流体力学习题及答案-第七章
流体力学习题及答案

流体力学与叶栅理论 课程考试试题一、 选择题(每小题1分,共10分)1、在括号内填上“表面力”或“质量力”:摩擦力( ); 重力( ); 离心力( ); 浮力( ); 压力( )。
2、判断下列叙述是否正确(对者画√,错者画╳):(a) 基准面可以任意选取。
( )(b) 流体在水平圆管内流动,如果流量增大一倍而其它条件不变的话,沿程阻力也将增大一倍。
( )(c) 因为并联管路中各并联支路的水力损失相等,所以其能量损失也一定相等。
( )(d) 定常流动时,流线与迹线重合。
( )(e) 沿程阻力系数λ的大小只取决于流体的流动状态。
( )二、 回答下列各题(1—2题每题5分,3题10分,共20分)1、什么是流体的连续介质模型?它在流体力学中有何作用?2、用工程单位制表示流体的速度、管径、运动粘性系数时,管流的雷诺数410Re ,问采用国际单位制时,该条件下的雷诺数是多少?为什么?3、常见的流量的测量方法有哪些?各有何特点?三、计算题(70分)1、如图所示,一油缸及其中滑动栓塞,尺寸D =120.2mm ,d =119.8mm ,L =160mm ,间隙内充满μ=·S的润滑油,若施加活塞以F=10N的拉力,试问活塞匀速运动时的速度是多少?(10分)题1图2、如图所示一盛水容器,已知平壁AB=CD=2.5m,BC及AD为半个圆柱体,半径R=1m,自由表面处压强为一个大气压,高度H=3m,试分别计算作用在单位长度上AB面、BC面和CD面所受到的静水总压力。
(10分)题2图3、原型流动中油的运动粘性系数υp=15×10-5m2/s,其几何尺度为模型的5倍,如确定佛汝德数和雷诺数作为决定性相似准数,试问模型中流体运动粘性系数υm=?(10分)4、如图所示,变直径圆管在水平面内以α=30。
弯曲,直径分别为d1=0.2m,d2=0.15m,过水流量若为Q=0.1m3/s,P1=1000N/m2时,不计损失的情况下,求水流对圆管的作用力及作用力的位置。
流体力学6,7,8章课后题答案

第六章 6-1解:层流状态下雷诺数Re 2000< 60.1Re 6.710vdv υ-⨯==⨯ ⇒60.120006.710v -⨯<⨯⇒62000 6.710/0.10.134(/)v m s -<⨯⨯= 即max 0.134/v m s =223max max max 0.13.140.1340.00105/ 1.05/44d Q Av v ms L sπ===⨯⨯≈=6-2解:层流状态下雷诺数Re 2000<3Re 20000.910120000.0450.1()vd d m d ρυ-=<⨯⨯⨯⇒<⇒<6-3解:3221.66100.21(/)0.13.1444Q v m s d π-⨯==≈⨯临界状态时Re 2000=52533Re Re0.210.1 1.0510(/)20001.05100.88109.2410()vd vd m s Pa s υυυμυρ---=⇒=⨯⇒==⨯⇒==⨯⨯⨯=⨯⋅ 6-4解:当输送的介质为水时:32210101270131444.(/)..Q v m s d π-⨯===⨯ 612701838632000151910..Re .vd υ-⨯===>⨯水 3015100001501...d -∆⨯== 根据雷诺数和相对粗糙度查莫迪图可知流态为水力粗糙。
当输送的介质为石油时:质量流量与水相等3310101010(/)Q kg s -=⨯⨯=31000118850.(/)Q m s == 2200118150********..(/)..Q v m s d π===⨯ 415030113184200011410..Re .vd υ-⨯===>⨯水3015100001501...d -∆⨯== 根据雷诺数和相对粗糙度查莫迪图可知流态为水力光滑。
6-5解:判断流态需先求出雷诺数()2900036009000088023144./..Re Q v m s Avd υ÷===⨯=冬季:421101./m s υ-⨯=40088021608820001110..Re ..vd υ-⨯===<⨯ ⇒ 流态为层流。
《工程流体力学》习题1~7章参考答案

等
学
校
教
材
过程装备与控制工程专业核心课程教材
工程流体力学
习题参考答案
主讲:陈庆光
化学工业出版社教材出版中心
黄卫星, 陈文梅主编. 工程流体力学, 北京:化学工业出版社教材出版中心,2001.8
习题 1-1 如图 1-9 所示,一个边长 200mm 重量为 1kN 的滑块在 20 斜面的油膜上滑动,油膜 厚度 0.005m,油的粘度 µ = 7 × 10−2 Pa ⋅ s 。设油膜内速度为线性分布,试求滑块的平衡速度。
V= 1000 3 1000 (因为是正方形容器,厚度为 3m) 。 m 的油,使左侧容器中的油的高度增加了 ρ油 g 3ρ油 g
假设此时右侧容器的水位在原来的基础上升高了 ym,则根据左右容器的尺寸关系,左侧的油 柱将下降 2ym。再根据等压面(等压面下降了 2ym 的高度)的性质有: 1000 1000 + ρ油 g h ( y + 2 y ) + (3 − 2) ⇒ y = 9 ρ g ≈ 0.01134m = 11.34mm 3ρ g = ρ水 g 水 油 习题 3-2 在海中一艘满载货物的船,其形态如图 3-10 所示。船底长度 12m,舱体宽度(垂直 于纸面)上下均为 6m,船长两端梯度均为 45 ,并近似取海水的密度为 1000 kg m3 。求船加 上货物的总质量。
参考答案 3
∂v ∂v y ∂vx ∂vz ∂v y ∂vx − − Ω = ∇×v = z − i + j+ ∂y ∂z ∂z ∂x ∂x ∂y ∂v ∂v cz cy j− k = x j+ x k = ∂z ∂y y2 + z2 y2 + z2
工程流体力学 禹华谦 习题答案 第7章

7.1 水以来流速度v 0=0.2m/s 顺流绕过一块平板。
已知水的运动粘度s /m 10145.126-⨯=ν,试求距平板前缘5m 处的边界层厚度。
【解】计算x=5m 处的雷诺数50x 107.8/x v Re ⨯=ν=该处的边界层属湍流m 12.0)107.8(537.0Re x 37.051551x=⨯==δ7.2 流体以速度v 0=0.8m/s 绕一块长 L=2m 的平板流动,如果流体分别是水(s /m 10261-=ν)和油(s /m 108252-⨯=ν),试求平板末端的边界层厚度。
【解】先判断边界层属层流还是湍流水:610L 106.1/L v Re ⨯=ν= 油:520L 102/L v Re ⨯=ν=油边界层属层流m 077.08.02108477.5v L 477.5502=⨯⨯=ν=δ-水边界层属湍流m 042.0)106.1(237.0Re L 37.051651L=⨯==δ7.3 空气以速度v 0=30m/s 吹向一块平板,空气的运动粘度s /m 101526-⨯=ν,边界层的转捩临界雷诺数6xcr 10Re =,试求距离平板前缘x=0.4m 及x=1.2m 的边界层厚度。
空气密度3m /kg 2.1=ρ。
【解】(1)x=0.4m ,xcr 60x Re 108.0/x v Re <⨯=ν=,为层流边界层m 0024.0304.01015477.5v x 477.560=⨯⨯=ν=δ- (2)x=1.2m ,xcr 60x Re 104.2/x v Re >⨯=ν=,为湍流边界层m 023.0)104.2(2.137.0Re x 37.051651x=⨯==δ7.4 边长为1m 的正方形平板放在速度v 0=1m/s 的水流中,求边界层的最大厚度及双面摩擦阻力,分别按全板都是层流或者都是湍流两种情况进行计算,水的运动粘度s /m 1026-=ν。
【解】b=1m, L=1m, 60L 10/L v Re =ν=层流: m 005.01110477.5v L 477.560=⨯=ν=δ- 3Lf 1046.1Re 46.1C -⨯==N 46.1bL 2C v 21F f 20D =ρ=湍流: m 023.0)101(137.0Re L 37.051651L =⨯==δ 32.0L f 105.4)(Re 072.0C -⨯==N 5.4bL 2C v 21F f 20D =ρ=7.5 水渠底面是一块长L=30m ,宽b=3m 的平板,水流速度v 0=6m/s ,水的运动粘度s /m 1026-=ν,试求:(1)平板前面x=3m 一段板面的摩擦阻力;(2)长L=30m 的板面的摩擦阻力【解】设边界层转捩临界雷诺数5xcr 105Re ⨯=,因为5cr 0105/x v ⨯=ν,所以 m 083.0x cr =(1) x=3m ,平板边界层为混合边界层60x 1018/x v Re ⨯=ν=0025.01805)002.00053.0(0026.0Re Re )Re 46.1Re 074.0(Re 074.0C xxcr xcr 5xcr5xfm =--=--=N 406bL v 21C F 20fmD =ρ= (2) L=30m ,平板边界层为混合边界层60L 10180/L v Re ⨯=ν=00159.018005)002.00053.0(0016.0Re Re )Re 46.1Re 074.0(Re 074.0C Lxcr xcr 5xcr5Lfm =--=--=N 2577bL v 21C F 20fm D =ρ=7.6 一块面积为m 8m 2⨯的矩形平板放在速度s /m 3v 0=的水流中,水的运动粘度s /m 1026-=ν,平板放置的方法有两种:以长边顺着流速方向,摩擦阻力为F 1;以短边顺着流速方向,摩擦阻力为F 2。
第七章流体力学习题答案

5第五章习题简答5-1有一薄壁圆形孔口,直径d= 10mm ,水头H 为2m 。
现测得射流收缩断面的直径d c为8mm ,在32.8s 时间内,经孔口流出的水量为0.01m 3,试求该孔口的收缩系数ε,流量系数μ,流速系数φ及孔口局部损失系数ζ。
解: 64.010822=⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛==d d A A c cεs m dQv /06.6008.08.32/01.04422=⨯⨯==ππ62.097.064.006.0197.011197.028.9206.62222=⨯===-=-==⨯⨯==⇒=εϕμϕζϕϕgHv gH v5-2薄壁孔口出流,直径d=2cm ,水箱水位恒定H=2m ,试求:(1)孔口流量Q ;(2)此孔口外接圆柱形管嘴的流量Q n ;(3)管嘴收缩断面的真空高度。
题5-2图解:(1)孔口出流流量为s L s m gH A Q /219.1/10219.128.9202.0462.02332=⨯=⨯⨯⨯⨯⨯==πϕ(2)s L gH A Q n /612.128.9202.0482.022=⨯⨯⨯⨯⨯==πμ(3)真空高度:m H gp g p CCv48.1274.074.0=⨯==-=ρρ5-3 水箱用隔板分为A 、B 两室,隔板上开一孔口,其直径d 1=4cm ,在B 室底部装有圆柱形外管嘴,其直径d 2=3cm 。
已知H=3m ,h 3=0.5m 试求:(1)h 1,h 2;(2)流出水箱的流量Q 。
题5-3图解:隔板孔口的流量 112gh A Q μ=圆柱形外管嘴的流量 ()()132222h H g A h h g A Q +=+=μμ由题意可得Q1=Q2,则()()1212122212111211303.082.004.062.022h h h Hd h d h H g A gh A -⨯⨯=⨯⨯+=+=μμμμ解得m h 07.11=sL s m gh A Q mh h H h /56.3/1056.307.18.9204.0462.0243.15.007.1333211312=⨯=⨯⨯⨯⨯⨯==∴=--=--=∴-πμ5-4 有一平底空船,其船底面积Ω为8m 2,船舷高h 为0.5m ,船自重G 为9.8kN 。
工程流体力学课后习题答案4-7章

第四章 流体动力学【4-1】直径d =100mm 的虹吸管,位置如图所示。
求流量和2、3点的压力(不计水头损失)。
【解】列1、4点所在断面的伯努利方程,以过4点的水平面为基准面。
24500 0029.8v ++=++⨯得 4 =9.9 m/s v 2234 3.140.19.90.078 m /s 44π==⨯⨯=Q d v列1、2点所在断面的伯努利方程,以过1点的水平面为基准面222000 02p v g gρ++=++ (v 2=v 4)得 2242210009.9 4.910Pa 22ρ⨯=-=-=-⨯v p列1、3点所在断面的伯努利方程,以过1点的水平面为基准面233000 22p v g gρ++=++ (v 3=v 4)得 2439.9298001000 6.8610Pa 2=-⨯-⨯=-⨯p【4-2】一个倒置的U 形测压管,上部为相对密度0.8的油,用来测定水管中点的速度。
若读数△h =200mm ,求管中流速u =?【解】选取如图所示1-1、2-2断面列伯努利方程,以水管轴线为基准线212 0 002w w p p u g g gρρ++=++其中:p 1和p 2分别为1-1、2-2断面轴线上的压力。
设U 形测压管中油的最低液面到轴线的距离为x ,选取U 形测压管中油的最高液面为等压面,则12()w o w p gx g h p g x h ρρρ--∆=-+∆题 4-1图21()w o p p g h ρρ-=-∆则0.885m/s u ==【4-3】图示为一文丘里管和压力计,试推导体积流量和压力计读数之间的关系式。
当z 1=z 2时,ρ=1000kg/m 3,ρH =13.6×103kg/m 3,d 1=500mm ,d 2=50mm ,H =0.4m ,流量系数α=0.9时,求Q =? 【解】列1-1、2-2断面的伯努利方程、以过1-1断面中心点的水平线为基准线。
(完整版)工程流体力学习题集及答案

第1章 绪论选择题【1.1】 按连续介质的概念,流体质点是指:(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
解:流体质点是指体积小到可以看作一个几何点,但它又含有大量的分子,且具有诸如速度、密度及压强等物理量的流体微团。
(d ) 【1.2】 与牛顿内摩擦定律直接相关的因素是:(a )切应力和压强;(b )切应力和剪切变形速度;(c )切应力和剪切变形;(d )切应力和流速。
解:牛顿内摩擦定律是d d v y τμ=,而且速度梯度d d vy 是流体微团的剪切变形速度d d t γ,故d d t γτμ=。
(b )【1.3】 流体运动黏度υ的国际单位是:(a )m 2/s ;(b )N/m 2;(c )kg/m ;(d )N·s/m 2。
解:流体的运动黏度υ的国际单位是/s m 2。
(a )【1.4】 理想流体的特征是:(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RTp =ρ。
解:不考虑黏性的流体称为理想流体。
(c )【1.5】当水的压强增加一个大气压时,水的密度增大约为:(a )1/20 000;(b )1/1 000;(c )1/4 000;(d )1/2 000。
解:当水的压强增加一个大气压时,其密度增大约95d 1d 0.51011020 000k p ρρ-==⨯⨯⨯=。
(a )【1.6】 从力学的角度分析,一般流体和固体的区别在于流体:(a )能承受拉力,平衡时不能承受切应力;(b )不能承受拉力,平衡时能承受切应力;(c )不能承受拉力,平衡时不能承受切应力;(d )能承受拉力,平衡时也能承受切应力。
解:流体的特性是既不能承受拉力,同时具有很大的流动性,即平衡时不能承受切应力。
(c )【1.7】下列流体哪个属牛顿流体:(a )汽油;(b )纸浆;(c )血液;(d )沥青。
流体力学习题及答案-第七章(DOC)

第七章 粘性流体动力学7-1 油在水平圆管内做定常层流运动,已知75=d (mm ),7=Q (litres/s ),800=ρ (kg/m 3),壁面上480=τ(N/m 2),求油的粘性系数ν。
答:根据圆管内定常层流流动的速度分布可得出2081m u λρτ=; 其中:λ是阻力系数,并且Re64=λ; m u 是平均速度,585.1075.014.325.010741232=⨯⨯⨯==-d Qu m π(m/s )。
由于阻力系数208m u ρτλ=,因此0202886464Re τρτρλmm u u ===; 即:28τρνmm u du =;所以油的粘性系数为401055.3585.18008075.0488-⨯=⨯⨯⨯==m u d ρτν(m 2/s )。
7-2 Prandtl 混合长度理论的基本思路是什么?答:把湍流中流体微团的脉动与气体分子的运动相比拟。
7-3无限大倾斜平板上有厚度为h 的一层粘性流体,在重力g 的作用下做定常层流运动,自由液面上的压力为大气压Pa ,且剪切应力为0,流体密度为ρ,运动粘性系数为ν,平板倾斜角为θ。
试求垂直于x 轴的截面上的速度分布和压力分布。
答:首先建立如图所示坐标系。
二维定常N-S 方程为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=∂∂+∂∂22221y u x u x pf y u v x u u x νρ ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=∂∂+∂∂22221y v x v y pf y v v x v u y νρ 对于如图所示的流动,易知()y u u =,()y p p =,0=v ,θsing f x =,θcos g f y -=;即x 方向速度u 和压力p 仅是y 的函数,y 方向速度分量0=v 。
因此上式可改写为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=∂∂2222y u x u f x uu x ν ypf y ∂∂=ρ1 由不可压缩流体的连续方程0=∂∂+∂∂y v x u 可知,由于0=v ,0=∂∂yv,则0=∂∂x u ; 则上式可进一步简化为:022=∂∂+yuf x ν (1)ypf y ∂∂=ρ1 (2) 对于(1)式,将θsin g f x =代入,则有:θνsin 122g y u -=∂∂ 两端同时积分,得到:1sin 1C y g y u +-=∂∂θν由于当h y =时,0=∂∂=yuμτ,即0=∂∂y u ,代入上式有:h g C θνsin 11=因此:y g h g y u θνθνsin 1sin 1-=∂∂ 两端再次同时积分,得到:()22sin 21sin 1C y g hy g y u +-=θνθν由于0=y 时,()00=u ,代入上式,知02=C ;则有:()⎪⎭⎫ ⎝⎛-=221sin 1y hy g y u θν 若将ρμν=代入,则上式成为: ()⎪⎭⎫ ⎝⎛-=221sin y hy g y u θμρ 该式即为流动的速度分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 粘性流体动力学7-1 油在水平圆管内做定常层流运动,已知75=d (mm ),7=Q (litres/s ),800=ρ (kg/m 3),壁面上480=τ(N/m 2),求油的粘性系数ν。
答:根据圆管内定常层流流动的速度分布可得出2081mu λρτ=; 其中:λ是阻力系数,并且Re64=λ; m u 是平均速度,585.1075.014.325.010741232=⨯⨯⨯==-d Qu m π(m/s )。
由于阻力系数208m u ρτλ=,因此0202886464Re τρτρλmm u u ===; 即:28τρνmm u du =;所以油的粘性系数为401055.3585.18008075.0488-⨯=⨯⨯⨯==m u d ρτν(m 2/s )。
7-2 Prandtl 混合长度理论的基本思路是什么?答:把湍流中流体微团的脉动与气体分子的运动相比拟。
7-3无限大倾斜平板上有厚度为h 的一层粘性流体,在重力g 的作用下做定常层流运动,自由液面上的压力为大气压Pa ,且剪切应力为0,流体密度为ρ,运动粘性系数为ν,平板倾斜角为θ。
试求垂直于x 轴的截面上的速度分布和压力分布。
答:首先建立如图所示坐标系。
二维定常N-S 方程为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=∂∂+∂∂22221y u x u x pf y u v x u u x νρ ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=∂∂+∂∂22221y v x v y p f y v v x v u y νρ 对于如图所示的流动,易知()y u u =,()y p p =,0=v ,θsin g f x =,θcos g f y -=;即x 方向速度u 和压力p 仅是y 的函数,y 方向速度分量0=v 。
因此上式可改写为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+=∂∂2222y u x u f x uu x ν ypf y ∂∂=ρ1 由不可压缩流体的连续方程0=∂∂+∂∂y v x u 可知,由于0=v ,0=∂∂y v ,则0=∂∂xu ; 则上式可进一步简化为:022=∂∂+yuf x ν (1)ypf y ∂∂=ρ1 (2) 对于(1)式,将θsin g f x =代入,则有:θνsin 122g y u -=∂∂ 两端同时积分,得到:1sin 1C y g y u +-=∂∂θν由于当h y =时,0=∂∂=yu μτ,即0=∂∂y u,代入上式有: h g C θνsin 11=因此:y g h g y u θνθνsin 1sin 1-=∂∂ 两端再次同时积分,得到:()22sin 21sin 1C y g hy g y u +-=θνθν由于0=y 时,()00=u ,代入上式,知02=C ;则有:()⎪⎭⎫ ⎝⎛-=221sin 1y hy g y u θν 若将ρμν=代入,则上式成为: ()⎪⎭⎫ ⎝⎛-=221sin y hy g y u θμρ 该式即为流动的速度分布。
对于(2)式,将θcos g f y -=代入,有:θρcos g yp-=∂∂ 两端同时积分得到:()C y g y p +-=θρcos由于当h y =时,()a p h p =,代入上式有:h g p C a θρcos +=因此:()()y h g p y g h g p y p a a -+=-+=θρθρθρcos cos cos该式即为流动的压力分布。
7-4两块无限长二维平行平板如图所示,其间充满两种粘性系数分别为1μ和2μ,密度分别为1ρ和2ρ的液体,厚度分别为1h 和2h 。
已知上板以等速0v 相对于下板向右作平行运动,整个流场应力相同(不计重力),流动是层流,求流场中速度和切应力的分布。
答:首先建立如图所示的坐标系。
当不计及质量力时,平面定常层流流动的N-S 方程为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=∂∂+∂∂22221y u x u x py u v x u u νρ ⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂-=∂∂+∂∂22221y v x v y p y v v x v u νρ显然,y 方向的速度分量0=v ;由不可压缩流体的连续方程可知0=∂∂+∂∂y v x u ,可知0=∂∂xu ,u 仅仅是y 的函数,即()y u u =,所以上式可重新整理成为:221dyyd x p νρ=∂∂⋅ (1) 01=∂∂⋅yp ρ (2) 由(2)式知道,0=∂∂yp,p 仅仅是x 的函数()x p p =。
将(1)式分区域写成:xpdy u d ∂∂=1221μ 10h y ≤≤ xpdy u d ∂∂=2221μ 02≤≤-y h 分别对两式两端同时积分得到:111C y xp dy du +∂∂=μ 10h y ≤≤ (3) 221C y xp dy du +∂∂=μ 02≤≤-y h (4) 即111C y xp dy du μμ+∂∂= 10h y ≤≤ 222C y xp dy du μμ+∂∂= 02≤≤-y h 由于当0=y 时,两种流体界面上的剪切应力相同,即dydu dy du 21μμ=,因此有: 2211C C μμ=,(3)(4)两式化为:111C y xp dy du +∂∂=μ 10h y ≤≤ (3)′ 12121C y x p dy du μμμ+∂∂= 02≤≤-y h (4)′ 分别对(3)′和(4)′两式两端同时积分得到:312121C y C y xp u ++∂∂=μ 10h y ≤≤41212221C y C y x p u ++∂∂=μμμ 02≤≤-y h由于当0=y 时,两种流体界面上的速度相同,得43C C =,则:312121C y C y xp u ++∂∂=μ 10h y ≤≤ (5)31212221C y C y x p u ++∂∂=μμμ 02≤≤-y h (6)当1h y =时,0v u =,带入到(5)式;当2h y -=时,0=u ,带入到(6)式;得到:031121121v C h C h xp =++∂∂μ (7)02132121222=+-∂∂C h C h x p μμμ (8)(7)(8)两式相减,经整理后得到:()xph h h h v h h C ∂∂⋅+-⋅++=21121212221021122121μμμμμμμμ将1C 代入(8)式,经整理后得到:()()()xph h h h h h v h h h h x p x p h h h h v h h h h xp C h C ∂∂⋅++⋅-+=∂∂-⎪⎪⎭⎫ ⎝⎛∂∂⋅+-⋅++=∂∂-=211221210211221222211212122210211222212221221321 2121 21μμμμμμμμμμμμμμμμμμμ 将1C 和3C 代回到(5)(6)两式,则可得到两种流体中的速度分布;将(3)′和(4)′两式两端分别乘以1μ和2μ,并将1C 代入,可得到应力分布分别为:dy du 11μτ= dydu 22μτ=。
7-5 直径为15mm 的光滑圆管,流体以速度14m/s 在管中流动,是确定流体的状态。
又若要保持为层流,最大允许速度是多少?这些流体分别为(1)润滑油;(2)汽油;(3)水;(4)空气。
已知41010-⨯=润滑油νm 2/s ,610884.0-⨯=汽油νm 2/s 。
答:对于圆管内的流动,临界雷诺数为2300Re =c 。
当流速14=U (m/s )时,各种流体的流动状态如下: (1)润滑油:2101010015.014Re 4=⨯⨯==-νUd,2300Re Re =<c ,为层流流动。
(2)汽油:5610376.210884.0015.014Re ⨯=⨯⨯==-νUd,2300Re Re =>c ,为湍流流动。
(3)水:取水的粘性系数610139.1-⨯=ν(m 2/s )。
5610844.110139.1015.014Re ⨯=⨯⨯==-νUd,2300Re Re =>c ,为湍流流动。
(4)空气:取空气的粘性系数510455.1-⨯=ν(m 2/s )。
4510443.110455.1015.014Re ⨯=⨯⨯==-νUd,2300Re Re =>c ,为湍流流动。
若保持流动为层流状态,则要求2300Re Re =<c ,各种流体的临界速度分别为:2300Re =<c Udν(1)润滑油:3.153015.01010230023004=⨯⨯=⨯=-d U ν(m/s );(2)汽油:136.0015.010884.023*******=⨯⨯=⨯=-d U ν(m/s );(3)水:175.0015.010139.1230023006=⨯⨯=⨯=-d U ν(m/s );(4)空气:231.2015.010455.1230023005=⨯⨯=⨯=-d U ν(m/s )。
7-6 粘性系数μ=39.49x10-3(m 2/s ),γ=7252N/m 2的油流过直径为2.45cm 的光滑圆管;平均流速为0.3m/s 。
试计算30m 长管子上的压力降,并计算管内距管壁0.6cm 处的流速。
答:雷诺数:νdu m =Re ,其中:平均流速:3.0=m u (m/s ); 流体密度:2.73981.97252===gγρ(kg/m 3); 运动粘性系数:5310342.52.7391049.39--⨯=⨯==ρμν(m 2/s )。
因此雷诺数为:6.14210342.50254.03.0Re 5=⨯⨯==-νdu m ,流动状态是层流; 则阻力系数为:449.06.14264Re 64===λ; 压力降为:4.176403.02.739210254.030449.02122=⨯⨯⨯⨯=⋅=∆m u d l p ρλ(N/m 2); 最大流速:6.02max ==m u u (m/s );圆管内沿径向的速度分布为:⎪⎪⎭⎫⎝⎛-=22max 1a r u u ;上式中:7.122/4.25==a (mm ),则在7.667.12=-=r (mm )处,流动速度为:433.07.127.616.01222max =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯=⎪⎪⎭⎫⎝⎛-=a r u u (m/s )。
7-730C 的水流过直径为d=7.62cm 的光滑圆管,每分钟流量为0.340m 3,求在915m 长度上的压力降,管壁上的剪应力0τ及粘性底层的厚度。
当水温下降到5C 时,情况又如何? 答:(1)当水温为30C 时,取水的粘性系数为6108009.0-⨯=ν(m 2/s ) ; 平均流速为:243.10762.014.325.060/34.04122=⨯⨯==d Q u m π(m/s ); 雷诺数为:5610183.1108009.00762.0243.1Re ⨯=⨯⨯==-νdu m ,流动为湍流流动; 查莫迪图谱,得到阻力系数为:017.0=λ;则压力降为:157698243.1100.1210762.0915017.021232=⨯⨯⨯⨯⨯=⋅=∆m u d l p ρλ(N/m 2) =1.58(Pa );管壁上的剪切应力:283.3243.1100.1017.081812320=⨯⨯⨯⨯==m u λρτ(N/m 2);又由于0573.010283.330===ρττu ,并且5=ντyu ,得到粘性底层厚度为: 069.00573.0108009.0556=⨯⨯==-τνu y (mm )。