六年级数学下册圆柱和圆锥教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学下册《圆柱和圆锥》教案
六年级数学下册《圆柱和圆锥》教案
【教材理解】本单元是在认识了圆,掌握了长方体、正方体的特征以及表面积与体积计算方法的基础上编排的,是小学阶段学习几何知识的最后一部分内容。圆柱与圆锥都是基本的几何形体,也是生产、生活中经常遇到的几何形体。教学圆柱和圆锥扩大了学生认识形体的范围,增加了形体的知识,有利于进一步发展空间观念。
【设计理念】数学复习不像新授课那样,要引导学生同化新知识,但是需要根据已有知识的回顾和整理扩展认知结构。本节课是圆柱和圆锥的复习课,采用思维导图的方式进行教学,学生通过自己梳理圆柱和圆锥的相关知识,在大脑中形成清晰的知识结构体系,对于相关知识有哪些典型练习题,都通过思维导图的方式呈现出来,给学生留下深刻的印象,收到较好的复习效果。
【学情简介】小学生的思维正在由形象思维向抽象思维转变,本单元立体图形的学习利于发展学生的空间观念。教学中要充分利用直观学具,让学生观察、动手、动脑,丰富其表象,训练形象思维,而本节的复习课又便于培养学生自主获取知识的能力和整理、分析、综合概括的能力。
【教学目标】
(1)知识目标:引导学生通过回忆、整理、拓展等实践活动,掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
(2)能力目标:通过让学生对知道的整理提高学生的自主获取知识与概括知识能力。在练习、讨论、合作中发展学生的空间观念,并进一步提高运用知识解决实际问题的能力。
(3)情感目标:通过整理、交流、合作、探究、体验探究的乐趣,感受数学的价值,培养学生“学数学、用数学”的意识和创新的精神。【教学重难点】
重点:掌握圆柱与圆锥的相关特点与特征,并能熟练地运用公式进行圆柱、圆锥表面积或体积的计算。
难点:通过对知识进行整理,提高学生自主获取知识与概括知识的能
力。
【教学过程】
(一)梳理知识,构建体系。
1.让同学们自主整理本章知识。
2.小组内交流,补充完善。
3.小组展示,讨论、完善,形成基本的知识网络。
〔教师点拨:〕
(1)圆柱的侧面怎样剪展开图是平行四边形?
(2)圆柱展开图与圆柱有什么关系?
(3)说出圆柱体积公式的推导过程。(迁移运用圆面积推导的转化思想)
(4)回忆说出圆锥体积公式推导的实验过程。
〔设计意图:〕通过对知识的整理,提高学生自主获取知识与分析、综合、概括知识的能力,在小组交流中,培养合作、质疑、辩论的能力。
(二)创设问题情境,在解决实际问题中复习应用所学知识。
1.屏幕呈现:一个圆柱体木料,底面直径20厘米,高30厘米。(1)根据已知条件,结合已学圆柱、圆锥的知识,提出问题,看谁的更有创意?(2)学生思考后提出问题。
〔预设问题:〕
木料的侧面积是多少?表面积是多少?
木料的体积是多少?
把木料削成一个最大的圆锥,它的体积是多少?
……
〔设计意图:〕通过观察、思考,让同学们根据所学知识,提出有价值的数学问题,培养学生的问题意识和联系实际解决问题的能力。2.“刷”出表面积有关的知识。
〔教师引导:〕针对这一圆木,生活中在什么情况下需要求表面积?〔预设回答:〕给圆木涂油漆求涂漆面积的时候需要用表面积的知识。〔教师追问:〕给圆木涂油漆有几种情况?都发生在什么条件下?〔预设回答:〕如果是柱子时,只刷侧面。
如果是个木桩,只涂一个侧面和一个上面。
如果是个圆木料,可涂整个表面。
〔设计意图:〕一个“刷”,刷出了与表面积有关的符合实际的有价值的问题,培养了学生灵活运用所学知识解决实际问题的能力。3.“切”出新的表面,求增加的表面积。
〔教师引导:〕有同学说可以把圆木切开,求表面积增加了多少平方厘米,那同学们说说可以怎样来切?
〔预设回答:〕
可以横切,分两段切一刀,增加两个底面大小的面,分三段切两刀,增加4个底面大小的面,以此类推。
还可以沿直径纵切,增加两个长方形的面,长和圆柱的高相等,宽和直径相等。
〔课件演示:〕横切和纵切
〔设计意图:〕横切、纵切两种不同的切法探究,加上课件的演示,能进一步发展学生的空间观念。
4.“削”出圆锥,讨论圆柱与对应圆锥的关系。
〔教师引导:〕除了对圆木“涂”“切”以外,有同学说还可以“削”成一个最大的圆锥。那怎样“削”才算是最大呢?你能用四句话说出它们之间的关系吗?
〔预设回答:〕等底等高的圆柱和圆锥:圆柱体积是圆锥体积的3倍,圆锥体积是圆柱体积的三分之一,圆柱体积比圆锥体积多2倍,圆锥体积比圆柱体积少三分之二。
〔教师引导:〕如果圆柱和圆锥等底等积,那你能说出它们之间的关系吗?
〔预设回答:〕圆柱和圆锥等底等积:圆柱高是圆锥高的三分之一,圆锥高是圆柱高的3倍。
〔教师引导:〕如果圆柱和圆锥等高等积,那你能说出它们之间的关系吗?
〔预设回答:〕圆柱和圆锥等高等积:圆柱底是圆锥底的三分之一,圆锥底是圆柱底的3倍。
〔设计意图:〕将圆柱削成一个最大圆锥,让同学们讨论分析两者之
间的关系,便于进一步理解两者的内在联系,从而进一步发展学生的空间观念。
5.“挖”出容积。
〔教师引导:〕我们还可以对圆木如何加工呢?
〔预设回答:〕可以挖成一个木桶,求求它的容积,内外涂清漆,求涂漆的面积是多少。
〔教师追问:〕容积和体积有何联系和区别?
〔设计意图:〕“挖”出容积,将容积和体积加以何联系和区别,木桶的内外都涂上清漆,与前面的涂漆问题加以联系和区分,学生的空间观念得以进一步的发展。
(三)联系实际,解决实际问题。
学校要修建一个圆形水池,池内安装喷泉,水池直径5米,深1.5米。你能提出哪些数学问题?
〔预设问题:〕
水池的占地面积是多少平方米?
挖这个水池要挖出多少立方米的土?
如果给水池贴瓷砖,贴瓷砖的面积是多少?
水池装满水,能装多少立方米?
〔教师提问:〕
如果给水池接一圈水管,并4米安装一个喷头,需要按几个?
池内如果注入1.2米深的水,那将有多少立方米的水?
〔教师追问:〕每一个问题都涉及哪些方面的知识?
〔设计意图:〕一个水池问题,让同学们再一次将所学的知识应用到问题解决中,可以充分培养学生灵活运用知识解决实际问题的能力。(四)课堂达标
(五)课堂小结:同学们畅所欲言,谈收获和感受。