必修二立体几何经典证明题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、垂直于同一条直线的两条直线一定

A 、平行

B 、相交

C 、异面

D 、以上都有可能 2、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b M ,

a ∥

b ,则a ∥M ;③若a ⊥

c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有

A 、0个

B 、1个

C 、2个

D 、3个

3.对两条不相交的空间直线a 与b ,必存在平面α,使得( ) A .a ⊂α,b ⊂α B .a ⊂α,b ∥α C .a ⊥α,b ⊥α D .a ⊂α,b ⊥α 4.下面四个命题:

①若直线a ,b 异面,b ,c 异面,则a ,c 异面; ②若直线a ,b 相交,b ,c 相交,则a ,c 相交; ③若a ∥b ,则a ,b 与c 所成的角相等; ④若a ⊥b ,b ⊥c ,则a ∥c . 其中真命题的个数为( )

A .4

B .3

C .2

D .1

5.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是线段A 1B 1,B 1C 1上的不与端点重合的动点,如果A 1E =B 1F ,有下面四个结论:

①EF ⊥AA 1;②EF ∥AC ;③EF 与AC 异面;④EF ∥平面ABCD . 其中一定正确的有( )

A .①②

B .②③

C .②④

D .①④

6.设a ,b 为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )

A .若a ,b 与α所成的角相等,则a ∥b

B .若a ∥α,b ∥β,α∥β,则a ∥b

C .若a ⊂α,b ⊂β,a ∥b ,则α∥β

D .若a ⊥α,b ⊥β,α⊥β,则a ⊥b

7.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,n ∥β,则下列四种位置关系中,不一定成立的是( )

A .A

B ∥m B .A

C ⊥m C .AB ∥β

D .AC ⊥β

1. 如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1

2AA 1,D 是

棱AA 1的中点

(I)证明:平面BDC 1⊥平面BDC

(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比.

2. 如图5所示,在四棱锥P ABCD -中,AB ⊥平面PAD ,//AB CD ,PD AD =,E 是PB 的中点,F 是CD 上的点且1

2

DF AB =,PH 为△PAD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ; (2)若1PH =,2AD =,1FC =,求三棱锥E BCF -的体积;

(3)证明:EF ⊥平面PAB .

3. 如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .

4. 在如图所示的几何体中,四边形ABCD 是正方形, MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==.

(I )求证:平面EFG ⊥平面PDC ;

C B

A

D

C 1

A 1

图 5

D

G

B

F

C

A

E

图 4

G

E

F A

B

C

D

(II )求三棱锥P MAB -与四棱锥P ABCD -的体积 之比.

5.如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2,EF ∥AB,EF ⊥FB,∠BFC=90°,BF=FC,H 为BC

的中点,

(Ⅰ)求证:FH ∥平面EDB; (Ⅱ)求证:AC ⊥平面EDB;

(Ⅲ)求四面体B —DEF 的体积;

6.如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F

是BC 的中点,AF 与DE 交于点G ,将ABF ∆沿AF 折起,得到如图5所示的三棱锥

A BCF -,其中2

2

BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当2

3

AD =

时,求三棱锥F DEG -的体积F DEG V -.

A

D

C

P

M

F

G

E

H

B

D F E

7.如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面

ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证:

(1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD

1. 【解析】(Ⅰ)由题设知BC ⊥1CC ,BC ⊥AC ,

1CC AC C ⋂=,∴BC ⊥面11ACC A , 又∵1DC ⊂面11ACC A ,∴1DC BC ⊥,

由题设知0

1145A DC ADC ∠=∠=,∴1CDC ∠=090,

即1DC DC ⊥,

又∵DC BC C ⋂=, ∴1DC ⊥面BDC , ∵

1DC ⊂面1BDC ,∴面BDC ⊥面1BDC ;

(Ⅱ)设棱锥1B DACC -的体积为1V ,AC =1,由题意得,1V =1121132

+⨯

⨯⨯=1

2,

由三棱柱111ABC A B C -的体积V =1,

∴11():V V V -=1:1, ∴平面1BDC 分此棱柱为两部分体积之比为1:1. 2. 【解析】(1)证明:因为AB ⊥平面PAD ,

所以PH AB ⊥。

因为PH 为△PAD 中AD 边上的高,所以PH AD ⊥。 因为AB AD A =,所以PH ⊥平面ABCD 。 (2)连结BH ,取BH 中点G ,连结EG 。 因为E 是PB 的中点,所以//EG PH 。

因为PH ⊥平面ABCD ,所以EG ⊥平面ABCD 。

则1122

EG PH =

=, 111

332

E BC

F BCF V S E

G FC AD EG -∆=

⋅=⋅⋅⋅⋅=2。 (3)证明:取PA 中点M ,连结MD ,ME 。 因为E 是PB 的中点,所以1

//

2ME AB =。

C

B

A

D

C 1

A 1

相关文档
最新文档