矩阵论小结
矩阵论小结
矩阵论线性空间定义:本质是个集合,满足一定条件卜•的集合。
首先定义了加法运算(满足加法的交换结合律),在这个集合中能找到零元素,与负元素;然后定义数乘运算(数域上的元素与集合当中的元素相乘),并且满足数乘的分配,结合律(集合中的兀素能否进行乘法运算并没有定义)。
最后指出,这些运算都是封闭的,运算的结果与集合中的九素唯一对应。
称这样的一个集合为线性空间。
注总:运算结果与集介中的元素对应。
例如0*a=0 (此零非彼零,不是数域里的零,而是线性空间当中的零,即集合当中的零元素<很可能不是零〉)核空间:矩阵A对应于齐次线性方程组Ax=O的解空间。
子空间:线性空间对应集合的一个子集,并且也满足线性空间的定义的一个子集。
其中,冬空间,与线性空间本身构成平凡子空间,还存在的其他子空河构成非平凡子空间。
矩阵A的核空间就是他的•个子空间,相当于对矩阵A构成的空间中的尤素进行了限定。
矩阵A的列向量的线性组介构成了矩阵A的值域空间(其中的基为最人无关组的个数)。
注意:子空间交,与子空间的和任然为子空间,但子空间的并集不一定再是子空间。
属于两个子空间的线性无关的两个基的并基构成新的元素,但是这个元素不在属于原来的两个子空间的任意一个。
子空间中的几个等价定义:(1)直和定义为VI与V2的交空间只包含零元素(不一定是数字零),构成零子空间(2)直和空间中的元素表达式唯一。
(3)VI的基于V2的基直接构成直和空间的基。
(4)和空间的维度等于VI巧V2维度的和。
线性映射性质:(1)VI的零元素经过线性映射变为V2的零元素(2 )线性相关组经过线性映射之后任然为线性相关(3)线性无关组经过单射线性映射后任然为线性无关同构:两个线性空间之间存在一个一一对应的线性变换,则称这两个矩阵是同构的。
相应的线性变换称为同构映射。
任一线性空间都能够找到一个数域向量与其同构,这个向最就是坐标。
线性变换T的秩,线性映射的坐标表示:T表示线性空间到线性空间的映射,在貝体的基底下(两个线性空间基都确定的情况),可以由一个矩阵A表示T,为V到V '的线性映射。
矩阵运算理论小结
班级:09金融3 学号:2009241164 姓名:陈妮矩阵运算理论小结运算是数学的基础概念和基础内容,矩阵是线性代数的基础概念和基础内容。
因此,矩阵运算理论是线性代数的重要理论之一。
矩阵是贯穿线性代数各部分内容的一条线索。
线性代数中的很多计算及应用与矩阵及其运算都有密切的关系。
掌握并能灵活运用矩阵运算及其性质是学好线性代数的一个必备条件。
矩阵运算的基本途径就是设法把一个较复杂的矩阵计算问题转化为一个简单的、易于求解的矩阵计算问题。
在《经济数学—线性代数》这一本书中,对矩阵的定义是:由m ×n 个aij(i=1,2,…,m;j=1,2,…,n)排成的m 行n 列的数表111213121222323132333123.................n n n n n n nna a a a a a a a a a a a a a a a 称为m 行n 列的矩阵,简称m ×n 矩阵。
一.线性方程组的矩阵表示 设有线性方程组若记则利用矩阵的乘法, 线性方程组(1)可表示为矩阵形式:(2)其中矩阵称为线性方程组(1)的系数矩阵. 方程(2)又称为矩阵方程. 如果是方程组(1)的解, 记列矩阵则,这时也称是矩阵方程(2)的解; 反之, 如果列矩阵是矩阵方程(2)的解,即有矩阵等式成立, 则 即也是线性方程组(1)的解. 这样, 对线性方程组(1)的讨论便等价于对矩阵方程(2)的讨论. 特别地, 齐次线性方程组可以表示为将线性方程组写成矩阵方程的形式,不仅书写方便,而且可以把线性方程组的理论与矩阵理论联系起来,这给线性方程组的讨论带来很大的便利.二.矩阵的初等变换把线性方程组的三种初等变换移植到矩阵上,就得到矩阵的三种初等行变化:1.对调矩阵的两行(换行变换)2.以非零常数K乘矩阵某一行的各元(倍法行变换)3.把某一行所有的元素的K倍加到另一行对应的元上去(倍加行变换)。
把定义中的“行”变成“列”,即得矩阵的初等列变换定义,矩阵的初等行变换与初等列变换,统称为初等变换。
学习矩阵论心得体会 如何学好矩阵论(优秀3篇)
学习矩阵论心得体会如何学好矩阵论(优秀3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!学习矩阵论心得体会如何学好矩阵论(优秀3篇)有关学习矩阵论心得体会篇一从年至今,我已工作年了。
矩阵论范数知识点总结
矩阵论范数知识点总结一、概述矩阵论是线性代数的一个分支,它研究矩阵及其性质。
矩阵的范数是矩阵的一种性质的度量,它在矩阵分析、数值线性代数、优化理论等领域中有着广泛的应用。
本文将对矩阵范数的定义、性质、应用以及相关的其他知识点进行总结和介绍。
二、矩阵的定义在数学中,矩阵是一个按照矩形排列的复数或实数集合。
也可以看成是一个数域上的矩形阵列。
矩阵的元素可以是实数、复数或者是其他的数学对象。
一个n×n矩阵A是一个由n×n个元素(a_ij)组成的矩形数组。
三、范数的定义在数学中,范数是定义在向量空间中的一种函数,它通常被用来衡量向量的大小或长度。
对于矩阵来说,范数是一种度量矩阵大小的方法。
对于一个矩阵A,它的范数通常记作||A||。
矩阵的范数满足以下性质:1. 非负性:||A|| ≥ 0,并且当且仅当A = 0时,||A|| = 02. 齐次性:对于任意标量c,||cA|| = |c| * ||A||3. 三角不等式:||A+B|| ≤ ||A|| + ||B||四、矩阵范数的种类矩阵范数一般有几种不同的类型。
1. Frobenius范数:矩阵A的Frobenius范数定义为||A||_F = sqrt(Σ_(i=1)^m Σ_(j=1)^n|a_ij|^2)2. 1-范数:矩阵A的1-范数定义为||A||_1 = max(Σ_(i=1)^n |a_ij|)3. 2-范数:矩阵A的2-范数定义为||A||_2 = max(Σ_(i=1)^m Σ_(j=1)^n |a_ij|^2)^(1/2)4. ∞-范数:矩阵A的∞-范数定义为||A||_∞ = max(Σ_(j=1)^n |a_ij|)五、矩阵范数的性质矩阵范数具有一些重要的性质,下面将介绍其中一些主要性质。
1. 非负性:||A|| ≥ 0,并且当且仅当A = 0时,||A|| = 02. 齐次性:对于任意标量c,||cA|| = |c| * ||A||3. 三角不等式:||A+B|| ≤ ||A|| + ||B||4. 乘法范数:||AB|| ≤ ||A|| * ||B||5. 谱半径:对于任意矩阵A,它的谱半径定义为rho(A) = max|λ_i(A)|6. 对称矩阵:对于对称矩阵A,其2-范数定义为rho(A),即||A||_2 = rho(A),其中rho(A)是A的最大特征值六、矩阵范数的应用矩阵范数在数学和工程领域有着广泛的应用,下面将介绍一些主要的应用。
矩阵论
矩阵论中概念的个人理解矩阵论概述:矩阵论这门学科,其实我们很早就有接触,只是以前学的浅显,只是懂得皮毛,很多问题只是浅尝辄止,课本上也并没有深入的延伸一些知识点,在我们大学者们课程虽然是专业课,但也只是学了一些所谓的基础重要的章节,像行列式的计算,矩阵的初等变换,特征值的计算,对于考研的要求也只是在此基础上增加了各种标准型之间的转化和转化矩阵的求法,算是初具系统化,到接触到矩阵论这门课程,才算是矩阵的一些知识做了梳理和综合,并引入空间,线性变换等概念,研究的深度和广度都有所扩展,也让我们对矩阵有了全面的了解。
矩阵论是一本针对广大研究生开设的一门数学基础课,也是贯穿在很多学科中的一种非常实用的计算工具。
根据世界数学发展史记载,矩阵概念产生于19世纪50年代,是为了解线性方程组的需要而产生的。
然而,在公元前我国就已经有了矩阵的萌芽。
在我国的《九章算术》一书中已经有所描述,只是没有将它作为一个独立的概念加以研究,而仅用它解决实际问题,所以没能形成独立的矩阵理论。
1850年,英国数学家西尔维斯特(SylveSter,1814--1897)在研究方程的个数与未知量的个数不相同的线性方程组时,由于无法使用行列式,所以引入了矩阵的概念。
1855年,英国数学家凯莱(Caylag,1821--1895)在研究线性变换下的不变量时,为了简洁、方便,引入了矩阵的概念。
1858年,凯莱在《矩阵论的研究报告》中,定义了两个矩阵相等、相加以及数与矩阵的数乘等运算和算律,同时,定义了零矩阵、单位阵等特殊矩阵,更重要的是在该文中他给出了矩阵相乘、矩阵可逆等概念,以及利用伴随阵求逆阵的方法,证明了有关的算律,如矩阵乘法有结合律,没有交换律,两个非零阵乘积可以为零矩阵等结论,定义了转置阵、对称阵、反对称阵等概念。
1878年,德国数学家弗罗伯纽斯(Frobeniws,1849一1917)在他的论文中引入了λ矩阵的行列式因子、不变因子和初等因子等概念,证明了两个λ矩阵等价当且仅当它们有相同的不变因子和初等因子,同时给出了正交矩阵的定义,1879年,他又在自己的论文中引进矩阵秩的概念. 矩阵的理论发展非常迅速,到19世纪末,矩阵理论体系已基本形成。
矩阵论知识点
矩阵论知识点最近考试不断,今天终于告一段落了。
矩阵论我花了将近两个礼拜复习,多少有点感悟,所以赶紧写下来,不然估计到时候又还给老师了,也希望自己的见解对你们也有帮助!!总的来说矩阵论就讲了如下6个知识点:(1)线性空间与线性变换(2)范数理论及其应用(3)矩阵分析及其应用(4)矩阵分解(5)特征值的估计(6)广义逆矩阵1.线性空间与线性变换1.1线性空间首先我们需要知道什么是空间??空间其实就是向量的集合,而什么是线性空间呢??线性空间就是满足8条性质的向量集合,这8条性质分别如下:所以矩阵论考试里面如果要你证明一个向量集合是线性空间??只需要证明集合满足上述8条性质就可以了,该证明的难度在于怎么表示该集合中的向量。
然后对于线性空间中的元素(元素很多),我们肯定不可能通过枚举法将每个元素枚举出来的吧,这样不太现实。
最好的方法就是找到线性空间中的基,通过这些基和坐标我们就可以表示出线性空间中所有的向量。
针对上述想法,我们就应该考虑满足条件基的存在性和唯一性,得到的结果是这样的基是存在的但是不唯一!!当时这里就牵涉到另一个问题,线性空间的基是不唯一的,对于同一个元素在不同基下坐标肯定是不同的!!如果我们知道基与基之间的关系,我们是否可以知道坐标与坐标的关系,这就推导出了下面公式:之后的一个概念就是线性子空间,这个名词我们可以拆开进行理解,子空间说明了该空间是一个线性空间的子集,线性说明这个子空间满足齐次性和叠加性,具体形式如下:最后一个概念是线性子空间的交与和,这和集合的交与和性质差不多,这里我需要重点介绍的直和的概念,直和的概念和集合的并类似,不同的是直和中并的两个集合是不相交的,即两个集合中没有共同元素。
以上就是线性空间中所有的知识点。
1.2线性变换及其矩阵这一节出现一个概念叫做线性变换,记为T,出现线性变换的原因就是对于一个向量我们希望通过某种变换将该向量转变成我希望的目标向量,换句话说线性变换就相当于函数,自变量就相当于我们已知的向量,因变量就是我们的目标向量,这样应该好理解点。
重庆大学矩阵论——要点归纳
7、常用的算子范数: A 1 , A 2 , A 计算方法 8、谱半径定义与求解 第五章 9、向量序列极限与方阵序列极限的定义 10、定理: Ak A , Ak A 0( A m ) 11、常见方阵函数:指数函数,正弦函数,余弦函数的公式 12、求解 f ( A) 的方法:若当形、谱值计算方法与步骤 13、方阵函数的 7 种性质 14、解微分线性方程组与非线性方程组的方法与步骤 第六章 15、最大秩分解的方法 16、最大秩分解的性质 17、谱分解的方法 第七章 18、广义逆矩阵的定义及常见的 A , A 的定义 19、左逆与右逆定义及求解条件和公式 20、 A 的求解方法(主要关注满秩分解法) 21、 A 的求解方法(主要关注满秩分解法) 22、判断方程组的相容性及求解最小范数解及极小最小二乘解的通式 第八章 23、特征值上界的估计 24、圆盘定理估计特征值的分布盖尔圆 总结于 2013/12/14
矩阵理论及其应用
第四章 1、范数的定义及验证方法(3 点) 2、p-范数定义, 1 , 2 , 3、范数等价( c1
求解方法
பைடு நூலகம்
c2 )
4、矩阵范数定义及验证方法(4 点) 5、相容定义 6、常见的矩阵范数: A m1 , A m 2 ( A F ), A m 计算方法
《重庆大学矩阵论》知识要点
注:
(1) 以下红色部分为非常重要的知识点,是考试常考要点。 (2) 为方便复习,只归纳了书中最重要的知识点,只作复习参考所用。对想考 取满分的同仁们还是需按教材逐页复习;对追求及格的同仁们来说,掌握 以下知识点可保无虞。
线性空间与线性变换
第一章 1、 数域的定义 2、 线性空间的定义及验证方法 3、 线性相关和线性无关定义及证明 4、 基(基底)与向量坐标的定义 5、 基变换公式、坐标变换公式及过渡矩阵的定义 6、 线性子空间的判定方式 第二章 7、欧式空间的定义及验证方式 8、柯西-施瓦茨不等式(向量长度性质) 第三章 9、线性变换定义及验证方式 10、线性变换的矩阵表示 11、矩阵相似的定义 12、线性变换及矩阵的特征值和特征向量的定义和求解 13、求解线性变换特征值与特征向量的方法与步骤(5 步) 14、零化多项式及 Hamliton-Cayley 定理 15、最小多项式及求解方法
矩阵论定义定理总结
矩阵论1.行列式的相关知识:1.1定义:由2n 个数ij a (,1,2,...,)i j n =组成的一个n 阶行列式为1212121112121222(...)12 (12)(1)...n j j jnnn n j j j n j j j n n nna a a a a a D a a a a a a τ==-∑即所有取自不同行不同列的n 个元素的乘积1212...j j j n n a a a 的代数和,其中每一项的符合由排列12...n j j j 的奇偶性决定。
n 阶行列式的展开原理:定义1.1.2在n 阶行列式D 中,任选k 行和 k 列(k n ≤),将其交叉点上的2k 个元素按原来位置排成一个k 阶行列式M ,称为D 的一个k 阶子式。
在D 中划去M 所在之k 行k 列后余下的2()n k -个元素按照原来位置排成的n-k 阶行列式M ',称为M 的余子式。
定义1.1.3设D 的k 阶子式M 在D 中所在行列指标分别是12,,...,k i i i和12,,...,k j j j ,则称1212()()(1)k k i i i j j j A M ++++++'=-•为M 的代数余子式,其中M '为M 的余子式。
定理1.1.1(拉普拉斯定理)设在行列式D 中任意取定k 行(11)k n ≤≤-,则由这k 行元素所组成的一切k 阶子式与其对应的代数余子式的乘积之和等于和列式D 。
定理1.1.4(克莱姆法则):若线性方程组11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ (1.1.7)的系数行列式1112121222120n n n n nna a a a a a D a a a =≠则方程组(1.1.7)有唯一解,且/(1,2,)i i x D D i n ==,其中i D 是将D 中第i 列换成(1.1.7)式右端的常数项12,,,n b b b 所得的行列式,即1,11,111112,12,22122,1,1i i n i i n i n i n i nn nnna a ab a a a a b a D a a a b a -+-+-+=(1,2,,)i n =该定理通常称为克莱姆法则。
矩阵论结论——精选推荐
矩阵论结论1.设A为2阶正定矩阵,0<→α≤1,则有αT AααT A‐1ααTα≤λ1+λ224λ1λ2,其中λ1,λ2是A特征值证明:由条件知,存在正交矩阵T使T T AT=λ100λ2,λi>0,i=1,2令T Tα=y1y2,则αT AααT A‐1ααTα=(λ1y21+λ2y22)(λ‐11y21+λ‐12y22)y21+y22=y41+y42+λ2λ1+λ1λ2y21y22y21+y22=(y21+y22)2−2y21y22+λ2λ1+λ1λ2y21y22y21+y22=y21+y22+λ2λ1−λ1λ22y21y22y21+y22=(y21+y22)1+λ2λ1−λ1λ22y21y22(y21+y22)2≤1+λ2λ1−λ1λ22y21y22(y21+y22)2因为y21+y22≥2|y1y2|,故12≥|y1y2|y21+y22,即14≥y21y22(y21+y22)2,⇒αT AααT A‐1ααTα≤1+14λ2λ1−λ1λ22=λ1+λ224λ1λ2更进⼀步,可以得到更强的不等式2.设A为n(n≥2)阶正定矩阵,0<→α≤1,则有αT AααT A‐1ααTα≤(n−1)λ1+λ222nλ1λ2,其中λ1,λ2分别是A最⼩及最⼤特征值证明:由条件知,存在正交矩阵T使T T AT=λ10⋱0λm,λi>0,i=1,2,⋯,n,不妨设λ1≤λ2≤⋯≤λn。
令T Tα=y1⋮y n,有αT AααT A‐1ααTα=(αT T)(T T AT)(T Tα)(αT T)(T T A‐1T)(T Tα)(αT T)(T Tα)=(λ1y21+⋯+λn y2n)(λ‐11y21+⋯+λ‐1n y2n)y21+⋯+y2n令△=y21+⋯+y2n,则原式=n∑i=1y4i+∑1≤i<j≤nλiλj+λjλiy2i y2j△=△2+∑1≤i<j≤nλiλj−λjλi2y2i y2j△由||()()()()()()()()()(√√)[(√√)](√√)()()(√√)()||()()()()()()()()(√√)λ1λn −λn λ12−λi λj −λj λi2=λ21+λ2n λ1λn−λ2i +λ2jλi λj=(λn λj −λi λ1)(λi λn −λ1λj )λ1λn λi λj因为λn λj −λi λ1≥0,λi λn −λ1λj ≥0,则λ1λn−λn λ12≥λi λj−λj λi2⇒原式≤△+(∑1≤i <j ≤n y 2i y 2j )λ1λn−λn λ12△=△1+(∑1≤i <j ≤n y 2i y 2j )λ1λn−λn λ12△2由△2=(y 21+⋯+y 2n )2=y 41+⋯+y 4n +2∑1≤i <j ≤n y 2i y 2j=y 21√n −1−y 22√n −12+⋯+y 21√n −1−y 2n√n −12+⋯+y 2n −1√n −1−y 2n√n −12+2n −1∑1≤i <j ≤n y 2i y 2j +2∑1≤i <j ≤n y 2i y 2j ≥2nn −1∑1≤i <j ≤n y 2i y 2j⇒n −12n ≥1△2∑1≤i <j ≤n y 2i y 2j,且因为△≤1⇒原式≤1+n −12nλ1λn−λn λ12=(n −1)λ21+2λ1λn +(n −1)λ2n 2n λ1λn≤(n −1)λ21+2(n −1)λ1λn +(n −1)λ2n 2n λ1λn=(n −1)(λ1+λn )22n λ1λn引理1:已知g 1(x ),g 2(x ),⋯,g k (x )两两互素,r 1(x ),r 2(x ),⋯,r k (x )为k 个⾮零多项式,并且∂(r i (x ))<∂(g i (x ))(i =1,2,⋯,k ),求存在⼀个多项式f(x),被g_i(x)除余式是r_i(x)证明:令G_i(x)=g_1(x)\cdots g_{i-1}(x)g_{i+1}(x) \cdots g_k(x),因为g_1(x),g_2(x),\cdots,g_k(x)两两互素\Rightarrow(g_i(x),G_i(x))=1 \Rightarrow 存在u_i(x)g_i(x)+v_i(x)G_i(x)=1\Rightarrow u_i(x)g_i(x)r_i(x)+v_i(x)G_i(x)r_i(x)=r_i(x) \Rightarrow v_i(x)G_i(x)r_i(x)=r_i(x)-u_i(x)g_i(x)r_i(x),所以g_1(x),\cdots ,g_{i-1}(x),g_{i+1}(x), \cdots ,g_k(x)都整除v_i(x)G_i(x)r_i(x) ,⽽g_i(x)除v(x)G_i(x)r_i(x) 余r_i(x),取f(x)=\sum_{i=1}^kv_i(x)G_i(x)r_i(x)=v_1(x)G_1(x)r_1(x)+\cdots+v_k(x)G_k(x)r_k(x)\Rightarrow g_i(x)除f(x)余式r_i(x)引理2:已知A,B 都是n 级⽅阵,AB=BA ,且A,B 均可对⾓化,证明A,B 可以同时对⾓化。
矩阵理论听后感
矩阵理论听后感09级矩阵理论小结(1-16)生一:()我与矩阵论矩阵是一个重要的数学工具,这是本科线性代数第一章矩阵的第一句话。
为什么重要,当时的我并说不出一个缘由,大概只因为这是一门公共必修课,以至于学完这门课之后,我也没有看到有何应用所在,特别是和自己学的化学又有何联系呢。
到大二接触结构化学,计算轨道和能级时发现,原来曾经盲目学习过的矩阵求逆,初等变换还是有其用武之地的,再到后来接触matlab软件,从使用内置函数到编写M文件,瞬间感悟,矩阵深入到了数值求解的每个领域。
研究生阶段继续学习矩阵分析,不再因为是必选,而是必须。
看到计算材料力学性能的论文里频繁提到的Jordan标准型,矩阵函数求解,LU分解等曾经陌生的概念,自己才发现当年学习的矩阵知识何其浅薄。
许多人说,矩阵分析是线性代数的后续和扩展,学完之后,我有所同感,但更觉得线性代数包含于矩阵分析。
从线性代数里的实向量空间延伸到线性空间,从向量的乘积扩展到内积空间……以自己的研究课题为例,计算材料力学性能时,采用了弹簧格子模型,计算中涉及到求解大规模稀疏线性方程组,这个问题如果能够通过调整方程及未知量的顺序使得方程组的系数矩阵成带状结构即可大为简化,对系数矩阵使用LU分解,即可保障单位下三角矩阵L及三角矩阵U仍为带状结构,恐怕这个问题使用本科线性代数就有点力不从心,但不可否认离不开线性代数。
矩阵分析中为了不至于研究空间太大,引入了子空间,为了得到矩阵的极限,引入了矩阵范数作为一元衡量尺度。
在最后部分,我们提到了矩阵函数,这是研究矩阵的分析运算,但似乎更贴近实用,如我们常碰到的求解一阶线性常系数微分方程组定解问题在这一部分就有谈到。
数学是一个庞大的学科,每学完一门课程,就会对该领域有了一个更深入的认识。
但数学里的各个门类又有密切关联,解决一个实际问题需要用到多方面的知识,虽然学习数学这门课程许多年,但仍只知皮毛,对于矩阵的了解,我想同样也是略知一二。
矩阵论总结
矩阵论总结
矩阵论是一个较为全面的线性代数学科,其关注的是矩阵(线性变换)的理论研究。
它经常被用来解决各种复杂的数学问题,特别是和非线性反应、扭曲和传感器等相关的问题。
主要的目的是通过分析矩阵来研究各种问题的解决方案。
矩阵论和线性代数有紧密的联系,因为它们都是关于矩阵的数学学科。
然而,矩阵论更多的是关注矩阵变换的数学原理,而线性代数更多地关注数学函数本身,如矩阵乘积和运算符等。
矩阵论有一定的基础概念,其中最基本的是矩阵的行的线性组合、列的线性组合、它们的内积等。
这些都是构成矩阵变换的基本概念,研究这些概念有助于我们理解矩阵的特征,从而更好地分析各种问题。
矩阵论中还有许多其他重要知识,如二次型和特征值分解等。
这些概念对理解矩阵变换都有重要意义,且有助于我们更好地解决复杂问题。
此外,矩阵论中有许多实用工具,如矩阵求解器、矩阵唯一分解及代数法则等,可以帮助我们解决复杂的矩阵问题,充分发挥矩阵的优势。
在实际应用中,矩阵论也有一些重要的应用。
如在信号处理中,矩阵论可以用来分析系统的特征,从而实现信号的运算和处理;在机器学习中,矩阵论可以用来训练模型并优化模型参数;在数据分析中,可以利用矩阵论来做更加深入的数据分析,以挖掘有用的知识。
总而言之,矩阵论是一门涉及到系统分析、机器学习、信号处理和有效数据分析等多个领域的数学学科,它以其独特的视角深入研究矩阵变换,从而帮助我们搞清楚复杂问题的解决方案。
矩阵论第四章内容总结
h = c1x1+c2x2+…+cn-rxn-r +h*
10
则Ax = 0 的通解为 x = c1x1+c2x2+…+cn-rxn-r .
定理:设 m×n 矩阵的秩 r(A) = r,则 n 元齐次线性方程组Ax = 0 的解集 S 的秩 rS = n − r .
定理:设 Ax = 0 的通解为 x = c1x1+c2x2+…+cn-rxn-r ,若 x = h* 是 Ax = b
A1中向量的个数称为是A的秩.
定理:设两个向量组
A :1,2 ,L
,r
和B : 1, 2 ,L
,
满足:
s
(1)向量组 A 可由向量组 B 线性表示
(2) r s 则向量组 A 必线性相关。
推论1:设1,2 ,L ,r 可由 1, 2 ,L , s 线性表示, 且 1,2 ,L ,r 线性无关,则 r s.
方程组x11 x22 L xmm 0只有零解
rank1,2, ,m m
即一组线性无关的向量排列成的矩阵的秩恰好就是向量的个数
4
第四章内容总结
7. 向量组线性相关的充要条件是: 至少有一个向量可以由其余向量线性表示。
8. 一个向量组的部分组线性相关,则这个向量组线性相关; 一个向量组线性无关,则任意一个部分组线性无关 。
第四章内容总结
1. 高斯消元法求解线性方程组AX=b;
( 1)方程组有唯一解 r( A) A~) n
( 2)方程组有无穷多解 r( A) r( A~) n
( 3)方程组无解
r( A) r( A~) r( A) 1
矩阵论学习内容总结
矩阵论学习内容总结
矩阵论是一门重要的数学课程,许多本科生都需要完成。
然而,矩阵论看起来有点抽象,难以理解。
本文旨在总结矩阵论的学习内容,以便帮助学生了解并掌握这门课程。
首先,矩阵论涉及矩阵的概念和定义。
矩阵是矩形的表格,可以表示任何数学运算。
矩阵可以有任意大小,可以是方形的或长方形的。
矩阵的行表示最初的数学构成,而列表示结果。
在矩阵论中,学生需要学习如何在矩阵中添加、减少和乘以数字。
其次,矩阵论涉及矩阵运算。
矩阵的运算包括加法、减法和乘法。
学生需要学习如何在矩阵中增加或减少元素,以及如何计算矩阵的乘积。
此外,学生还需要学习特殊矩阵,如单位矩阵、逆矩阵和逆单位矩阵。
第三,矩阵论还涉及矩阵分析。
这些分析包括行列合并、变换、投影和旋转等。
学生需要学习如何有效地改变矩阵的形状,以及如何分析它们,以估计矩阵的元素。
第四,矩阵论还涉及矩阵复习。
复习涉及将矩阵表示为向量空间,以及将多个矩阵合成一个矩阵。
学生需要学习如何计算矩阵分解,如特征值分解、奇异值分解和行列式分解等。
最后,矩阵论还涉及一些特殊的矩阵,如正交矩阵和马氏矩阵。
学生需要学习如何计算这些矩阵的特性,以及如何运用它们的特性来解决问题。
总的来说,矩阵论是一门复杂而又庞大的课程。
学生需要花费大
量的时间学习它,以便掌握矩阵相关的知识。
通过此文所总结的内容,希望能帮助学生更好地理解和掌握矩阵论,以面对矩阵论课程的挑战。
矩阵论总结
⟺实对称矩阵:实对称矩阵的特征值都是实数;实对称矩阵的不同特征值所对应的特征向量都是正交的;欧式空间的线性变换是实对称变换⟺该变换对于标准正交基的矩阵是实对称矩阵;实对称矩阵正交相似于对角矩阵;正交矩阵:Q T Q=I或Q−1=Q TQ是正交矩阵⟺它的列向量是两两正交的单位向量;欧式空间的线性变换是正交变换⟺该变换对于变阵正交基的矩阵是正交矩阵;正交矩阵是非奇异的(可逆的);正交矩阵的逆矩阵仍是正交矩阵;两个正交矩阵的乘积仍未正交矩阵;酉矩阵:A H A=AA H=I酉矩阵的逆矩阵也是酉矩阵;两个酉矩阵的乘积还是酉矩阵;Hermite矩阵:A H=AHermite矩阵的特征值都是实数;属于Hermite矩阵的不同特征值的特征向量必定正交;当A是Hermite矩阵时:A2=ρ(A)正规矩阵:A H A=AA H正交矩阵、酉矩阵、对角矩阵、实对称矩阵以及Hermite矩阵都是正规矩阵;A为正规矩阵⟺A酉相似于对角矩阵;A为正规矩阵⟺A正交相似于对角矩阵;A的特征值都是实数:A正交相似于对角矩阵⟺A为正规矩阵;矩阵范数与向量范数的相容性:(1)对于任意给定的矩阵范数,一定有与之相容的向量范数。
(2)对于任意给定的向量范数,一定有矩阵范数与之相容。
(3)一种矩阵范数可以与多种向量范数相容。
(4)多种矩阵范数可以与一种向量范数相容。
(5)并非任意的矩阵范数与任意的向量范数相容。
相似:B=C−1ACV n中的线性变换T对于V n中的两个基的矩阵:相似相似矩阵有相同的迹任意n阶矩阵(方阵)与三角矩阵相似任意n阶矩阵(方阵)与Jordan标准形矩阵相似n阶矩阵与对角矩阵相似⟺A有n个线性无关的特征向量实对称矩阵正交相似于对角矩阵充要条件:n阶矩阵与对角矩阵相似⟺A有n个线性无关的特征向量。
矩阵论矩阵分析报告
第三章 矩阵分析在此之前我们只研究了矩阵的代数运算,但在数学的许多分支和工程实际中,特别是涉及到多元分析时,还要用到矩阵的分析运算.本章首先讨论矩阵序列的极限和矩阵级数,然后介绍矩阵函数和它的计算,最后介绍矩阵的微积分,以及矩阵分析在解微分方程组和线性矩阵方程中的应用.§3.1 矩阵序列 定义 3.1 设有Cm n⨯中的矩阵序列{}()k A ,其中()()()k k ij m nAa ⨯=.若()lim (1,2,,;1,2,,)k ij ij k a a i m j n →+∞=== ,则称矩阵序列{}()k A 收敛于()ij m n A a ⨯=,或称A 为矩阵序列{}()k A 的极限,记为()lim k k A A →+∞=或()()k A A k →→+∞不收敛的矩阵序列称为发散. 由定义可见,Cm n⨯中一个矩阵序列的收敛相当于mn 个数列同时收敛.因此,可以用初等分析的方法来研究它.但同时研究mn 个数列的极限未免繁琐.与向量序列一样,可以利用矩阵范数来研究矩阵序列的极限. 定理 3.1 设()k A,C (012)m n A k ,,,⨯∈= .则()lim k k AA →+∞=的充分必要条件是()lim 0k k A A →+∞-=,其中 是C m n ⨯上的任一矩阵范数.证 先取Cm n⨯上矩阵的G-范数.由于()()()()1=1k k k ij ij ij ij Gi,jm nk ijiji j a a a a A Aaa =-≤-=-≤-所以()lim k k A A →+∞=的充分必要条件是()lim 0k Gk A A→+∞-=.又由范数的等价性知,对C m n⨯上任一矩阵范数 ,存在正常数α,β,使得()()()k k k GGAAAA AA αβ-≤-≤-故()lim 0k Gk AA→+∞-=的充分必要条件是()lim 0k k A A →+∞-=.证毕推论 设()k A,C(012)m nA k ,,,⨯∈= ,()lim k k A A →+∞=.则()lim k k A A →+∞=其中 是Cm n⨯上任一矩阵范数.证 由()()k k AA A A -≤-即知结论成立.证毕需要指出的是,上述推论的相反结果不成立.如矩阵序列()1(1)112k k A k ⎛⎫- ⎪=+ ⎪ ⎪⎝⎭不收敛.但()Flim lim k k x A →+∞== 收敛的矩阵序列的性质,有许多与收敛数列的性质相类似. 定理3.2 设()lim k k AA →+∞=,()lim k k B B →+∞=,其中()k A ,()k B ,A ,B 为适当阶的矩阵,α,β∈C .则 (1)()()lim ()k k k AB A B αβαβ→+∞+=+;(2) ()()lim k k k A BAB →+∞=;(3)当()k A与A 均可逆时,()11lim ()k k AA --→+∞=.证 取矩阵范数 ,有()()()()()()()()()()()()()()()k k k k k k k k k k k k k A B A B A A B B A B ABA B A B A B AB A B B A A Bαβαβαβ+-+≤-+--=-+-≤-+-由定理3.1和推论知(1)和(2)成立.因为()1()k A -,1A -存在,所以()lim det det 0k k AA →+∞=≠,又有()lim adj adj k k A A →+∞=.于是()()11()adj adj lim ()lim det det k k k k k A AA A A A--→+∞→+∞=== 证毕 定理3.2(3)中条件()k A与A 都可逆是不可少的,因为即使所有的()k A可逆也不能保证A一定可逆.例如()11111k Ak ⎛⎫+ ⎪= ⎪ ⎪⎝⎭对每一个()k A都有逆矩阵()1()1k kk A k k --⎛⎫=⎪-+⎝⎭,但()11lim 11k k A A →+∞⎛⎫== ⎪⎝⎭而A 是不可逆的. 在矩阵序列中,最常见的是由一个方阵的幂构成的序列.关于这样的矩阵序列有以下的概念和收敛定理. 定义3.2 设n nA C ⨯∈,若()lim 0k k A→+∞=,则称A 为收敛矩阵.定理3.3 设n nA C⨯∈,则A 为收敛矩阵的充分必要条件是ρ(A )<1.证 必要性.已知A 为收敛矩阵,则由谱半径的性质,有(())()k k k A A A ρρ=≤其中 是Cn n⨯上任一矩阵范数,即有lim (())0kk A ρ→+∞=,故ρ(A )<1.充分性.由于ρ(A )<1,则存在正数ε,使得ρ(A )+ε<1.根据定理2.14,存在C n n⨯上的矩阵范数m ,使得()1m A A ρε≤+<从而由kk m mAA ≤得lim 0kmk A →+∞=.故lim 0k k A →+∞=. 证毕推论 设n nA C ⨯∈.若对Cn n⨯上的某一矩阵范数 有1A <,则A 为收敛矩阵.例3.1 判断下列矩阵是否为收敛矩阵:(1)181216A -⎛⎫= ⎪-⎝⎭; (2)0.20.10.20.50.50.40.10.30.2A ⎛⎫⎪= ⎪ ⎪⎝⎭. 解 (1)可求得A 的特征值为156λ=,212λ=-,于是5()16A ρ=<,故A 是收敛矩阵; (2)因为10.91A =<,所以A 是收敛矩阵.§3.2 矩阵级数定义3.3 由Cm n⨯中的矩阵序列{}()k A 构成的无穷和(0)(1)()k A A A ++++ 称为矩阵级数,记为()k k A+∞=∑.对任一正整数N ,称()()NN k k SA ==∑为矩阵级数的部分和.如果由部分和构成的矩阵序列{}()N S收敛,且有极限S ,即()lim N N SS →+∞=,则称矩阵级数()0k k A +∞=∑收敛,而且有和S ,记为()k k S A+∞==∑不收敛的矩阵级数称为发散的.如果记()()()k k ij m n Aa ⨯=,()ij m n S s ⨯=,显然()0k k S A +∞==∑相当于()(1,2,,;1,2,,)k ij ij k a s i m j n +∞====∑即mn 个数项级数都收敛. 例3.2 已知()1π24(0,1,)10(1)(2)k kk A k k k ⎛⎫⎪ ⎪== ⎪ ⎪++⎝⎭研究矩阵级数()k A+∞∑的敛散性.解 因为k 00()()001π2410(1)(2)1π1242341012N Nk Nk k N k N k k N N S A k k N ====⎛⎫⎪ ⎪== ⎪ ⎪++⎝⎭⎛⎫⎛⎫-- ⎪ ⎪⎝⎭ ⎪= ⎪- ⎪+⎝⎭∑∑∑∑所以()4π2lim 301N N S S →+∞⎛⎫⎪= ⎪ ⎪⎝⎭故所给矩阵级数收敛,且其和为S . 定义3.4 设()()()C (0,1,)k k m n ij m n Aa k ⨯⨯=∈= .如果mn 个数项级数()0(1,2,,;1,2,,)k ijk ai m j n +∞===∑ 都绝对收敛,即()k ijk a +∞=∑都收敛,则称矩阵级数()k k A+∞=∑绝对收敛.利用矩阵范数,可以将判定矩阵级数是否绝对收敛转化为判定一个正项级数是否收敛的问题.定理3.4 设()()()C(0,1,)k k m nij m nAa k ⨯⨯=∈= .则矩阵级数()0k k A +∞=∑绝对收敛的充分必要条件是正项级数()0k k A +∞=∑收敛,其中 是C m n ⨯上任一矩阵范数.证 先取矩阵的1m -范数.若1()k k m A +∞=∑收敛,由于1()()()11(1,2,,;1,2,,)mnk k k ijij i j m aa A i m j n ==≤===∑∑从而由正项级数的比较判别法知()k ijk a+∞=∑都收敛,故()k k A+∞=∑绝对收敛.反之,若()k k A+∞=∑绝对收敛,则()0k ijk a+∞=∑都收敛,从而其部分和有界,即()0(1,2,,;1,2,,)Nk ijijk aM i m j n =≤==∑ 记,max ij i jM M =,则有1()()()0011110()()NNmnm n Nk k k ijijk k i j i j k m AaamnM =========≤∑∑∑∑∑∑∑故1()k k m A +∞=∑收敛.这表明()k k A+∞=∑绝对收敛的充分必要条件是1()k k m A +∞=∑收敛.由矩阵范数的等价性和正项级数的比较判别法知,1()k k m A+∞=∑收敛的充分必要条件是()0k k A +∞=∑收敛,其中 是C m n ⨯上任一矩阵范数. 证毕利用矩阵级数收敛和绝对收敛的定义,以及数学分析中的相应结果,可以得到以下一些结论.定理3.5 设()k k AA +∞==∑,()0k k B B +∞==∑,其中()k A ,()k B ,A ,B 是适当阶的矩阵,则(1)()()0()k k k AB A B +∞=+=+∑;(2)对任意λ∈C ,有()k k AA λλ+∞==∑;(3)绝对收敛的矩阵级数必收敛,并且任意调换其项的顺序所得的矩阵级数仍收敛,且其和不变; (4)若矩阵级数()k k A+∞=∑收敛(或绝对收敛),则矩阵级数()k k PAQ +∞=∑也收敛(或绝对收敛),并且有()()0()(3.1)k k k k PAQ P A Q+∞+∞===∑∑(5)若()k k A+∞=∑与()k k B+∞=∑均绝对收敛,则它们按项相乘所得的矩阵级数(0)(0)(0)(1)(1)(0)(0)()(1)(1)(()()(3.2)k k k A B AB A B A B A B A B -++++++++ 也绝对收敛,且其和为AB . 证 只证(4)和(5).若()0k k A+∞=∑收敛,记()()0NN k k SA ==∑,则()lim N N S A →+∞=.从而()()00lim(lim)NNk k N N k k PAQ P AQ PAQ →+∞→+∞====∑∑可见()k k PAQ +∞=∑收敛,且式(3.1)成立.若()k k A+∞=∑绝对收敛,则由定理3.4知()k k A +∞=∑收敛,但()()()k k k PA Q P AQ Aα≤≤其中α是与k 是无关的正数,从而()k k PAQ +∞=∑收敛,即()k k PAQ +∞=∑绝对收敛.当()k k A+∞=∑和()k k B+∞=∑绝对收敛时,由定理3.4知()k k A+∞=∑和()0k k B +∞=∑收敛,设其和分别为1σ与2σ,从而它们按项相乘所得的正项级数(0)(0)(0)(1)(1)(0)(0)()(1)(1)()(0)()()k k k A B A B A B ABABAB-++++++++也收敛,其和为12σσ.因为(0)()(1)(1)()(0)(0)()(1)(1)()(0)k k k k k k A B A B A B ABABAB--+++≤+++所以矩阵级数(3.2)绝对收敛.记()()1NN k k SA==∑,()()2NN k k SB ==∑,()(0)()(1)(1)()(0)3()NN k k k k SA B A B A B -==+++∑则()()()(1)()(2)(1)(2)()()(1)()()123N N N N N N N N N S S S A B A B A B A B A B --=++++++又记()()1NN k k Aσ==∑,()()2NN k k B σ==∑,()(0)()(1)(1)()(0)3()NN k k k k A B A B A B σ-==+++∑显然()()()()()()123123N N N N N N S S S σσσ-≤-故由()()12lim N N N S S AB →+∞=和()()()123lim ()0N N N N σσσ→+∞-=,得()3lim N N S AB →+∞=证毕下面讨论一类特殊的矩阵级数——矩阵幂级数. 定义3.5 设n nA C⨯∈,C(0,1,)k a k ∈= .称矩阵级数kk k a A+∞=∑为矩阵A 的幂级数.利用定义来判定矩阵幂级数的敛散性,需要判别2n 个数项级数的敛散性,当矩阵阶数n 较大时,这是很不方便的,且在许多情况下也无此必要.显然,矩阵幂级数是复变量z 的幂级数0kk k a z+∞=∑的推广.如果幂级数kk k a z+∞=∑的收敛半径为r ,则对收敛圆z r <内的所有z ,kk k a z+∞=∑都是绝对收敛的.因此,讨论kk k a A+∞=∑的收敛性问题自然联系到kk k a z+∞=∑的收敛半径.定理3.6 设幂级数kk k a z+∞=∑的收敛半径为r ,Cn nA ⨯∈.则(1)当ρ(A )<r 时,矩阵幂级数0kk k a A+∞=∑绝对收敛;(2)当ρ(A )>r 时,矩阵幂级数kk k a A+∞=∑发散.证 (1)因为ρ(A )<r ,所以存在正数ε,使得ρ(A )+ε<r .根据定理2.14,存在Cn n⨯上的矩阵范数m ,使得m ()A A r ρε≤+<从m m(())kk k k k k a A a A a A ρε≤≤+而由于幂级数(())kkk aA ρε+∞=+∑收敛,故矩阵幂级数0k k k a A +∞=∑绝对收敛.(2)当ρ(A )>r 时,设A 的,n 个特征值为12,,,n λλλ ,则有某个l λ满足l r λ>.由Jordan 定理,存在n 阶可逆矩阵P ,使得11112(10)i n n P AP J λδδδλλ--⎛⎫⎪⎪== ⎪⎪⎝⎭代表或而kk k a J+∞=∑的对角线元素为0(1,2,,)k k jk a j n λ+∞==∑ .由于0k k lk a λ+∞=∑发散,从而0k k k a J +∞=∑发散.故由定理 3.5(4)知,kkk a A+∞=∑也发散. 证毕推论 设幂级数kkk a z +∞=∑的收敛半径为r ,C n n A ⨯∈.若存在C n n ⨯上的某一矩阵范数 使得A r <,则矩阵幂级数0kk k a A+∞=∑绝对收敛.例3.3 判断矩阵幂级数018216kkk k+∞=-⎛⎫ ⎪-⎝⎭∑的敛散性. 解 令181216A -⎛⎫= ⎪-⎝⎭.例3.1中已求得5()6A ρ=.由于幂级数0kk kz +∞=∑的收敛半径为r =1,故由ρ(A )<1知矩阵幂级数kk kA+∞=∑绝对收敛.最后,考虑一个特殊的矩阵幂级数. 定理3.7 设Cn nA ⨯∈.矩阵幂级数kk A+∞=∑(称为Neumann 级数)收敛的充分必要条件是ρ(A )<1,并且在收敛时,其和为1()I A --. 证 当ρ(A )<1时,由于幂级数kk z+∞=∑的收敛半径r =1,故由定理 3.6知矩阵幂级数0kk A+∞=∑收敛.反之,若kk A+∞=∑收敛,记0kk S A+∞==∑,()()0NN k k SA ==∑则()lim N N S S →+∞=.由于()(1)()(1)lim lim ()=lim lim N N N N N N N N N A S S S S O --→+∞→+∞→+∞→+∞==--故由定理3.3知ρ(A )<1.当kk A+∞=∑收敛时,ρ(A )<1,因此I -A 可逆,又因为()1()N N S I A I A +-=-所以()111()()N N S I A A I A -+-=---故()1lim ()N N S S I A -→+∞==- 证毕 例3.4 已知0.20.10.20.50.50.40.10.30.2A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,判断矩阵幂级数0k k A +∞=∑的敛散性.若收敛,试求其和.解 因为10.91A =<,所以kk A+∞=∑收敛,且102814141()44624214202535k k A I A +∞-=⎛⎫ ⎪=-= ⎪ ⎪⎝⎭∑ §3.3 矩阵函数矩阵函数是以矩阵为变量且取值为矩阵的一类函数.本节介绍矩阵函数的定义和计算方法,并讨论常用矩阵函数的性质. 一、矩阵函数的定义 定义3.5 设幂级数0k k k a z +∞=∑的收敛半径为r ,且当z r <时,幂级数收敛于函数f (z ),即0()()kk k f z a zz r +∞==<∑如果Cn nA ⨯∈满足ρ(A )<r ,则称收敛的矩阵幂级数kk k a A+∞=∑的和为矩阵函数,记为f (A ),即0()(3.3)kk k f A a A+∞==∑根据这个定义,可以得到在形式上和数学分析中的一些函数类似的矩阵函数.例如,对于如下函数的幂级数展开式02120101e ()!(1)sin ()(21)!(1)cos ()(2)!(1)(1)(1)ln(1)(1)1kzk k k k k kk kk k k k z r k z zr k z zr k z z r z zr k +∞=+∞+=+∞=+∞-=+∞+===+∞-==+∞+-==+∞-==-+==+∑∑∑∑∑ 相应地有矩阵函数01e !kk A A k +∞==∑(C n n A ⨯∈) 210(1)sin (21)!kk k A A k +∞+=-=+∑ (C n n A ⨯∈)20(1)cos (2)!k kk A A k +∞=-=∑ (C n n A ⨯∈)1()k k I A A +∞-=-=∑ (ρ(A )<1)1(1)ln()1k k k I A A k +∞+=-+=+∑ (ρ(A )<1)称e A为矩阵指数函数,sin A 为矩阵正弦函数,cos A 为矩阵余弦函数.如果把矩阵函数f (A )的变元A 换成At ,其中t 为参数,则相应得到()()(3.4)kk k f At a At +∞==∑在实际应用中,经常需要求含参数的矩阵函数.二、矩阵函数值的计算以上利用收敛的矩阵幂级数的和定义了矩阵函数f (A ),在具体应用中,要求将f (A )所代表的具体的矩阵求出来,即求出矩阵函数的值.这里介绍几种求矩阵函数值的方法.以下均假设式(3.3)或式(3.4)中的矩阵幂级数收敛. 方法一 利用Hamilton-Cayley 定理利用Hamilton-Cayley 定理找出矩阵方幂之间的关系,然后化简矩阵幂级数求出矩阵函数的值.举例说明如下. 例3.5 已知0110A ⎛⎫=⎪-⎝⎭,求e At.解 可求得2det()1I A λλ-=+.由Hamilton-Cayley 定理知2A I O +=,从而2A I =-,3A A =-,4A I =,5A A =,…即2(1)k k A I =-,21(1)(1,2,)k k A Ak +=-=故243501e 1!2!4!3!5!cos sin (cos )(sin )sin cos Atk k k t t t t A t I t Ak t t t I t A t t +∞=⎛⎫⎛⎫==-+-+-+- ⎪ ⎪⎝⎭⎝⎭⎛⎫=+= ⎪-⎝⎭∑例3.6 已知4阶方阵A 的特征值为π,-π,0,0,求sin A ,cos A .解 因为2422det()(π)(π)πI A λλλλλλ-=-+=-,所以422πA A O -=.于是422πA A =,523πA A =,642πA A =,743πA A =,…即2222πkk A A -=,21223π(2,3,)k k A A k +-==故213223023321323332(1)1(1)sin π(21)!3!(21)!11(1)π3!π(21)!sin ππ1ππk k k k k k k k k A A A A Ak k A A A k A A A A +∞+∞+-==+∞+=--==-+++⎛⎫-=-+ ⎪+⎝⎭=+=-∑∑∑-22222022222(1)1(1)cos π(2)!2!(2)!cos π12ππk k k k k k A A I A Ak k I A I A +∞+∞-==--==-+=+=-∑∑-方法二 利用相似对角化 设C n nA ⨯∈是可对角化的,即存在C n n n P ⨯∈,使得112diag(,,,)n P AP A λλλ-== 则有11112112()()()diag(,,,)diag((),(),,())kkk k k k k k k kk k k k k n k k k n f A a A a P P P a P P a a a P P f f f P λλλλλλ+∞+∞+∞--===+∞+∞+∞-===-==Λ=Λ==∑∑∑∑∑∑同理可得112()diag((),(),,())n f At P f t f t f t P λλλ-=例3.7 已知460350361A ⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭,求e At,cos A .解 可求得2det()(2)(1)I A λλλ-=+-,即A 的特征值为12λ=-,231λλ==.对应12λ=-的特征向量为T 1(1,1,1)p =-,对应231λλ==的两个线性无关的特征向量为T 2(2,1,0)p =-,T 3(0,0,1)p =.于是120110101P --⎛⎫ ⎪= ⎪ ⎪⎝⎭ 使得1211P AP --⎛⎫⎪= ⎪ ⎪⎝⎭故22212222e 2e e 2e 2e 0e e e e2e e 0e e e 2e 2e e tt t t t At tt t t t t t t t tt P P --------⎛⎫⎛⎫-- ⎪ ⎪==--⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭1cos(2)cos cos1cos12cos1cos 22cos12cos 20cos 2cos12cos 2cos10cos 2cos12cos 22cos1cos1A P--⎛⎫⎪= ⎪ ⎪⎝⎭--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭方法三 利用Jordan 标准形 设Cn nA ⨯∈,且C n nn P ⨯∈,使得121s J J P AP J J -⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭ 其中×1(1,2,,)1i iii i i r rJ i s λλλ⎛⎫ ⎪⎪== ⎪⎪⎝⎭由定理1.12得111111001(1)01(1C C ()C ()()1!(1)!()1!()()1!(1)!i i i i i i i r k r k k i k i k ik k k k i i k i k k k k k ik i r r k k k i k k k k k tr r i f J t a J t a t t t r a t t t f f f r λλλλλλλλλλλλλλλλ--+-+∞+∞-==--+∞==--⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭⎛⎫' ⎪- ⎪⎪= ⎪⎪'⎪ ⎪⎝⎭'-=∑∑∑)()()()1!()i tt f t f f λλλλλ=⎛⎫ ⎪ ⎪⎪ ⎪⎪' ⎪ ⎪⎝⎭从而1010110011()()()()()k kk kk k k k k k k k k k k k k k k s k s f At a A t a PJP t a J tP a J t P P P a J t f J t P Pf J t +∞+∞-==+∞=+∞--=+∞=-==⎛⎫⎪ ⎪== ⎪⎪ ⎪ ⎪⎝⎭⎛⎫ ⎪= ⎪ ⎪⎝⎭∑∑∑∑∑例3.8 已知101120403A -⎛⎫⎪= ⎪ ⎪-⎝⎭,求e A,sin At .解 例1.9已求得100111210P ⎛⎫ ⎪=-- ⎪ ⎪⎝⎭,11112P AP J -⎛⎫⎪== ⎪ ⎪⎝⎭于是12222e e e 0ee e 3e e e 2e+e e 4e 03e A P P -⎛⎫⎛⎫ ⎪ ⎪==- ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭-- 1sin cos sin sin sin 2sin 2cos 0cos sin 2cos sin 2sin 2cos sin sin 24cos 02cos sin t t t At P t Pt t t t t t t t t t t t t t t t t t t t -⎛⎫⎪= ⎪ ⎪⎝⎭-⎛⎫ ⎪=+---+ ⎪ ⎪-+⎝⎭根据Jordan 标准形理论可得 定理3.8 设Cn nA ⨯∈,1λ,2λ,…,n λ是A 的n 个特征值,则矩阵函数f (A )的特征值为1()f λ,2()f λ,…,()n f λ. 方法四 待定系数法 设Cn nA ⨯∈,且A 的特征多项式为1212()det()()()()(3.5)srr r s I A ψλλλλλλλλ=-=---其中1λ,2λ,…,s λ是A 的全部互异特征值,12s r r r n +++= .为计算矩阵函数()k kk k f At a A t +∞==∑,记0()k k k k f t a t λλ+∞==∑.将f (λt )改写为()(,)()(,)(3.6)f t q t r t λλψλλ=+其中q (λ,t )是含参数t 的λ的幂级数,r (λ,t )是含参数t 且次数不超过n -1的λ的多项式,即1110(,)()()()n n r t b t b t b t λλλ--=+++由Hamilton-Cayley 定理知ψ(A )=O ,于是由式(3.6)得1110()(,)()(,)()()()n n f At q A t A r A t b t Ab t A b t Iψ--=+=+++可见,只要求出()(0,1,,1)k b t k n =- 即可得到f (At ).注意到()()0(0,1,,1;1,2,,)l i i l r i s ψλ==-=将式(3.6)两边对λ求导,并利用上式,得d d ()(,)d d iil ll l f t r t λλλλλλλλ=== 即d d ()(,)(0,1,,1;1,2,,)(3.7)d d iil l li l l t t f r t l r i s μλλλμλμλ====-=由式(3.7)即得到以0()b t ,1()b t ,…,1()n b t -为未知量的线性方程组. 综上分析,用待定系数法求矩阵函数f (At )或f (A )的步骤如下: 第一步:求矩阵A 的特征多项式(3.5);第二步:设1110()n n r b b b λλλ--=+++ .根据()()()()(0,1,,1;1,2,,)i l l l i i tr t f l r i s λλλλ===-=或()()()()(0,1,,1;1,2,,)l l i i i r f l r i s λλ==-=列方程组求解0b ,1b ,…,1n b -;第三步:计算1110()(())()n n f At f A r A b A b A b I --==+++ 或.例3.9 已知101120403A -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,求e At,cos A .解 可求得2det()(1)(2)I A λλλ-=--.设2210()r b b b λλλ=++则由210212210(1)e (1)2e (2)42e tt t r b b b r b b t r b b b ⎧=++=⎪'=+=⎨⎪=++=⎩解得222120e e e 2e 2e 3e e 2e t t t t t t t t b t b t b t ⎧=--⎪=-++⎨⎪=-⎩于是2222210e 2e 0e e e e 2ee e e e 4e 02e e t tAt t t tt t t t t ttt t b A b A b I t t t t t ⎛⎫-⎪=++=-++-- ⎪ ⎪ ⎪-+⎝⎭而由21021210(1)cos1(1)2sin1(2)42cos 2r b b b r b b r b b b =++=⎧⎪'=+=-⎨⎪=++=⎩解得210sin1cos1cos 23sin12cos12cos 22sin1cos 2b b b =-+⎧⎪=-+-⎨⎪=+⎩从而22102sin1cos 20sin1cos 2sin1cos1cos 2cos 2sin1cos1cos 24sin102sin1cos1A b A b A b I +-⎛⎫ ⎪=++=-+--+ ⎪ ⎪-+⎝⎭如果求得矩阵A 的最小多项式,且其次数低于A 的特征多项式的次数,则计算矩阵函数就要容易一些.例3.10 已知311202113A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,求e At ,sin A . 解 例1.9已求得A 的Jordan 标准形为2212J ⎛⎫⎪= ⎪ ⎪⎝⎭于是A 的最小多项式为2()(2)A m λλ=-.设10()r b b λλ=+由21021(2)2e (2)e t tr b b r b t ⎧=+=⎪⎨'==⎪⎩ 解得2120e (12)et t b t b t ⎧=⎪⎨=-⎪⎩ 于是2101e e 21221At t tt t b A b I t tt t t t +-⎛⎫ ⎪=+=-- ⎪ ⎪--+⎝⎭又由101(2)2sin 2(2)cos 2r b b r b =+=⎧⎨'==⎩ 解得10cos 2sin 22cos 2b b =⎧⎨=-⎩从而10sin 2cos 2cos 2cos 2sin 2cos 2sin 22cos 22cos 2cos 2cos 2sin 2cos 2A b A b I +-⎛⎫ ⎪=+=-- ⎪ ⎪--+⎝⎭三、常用矩阵函数的性质常用的矩阵函数有e A,sin A ,cos A ,它们有些性质与普通的指数函数和三角函数相同,但由于矩阵乘法不满足交换律,从而有些性质与一般指数函数和三角函数不相同. 定理3.9 对任意Cn nA ⨯∈,总有(1)sin(-A )=-sin A ,cos(-A )=cos A ; (2)i e cos isin AA A =+,i -i 1cos (e e )2A A A =+,i -i 1sin (e e )2iA A A =-. 证 (1)由sin A 与cos A 的矩阵幂级数形式直接得到;(2)i 221000i (1)(1)e i !(2)!(21)!cos isin k k k Ak k k k k k A A A k k k A A+∞+∞+∞+===--==++=+∑∑∑又有-i e cos()isin()cos isin A A A A A =-+-=- 从而i -i 1cos (e e )2A A A =+,i -i 1sin (e e )2iA A A =- 定理3.10 设A ,C n nB ⨯∈,且AB =BA ,则(1)ee e e e A BA B B A +==;(2)sin(A +B )=sin A cos B +cos A sin B ;(3)cos(A +B )=cos A cos B -sin A sin B .证 (1)0022011e e !!1()(2)2!1()e !A Bk k k k k A B k A B k k I A B A AB B A B k +∞+∞==+∞+=⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭=++++++=+=∑∑∑(2)i()-i()i i -i -i i -i i -i i -i i -i 11sin()(e e )(e e e e )2i 2i 1111(e e )(e e )(e e )(e e )2i 222i sin cos cos sin A B A B A B A B A A B B A A B B A B A B A B+++=-=-=-+++-=+ 同理可证(3). 证毕在定理3.10中,取A =B ,即得 推论 对任意Cn nA ⨯∈,有22cos 2cos sin A A A =-,sin2A =2sin A cos A 值得注意的是,当AB ≠BA 时,ee e A BA B +=或e e e A B B A +=不成立.如取0010A ⎛⎫= ⎪⎝⎭,0100B ⎛⎫= ⎪⎝⎭,则0110A B ⎛⎫+= ⎪⎝⎭,00100100AB BA ⎛⎫⎛⎫=≠= ⎪ ⎪⎝⎭⎝⎭且10e 11A⎛⎫= ⎪⎝⎭,11e 01B ⎛⎫= ⎪⎝⎭,-1-1-1-1e+e e e 1e 2e e e+e A B+⎛⎫= ⎪⎝⎭-- 可见1121e e e e 1211A BB A ⎛⎫⎛⎫=≠= ⎪ ⎪⎝⎭⎝⎭e e e A B A B +≠,e e e A B B A +≠定理3.11 设Cn nA ⨯∈,则有(1)tr dete eA A=;(2)1(e )e A A --=.证 (1)设A 的特征值为1λ,2λ,…,n λ.则由定理3.8知,e A的特征值为1e λ,2e λ,…,e n λ,从而1212tr dete =e e e e e n n A A λλλλλλ++==…+…(2)由于tr dete =e0AA≠,所以e A 总是可逆的.又由定理3.10,得e e e e A A A A OI--===故1(e )e A A --=. 证毕需要指出的是,对任何n 阶方阵A ,e A总是可逆的,但sin A 与cos A 却不一定可逆.如取π00π/2A ⎛⎫=⎪⎝⎭,则00sin 01A ⎛⎫= ⎪⎝⎭,10cos 00A -⎛⎫= ⎪⎝⎭.可见sin A 与cos A 都不可逆.§3.4 矩阵的微分和积分在研究微分方程组时,为了简化对问题的表述及求解过程,需要考虑以函数为元素的矩阵的微分和积分.在研究优化等问题时,则要碰到数量函数对向量变量或矩阵变量的导数,以及向量值或矩阵值函数对向量变量或矩阵变量的导数.本节简单地介绍这些内容. 一、函数矩阵的微分和积分定义 3.6 以变量t 的函数为元素的矩阵()(())i j m n A t a t ⨯=称为函数矩阵,其中()(1,2,,;1,2,,)ij a t i m j n == 都是变量t 的函数.若t ∈[a ,b ],则称A (t )是定义在[a ,b )上的;又若每个()ij a t 在[a ,b ]上连续、可微、可积,则称A (t )在[a ,b ]上是连续、可微、可积的.当A (t )可微时,规定其导数为()(())ijm n A t a t ⨯''=或d d ()()d d ij m nA t a t t t ⨯⎛⎫= ⎪⎝⎭而当A (t )在[a ,b ]上可积时,规定A (t )在[a ,b ]上的积分为()()d ()d bb ijaam nA t t a t t ⨯=⎰⎰例3.11 求函数矩阵23sin cos ()2e 01t t t t t A t t t ⎛⎫⎪= ⎪ ⎪⎝⎭的导数. 解2cos sin 1d ()2ln 2e 2d 003t t t t A t t t t -⎛⎫⎪= ⎪ ⎪⎝⎭关于函数矩阵,有下面的求导法则.定理3.12 设A (t )与B (t )是适当阶的可微矩阵,则(1)d d d(()())()()d d d A t B t A t B t t t t+=+ (2)当λ(t )为可微函数时,有d d d (()())()()()()d d d t A t t A t t A t t t t λλλ⎛⎫=+ ⎪⎝⎭(3)d d d (()())()()()()d d d A t B t A t B t A t B t t t t ⎛⎫=+ ⎪⎝⎭; (4)当u =f (t )关于t 可微时,有d d()()()d d A u f t A u t u'= (5)当1()A t -是可微矩阵时,有111d d (())()()()d d A t A t A t A t t t ---⎛⎫=- ⎪⎝⎭证 只证(2)和(5).设()(())ij m n A t a t ⨯=,()(())ij n p B t b t ⨯=,则111d d (()())(()())d d d d ()()()()d d d d ()()()()d d nik kj m n k n nik kj ik kj k k m nA tB t a t b t t t a t b t a t b t t t A t B t A t B t t t ⨯===⨯=⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭⎛⎫=+ ⎪⎝⎭∑∑∑由于1()()A t A t I-=,两边对t 求导,得11d d ()()()()d d A t A t A t A t O t t --⎛⎫+= ⎪⎝⎭从而111d d ()()()()d d A t A t A t A t t t ---⎛⎫=- ⎪⎝⎭证毕 定理3.13 设C n nA ⨯∈,则有(1)d e e e d AtAt At A A t ==; (2)dsin cos (cos )d At A At At A t ==;(3)dcos sin (sin )d At A At At A t=-=-.证 这里只证(1).(2)和(3)的证明与(1)类似.由0e !k Atkk t A k +∞==∑,并利用绝对收敛级数可以逐项求导,得101111d d e d d !(1)!e (1)!k k At k k k k k k Atk t t A A t t k k tA A A k -+∞+∞==-+∞-===-==-∑∑∑同样11111d e ==e d (1)!(1)!k k At k k At k k t t A A A A t k k --+∞+∞-==⎛⎫= ⎪--⎝⎭∑∑ 证毕根据定义和积分的有关性质,可得定理3.14 设A (t ),B (t )是区间[a ,b ]上适当阶的可积矩阵,A ,B 是适当阶的常数矩阵,λ∈C ,则 (1)(()())d ()d ()d bb baaaA tB t t A t t B t t +=+⎰⎰⎰;(2)()d ()d bba aA t t A t t λλ=⎰⎰;(3)()()d ()d bbaaA tB t A t t B =⎰⎰,()d ()d b baaAB t t A B t t =⎰⎰;(4)当A (t )在[a ,b ]上连续时,对任意t ∈(a ,b ),有()d ()d ()d t aA A t tττ=⎰(5)当A (t )在[a ,b]上连续可微时,有()d ()()baA t t A b A a '=-⎰以上介绍了函数矩阵的微积分概念及一些运算法则.由于d()d A t t仍是函数矩阵,如果它仍是可导矩阵,即可定义其二阶导数.不难给出函数矩阵的高阶导数11d d d ()()d d d k k k k A t A t t t t --⎛⎫= ⎪⎝⎭二、数量函数对矩阵变量的导数定义 3.7 设f (X )是以矩阵()ij m n X x ⨯=为自变量的mn 元函数,且(1,2,,;1,2,,)ijfi m j n x ∂==∂ 都存在,规定f 对矩阵变量X 的导数d d f X 为 1111d d ij m nm mn ff x x n f fX x ff x x ⨯∂∂⎛⎫ ⎪∂∂ ⎪⎛⎫∂ ⎪== ⎪ ⎪ ⎪∂⎝⎭∂∂ ⎪ ⎪∂∂ ⎪⎝⎭特别地,以T12(,,,)n x ξξξ= 为自变量的函数f (x )的导数T12d (,,,)d nf f f f x ξξξ∂∂∂=∂∂∂ 称为数量函数对向量变量的导数,即为在数学分析中学过的函数f 的梯度向量,记为grad f .例 3.12 设T 12(,,,)n a a a a = 是给定的向量,T 12(,,,)n x ξξξ= 是向量变量,且T T ()f x a x x a ==求d d f x. 解 因为1()nk kk f x a ξ==∑而(1,2,,)j jfa j n ξ∂==∂ 所以 TT 1212d (,,,)(,,,)d n nf f f f a a a a x ξξξ∂∂∂===∂∂∂ 例3.13 设()ij m n A a ⨯=是给定的矩阵,()ij n m X x ⨯=是矩阵变量,且()tr()f x Ax =求d d fX. 解 因为1()nikkj m m k AX ax ⨯==∑.所以11()tr()m nsk ks s k f X AX a x ====∑∑而(1,2,,;1,2,,)ijfi n j m x ∂==∂ 故T d ()d ji n m ij n mf f a A X x ⨯⨯⎛⎫∂=== ⎪ ⎪∂⎝⎭ 例 3.14 设()ij n n A a ⨯=是给定的矩阵,T 12(,,,)n x ξξξ= 是向量变量,且T ()f x x Ax =求d d f x. 解 因为T1111()()n nn ns sk ks sk k s k s k f x x Ax aa ξξξξ=======∑∑∑∑而1111,11,111()nj j j j jk k j jj j j j n nj k j n nsj s jk ks k fa a a a a a a a ξξξξξξξξξ--++===∂=+++++++∂=+∑∑∑所以1111111T T d d ()n ns s k k s k n nsn s nk k s k n f a a f x f a a A x Ax A A xξξξξξξ====∂⎛⎫⎛⎫+ ⎪ ⎪∂⎪ ⎪ ⎪== ⎪ ⎪ ⎪∂ ⎪ ⎪+ ⎪⎪∂⎝⎭⎝⎭=+=+∑∑∑∑ 特别地,当A 是对称矩阵时,有d 2d fAx x=例3.15 设()ij n n X x ⨯=是矩阵变量,且det X ≠0.证明1T ddet (det )()d X X X X-= 证 设ij x 的代数余子式为ij X .把det X 按等i 行展开,得1det nikik k X xX ==∑于是det ij ijX X x ∂=∂故 T1T 1Tddet det ()(adj )d ((det ))(det )()ij n n ij n nX X X X X x X X X X ⨯⨯--⎛⎫∂=== ⎪ ⎪∂⎝⎭== 三、矩阵值函数对矩阵变量的导数定义3.8 设矩阵()(())ij s t F X f X ⨯=的元素()(1,2,,;1,2,,)ij f X i s j t == 都是矩阵变量()ij m n X x ⨯=的函数,则称F (X )为矩阵值函数,规定F (X )对矩阵变量X 的导数d d FX为111d d 1FF x x n F X FF x x m mn ∂∂⎛⎫ ⎪∂∂ ⎪⎪= ⎪∂∂ ⎪ ⎪∂∂ ⎪⎝⎭ ,其中1111tij s stf f x x ij ij F x f f x x ij ij ∂∂⎛⎫ ⎪∂∂ ⎪∂⎪=⎪∂ ⎪∂∂ ⎪∂∂ ⎪⎝⎭即其结果为(ms )×(nt )矩阵. 作为特殊情形,这一定义包括了向量值函数对于向量变量的导数,向量值函数对于矩阵变量的导数,矩阵值函数对于向量变量的导数等.例3.16 设T12(,,,)n x ξξξ= 是向量变量,求T T d d d d x xx x=. 解 由定义,得T 1TT 2T 100010d d 001n nx x x I x x ξξξ⎛⎫∂ ⎪∂ ⎪⎛⎫ ⎪∂ ⎪⎪ ⎪===∂ ⎪ ⎪⎪ ⎪⎪⎝⎭ ⎪∂ ⎪∂⎝⎭同理可得T 12d ,,,d n n x x x x I x ξξξ⎛⎫∂∂∂== ⎪∂∂∂⎝⎭例3.17 设T1234(,,,)a a a a a =是给定向量,24()ij X x ⨯=是矩阵变量,求Td()d Xa X,d()d Xa X. 解 因为41121k k k n k k k x a Xa x a ==⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭∑∑,44T 1211()(,)k k k k k k Xa x a x a ===∑∑ 所以T T TT T 13141112T T T T 2122232431243124()()()()d()d ()()()()00000000Xa Xa Xa Xa x x x x Xa XXa Xa Xa Xa xx x x a aa a a a a a ⎛⎫∂∂∂∂⎪∂∂∂∂ ⎪=⎪∂∂∂∂ ⎪ ⎪∂∂∂∂⎝⎭⎛⎫= ⎪⎝⎭而131411122122232412341234()()()()d()()()()()d 00000000Xa Xa Xa Xa x x x x Xa Xa Xa Xa Xa Xxx x x a a a a a a a a ∂∂∂∂⎛⎫⎪∂∂∂∂ ⎪=⎪∂∂∂∂ ⎪∂∂∂∂⎝⎭⎛⎫⎪ ⎪=⎪⎪⎝⎭§3.5 矩阵分析应用举例本节介绍矩阵函数及矩阵微积分的一些应用. 一、求解一阶线性常系数微分方程组在数学或工程技术中,经常要研究一阶常系数微分方程组1111122112211222221122d ()()()()()d d ()()()()()d d ()()()()()d n n n n n n n nn n n x t a x t a x t a x t f t t x t a x t a x t a x t f t t x t a x t a x t a x t f t t ⎧=++++⎪⎪⎪=++++⎨⎪⎪=++++⎪⎩满足初始条件0()(1,2,,)i ix t c i n ==的解.如果记T12(),(,,,)ij n n n A a c c c c ⨯==T 12()((),(),,())n x t x t x t x t = ,T 12()((),(),,())n f t f t f t f t =则上述微分方程组可写为0d ()()()(3.8)d ()x t Ax t f t tx t c⎧=+⎪⎨⎪=⎩因为d d ()(e ())e ()()e d d d ()e ()e ()d At At At At At x t x t A x t t t x t Ax t f t t -----=-+⎛⎫=-= ⎪⎝⎭将上式两边在[0t ,t ]上积分,得00d (e ())d e ()d d tt A A t t x f τττττττ--=⎰⎰ 即00e()e()e ()d tAt A A t x t x t f ττττ----=⎰于是微分方程组的解为00()()e e e ()d tA t t At A t x t c f τττ--+⎰=例3.18 求解微分方程组初值问题113212313123d ()()()1d d ()()2()1d d ()4()3()2d (0)1,(0)0,(0)1x t x t x t t x t x t x t tx t x t x t t x x x ⎧=-++⎪⎪⎪=+-⎪⎨⎪=-++⎪⎪⎪===⎩ 解 记123()10111120,0,()(),()140312()x t A c x t x t f t x t -⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪====- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭则微分方程组可以写成式(3.8)的矩阵形式.例3.9已求得222e 2e 0e e e e 2e e e e e 4e 02e e t t tAt t t tt t t t t t t t t t t t t ⎛⎫-⎪=-++-- ⎪ ⎪-+⎝⎭依次计算下列各量e e e e e 2e t t At t t t t c t t ⎛⎫- ⎪= ⎪ ⎪-⎝⎭,00e 1e e ()d e 1e 2e 22e t t t A t tf d τττττττ-------⎛⎫⎛⎫- ⎪ ⎪=-=-+ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭⎰⎰, 0e 1e e ()d e 12e 2t t At A t tf τττ-⎛⎫- ⎪=-+ ⎪ ⎪-⎝⎭⎰故微分方程组的解为123e e e 1(2)e 1()()()e e 1(1)e 1()e 2e 2e 2(32)e 2t t t tt t t t t t t t t x t x t x t t t x t t ⎛⎫⎛⎫⎛⎫----⎛⎫⎪ ⎪ ⎪ ⎪==+-+=-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭二、求解矩阵方程在控制论与系统理论中,要遇到形如AX +XB =F 的矩阵方程求解问题,这个矩阵方程也称为Lyapunov 方程.关于这个矩阵方程的解有如下结果. 定理3.15 给定矩阵方程 AX +XB =F (3.9) 其中Cm mA ⨯∈,Cn nB ⨯∈,Cm nF ⨯∈.如果A 和B 的所有特征值具有负实部(这种矩阵称为稳定矩阵),则该矩阵方程有惟一解e e d At Bt X F t +∞=-⎰证 记()e e At Bt Y t F =.则有Y (0)=F ,且d ()e e e e ()()(3.10)d At Bt At Bt Y t A F F B AY t Y t B t=+=+设12,,,m λλλ 是A 的m 个特征值,12,,,n μμμ 是B 的n 个特征值.根据利用Jordan 标准形求矩阵函数的方法(见§3.3)知,e At的元素是形如e (0)j tr t r λ≥的项的线性组合.因为A 的所有特征值j λ的实部是负的,所以lim eAtt O →+∞=.同理lim e Bt t O →+∞=.于是lim ()lim e e At Bt t t Y t F O →+∞→+∞==又由于e e At BtF 的元素是形如()e (0)i j tr t r λμ+≥的项的线性组合,且积分()0ed i j tr t t λμ+∞+⎰都存在,故积分e e d At Bt F t +∞⎰存在.对式(3.10)两边从0到+∞积分,得()()0()(0)()d ()d Y Y AY t t Y t t B +∞+∞+∞-=+⎰⎰即()()0()d ()d A Y t t Y t t B F+∞+∞-+-=⎰⎰这说明0e e d At Bt X F t +∞=-⎰是矩阵方程(3.9)的解.惟一性的证明见第七章. 证毕 推论1 设Cm mA ⨯∈,Cn nB ⨯∈,Cm nF ⨯∈,则矩阵微分方程d ()()()d (0)X t AX t X t B tX F⎧=+⎪⎨⎪=⎩的解为()e e At BtX t F =推论2 设A ,C n nF ⨯∈,且A 的所有特征值具有负实部,则矩阵方程HA X XA F+=-的惟一解为H 0ee d (3.11)A tAt X F t+∞=⎰如果F 是Hermite 正定矩阵,则解矩阵X 也是Hermite 正定矩阵.证 只需证明后一结论.当F 是Hermite 正定矩阵时,由式(3.11)可知X 是Hermite 矩阵.又对0Cnx ≠∈,由于eAt总是可逆的,所以e 0Atx ≠,于是HH H e e (e )(e )0A t At At At x F x x F x =>.从而HH 0(e )(e )d 0At At x Xx x F x t +∞=>⎰故X 是Hermite 正定矩阵. 证毕三、最小二乘问题 设Cm nA ⨯∈,C n b ∈.当线性方程组Ax =b 无解时,则对任意C nx ∈都有Ax -b ≠0.此时希望找出这样的向量0C n x ∈,它使2Ax b -达到最小,即022Clim (3.12)nx Ax b Ax b ∈-=-称这个问题为最小二乘问题,称0x 为矛盾方程组Ax =b 的最小二乘解.以下结论给出了当A ,b 分别是实矩阵和实向量时,Ax =b 的最小二乘解所满足的代数方程.定理3.16 设R m nA ⨯∈,R mb ∈,0R n x ∈.若0R n x ∈是Ax =b 的最小二乘解,则0x 是方程组TT(3.13)A Ax A b=的解.称式(3.13)为Ax =b 的法方程组.证 由于2T 2TTTTTT()()()f x Ax b Ax b Ax b x A Ax x A b b Ax b b=-=--=--+若0x 为Ax =b 的最小二乘解,则它应是f (x )的极小值点,从而d 0(3.14)d x f x=根据例3.12和例3.14,得T T d 22d fA Ax A b x=- 由式(3.14)即知T T00A Ax A b -=,故0x 是式(3.13)的解. 证毕 对于含约束条件的最小二乘问题,有如下的结果. 例3.19 设Rm nA ⨯∈,R m b ∈,Rk nB ⨯∈,R kd ∈,且Bx =d 有解.试求约束极小。
矩阵理论与应用小结
矩阵理论与应用2010~2011年度第1学期题目:矩阵理论与应用小结院系信息工程学院专业信息与通信工程学号姓名leijun任课老师成绩评定完成日期:2012年2月20日矩阵理论与应用小结摘要:本文是对《矩阵理论与应用》的一个概括性总结,文章按照吴老师上课顺序,选取主要讲授内容,同时参考一些其它较好资料,将所学定理,概念作一简要概括。
本文在对以往所学知识重新整合基础之上,以期为以后深入学习或与所学专业问题相结合打下坚实基础。
关键词:线性空间,线性变换,内积空间,Jordan 标准形,矩阵分解,矩阵分析Abstract :In this paper, a generalized summary of the “Matrix Theory andApplications ” is given below. Based on the class order of Mrs. Wu, I select the main teaching content, while making reference to some other good books, provide a brief summary of the theorems and concepts. With the re-integration of the past knowledge, I hope to lay a solid foundation of the future in-depth study or the combination of the major problems.Keywords : Linear space, Linear transformation, Inner product space, Jordannorm form, Matrix factorization, Matrix analysis1.线性空间与线性变换本专题为本课之基础,内容庞杂,较抽象,主要讲述一些基本的概念和性质,为以后章节做铺垫。
矩阵论课程结业论文
浅谈矩阵论的发展在《九章算术》中用矩阵形式解方程组已相当成熟,但那时仅用它作为线性方程组系数的排列形式解决实际问题,并没有建立起独立的矩阵理论。
直到18 世纪末至19 世纪中叶,这种排列形式在线性方程组和行列式计算中应用日益广泛,行列式的发展提供了矩阵发展的条件。
矩阵的早期发展,除了矩阵理论在内容上的发展,即从不同领域的研究中发展出来的有关矩阵的概念,以及随之引起的相似、对角化和标准型的矩阵分类以外,还有矩阵发展中更深刻的一面,即西尔维斯特、凯莱等人在行列式和矩阵理论上的发展及思想,这为代数不变量理论的创立奠定了理论基础。
一、矩阵早期发展的社会与文化背景矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。
“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语。
而实际上,矩阵这个课题在诞生之前就已经发展的很好了。
从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。
在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。
英国数学家凯莱 (A.Cayley,1821-1895) 一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。
凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号。
1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论。
文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念,指出了矩阵加法的可交换性与可结合性。
另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果。
凯莱出生于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转从律师职业,工作卓有成效,并利用业余时间研究数学,发表了大量的数学论文。
矩阵论对代数的奥秘
矩阵论对代数的奥秘
矩阵论是数学中的一个重要分支,它研究的是关于矩阵的性质和运算规律。
矩阵论的奥秘在于其深刻地揭示了代数的本质和规律。
通过矩阵论的研究,我们可以更好地理解代数的各种现象和变换。
我们来了解一下矩阵的基本概念。
矩阵是由数个数按照一定的规律排列成的矩形阵列,它是代数中的一个重要工具。
矩阵的行数和列数分别称为矩阵的阶数,而矩阵中的每个数称为元素。
通过矩阵我们可以进行各种运算,如加法、乘法等,这些运算都有自己的规则和性质。
矩阵论的奥秘在于其揭示了代数中的隐藏规律。
通过矩阵论的研究,我们可以发现代数中的一些共性和联系。
例如,矩阵乘法的结合律和分配律与代数中的乘法运算具有相似性,这说明了矩阵与代数之间的内在联系。
矩阵论还揭示了矩阵的特征值和特征向量与代数中的特征根和特征向量之间的关系,这为解决代数方程提供了新的思路和方法。
矩阵论的研究还深刻影响了其他领域的发展。
在计算机科学中,矩阵论被广泛应用于图像处理、人工智能等领域。
矩阵的线性变换性质为图像的压缩、旋转、平移等操作提供了重要的数学基础。
在物理学中,矩阵论被用于描述量子力学中的各种物理现象。
矩阵的对角化和正交性质为量子力学的研究提供了重要的工具和思路。
矩阵论的奥秘在于它揭示了代数的本质和规律。
通过矩阵论的研究,我们可以更好地理解代数的各种现象和变换。
矩阵论的应用也深刻影响了其他领域的发展。
矩阵论不仅是一门重要的学科,更是人类智慧的结晶,它的奥秘将继续为我们带来无尽的思考和探索。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵论线性空间定义:本质是个集合,满足一定条件下的集合。
首先定义了加法运算(满足加法的交换结合律),在这个集合中能找到零元素,与负元素;然后定义数乘运算(数域上的元素与集合当中的元素相乘),并且满足数乘的分配,结合律(集合中的元素能否进行乘法运算并没有定义)。
最后指出,这些运算都是封闭的,运算的结果与集合中的元素唯一对应。
称这样的一个集合为线性空间。
注意:运算结果与集合中的元素对应。
例如0*a=0(此零非彼零,不是数域里的零,而是线性空间当中的零,即集合当中的零元素<很可能不是零>)核空间:矩阵A对应于齐次线性方程组Ax=0的解空间。
子空间:线性空间对应集合的一个子集,并且也满足线性空间的定义的一个子集。
其中,零空间,与线性空间本身构成平凡子空间,还存在的其他子空间构成非平凡子空间。
矩阵A的核空间就是他的一个子空间,相当于对矩阵A构成的空间中的元素进行了限定。
矩阵A的列向量的线性组合构成了矩阵A的值域空间(其中的基为最大无关组的个数)。
注意:子空间交,与子空间的和任然为子空间,但子空间的并集不一定再是子空间。
属于两个子空间的线性无关的两个基的并基构成新的元素,但是这个元素不在属于原来的两个子空间的任意一个。
子空间中的几个等价定义:(1)直和定义为V1与V2的交空间只包含零元素(不一定是数字零),构成零子空间(2)直和空间中的元素表达式唯一。
(3)V1的基于V2的基直接构成直和空间的基。
(4)和空间的维度等于V1与V2维度的和。
线性映射性质:(1)V1的零元素经过线性映射变为V2的零元素(2)线性相关组经过线性映射之后任然为线性相关(3)线性无关组经过单射线性映射后任然为线性无关同构:两个线性空间之间存在一个一一对应的线性变换,则称这两个矩阵是同构的。
相应的线性变换称为同构映射。
任一线性空间都能够找到一个数域向量与其同构,这个向量就是坐标。
线性变换T的秩,线性映射的坐标表示:T表示线性空间到线性空间的映射,在具体的基底下(两个线性空间基都确定的情况),可以由一个矩阵A表示T,为V到V‘的线性映射。
(区别去前面提到的过渡矩阵,过渡矩阵指的在同一个线性空间中,两组不同基底之间的过渡,过渡矩阵可以看做线性映射的特例,在V与V’是同一个线性空间的情况下,过渡矩阵跟线性变换相同)。
在空间V中的任一向量a在V的基底下的坐标为x,则对应像T(a)在V‘基底下的坐标y=Ax.线性空间之间的线性映射与在某一组特定基下的表示矩阵一一对应。
线性映射的全体与数组矩阵一一对应。
线性映射跟线性变换的区别:映射是两个线性空间之间的,变换是一个线性空间中的。
(有时候不加区别)同一线性变换在不同基底下的表示:T是V空间的一个线性变换,在基底a下的表示矩阵为A,在基底b下的表示矩阵为B,由基a到基b的过渡矩阵为P则:B=P-1AP。
注意:基底a到基底b的过渡矩阵可以看做是一个线性变换的矩阵表示(同一空间不同基底,区别于同一空间相同基底),这个表示矩阵的基底是a,b。
这里的T是一个线性变换,A,B 是他在基底a,b下的表示矩阵(同一空间,相同基底)。
线性映射也是一个线性空间:在定义了线性映射的加法与数乘运算后,V到V‘线性映射的全体构成了线性空间。
称在两个不同线性空间之间的线性映射为线性映射空间,在同一个线性空间中的线性映射为线性变换空间。
注意:线性映射跟矩阵一一对应,矩阵的逆就是线性变换的逆变换。
内积空间:定义了内积的实线性空间称为欧式空间,定义了内积的复线性空间称为酉空间。
内积:(a,b)与一个实数相对应。
且满足:交换律,数乘结合律,分配率,(a,a)>=0,且(a,a)=0等价于a=零元素。
只有欧式空间(酉空间),定义了内积运算,才可以用内积运算求坐标(这是基底必须是标准正交基),才能用坐标相乘相加求内积。
正交矩阵与酉矩阵:若A H A=I,A为酉矩阵,若A T A=I ,A为正交矩阵。
A的列向量组是标准正交向量组,A的行向量组是标准正交向量组。
正交矩阵行列式的值为1.(列向量组单位化的正交向量组)正定矩阵:对任一向量x,如果x T Ax>0,则A 为正定矩阵。
正规矩阵:A H A=AA H,则A是个正规矩阵。
例如:实对称矩阵,实反对称矩阵,正交矩阵,酉矩阵,hermit矩阵(A H=A)反hermit矩阵都是正规矩阵。
正交变换:对酉空间中的变换T,如果(T(a),T(b))=(a,b),则T称为正交变换。
酉(正交)变换是保持内积不变的变换;正交变换保持向量的长度不变;正交变换将标准正交基变为标准正交基;正交变换在任一标准正交基下的表示矩阵式正交矩阵。
正交投影:W的一组标准正交基构成的矩阵M,a在W 上的正交投影a w=M(M H M)-1M H a.定义在自然基下的标准正交投影变换对应的矩阵称为标准正交投影矩阵。
Pw=M(M H M)-1M H, (M H M)-1M H a为a w在M基上的坐标特征值,特征向量,特征方程等某一特征值的代数重数等于他特征多项式中特征值的重根重数,几何重复数等于特征子空间的维数,相当于某一特定特征值对应特征方程(齐次方程)的基础解系个数。
相似变换:P-1AP=B,则A与B相似,P称为相似变换矩阵,若A相似于一个对角阵则称A为可相似对角化的,也称为是单纯矩阵。
相似矩阵秩相等;幂矩阵相似;矩阵多项式相似;迹相等;行列式相等;特征值相同。
注意:利用矩阵对角化可以将一个状态方程(微分方程),解耦(化解后的方程组中的每个方程都是独立的)。
酉相似对角化:任一方阵都与上三角矩阵酉相似;即存在酉矩阵将一个方阵对角化为一个上三角矩阵。
但是酉相似于一个对角阵的充要条件是A是正规矩阵。
Hermite矩阵的一些等价命题(1)A是正定矩阵;A的n个特征值全是正数;存在可逆Q,使得A=Q H Q;A的各阶顺序主子式全大于0.(2)A是半正定矩阵;A的n个特征值全是非负实数;A的各阶顺序主子式全都大于等于0.相似等价:两个矩阵相似等价于:两个矩阵的特征矩阵相似;可以经过初等变换相互转换。
行列式因子:多项式矩阵所有K阶子式的最大公因式如果不为0(首1多项式),则称这个最大公因式为K阶行列式因子,记为D k()。
λI—A的行列式因子称为A的行列式因子。
有一阶行列式因子,二阶行列式因子…….高阶的可以被低阶的整除。
矩阵A 的法式定义为:A的特征矩阵多项式矩阵。
diag(d1(λ),d2(λ)……)d n(λ)=D n(λ)/D n-1(λ)不变因子:dn(λ)称为不变因子,初等因子:将次数大于0的不变因子在复数域内分解为互不相同的一次因式方幂乘积,每个方幂因式称为初等因子。
求一个矩阵的相似的jordan标准型,先求行列式因子,再求不变因子,再求出初等因子,再利用初等因子的根,及其重数写出jordan标准型。
()注意:要判断不同初等因子根代数重数是否等于其几何重数。
矩阵的最小多项式:一个多项式P(X),将矩A阵带入,使得P(A)=0的多项式称为A的化零多项式。
其中次数最小的一个多项式称为最小多项式。
A的特征多项式是他的一个化零多项式。
矩阵A的最小多项式为A的第N个不变因子。
由A的所有互不相同的特征值构成的(A-A1)因式的乘积,次数为特征值对应J ORDAN 的最高阶数。
最小多项式性质:(1)唯一,(2)相似矩阵最小多项式相同(3)最小多项式与特征多项式有相同的零点(4)准对角阵的最小多项式等于其诸对角块的最小多项式的最小公倍数。
向量范数,矩阵范数:满足非负性,齐次性,三角不等式。
向量1范数为向量坐标的绝对值和,2范数为模长,无穷范数为坐标绝对值中最大的。
诱导矩阵范数:又叫矩阵的算子范数,任一向量范数,对于任意矩阵,有矩阵范数‖A‖=MAX‖A X‖,在‖X‖=1的情况下。
矩阵1范数:相当于取矩阵的元素绝对值列和中最大的列和。
(每一列中的元素去绝对值相加)矩阵2范数:又叫普范数,取A H A的最大特征值的开方矩阵无穷范数:行和范数。
矩阵的F范数:取A H A的迹的开方,或者每个元素平方和在再取算术平方谱半径是矩阵范数的下界并且是最大下界。
条件数:定义:COND(A)=A的范数×A逆的范数,如果COND(A)很大,则(A+DELTA A)-1就很大,也就是求逆将A矩阵的误差放大了(在运算中)。
特征值估计:特征值的平方和小于等于矩阵中每个元素的平方和,即F范数的平方。
A为方阵,B=1/2(A+A H),C=1/2(A-A H),则A的任一特征值满足|特征值|小于等于‖A‖M无穷范数,|特征值的实部|小于等于|‖B‖M无穷范数,|特征值的虚部|小于等于‖C‖的M无穷范数。
(代表任意向量诱导得到的矩阵的无穷范数)盖尔圆:矩阵对角线为圆心,该行元素绝对值之和(除对角线元素)为半径。
矩阵级数:类似数量级数,就是一系列矩阵,收敛的判定依据矩阵的谱半径,谱半径小于1收敛,大于1发散。
一类特殊矩阵级数,前N项和每项前面的系数为1,称为neumann级数,前N项和收敛于(I-A)-1矩阵函数:矩阵函数其实完全是类比定义,在矩阵的谱半径小于数量级数的收敛半径条件下直接移植。
求矩阵函数值:(1)jordan标准型法:将A=PJP-1,f(A)=Pf(J)P-1,其中f(J),由前面的矩阵函数定义求得,经过处理得到公式:…………….(2)多项式法:求出A的最小多项式(或者化零多项式),设一个多项式最高次数不超过A的最小多项式次数(超过部分为0),利用待定系数法(将特征值带入多项式,带入要求的源函数,各阶倒数相等),求得所设多项式的系数,将多项式中的变量用A替换,即可。
(3)(2)给出了另外一种矩阵函数的定义,可以要求矩阵级数不用收敛。
用有限次多项式定义矩阵函数,函数矩阵:矩阵的元素是函数,区别于矩阵函数,矩阵式函数的变量。
函数矩阵可导,可微的对象其实就是矩阵元素中的函数,没啥高级的。
求导,求积分,同样也是对矩阵元素分别求导,求积分。
矩阵函数在求解微分方程方面的应用:比起前面的jordan化,可以直接对矩阵函数进行积分微分运算。
矩阵正交分解:将A(m×n矩阵)分解为QR,其中Q为m×n阶具有单位正交列的矩阵(Q T Q=I),R为n阶上三角矩阵。
A可以被正交分解的条件是A具有n线性无关的列向量组(列满秩)方法:(1) 正交化法:去A 的n 个线性无关列向量组(基a ),将其单位正交化(基e),然后找到e 到a 的过度矩阵B (a 由e 表示出),则Q=E,R=B(2) Householder 变换法方便计算机实现可以用来求解最小二乘解,求方程组:Rx=Q T b.满秩分解(不唯一):将矩阵A (m ×n )分解为一个列满秩矩阵F (m ×r )和行满秩G (r ×n ).方法:利用行初等变换把A 化为最简阶梯型H 矩阵(某一行1所在列的其他元素为0),找到线性无关的列,对应到原矩阵A 中,取原矩阵A 中线性无关的列构成F ,取H 矩阵1所在的前几行构成G 。