012年全省每年旅游总收入要达到1440亿元,那么年平均增长率应为___________。

16.如图是用相同长度的小棒摆戍的一组有规律的图案,图案(1)需要4根小棒,图案(2)需要10根小棒……,按此规律摆下去,第n 个图案需要小棒________________根(用含有n 的代数式表示)。

17.如图,△ABC 是等腰直角三角形,∠ACB=90°,AB=AC ,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB ’C ’,若AB=2,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是___________ (结果保留π)。

18.如图,已知AB=12;AB ⊥BC 于B ,AB ⊥AD 于A ,AD=5,BC=10.点E 是CD 的中点,则AE 的长是___________。

三、解答题(本大题共8个小题,共78分.解答应写出文字说朋、证明过程或演算步骤) 19.(本题共2个小题.第1小题8分,第2小题6分,共14分) (1)先化简。

再求值:2222121111a a a a a a a +-+⋅---+,其中12a =-。

(2)解不等式组:253(2) 31 5 x x x +≤+⎧⎨-<⎩①②,并把它的解集表示在数轴上。

20.(本题7分)如图,在平面直角坐标系中,一次函数y kx b =+的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数m y x=的图象交于C 、D 两点,DE ⊥x 轴于点E 。

已知C 点的坐标是(6,1-),DE=3. (1)求反比例函数与一次函数的解析式。

(2)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?21.(本题8分)小明与小亮玩游戏,他们将牌面数字分别是2,3,4的三张扑克牌兖分洗匀后,背面朝上放在桌面上.规定游戏规则如下:先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再从中随机抽出一张牌,将牌面数字作为个位上的数字.如果组成的两位数恰好是2的倍数.则小明胜;如果组成的两位数恰好是3的倍数.则小亮胜.你认为这个游戏规则对双方公平吗?请用画数状图或列表的方法说明理由.22.(本题9分)如图,△ABC是直角三角形,∠ACB=90°.(1)实践与操作利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕迹,不写作法).①作△ABC的外接圆,圆心为O;②以线段AC为一边,在AC的右侧作等边△ACD;③连接BD,交⊙O于点F,连接AE,(2)综合与运用在你所作的图中,若AB=4,BC=2,则:①AD与⊙O的位置关系是______.(2分)(相切)②线段AE的长为__________.(2分)(4217或437)23.(本题10分)某班实行小组量化考核制.为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:综合评价得分统计表 (单位:分)(1)请根据表中的数据完成下表(注:方差的计算结果精确到0.1)(2)根据综合评价得分统计表中的数据,请在下图中画出乙组综合评价得分的折线统计图.(3)根据折线统计图中的信息,请你分别对甲、乙两个小组连续六周的学习情况作出简要评价.24.(本题7分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:3 (即AB:BC=1:3),且B、C、E三点在同一条盲线上。

请根据以上杀件求出树DE的高度(测倾器的高度忽略不计).解:树DE的高度为6米。

25.(本题9分)如图(1),Rt△ABC中,∠ACB=-90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F(1)求证:CE=CF.(2)将图(1)中的△ADE沿AB向右平移到△A’D’E’的位置,使点E’落在BC边上,其它条件不变,如图(2)所示.试猜想:BE'与CF有怎样的数量关系?请证明你的结论.26.(本题14分)如图,在平面直角坐标系中.四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,o),点B的坐标为(11.4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O一C—B相交于点M。

当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(0t ).△MPQ的面积为S.(1)点C的坐标为___________,直线l的解析式为___________.(每空l分,共2分)(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围。

(3) 试求题(2)中当t为何值时,S的值最大,并求出S的最大值。

(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于点N。

试探究:当t为何值时,△QMN为等腰三角形?请直接写出t的值.1-18. D B A C B A C B B A D B 1/2 AC=BD (20%)(6n-2)(4π)(132)20. 解:(1)比例函数的解析式为6y x=-一次函数的解析式122y x =-+(2)当2x <-或06x <<时。

一次函数的值大于反比例函数的值, 21解:这个游戏规则对双方不公平。

理由如下。

根据题意.画树状图为:评分说明:如果考生在表中直接写成两位教,只要正确也可得4分.由树状图(或表格)可以看出,所有可能出现的结果共有9种,分刎是:22,23,24,32.33,34,42,43,44,而且每种结果出现的可能性都相同,而其中组成的两位数是2的倍数的结果共有6种,是3的倍数的结果共有3种. ∴P(小明胜)=6293=, ∴P(小亮胜)= 3193=∴P(小明胜)> P(小亮胜), ∴这个游戏规则对双方不公平. 23.(1)解:平均数 中位数 方差 甲组 14 14 1.7 乙组141511.7(3)解:从折线图可看出:甲组戚绩相对稳定,但进步不大,且略有下降趋势. 乙组成绩不够稳定,但进步较快,呈上升趋势. 评分说明:答案不唯一,只要符合题意即可得分. 25.(2)解:相等证明:如图,过点E 作EG ⊥AC 于G . 又∵ AF 平分∠CAB ,ED ⊥AB ,∴ED=EG . 由平移的性质可知:D ’E ’=DE ,∴D ’E ’ =GE . ∵∠ACB=90°. ∴∠ACD+∠DCB=90° ∵CD ⊥AB 于D . ∴∠B+∠DCB=90°. ∴ ∠ACD=∠B在Rt △CEG 与Rt △BE ’D ’中,∵∠GCE=∠B ,∠CGE=∠BD ’E ’,CE=D ’E ’ ∴△CEG ≌△BE ’D ’ ∴CE=BE ’由(1)可知CE=CF , (其它证法可参照给分). 26.(1) (3,4);43y x =(2)解:根据题意,得OP=t ,AQ=2t .分三种情况讨论: ①当502t <≤时,如图l ,M 点的坐标是(4 3t t ,).过点C 作CD ⊥x 轴于D ,过点Q 作QE ⊥ x 轴于E ,可得△AEO ∽△ODC ∴A Q A E Q E O CO DC D==,∴2A E Q E ==534t ,∴65t A E =,85E Q t =∴Q 点的坐标是(68855t t +, ),∴PE=618855t t t +-=+∴S=21141216(8)2235153M P P E t t t t ⋅⋅=⋅⋅+=+ ②当532t <≤时,如图2,过点q 作QF ⊥x 轴于F ,∵25BQ t =-,∴OF=11(25)162t t --=-∴Q 点的坐标是(1624t -, ),∴PF=162163t t t --=- ∴S=211432(163)22233M P P F t t t t ⋅⋅=⋅⋅-=-+ ③当点Q 与点M 相遇时,162t t -=,解得163t =。

相关文档
最新文档