机器人视觉伺服控制外文文献翻译、中英文翻译

合集下载

机器人机构设计中英文对照外文翻译文献

机器人机构设计中英文对照外文翻译文献
Instiபைடு நூலகம்ute of Printing and Packing Engineering, Xi'an University of Technology
Abstract
In optimal design for robot structures, design modelsneed to he modified and computed repeatedly. Becausemodifying usually can not automaticallyberun, itconsumes a lot of time.Thispaper gives a method thatuses APDL language of ANSYS5.5software togenerate an optimal control program, which mikeoptimal procedure run automatically and optimalefficiency be improved.
A lot of methods are used in optimization design ofstructure. Finite element method is a much effectivemethod. In general, modeling and modifying are manual,whichisfeasible when model is simple. When modeliscomplicated, optimization timeislonger. In the longeroptimization time, calculation time is usually very little,a majorityoftime is used for modeling and modifying.It is key of improving efficiency of structureoptimization how to reduce modeling and modifyingtime.

机器人视觉伺服系统综述

机器人视觉伺服系统综述

机器人视觉伺服系统综述摘要:对机器人视觉伺服系统进行阐述,介绍了机器人视觉伺服系统的概念、发展历程以及研究背景;并从不同的角度对机器人视觉伺服系统进行了分类。

最后介绍了该领域的研究现状、所取得的成就,以及今后的发展趋势。

关键词:机器人;视觉伺服;综述Survey of robot visual servoing systemAbstract:: In this paper,the survey of robot visual servoing system are introduced.The paper reviews the concept and history background of robot visual servoing system.This article also classify the robot visual servo system from different aspects. Finally, it introduce the research status quo, achievements and future trends in the field.Key words:robot, visual servoing, summary1.引言随着先进科学技术的不断发展,机器人已经在生产和生活中起到了越来越重要的作用,因次人们不断对机器人技术提出更高的要求。

为了使机器人能够完成更加复杂的工作,适应更加复杂的环境,机器人不仅需要更加完善的控制统,还需要能够更多的感知环境的变化。

而影响其发展的一个重要原因就是机器人缺少像人一样的感知能力,在人们为机器人添加各种外部传感器的过程中,机器人视觉以其信息大、信息完整成为最重要的机器人感知功能[1]。

机器人的视觉伺服系统是机器人的视觉和机器人控制的相结合的复杂系统。

其内容包括了图像的采集与处理、运动学和动力学、自动控制理论及其系统数据实时分析等领域于一体的新兴交叉学科。

文献翻译(伺服系统中英文翻译)

文献翻译(伺服系统中英文翻译)

武汉轻工大学毕业设计(论文)外文参考文献译文本2014届原文出处指导老师给出毕业设计(论文)题目PMSM伺服系统---MATLAB仿真设计院(系)电气与电子工程学院专业名称自动化学生姓名陈思明学生学号100408903指导教师高峰译文要求:1、译文内容须与课题(或专业)有联系;2、外文翻译不少于4000汉字。

SERVO CONTROL SYSTEMS 1: DC ServomechanismsElke Laubwald: Visiting Consultant, control systems ABSTRACT: This is one of a series of white papers on systems modelling, analysis and control, prepared by Control Systems to give insights into important principles and processes in control. In control systems there are a number of generic systems and methods which are encountered in all areas of industry antechnology. These white papers aim to explain these important systems and methodsinstraightforward terms.The white papers describe what makes a particular type of system/method important, how it works and then demonstrates how to control it. The control demonstrations is performed using models of real systems designed by our founder - Peter Wellstead, and developed for manufacture by TQ Education and Training Ltd in their CE range of equipment. Where possible results from the real system are shown. This white paper is about the universally used ‘work horse’ of electro-mechanical systems– the DC servo control system or servomechanism.1. What is a Servo Control System and servo motor?A servo control system is one of the most important and widely used forms of control system. Any machine or piece of equipment that has rotating parts will contain one or more servo control systems. The job of the control system may include:Maintaining the speed of a motor within certain limits, even when the load on the output of the motormight vary. This is called regulation.Varying the speed of a motor and load according to an externally set programme of values. This is called set point (or reference) tracking.Our daily lives depend upon servo controllers. Anywhere that there is an electric motor there will be a servo control system to control it. Servo control is very important. The economy of the world dependsupon servo control (there are other things to be sure – but stay with me on the control theme). Manufacturing industry would cease without servo systems because factory production lines could not becontrolled, transportation would halt because electric traction units would fail, computers would cease because disk drives would not work properly and communications networks would fail because network servers use hard disk drives. Young people would become even more unbearable and they would complain more than they do now, because their music and games systems will not work without servo control.Servo control systems are that important and it is vital to know about them. So pay attention and sit up straight – you are not on holiday and I am not writingthis for the good of my health.Also known as the implementation of the motor servo motor, the automatic control system for the implementation of components to convert signals received from the motor shaft angular displacement or angular velocity output.DC and AC servo motor is divided into two categories, the main feature is that when the signal voltage is zero, no rotation of the phenomenon, the increasing speed with uniform torque decreased.Servo motors to control mechanical servo system in the operation of the engine components. Is a servomotors device.Servo motor can control the speed, position accuracy is very accurate.The voltage signal into a torque and speed to drive the control object.Rotor speed by the input signal control, and can respond rapidly, in the automatic control system for the implementation of components, and has electrical and mechanical time constant, linear and high initiating voltage low.2. Modelling a Simple Servo SystemBefore we can control a system we must understand in mathematical terms how the system behaves without control. This is system modelling and it is a fundamental part of our work in control systems analysis. This white paper is about the simplest form of servo – the direct current (DC) position control servomechanism. It is important because, although it is the simplest form of servomechanism, it is usedas the starting point for understanding all other servo systems The basic form of a DC servo system is made of an electric motor with an output shaft that has an inertialload J on it, and friction in the bearings of the motor and load (represented by the constant b). There will be an electric drive circuit where an input voltage u(t) is transformed by the motor into a torque T(t) inthe motor output shaft. Using systems modelling ideas for mechanical systems a torque balance can bewritten between the input torque from the motor and the torque required to accelerate the load and overcome friction. This is shown in the equation()J b T t θθ+=Where θ is the angular position of the servo output shaft. The control objective is to control the shaft Position or the shaft velocity to be some desire value . The input voltage u(t) is related to the torque T(t) a gain K and the inertia divided by the friction coefficient is referred to as the system time constant ⎜ , where τ=J/b So the system model becomes:+()Ku t τθθ=In a practical servo system there will be additional components of the model which are important. Many of these are to do with the nonlinearities in the drive amplifier and friction in the mechanical components. The most important nonlinearities are the saturation voltage of the motor drive amplifier, the deadband in the amplifier, the so-called Coulomb friction in the rotating mechanical components andhysteresis (backlash) in any gearboxes that might be between the motor and the load. A good control system must include features to deal with these nonlinear features.In this white paper we will concentrate on the linear parts of the servo system and only show some hints of non-linear issues. The linear part of the servo system model can be put in the transfer function form:()()()1K Y s U s s s τ=+ Where y(s ) is the output shaft position and u(s) is the motor input. K is the system gain and τ is tthe time constant.An important job for the control systems analyst is to know how to measure the values of the gains K and the time constant . To make it easier to follow in this case we can say that for example, the CE110 Servo Trainer has been designed to give a gain of one between the motor input and the motor speed, and anapproximate gain of K = 2 between the measured speed and the measured shaft position. The nominal value of the time constant is 1.5. So the transfer function model can be decomposed into the transfer function from the motor input to the motor speed v(s), an d the transfer function from the motor speed to the output shaft position.()1()(s)1()()v s U s kU s Y s s τ=+=Many control systems design tools use a state space representation of the system model. In servo systems the states are the velocity and position of the servo system output shaft. Rearranging the system transfer model gives the state space form:Also note that the servo system measured variables in the state model are the position of the shaft y (using a position encoder or potentiometer) and the velocity v (using a speed encoder). The linear models given above are the basis of the design of servo controllers. A real servo however has non-linear components that influence its dynamic behaviour. The main nonlinearities are Coulombfriction in the moving parts and the dead zone and saturation in the motor input amplifier. This is advanced control and we will not cover it in this white paper.Servo mainly rely on impulse to locate, basically can be understood, the servo motor receives a pulse, a pulse will rotate the corresponding point of view, in order to achieve the displacement, because the servo motor itself has issued a pulse function, so the servoEach motor to rotate a point of view, is issued by the corresponding number of pulses, so that the pulse and servo motors to accept the formation of the echo, or called closed-loop, this way, the system will know the number of pulses sent to the servo motor, while the number of receivedpulse came back, so that we can very accurately control the motor rotation, in order to achieve accurate positioning, can reach 0.001mm.DC servo motor into brush and brushless motors.Brush motor low cost, simple structure, starting torque, wide speed range, easy control, need to maintain, but easy to maintain (replacement carbon brushes), generate electromagnetic interference, the environment requirements.So it can be used for cost-sensitive general industrial and civil applications.Brushless motor, small size, light weight, large output, fast response, high speed, small inertia, rotational smoothness, torque and stability.Control complex, easy to implement intelligent, flexible way of their electronic commutation, the commutation can be square wave or sinusoidal commutation.Motor maintenance-free, high efficiency, low operating temperature, electromagnetic radiation is very small, long-life, can be used for a variety of environments.Brushless AC servo motor is divided into synchronous and asynchronous motors, motion control in the current synchronous motor is generally used, and its power range, can do a lot of rge inertia, the maximum rotation speed is low, and with the power increases rapidly decreased.Thus suitable for applications that run on low speed steady. Servo motor rotor is permanent magnet, the drive control of the U / V / W three-phase power to form fields, the rotor in the magnetic field under the rotation, while the motor comes with encoder feedback signal to the drive, the drive according to the feedback valuecompared with the target value, adjusting the angle of the rotor rotation.Depends on the accuracy of the servo motor encoder accuracy (lines).Question:AC servo motors and brushless DC servo motor function, what is the difference? A: AC servo better because a sine wave control, torque ripple small.DC servo is a trapezoidal wave.But the DC servo is relatively simple, cheap3. Example of a Servo SystemThe figure 1 shows the CE110 Servo Trainer from TQ Education and Training Ltd. This is a classic andcomprehensive representation of the servo control problem. It contains all relevant features that can befound in a practical servo system. The centre section of the system are the main hardware elements, fromthe left they are:1. The inertial load2. The speed sensor3. An active load (in this case a generator, G)4. The servo motor, M5. An electric clutch and gearbox (can you see the picture of a gear system on the right?)6. And under the gear system is the output shaft with a position sensor.The electric clutch allow the position system to be disconnected to study velocity control problems. Thegearbox is included because servo mechanisms for position control very often havegearboxes to reducespeed and increase torque. The generator is included so that control under variable load can beinvestigated.At the top of the front panel are electronic versions of all the nonlinear elements that can be found in realservos – these are used to teach nonlinear compensation and to understand what to look for in practicalsituations. We will be using the linear motor with internal load and position output through a gearbox toillustrate servo control in action. I might show some nonlinear behaviour in this white paper, but thenagain, I might not – it depends on how nice you are to me as I sit on this keyboard, all the time dreamingof my beautiful mountain homeland and mein Verlobter.4. Servo System ControllersThere are many, many alternative controller design theories that can be used to control a servomechanism. Possibly there are too many. Here is a list of most of the techniques:1. Three term (PID) control2. Velocity Feedback Control3. Phase Lead Compensation4. State Feedback Control5. State Observer Implementation and Control6. Linear Quadratic Regulator (LQR)7. Linear Quadratic Gaussian (LQG)8. Robust Control9. Sliding Mode and Variable Structure Control10. Dead Beat ControlEach of the above can be implemented as a continous time method or a digital method based on Ztransforms. Also it is possible to use techniques such as fuzzy control and its variants. A bewilderingchoice is it not? And what is more, all of them can give an acceptable performance if designed with careand by an expert. For example, robust control potentially gives the best technicaland practical results, butan expert is required to select the design factors required and to get a simple implementable controller.5. Introduction permanent magnet AC servo motor80 years since the 20th century, with the integrated circuits, power electronics and AC variable speed drive technology, permanent magnet AC servo drive technology with outstanding development, national electrical manufacturers have launched their own well-known AC servo motor and servo drive seriesand continue to improveand update products.AC servo system has become a contemporary high-performance servo systems the main development direction, so that the original DC servo facing the crisis of being eliminated.90 years later, the world has been commercialized by AC servo digital control system is a sine wave motor servo drive.AC servo drive the rapid development of the field in thetransmission.Permanent magnet AC servo motor compared with DC servo motor, the main advantages are: ⑴without brush and commutator, it is reliable and maintenance requirements for maintenance and low.⑵cooling the stator winding more convenient.⑶inertia is small, easy-to improve the system fast.⑷adapted to high-speed high torque working condition.⑸under the same power, smaller size and weight.Since the German MANNESMANN of Rexroth Indramat division in the company's Hanover Trade Fair 1978 was officially launched MAC permanent magnet AC servo motor and drive system, which marks this new generation of AC servo technology has entered the practical stage.To the late 20th century, 80 years, the company has a complete line of products.The servo-device market are turning to the exchange system.Early analog systems such as zero-drift, interference, reliability, accuracy and flexibility in areas such as lack of motion control is still not fully meet the requirements, in recent years with the microprocessor, the new digital signal processor (DSP) applicationsthe emergence of digital control system, the control section can be carried out entirely by the software, called Jiang hazy or Tuan Shen Jing only fresh coarse hempen fabric, valiant only Shen of the permanent magnet AC servo system.So far, high-performance servo systems mostly use electrical permanent magnet synchronous AC servo motor, control the drive to use more fast, accurate positioning of the all-digital servo system.Typical manufacturers such as Siemens of Germany, the United States and Japan Kollmorgen companies such as Panasonic and Yaskawa.Yaskawa Electric has launched a small-scale production of AC servomotors and drives, in which D series for CNC machine tools (maximum speed of 1000r/min, torque is 0.25 ~ 2.8Nm), R series is suitable for the robot (the highest speed of 3000r/min, torque is 0.016 ~ 0.16Nm).Launched after the M, F, S, H, C, G six series.90 20th century, has introduced a new D-series and Rseries.Rectangular wave drive from the old series, 8051 to control the sine wave drive, 80C, 154CPU and gate array chip control, torque ripple from 24% to 7%, and improved reliability.Thus, the formation of only a few years, eight series (power range of 0.05 ~ 6kW) more complete system to meet the working machinery, transportation agencies, welding robots, assembly robots, electronic components, processing machinery, printing presses, high speed winding machine, winding machines for different C equipment to produce the famous Japanese law that g (Fanuc) company, in the 20th century has introduced the mid-80s S series (13 specifications), and L series (5 specifications) of the permanent magnet AC servo motor.L Series has a smaller moment of inertia and the mechanical time constant, particularly for applications that require fast response servo system.Other Japanese manufacturers, such as: Mitsubishi Motors (HC-KFS, HC-MFS, HC-SFS, HC-RFS and HC-UFS series), Toshiba Seiki (SM series), Okuma Iron Works (BL series), Sanyo Electric(BL series), standing stones motor (S series) and many other manufacturers have entered the permanent magnet AC servo system fray.Germany Rexroth (Rexroth) The MAC Indramat Division Series AC servo motor Total 7 Frame 92 specifications.Germany's Siemens (Siemens)'s IFT5 series three-phase permanent magnet AC servo motor standard and short form is divided into two categories, a total of 98 species of 8 frame size specifications.Allegedly the same series AC servo motor and DC servo motor output torque compared IHU series, which weighs only 1 / 2, supporting the transistor PWM drive 6SC61 series, the most for 6-axis motor control.Bosch (BOSCH) ferrite magnets produced the SD series (17 standard) and rare earth permanent magnet of the SE series (8 specs) AC servo motor and drive controller Servodyn SM series.American production companies Gettys servo device as Gould Electronics, once a division of (Motion Control Division), production ofM600 series A600 series AC servo motor and servo drives.After the merger to the AEG, Gettys name restored, the introduction of A700 all-digital AC servo system.U.S. AB (ALLEN-BRADLEY) 1326-based production company driver division ferrite permanent magnet AC servo motor and servo controller PWM AC 1391.Frame size motors including 3 of 30 specifications.ID (Industrial Drives) is a famous Cole Morgan (Kollmorgen) of industrial drives division, has produced BR-210, BR-310, BR-510 a total of 41 specifications of the three series of brushless servo motor and servo BDS3drive.Since 1989, launched a new series designedsolely doped Jian Pirates (Goldline) permanent magnet AC servo motor, including the B (small inertia), M (Middle Inertia) and EB (explosion proof) three categories, 10,20,40,60,80 five frame sizes, each of 42 categories of specifications, all using NdFeB permanent magnet, torque range of 0.84 ~ 111.2Nm, a power range of 0.54 ~ 15.7kW.Supporting the drive has BDS4 (analog), BDS5 (digital type, with position control) and the Smart Drive (digital type) of three series, the maximum continuous current of 55A.Goldline Series represents contemporary art in permanent magnet AC servo technology.Ireland's Inland formerly a division of Kollmorgen abroad, now merged into the AEG, the production of DC servo motors, DC torque motor and servo amplifier is known.Production BHT1100, 2200,3300 three frame sizes of 17 kinds of specifications of SmCo permanent magnet AC servo motor and eight controllers.French Alsthom Group factory in Paris Parvex LC series (long form) and GC series (short) 14 AC servo motor specifications, and production AXODYN series of drives.The former Soviet Union for the CNC machine tools and robots servo control developed two series of AC servo motor.One ДBy series uses ferrite magnets, there are two frame sizes, frame sizes are 3 for each core length, each with two winding data, a total of 12 specifications, a continuous torqu e range of 7 ~ 35N.m.2ДBy series uses rare earth permanent magnet, 6 frame size 17 specifications, the torque range is 0.1 ~170N.m, supporting the 3ДБ controller.In recent years, Panasonic has introduced the all-digital AC servo system based MINAS series, in which permanent magnet AC servo motor with MSMA series of small inertia-type, power from 0.03 ~ 5kW, a total of 18 kinds of specifications; the inertia type with MDMA, MGMA, MFMA threeseries, the power from 0.75 ~ 4.5kW, 23 kinds of specifications, MHMA series of large inertia motor power range from 0.5 ~ 5kW, 7 kinds of specifications.Samsung developed in recent years, all-digital AC servo motor and drive system, which FAGA AC servo motor series of CSM, CSMG, CSMZ, CSMD, CSMF, CSMS, CSMH, CSMN, CSMX a variety of models, the power from 15W ~ 5kW.Now often used (Powerrate) This comprehensive index as the servo motor quality factor, measuring a variety of AC and DC servo motor contrast and dynamic response performance stepper motor.Continuous motor power, said the rate of change (rated) torque and rotor inertia ratio.Change rate is calculated by power analysis, the permanent magnet AC servo motor technology indicators for the United States ID, Goldline Series is the best, followed by Germany's Siemens in IFT5 series.摘要:这是根据控制系统理论撰写的关与系统模型、分析和控制的一系列白皮书之一,目的在于给出一些重要的控制理论和控制过程。

机器人学、机器视觉与控制 英文版

机器人学、机器视觉与控制 英文版

机器人学、机器视觉与控制英文版Robotics, Machine Vision, and Control.Introduction.Robotics, machine vision, and control are three intertwined fields that have revolutionized the way we interact with technology. Robotics deals with the design, construction, operation, and application of robots, while machine vision pertains to the technology and methods used to extract information from digital images. Control theory, on the other hand, is concerned with the behavior of dynamic systems and the design of controllers for those systems. Together, these fields have enabled remarkable advancements in areas such as automation, precision manufacturing, and intelligent systems.Robotics.Robotics is a diverse field that encompasses a range oftechnologies and applications. Robots can be classified based on their purpose, mobility, or structure. Industrial robots are designed for repetitive tasks in manufacturing, while service robots are used in sectors like healthcare, domestic assistance, and security. Mobile robots, such as autonomous vehicles and drones, are capable of navigating their environment and performing complex tasks.The heart of any robot is its control system, which is responsible for decision-making, motion planning, and execution. Modern robots often employ sensors to perceive their environment and advanced algorithms to process this information. The field of robotics is constantly evolving, with new technologies such as artificial intelligence, deep learning, and human-robot interaction promising even more capabilities in the future.Machine Vision.Machine vision is a crucial component of many robotic and automated systems. It involves the use of cameras, sensors, and algorithms to capture, process, and understanddigital images. Machine vision systems can identify objects, read text, detect patterns, and measure dimensions withhigh precision.In industrial settings, machine vision is used fortasks like quality control, part recognition, and robot guidance. In healthcare, it's employed for diagnostic imaging, surgical assistance, and patient monitoring. Machine vision technology is also finding its way into consumer products, such as smartphones and self-driving cars, where it enables advanced features like face recognition, augmented reality, and autonomous navigation.Control Theory.Control theory is the study of how to design systemsthat can adapt their behavior to achieve desired outcomes.It's at the core of robotics and machine vision, as it governs how systems respond to changes in their environment. Control systems can be analog or digital, and they range from simple switches and sensors to complex algorithms running on powerful computers.In robotics, control theory is used to govern the movement of robots, ensuring they can accurately andreliably perform tasks. Machine vision systems also rely on control theory to process and interpret images in real-time. Advanced control strategies, such as adaptive control,fuzzy logic, and reinforcement learning, are enablingrobots and automated systems to adapt to changingconditions and learn from experience.Conclusion.Robotics, machine vision, and control theory are converging to create a new era of intelligent, autonomous systems. As these fields continue to evolve, we can expectto see even more remarkable advancements in areas like precision manufacturing, healthcare, transportation, and beyond. The potential impact of these technologies onsociety is immense, and it's exciting to imagine what the future holds.。

机器人外文文献翻译、中英文翻译

机器人外文文献翻译、中英文翻译

外文资料robotThe industrial robot is a tool that is used in the manufacturing environment to increase productivity. It can be used to do routine and tedious assembly line jobs,or it can perform jobs that might be hazardous to the human worker . For example ,one of the first industrial robot was used to replace the nuclear fuel rods in nuclear power plants. A human doing this job might be exposed to harmful amounts of radiation. The industrial robot can also operate on the assembly line,putting together small components,such as placing electronic components on a printed circuit board. Thus,the human worker can be relieved of the routine operation of this tedious task. Robots can also be programmed to defuse bombs,to serve the handicapped,and to perform functions in numerous applications in our society.The robot can be thought of as a machine that will move an end-of-tool ,sensor ,and/or gripper to a preprogrammed location. When the robot arrives at this location,it will perform some sort of task .This task could be welding,sealing,machine loading ,machine unloading,or a host of assembly jobs. Generally,this work can be accomplished without the involvement of a human being,except for programming and for turning the system on and off.The basic terminology of robotic systems is introduced in the following:1. A robot is a reprogrammable ,multifunctional manipulator designed to move parts,material,tool,or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions,presented in the following paragraphs,that give acomplete picture of a robotic system.2. Preprogrammed locations are paths that the robot must follow to accomplish work,At some of these locations,the robot will stop and perform some operation ,such as assembly of parts,spray painting ,or welding .These preprogrammed locations are stored in the robot’s memory and are recalled later for continuousoperation.Furthermore,these preprogrammed locations,as well as other program data,can be changed later as the work requirements change.Thus,with regard to this programming feature,an industrial robot is very much like a computer ,where data can be stoned and later recalled and edited.3. The manipulator is the arm of the robot .It allows the robot to bend,reach,and twist.This movement is provided by the manipulator’s axes,also called the degrees of freedom of the robot .A robot can have from 3 to 16 axes.The term degrees of freedom will always relate to the number of axes found on a robot.4. The tooling and frippers are not part the robotic system itself;rather,they are attachments that fit on the end of the robot’s arm. These attachments connected to the end of the robot’s arm allow the robot to lift parts,spot-weld ,paint,arc-weld,drill,deburr,and do a variety of tasks,depending on what is required of the robot.5. The robotic system can control the work cell of the operating robot.The work cell of the robot is the total environment in which the robot must perform itstask.Included within this cell may be the controller ,the robot manipulator ,a work table ,safety features,or a conveyor.All the equipment that is required in order for the robot to do its job is included in the work cell .In addition,signals from outside devices can communicate with the robot to tell the robot when it should parts,pick up parts,or unload parts to a conveyor.The robotic system has three basic components: the manipulator,the controller,and the power source.A.ManipulatorThe manipulator ,which does the physical work of the robotic system,consists of two sections:the mechanical section and the attached appendage.The manipulator also has a base to which the appendages are attached.Fig.1 illustrates the connectionof the base and the appendage of a robot.图1.Basic components of a robot’s manipulatorThe base of the manipulator is usually fixed to the floor of the work area. Sometimes,though,the base may be movable. In this case,the base is attached to either a rail or a track,allowing the manipulator to be moved from one location to anther.As mentioned previously ,the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight ,movable arm or a jointed arm. The jointed arm is also known as an articulated arm.The appendages of the robot manipulator give the manipulator its various axes of motion. These axes are attached to a fixed base ,which,in turn,is secured to a mounting. This mounting ensures that the manipulator will in one location.At the end of the arm ,a wrist(see Fig 2)is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.图2.Elements of a work cell from the topThe manipulator’s axes allow it to perform work within a certain area. The area is called the work cell of the robot ,and its size corresponds to the size of the manipulator.(Fid2)illustrates the work cell of a typical assembly ro bot.As the robot’s physical size increases,the size of the work cell must also increase.The movement of the manipulator is controlled by actuator,or drive systems.The actuator,or drive systems,allows the various axes to move within the work cell. The drive system can use electric,hydraulic,or pneumatic power.The energy developed by the drive system is converted to mechanical power by various mechanical power systems.The drive systems are coupled through mechanical linkages.These linkages,in turn,drive the different axes of the robot.The mechanical linkages may be composed of chain,gear,and ball screws.B.ControllerThe controller in the robotic system is the heart of the operation .The controller stores preprogrammed information for later recall,controls peripheral devices,and communicates with computers within the plant for constant updates in production.The controller is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hard-held teach pendant.This information is stored in the memory of the controller for later recall.The controller stores all program data for the robotic system.It can store several differentprograms,and any of these programs can be edited.The controller is also required to communicate with peripheral equipment within the work cell. For example,the controller has an input line that identifies when a machining operation is completed.When the machine cycle is completed,the input line turn on telling the controller to position the manipulator so that it can pick up the finished part.Then ,a new part is picked up by the manipulator and placed into the machine.Next,the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events.This type of controller operates with a very simple robotic system.The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art eletronoics.That is,they are microprocessor-operated.these microprocessors are either 8-bit,16-bit,or 32-bit processors.this power allows the controller to be very flexible in its operation.The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the end the operation of the system.The controller also controls any tooling placed on the end of the robot’s wrist.The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part a computer-assisted manufacturing (CAM)system.As the basic definition stated,the robot is a reprogrammable,multifunctional manipulator.Therefore,the controller must contain some of memory stage. The microprocessor-based systems operates in conjunction with solid-state devices.These memory devices may be magnetic bubbles,random-access memory,floppy disks,or magnetic tape.Each memory storage device stores program information fir or for editing.C.power supplyThe power supply is the unit that supplies power to the controller and the manipulator. The type of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power isused for driving the various axes of the manipulator. For example,if the robot manipulator is controlled by hydraulic or pneumatic drives,control signals are sent to these devices causing motion of the robot.For each robotic system,power is required to operate the manipulator .This power can be developed from either a hydraulic power source,a pneumatic power source,or an electric power source.There power sources are part of the total components of the robotic work cell.中文翻译机器人工业机器人是在生产环境中用以提高生产效率的工具,它能做常规乏味的装配线工作,或能做那些对于工人来说是危险的工作,例如,第一代工业机器人是用来在核电站中更换核燃料棒,如果人去做这项工作,将会遭受有害放射线的辐射。

步行机器人中英文对照外文翻译文献

步行机器人中英文对照外文翻译文献

步行机器人中英文对照外文翻译文献(文档含英文原文和中文翻译)图1 远程脑系统的硬件配置图2 两组机器人的身体结构图3 传感器的两个水银定位开关图4 层次分类图5 步行步态该输入处理器是作为参考程序块和一个图像搜索窗口形象该大小的搜索窗口取决于参考块的大小通常高达16 * 16且匹配。

该处理器计算价值块在搜索窗口,还找到最佳匹配块,这就是其中的最低当目标平移时块匹配是非常有力的。

然而,普通的块匹配方法当它旋转时无法跟踪目标。

为了克服这一困难,我们开发了一种新方法,跟随真正旋转目标的图6 双足步行图6 双足步行图7 双足步行实验图8 一系列滚动和站立运动通过集成传感器网络转型的综合为了使上述描述的基本动作成为一体,我们通过一种方法来描述一种被认为是根据传感器状况的网络转型。

图9显示了综合了基本动作机器人的状态转移图:两足行走,滚动,坐着和站立。

这种一体化提供了机器人保持行走甚至跌倒时的problems and advance the study of vision-based behaviors, we have adopted a new approach through building remote-brained robots. The body and the brain are connected by wireless links by using wireless cameras and remote-controlled actuators.As a robot body does not need computers on-board,it becomes easier to build a lightweight body with many DOFS in actuation.In this research, we developed a two-armed bipedal robot using the remote-brained robot environment and made it to perform balancing based on vision and getting up through cooperating arms and legs. The system and experimental results are described below.2 The Remote-Brained SystemThe remote-brained robot does not bring its own brain within the body. It leaves the brain in the mother environment and communicates with it by radio links. This allows us to build a robot with a free body and a heavy brain. The connection link between the body and the brain defines the interface between software and hardware. Bodies are designed to suit each research project and task. This enables us advance in performing research with a variety of real robot systems[10].A major advantage of remote-brained robots is that the robot can have a large and heavy brain based on super parallel computers. Although hardware technology for vision has advanced and produced powerful compact vision systems, the size of the hardware is still large. Wireless connection between the camera and the vision processor has been a research tool. The remote-brained approach allows us to progress in the study of a variety of experimental issues in vision-based robotics.Another advantage of remote-brained approach is that the robot bodies can be lightweight. This opens up the possibility of working with legged mobile robots. AsFigure 4 shows some of the classes in the programming environent for remote-brained robot written in Euslisp. The hierachy in the classes provides us with rich facilities for extending development of various robots.4 Vision-Based BalancingThe robot can stand up on two legs. As it can change the gravity center of its body by controling the ankle angles, it can perform static bipedal walks. During static walking the robot has to control its body balance if the ground is not flat and stable.In order to perform vision-based balancing it is re-quired to have high speed vision system to keep ob-serving moving schene. We have developed a tracking vision board using a correlation chip[l3]. The vision board consists of a transputer augmented with a special LSI chip(MEP[14] : Motion Estimation Processor) which performs local image block matching.The inputs to the processor MEP are an image as a reference block and an image for a search window.The size of the reference blsearch window depends on the size of the reference block is usually up to 32 by 32 pixels so that it can include 16 * 16 possible matches. The processor calculates 256 values of SAD (sum of absolute difference) between the reference block and 256 blocks in the search window and also finds the best matching block, that is, the one which has the minimum SAD value.Clock is up to 16 by 16 pixels.The size of the search window depends on the size of the reference block is usually up to 32 by 32 pixels so that it can include 16 * 16 possible matches. The processor calculates 256 values of SAD (sum of absolute difference) between the reference block and 256 blocks in the search window and also finds the best matching block, that is, the one which has the minimum SAD value.Block matching is very powerful when the target moves only in translation. However, the ordinary block matching method cannot track the target when it rotates. In order to overcome this difficulty, we developed a new method which follows up the candidate templates to real rotation of the target. The rotated template method first generates all the rotated target images in advance, and several adequate candidates of the reference template are selected and matched is tracking the scene in the front view. It remembers the vertical orientation of an object as the reference for visual tracking and generates several rotated images of the reference image. If the vision tracks the reference object using the rotated images, it can measures the body rotation. In order to keep the body balance, the robot feedback controls its body rotation to control the center of the body gravity. The rotational visual tracker[l5] can track the image at video rate.5 Biped WalkingIf a bipedal robot can control the center of gravity freely, it can perform biped walk. As the robot shown in Figure 2 has the degrees to left and right directions at the ankle position, it can perform bipedal walking in static way.The motion sequence of one cycle in biped walking consists of eight phases as shown in Figure 6. One step consists of four phases; move-gravity-center-on-foot,lift-leg, move-forward-leg, place-leg. As the body is described in solid model, the robot can generate a body configuration for move-gravity-center-on-foot according to the parameter of the hight of the gravity center. After this movement, the robot can lift the other leg and move it forward. In lifting leg, the robot has to control the configuration in order to keep the center of gravity above the supporting foot. As the stability in balance depends on the hight of the gravity center, the robot selects suitable angles of the knees.Figure 7 shows a sequence of experiments of the robot in biped walking6 Rolling Over and Standing UpFigure 8 shows the sequence of rolling over, sitting and standing up. This motion requires coordination between arms and legs.As the robot foot consists of a battery, the robot can make use of the weight of the battery for the roll-over motion. When the robot throws up the left leg and moves the left arm back and the right arm forward, it can get rotary moment around the body. If the body starts turning, the right leg moves back and the left foot returns its position to lie on the face. This rollover motion changes the body orientation from face up to face down. It canbe verified by the orientation sensor.After getting face down orientation, the robot moves the arms down to sit on two feet. This motion causes slip movement between hands and the ground. If the length of the arm is not enough to carry the center of gravity of the body onto feet, this sitting motion requires dynamic pushing motion by arms. The standing motion is controlled in order to keep the balance.7 Integration through Building Sensor-Based Transition NetIn order to integrate the basic actions described above, we adopted a method to describe a sensor-based transition network in which transition is considered according to sensor status. Figure 9 shows a state transition diagram of the robot which integrates basic actions: biped walking, rolling over, sitting, and standing up. This integration provides the robot with capability of keeping walking even when it falls down.The ordinary biped walk is composed by taking two states, Left-leg Fore and Right-leg Fore, successively.The poses in ‘Lie on the Back’ and ‘Lie on the Face’are as same as one in ‘Stand’. That is, the shape ofthe robot body is same but the orientation is different.The robot can detect whether the robot lies on the back or the face using the orientation sensor. When the robot detects falls down, it changes the state to ‘Lie on the Back’ or ‘Lie on the Front’ by moving to the neutral pose. If the robot gets up from ‘Lie on the Back’, the motion sequence is planned to exe cute Roll-over, Sit and Stand-up motions. If the state is ‘Lie on the Face’, it does not execute Roll-over but moves arms up to perform the sitting motion.8 Concluding RemarksThis paper has presented a two-armed bipedal robot which can perform statically biped walk, rolling over and standing up motions. The key to build such behaviors is the remote-brained approach. As the experiments have shown, wireless technologies permit robot bodies free movement. It also seems to change the way we conceptualize robotics. In our laboratory it has enabled the development of a new research environment, better suited to robotics and real-world AI.The robot presented here is a legged robot. As legged locomotion requires dynamic visual feedback control, its vision-based behaviors can prove the effectiveness of the vision system and the remote-brained system. Our vision system is based on high speed block matching function implemented with motion estimation LSI. The vision system provides the mechanical bodies with dynamic and adaptive capabilities in interaction with human. The mechanical dog has shown adaptive behaviors based on distance。

工业机器人中英文翻译、外文文献翻译、外文翻译

工业机器人中英文翻译、外文文献翻译、外文翻译

外文原文:RobotAfter more than 40 years of development, since its first appearance till now, the robot has already been widely applied in every industrial fields, and it has become the important standard of industry modernization.Robotics is the comprehensive technologies that combine with mechanics, electronics, informatics and automatic control theory. The level of the robotic technology has already been regarded as the standard of weighing a national modern electronic-mechanical manufacturing technology.Over the past two decades, the robot has been introduced into industry to perform many monotonous and often unsafe operations. Because robots can perform certain basic more quickly and accurately than humans, they are being increasingly used in various manufacturing industries.With the maturation and broad application of net technology, the remote control technology of robot based on net becomes more and more popular in modern society. It employs the net resources in modern society which are already three to implement the operatio of robot over distance. It also creates many of new fields, such as remote experiment, remote surgery, and remote amusement. What's more, in industry, it can have a beneficial impact upon the conversion of manufacturing means.The key words are reprogrammable and multipurpose because most single-purpose machines do not meet these two requirements. The term “reprogrammable” implies two things: The robot operates according to a written program, and this program can be rewritten to acc ommodate a variety of manufacturing tasks. The term “multipurpose” means that the robot can perform many different functions, depending on the program and tooling currently in use.Developed from actuating mechanism, industrial robot can imitation some actions and functions of human being, which can be used to moving all kinds of material components tools and so on, executing mission by execuatable program multifunction manipulator. It is extensive used in industry and agriculture production, astronavigation and military engineering.During the practical application of the industrial robot, the working efficiency andquality are important index of weighing the performance of the robot. It becomes key problems which need solving badly to raise the working efficiencies and reduce errors of industrial robot in operating actually. Time-optimal trajectory planning of robot is that optimize the path of robot according to performance guideline of minimum time of robot under all kinds of physical constraints, which can make the motion time of robot hand minimum between two points or along the special path. The purpose and practical meaning of this research lie enhance the work efficiency of robot.Due to its important role in theory and application, the motion planning of industrial robot has been given enough attention by researchers in the world. Many researchers have been investigated on the path planning for various objectives such as minimum time, minimum energy, and obstacle avoidance.The basic terminology of robotic systems is introduced in the following:A robot is a reprogrammable, multifunctional manipulator designed to move parts, materials, tools, or special devices through variable programmed motions for the performance of a variety of different task. This basic definition leads to other definitions, presented in the following paragraphs that give a complete picture of a robotic system.Preprogrammed locations are paths that the robot must follow to accomplish work. At some of these locations, the robot will stop and perform some operation, such as assembly of parts, spray painting, or welding. These preprogrammed locations are stored in the robot’s memory and are recalled later for continuous operation. Furthermore, these preprogrammed locations, as well as other programming feature, an industrial robot is very much like a computer, where data can be stored and later recalled and edited.The manipulator is the arm of the robot. It allows the robot to bend, reach, and twist. This movement is provided by t he manipulator’s axes, also called the degrees of freedom of the robot. A robot can have from 3 to 16 axes. The term degrees of freedom will always relate to the number of axes found on a robot.The tooling and grippers are not part of the robotic system itself: rather, they are attachments that fit on the end of the robot’s arm. These attachments connected to the end of the robot’s arm allow the robot to lift parts, spot-weld, paint, arc-well, drill, deburr, and do a variety of tasks, depending on what is required of the robot.The robotic system can also control the work cell of the operating robot. The work cell of the robot is the total environment in which the robot must perform its task. Included within this cell may be the controller, the robot manipulator, a work table, safety features, or a conveyor. All the equipment that is required in order for the robot to do its job is included in the work cell. In addition, signals from outside devices can communicate with the robot in order to tell the robot when it should assemble parts, pick up parts, or unload parts to a conveyor.The robotic system has three basic components: the manipulator, the controller, and the power source.ManipulatorThe manipulator, which dose the physical work of the robotic system, consists of two sections: the mechanical section and the attached appendage. The manipulator also has a base to which the appendages are attached.The base of the manipulator is usually fixed to the floor of the work area. Sometimes, though, the base may be movable. In this case, the base is attached to either a rail or a track, allowing the manipulator to be moved from one location to anther.As mentioned previously, the appendage extends from the base of the robot. The appendage is the arm of the robot. It can be either a straight, movable arm or a jointed arm. The jointed arm is also known as an articulated arm.The appendages of the robot manipulator give the manipulator its various axes of motion. These axes are attached to a fixed base, which, in turn, is secured to a mounting. This mounting ensures that the manipulator will remain in one location.At the end of the arm, a wrist is connected. The wrist is made up of additional axes and a wrist flange. The wrist flange allows the robot user to connect different tooling to the wrist for different jobs.The manipulator’s axes allow it to perform work within a certain area. This area is called the work cell of the robot, and its size corresponds to the size of the manipulator. As the robot’s physical siz e increases, the size of the work cell must also increase.The movement of the manipulator is controlled by actuators, or drive system. The actuator, or drive system, allows the various axes to move within the work cell. The drive system can use electric, hydraulic, or pneumatic power. The energy developed bythe drive system is converted to mechanical power by various mechanical drive systems. The drive systems are coupled through mechanical linkages. These linkages, in turn, drive the different axes of the robot. The mechanical linkages may be composed of chains, gears, and ball screws.ControllerThe controller in the robotic system is the heart of the operation. The controller stores preprogrammed information for later recall, controls peripheral devices, and communicates with computers within the plant for constant updates in production.The controller is used to control the robot manipulator’s movements as well as to control peripheral components within the work cell. The user can program the movements of the manipulator into the controller through the use of a hand-held teach pendant. This information is stored in the memory of the controller for later recall. The controller stores all program data for the robotic system. It can store several different programs, and any of these programs can be edited.The controller is also required to communicate with peripheral equipment within the work cell. For example, the controller has an input line that identifies when a machining operation is completed. When the machine cycle is completed, the input line turns on, telling the controller to position the manipulator so that it can pick up the finished part. Then, a new part is picked up by the manipulator and placed into the machine. Next, the controller signals the machine to start operation.The controller can be made from mechanically operated drums that step through a sequence of events. This type of controller operates with a very simple robotic system. The controllers found on the majority of robotic systems are more complex devices and represent state-of-the-art electronics. This is, they are microprocessor-operated. These microprocessors are either 8-bit, 16-bit, or 32-bit processors. This power allows the controller to the very flexible in its operation.The controller can send electric signals over communication lines that allow it to talk with the various axes of the manipulator. This two-way communication between the robot manipulator and the controller maintains a constant update of the location and the operation of the system. The controller also controls any tooling placed on the end of the robot’s wrist.The controller also has the job of communicating with the different plant computers. The communication link establishes the robot as part of a computer-assisted manufacturing (CAM) system.As the basic definition stated, the robot is a reprogrammable, multifunctional manipulator. Therefore, the controller must contain some type of memory storage. The microprocessor-based systems operate in conjunction with solid-state memory devices. These memory devices may be magnetic bubbles, random-access memory, floppy disks, or magnetic tape. Each memory storage device stores program information for later recall or for editing.Power supplyThe power supply is the unit that supplies power to the controller and the manipulator. Two types of power are delivered to the robotic system. One type of power is the AC power for operation of the controller. The other type of power is used for driving the various axes of the manipulator. For example, if the robot manipulator is controlled by hydraulic or pneumatic drives, control signals are sent to these devices, causing motion of the robot.For each robotic system, power is required to operate the manipulator. This power can be developed from either a hydraulic power source, a pneumatic power source, or an electric power source. These power sources are part of the total components of the robotic work cell.Classification of RobotsIndustrial robots vary widely in size, shape, number of axes, degrees of freedom, and design configuration. Each factor influences the dimensions of the robot’s working envelope or the volume of space within which it can move and perform its designated task. A broader classification of robots can been described as blew.Fixed and Variable-Sequence Robots. The fixed-sequence robot (also called a pick-and place robot) is programmed for a specific sequence of operations. Its movements are from point to point, and the cycle is repeated continuously. The variable-sequence robot can be programmed for a specific sequence of operations but can be reprogrammed to perform another sequence of operation.Playback Robot. An operator leads or walks the playback robot and its end effectorthrough the desired path. The robot memorizes and records the path and sequence of motions and can repeat them continually without any further action or guidance by the operator.Numerically Controlled Robot. The numerically controlled robot is programmed and operated much like a numerically controlled machine. The robot is servo-controlled by digital data, and its sequence of movements can be changed with relative ease.Intelligent Robot. The intellingent robot is capable of performing some of the functions and tasks carried out by human beings. It is equipped with a variety of sensors with visual and tactile capabilities.Robot ApplicationsThe robot is a very special type of production tool; as a result, the applications in which robots are used are quite broad. These applications can be grouped into three categories: material processing, material handling and assembly.In material processing, robots use to process the raw material. For example, the robot tools could include a drill and the robot would be able to perform drilling operations on raw material.Material handling consists of the loading, unloading, and transferring of workpieces in manufacturing facilities. These operations can be performed reliably and repeatedly with robots, thereby improving quality and reducing scrap losses.Assembly is another large application area for using robotics. An automatic assembly system can incorporate automatic testing, robot automation and mechanical handling for reducing labor costs, increasing output and eliminating manual handling concerns.Hydraulic SystemThere are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical type. However, fluid systems are restricted to shorter distances than are electrical systems.Hydraulic power transmission systems are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include:1.Pumps which convert available power from the prime mover to hydraulicpower at the actuator.2.Valves which control the direction of pump-flow, the level of powerproduced, and the amount of fluid-flow to the actuators. The power level isdetermined by controlling both the flow and pressure level.3.Actuators which convert hydraulic power to usable mechanical power outputat the point required.4.The medium, which is a liquid, provides rigid transmission and control aswell as lubrication of components, sealing in valves, and cooling of thesystem.5.Connectors which link the various system components, provide powerconductors for the fluid under pressure, and fluid flow return totank(reservoir).6.Fluid storage and conditioning equipment which ensure sufficient quality andquantity as well as cooling of the fluid..Hydraulic systems are used in industrial applications such as stamping presses, steel mills, and general manufacturing, agricultural machines, mining industry, aviation, space technology, deep-sea exploration, transportation, marine technology, and offshore gas and petroleum exploration. In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics.The secret of hydraulic system’s success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations,manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.1.Ease and accuracy of control. By the use of simple levers and push buttons,the operator of a fluid power system can readily start, stop, speed up or slowdown, and position forces which provide any desired horsepower withtolerances as precise as one ten-thousandth of an inch. Fig. shows a fluidpower system which allows an aircraft pilot to raise and lower his landinggear. When the pilot moves a small control valve in one direction, oil underpressure flows to one end of the cylinder to lower the landing gear. To retractthe landing gear, the pilot moves the valve lever in the opposite direction,allowing oil to flow into the other end of the cylinder.2.Multiplication of force. A fluid power system (without using cumbersomegears, pulleys, and levers) can multiply forces simply and efficiently from afraction of an ounce to several hundred tons of output.3.Constant force or torque. Only fluid power systems are capable of providingconstant force or torque regardless of speed changes. This is accomplishedwhether the work output moves a few inches per hour, several hundred inchesper minute, a few revolutions per hour, or thousands of revolutions perminute.4.Simplicity, safety, economy. In general, fluid power systems use fewermoving parts than comparable mechanical or electrical systems. Thus, theyare simpler to maintain and operate. This, in turn, maximizes safety,compactness, and reliability. For example, a new power steering controldesigned has made all other kinds of power systems obsolete on manyoff-highway vehicles. The steering unit consists of a manually operateddirectional control valve and meter in a single body. Because the steering unitis fully fluid-linked, mechanical linkages, universal joints, bearings, reductiongears, etc. are eliminated. This provides a simple, compact system. Inapplications. This is important where limitations of control space require asmall steering wheel and it becomes necessary to reduce operator fatigue.Additional benefits of fluid power systems include instantly reversible motion,automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely eliminate. Also, most hydraulic oils can cause fires if an oil leak occurs in an area of hot equipment.Pneumatic SystemPneumatic system use pressurized gases to transmit and control power. As the name implies, pneumatic systems typically use air (rather than some other gas ) as the fluid medium because air is a safe, low-cost, and readily available fluid. It is particularly safe in environments where an electrical spark could ignite leaks from system components.In pneumatic systems, compressors are used to compress and supply the necessary quantities of air. Compressors are typically of the piston, vane or screw type. Basically a compressor increases the pressure of a gas by reducing its volume as described by the perfect gas laws. Pneumatic systems normally use a large centralized air compressor which is considered to be an infinite air source similar to an electrical system where you merely plug into an electrical outlet for electricity. In this way, pressurized air can be piped from one source to various locations throughout an entire industrial plant. The compressed air is piped to each circuit through an air filter to remove contaminants which might harm the closely fitting parts of pneumatic components such as valve and cylinders. The air then flows through a pressure regulator which reduces the pressure to the desired level for the particular circuit application. Because air is not a good lubricant (contains about 20% oxygen), pneumatics systems required a lubricator to inject a very fine mist of oil into the air discharging from the pressure regulator. This prevents wear of the closely fitting moving parts of pneumatic components.Free air from the atmosphere contains varying amounts of moisture. This moisture can be harmful in that it can wash away lubricants and thus cause excessive wear and corrosion. Hence, in some applications, air driers are needed to remove this undesirable moisture. Since pneumatic systems exhaust directly into the atmosphere , they are capable of generating excessive noise. Therefore, mufflers are mounted on exhaust portsof air valves and actuators to reduce noise and prevent operating personnel from possible injury resulting not only from exposure to noise but also from high-speed airborne particles.There are several reasons for considering the use of pneumatic systems instead of hydraulic systems. Liquids exhibit greater inertia than do gases. Therefore, in hydraulic systems the weight of oil is a potential problem when accelerating and decelerating and decelerating actuators and when suddenly opening and closing valves. Due to Newton’s law of motion ( force equals mass multiplied by acceleration ), the force required to accelerate oil is many times greater than that required to accelerate an equal volume of air. Liquids also exhibit greater viscosity than do gases. This results in larger frictional pressure and power losses. Also, since hydraulic systems use a fluid foreign to the atmosphere , they require special reservoirs and no-leak system designs. Pneumatic systems use air which is exhausted directly back into the surrounding environment. Generally speaking, pneumatic systems are less expensive than hydraulic systems.However, because of the compressibility of air, it is impossible to obtain precise controlled actuator velocities with pneumatic systems. Also, precise positioning control is not obtainable. While pneumatic pressures are quite low due to compressor design limitations ( less than 250 psi ), hydraulic pressures can be as high as 10,000 psi. Thus, hydraulics can be high-power systems, whereas pneumatics are confined to low-power applications. Industrial applications of pneumatic systems are growing at a rapid pace. Typical examples include stamping, drilling, hoist, punching, clamping, assembling, riveting, materials handling, and logic controlling operations.工业机器人机器人自问世以来到现在,经过了40多年的发展,已被广泛应用于各个工业领域,已成为工业现代化的重要标志。

机器人外文翻译(文献翻译-中英文翻译)

机器人外文翻译(文献翻译-中英文翻译)

外文翻译外文资料:RobotsFirst, I explain the background robots, robot technology development. It should be said it is a common scientific and technological development of a comprehensive results, for the socio-economic development of a significant impact on a science and technology. It attributed the development of all countries in the Second World War to strengthen the economic input on strengthening the country's economic development. But they also demand the development of the productive forces the inevitable result of human development itself is the inevitable result then with the development of humanity, people constantly discuss the natural process, in understanding and reconstructing the natural process, people need to be able to liberate a slave. So this is the slave people to be able to replace the complex and engaged in heavy manual labor, People do not realize right up to the world's understanding and transformation of this technology as well as people in the development process of an objective need. Robots are three stages of development, in other words, we are accustomed to regarding robots are divided into three categories. is a first-generation robots, also known as teach-type robot, it is through a computer, to control over one of a mechanical degrees of freedom Through teaching and information stored procedures, working hours to read out information, and then issued a directive so the robot can repeat according to the people at that time said the results show this kind of movement again, For example, the car spot welding robots, only to put this spot welding process, after teaching, and it is always a repeat of a work It has the external environment is no perception that the force manipulation of the size of the work piece there does not exist, welding 0S It does not know, then this fact from the first generation robot, it will exist this shortcoming, it in the 20th century, the late 1970s, people started to study the second-generation robot, called Robot with the feeling that This feeling with the robot is similar in function of a certain feeling, forinstance, force and touch, slipping, visual, hearing and who is analogous to that with all kinds of feelings, say in a robot grasping objects, In fact, it can be the size of feeling out, it can through visual, to be able to feel and identify its shape, size, color Grasping an egg, it adopted a acumen, aware of its power and the size of the slide. Third-generation robots, we were a robotics ideal pursued by the most advanced stage, called intelligent robots, So long as tell it what to do, not how to tell it to do, it will be able to complete the campaign, thinking and perception of this man-machine communication function and function Well, this current development or relative is in a smart part of the concept and meaning But the real significance of the integrity of this intelligent robot did not actually exist, but as we continued the development of science and technology, the concept of intelligent increasingly rich, it grows ever wider connotations.Now, I would like to briefly outline some of the industrial robot situation. So far, the industrial robot is the most mature and widely used category of a robot, now the world's total sales of 1.1 million Taiwan, which is the 1999 statistics, however, 1.1 million in Taiwan have been using the equipment is 75 million, this volume is not small. Overall, the Japanese industrial robots in this one, is the first of the robots to become the Kingdom, the United States have developed rapidly. Newly installed in several areas of Taiwan, which already exceeds Japan, China has only just begun to enter the stage of industrialization, has developed a variety of industrial robot prototype and small batch has been used in production.Spot welding robot is the auto production line, improve production efficiency and raise the quality of welding car, reduce the labor intensity of a robot. It is characterized by two pairs of robots for spot welding of steel plate, bearing a great need for the welding tongs, general in dozens of kilograms or more, then its speed in meters per second a 5-2 meter of such high-speed movement. So it is generally five to six degrees of freedom, load 30 to 120 kilograms, the great space, probably expected that the work of a spherical space, a high velocity, the concept of freedom, that is to say, Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wristposture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedom. Have more than six degrees of freedom robot, in different occasions the need to configure.The second category of service robots, with the development of industrialization, especially in the past decade, Robot development in the areas of application are continuously expanding, and now a very important characteristic, as we all know, Robot has gradually shifted from manufacturing to non-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue, relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign to complete some work, this is service robot’s one of the basic characteristics.For example, domestic robot is mainly embodied in the example of some of the carpets and flooring it to the regular cleaning and vacuuming. The robot it is very meaningful, it has sensors, it can furniture and people can identify, It automatically according to a law put to the ground under the road all cleaned up. This is also the home of some robot performance.The medical robots, nearly five years of relatively rapid development of new application areas. If people in the course of an operation, doctors surgery, is a fatigue, and the other manually operated accuracy is limited. Some universities in Germany, which, facing the spine, lumbar disc disease, the identification, can automatically use the robot-aided positioning, operation and surgery Like the United States have been more than 1,000 cases of human eyeball robot surgery, the robot, also including remote-controlled approach, the right of such gastrointestinal surgery, we see on the television inside. a manipulator, about the thickness fingers such a manipulator, inserted through the abdominal viscera, people on the screen operating the machines hand, it also used the method of laser lesion laser treatment, this is the case, peoplewould not have a very big damage to the human body.In reality, this right as a human liberation is a very good robots, medical robots it is very complex, while it is fully automated to complete all the work, there are difficulties, and generally are people to participate. This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the exhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through a manipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.Robot is mankind's right-hand man; friendly coexistence can be a reliable friend. In future, we will see and there will be a robot space inside, as a mutual aide and friend. Robots will create the jobs issue. We believe that there would not be a "robot appointment of workers being laid off" situation, because people with the development of society, In fact the people from the heavy physical and dangerous environment liberated, so that people have a better position to work, to create a better spiritual wealth and cultural wealth.译文资料:机器人首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。

机械臂动力学——毕业设计外文文献翻译、中英文翻译

机械臂动力学——毕业设计外文文献翻译、中英文翻译

毕业论文(设计)外文翻译题目机械臂动力学与控制的研究系部名称:机械工程系专业班级:机自学生姓名:学号:指导教师:教师职称:20**年03月20日2009年IEEE国际机器人和自动化会议神户国际会议中心日本神户12-17,2009机械臂动力学与控制的研究拉斯彼得Ellekilde摘要操作器和移动平台的组合提供了一种可用于广泛应用程序高效灵活的操作系统,特别是在服务性机器人领域。

在机械臂众多挑战中其中之一是确保机器人在潜在的动态环境中安全工作控制系统的设计。

在本文中,我们将介绍移动机械臂用动力学系统方法被控制的使用方法。

该方法是一种二级方法, 是使用竞争动力学对于统筹协调优化移动平台以及较低层次的融合避障和目标捕获行为的方法。

I介绍在过去的几十年里大多数机器人的研究主要关注在移动平台或操作系统,并且在这两个领域取得了许多可喜的成绩。

今天的新挑战之一是将这两个领域组合在一起形成具有高效移动和有能力操作环境的系统。

特别是服务性机器人将会在这一方面系统需求的增加。

大多数西方国家的人口统计数量显示需要照顾的老人在不断增加,尽管将有很少的工作实际的支持他们。

这就需要增强服务业的自动化程度,因此机器人能够在室内动态环境中安全的工作是最基本的。

图、1 一台由赛格威RMP200和轻重量型库卡机器人组成的平台这项工作平台用于如图1所示,是由一个Segway与一家机器人制造商制造的RMP200轻机器人。

其有一个相对较小的轨迹和高机动性能的平台使它适应在室内环境移动。

库卡工业机器人具有较长的长臂和高有效载荷比自身的重量,从而使其适合移动操作。

当控制移动机械臂系统时,有一个选择是是否考虑一个或两个系统的实体。

在参考文献[1]和[2]中是根据雅可比理论将机械手末端和移动平台结合在一起形成一个单一的控制系统。

另一方面,这项研究发表在[3]和[4],认为它们在设计时是独立的实体,但不包括两者之间的限制条件,如延伸能力和稳定性。

这种控制系统的提出是基于动态系统方法[5],[6]。

工业机械臂控制中英文对照外文翻译文献

工业机械臂控制中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)Hand Column Type Power MachineFollow with our country the rapid development of industrial production, rapidly enhance level of automation, implementation artifacts of handling, steering, transmission or toil for welding gun, spraing gun, spanner and other tools for processing, assembly operations for example automation, should cause the attention of people more and more.Industrial robot is an important branch of industrial robots. It features can be programmed to perform tasks in a variety of expectations, in both structure and performance advantages of their own people and machines, in particular, reflects the people's intelligence and adaptability. The accuracy of robot operations and a variety of environments the ability to complete the work in the field of national economy and there are broad prospects for development. With the development of industrial automation, there has been CNC machining center, it is in reducing labor intensity,while greatly improved labor productivity. However, the upper and lower common in CNC machining processes material, usually still use manual or traditional relay-controlled semi-automatic device. The former time-consuming and labor intensive, inefficient; the latter due to design complexity, require more relays, wiring complexity, vulnerability to body vibration interference, while the existence of poor reliability, fault more maintenance problems and other issues. Programmable Logic Controller PLC-controlled robot control system for materials up and down movement is simple, circuit design is reasonable, with a strong anti-jamming capability, ensuring the system's reliability, reduced maintenance rate, and improve work efficiency. Robot technology related to mechanics, mechanics, electrical hydraulic technology, automatic control technology, sensor technology and computer technology and other fields of science, is a cross-disciplinary integrated technology.Current industrial approaches to robot arm control treat each joint of the robot arm as a simple joint servomechanism. The servomechanism approach models the varying dynamics of a manipulator inadequately because it neglects the motion and configuration of the whole arm mechanism. These changes in the parameters of the controlled system sometimes are significant enough to render conventional feedback control strategies ineffective. The result is reduced servo response speed and damping, limiting the precision and speed of the end-effecter and making it appropriate only for limited-precision tasks. Manipulators controlled in this manner move at slow speeds with unnecessary vibrations. Any significant performance gain in this and other areas of robot arm control require the consideration of more efficient dynamic models, sophisticated control approaches, and the use of dedicated computer architectures and parallel processing techniques.Manipulator institutional form is simple, strong professionalism, only as a loading device for a machine tools, special-purpose manipulator is attached to this machine. Along with the development of industrial technology, produced independently according to the process control to achieve repetitive operation, using range is wide "program control general manipulator", hereinafter referred to as general manipulator. General manipulator used to quickly change the workingprocedure, adaptability is stronger, so he is in constant transformation in the medium and small batch production of products are widely used.NO.1 The composition of the manipulatorManipulator is in the form of a variety of, some relatively simple, some more complex, but the basic form is the same, generally by the actuators, transmission system, control system and the auxiliary device.The actuator manipulator actuators, by the hand, wrist, arm, pillars. Hand is grasping mechanism, which is used to clamp and release artifacts, as a human finger, can complete staff of similar action. Is connected to the fingers and wrist arm components, can be up and down, left and right sides and rotary movement. Simple manipulator can not the wrist. Prop used to support the arm, can also according to need to make it move.The driving system movement of the actuator by the transmission system to achieve. Common mechanical transmission system of mechanical transmission, hydraulic transmission, pneumatic transmission and power transmission etc. Several forms.The control system of manipulator control system main function is to control the manipulator according to certain procedures, movement direction, position, speed, simple manipulator is generally not set special control system, only the stroke switch, relay, control valves and control circuit can realize dynamic transmission system, the executing agency action in accordance with requirements. Action complex manipulator should adopts the programmable controller, microcomputer control. NO.2 Classification and characteristics of the manipulator Robots generally fall into three categories the first is general manipulator doesn't need manual operation. It is a kind of independence is not attached to a host device. It can according to the need of the task program, the operation of the provisions to complete. It is with the characteristics of common mechanical performance, also has general machinery, memory, intelligence of three yuan. Thesecond is the need to do manually. Called Operating machine. It originated in the atom, military industry, first by Operating machine to complete a specific assignment, later to use radio signal Operating machine to explore the moon and so on. Used in the forging industry Operating machine falls under this category. The third kind is to use special manipulator, mainly attached to automatic machine or automatic line, used to solve machine tool material and workpiece to send up and down. This manipulator in a foreign country is called "the Mechanical Hand", it is in the service of the host, driven by the host; Except a few working procedures generally is fixed, so it is special.NO.3 The application of industrial manipulatorManipulator is in the process of mechanization, automation production, developed a kind of new type of device. In recent years, with electronic technology, especially the wide application of electronic computer, the robot's development and production has become a high technology developed rapidly in the field of an emerging technology, it promoted the development of the manipulator, make the manipulator can achieve better with the combination of mechanization and automation.Manipulator although it is not as flexible as manpower, but it can have repeated work and labor, do not know fatigue, is not afraid of danger, snatch heavy weights strength characteristics such as larger than man, as a result, the manipulator has been brought to the attention of the many departments, and have been applied more and more widely.(1) Machine tools machining the workpiece loading and unloading, especially in automatic lathe, use common combination machine tools.(2) Widely used in the assembly operation, it can be used to assemble printed circuit board in the electronics industry, it can be in the machinery industry to assemble parts.(3)Can be in working conditions is poor, repetitive easy fatigue of the work environment, to instead of human Labour.(4) The development of the universe and the ocean.(5) Military engineering and biomedical research and test.Application of robots can replace people in dull, repetitive or heavy manual work, to realize mechanization and automation of production, instead of human in harmful environment of manual operation, improve labor condition, ensure the personal safety. In the late 1940 s, the United States in the nuclear experiments, firstly adopts manipulator handling radioactive materials, people in the security room to manipulate manipulator for various operation and experiment. After the '50 s, robots gradually extended to industrial production department, for use in high temperature, serious pollution of local leave work pieces and the loading and unloading materials, as auxiliary device in the machine tool automatic machine, automatic production line and processing center in the application, complete the material up and down or from libraries take put the knives and replace tool operations such as fixed procedure. Manipulator is mainly composed of hand and motion mechanism. Hand mechanism varies according to the usage situation and operation object, the common are holding, hold and the adsorption type etc. Motion mechanism usually driven by hydraulic, pneumatic, electric devices. Manipulator can be achieved independently of scaling, rotation and lifting movement, generally speaking, there are 2 ~ 3 degrees of freedom. Robots are widely used in machinery manufacturing, metallurgy, light industry and atomic energy etc.Manipulator is used in the production process automation with grab and move the workpiece is a kind of automatic device, it is in the process of mechanization, automation production, developed a new type of device. In recent years, with electronic technology, especially the wide application of electronic computer, the robot's development and production has become a high technology developed rapidly in the field of an emerging technology, it promoted the development of the manipulator, make the manipulator can achieve better with the combination of mechanization and automation. Robots can replace humans do dangerous, repeat the boring work, reduce human labor intensity and improve labor productivity. Manipulator have been applied more and more widely, it can be used forparts assembled in the machinery industry, processing the workpiece handling, loading and unloading, especially on the automatic CNC machine, combination machine tools more common use. At present, the manipulator has developed into a flexible manufacturing system of FMS and flexible manufacturing cell is an important component of FMC. The machine tool equipment and manipulator of a flexible manufacturing system or flexible manufacturing unit, it is suitable for medium and small batch production, can save a large workpiece delivery device, structure is compact, but also has a strong adaptability. When the workpiece changes, flexible production system is easy to change, is advantageous to the enterprise continuously updated marketable varieties, improve product quality, better adapt to the needs of the market competition. But at present our country's industrial robot technology and its engineering application level and foreign than there is a certain distance, scale and industrialization level is low, research and development of the manipulator has direct influence on raising the automation level of production in our country, from the consideration on the economic and technology is very necessary. Therefore, carries on the research design of the manipulator is very meaningful.NO.4 The development trend of manipulatorCurrent industrial applications of the manipulator gradually expanding, constantly improve the technology performance. Due to the short development time, it has a gradual understanding of process, the manipulator and a technically perfect step by step process, its development trend is:1.To expand the application of manipulator and processing industryAt present domestic robots used in mechanical industry more in cold working operations, while in the hot work such as casting, forging, welding, heat treatment less, and the application of assembly work, etc. So processing work items heavy, complicated shape and high environmental temperature, bring many difficulties to manipulator design, manufacture, it is need to solve the technical difficulties, make the manipulator to better service for processing work. At the same time, in otherindustries and industrial sectors, also will with the constant improvement of the industrial technology level, and gradually expand the use of the manipulator2.Improve the work performance of the industry manipulatorManipulator in the working performance of the pros and cons, determines the application and production, it can normal manipulator working performance of the repetitive positioning accuracy and speed of work two indicators, decided to ensure the quality of manipulator can complete the operation of the key factors. Therefore to solve good working stability and rapidity of the manipulator's request, besides from solve buffer localization measures, should also be development meet the requirements of mechanical properties and low price of electro-hydraulic servo valve, servo control system was applied to the mechanical hand.3.Development of modular robotsVariable application manipulator from the characteristics of the manipulator itself, more adapted to the product type, equipment updates, many varieties, small batch, but its cost is high, the special manipulator and cheap, but the scope is limited. Therefore, for some special purpose, you need special design, special processing, thus improving the product cost. In order to adapt to the request of the application field of classify, the structure of the manipulator can be designed to the form of combination. Modular manipulator is a common parts according to the requirement of the job, select necessary to accomplish the function of the unit components, based on the base of combination, deserve to go up with adaptive control part, namely the manipulator with special requirements can be completed. It can simplify the structure, take into account the specificity and design on the use of generality, more in the series design and organization of standardization, specialized production, to improve quality and reduce cost of the manipulator, is a kind of promising manipulator4. Has a "vision" and "touch" of so-called "intelligent robots"For artificial has flexible operation and the need for judgment of the situation, industrial manipulator is very difficult to replace human labor. Such as in the working process of the accident, disorders and conditions change, etc., manipulator cannot be automatically distinguish correct, but to stop, after waiting for people to rule outaccident can continue to work. As a result, people puts forward higher requirements on mechanical hand, hope to make it a "vision", "touch", etc, make it to the judgment, the choice of object, can be continuously adjusted to adapt to changing conditions, and can perform a "hand - eye coordination. This requires a computer can handle a lot of information, require them to exchange of information with machine "dialogue".This "vision", "touch" feedback, controlled by computer, is one part of the "smart" mechanism is called "intelligent robots". Is the so-called "smart" includes: the function of recognition, learning, memory, analysis, judgment. And recognition is through the "visual", "touch" and "hearing" feel "organ" of cognitive object.Which has the function of sensory robot, its performance is perfect, can accurately clamping arbitrary azimuth objects, determine an object, weight, work over obstacles, the clamping force is measured automatically, and can automatically adjust, suitable for engaged in the operation of the complex, precision, such as assembly operation, it has a certain development prospects.Intelligent robots is an emerging technology, the study of it will involve the electronic technology, control theory, communication technology, television technology, spatial structure and bionic mechanical discipline. It is an emerging field of modern automatic control technology. With the development of science and intelligent robots will replace people to do more work.工业机械手随着我国工业生产的飞跃发展,自动化程度的迅速提高,实现工件的装卸、转向、输送或是操持焊枪、喷枪、扳手等工具进行加工、装配等作业的自动化,应越来越引起人们的重视。

机器人外文翻译

机器人外文翻译

附录:The robot1.The role of robots”The role of robots Is a high-level integration of control theory, robotics, machinery and electronics, computers, materials and bionic product. In industry, medicine, agriculture, construction and even the military have important applications in such areas. Now, the international concept of robots has been gradually approaching the same. In general, people can accept the claim that the robot is controlled by its own power and ability to achieve the various functions of a machine. The United Nations Organization for Standardization adopted by the American Federation of Robotics to the robot under the definition: "a programmable and versatile, used to move materials, parts, tools, operating machines; or to perform different tasks have to change and Programmable action specialized systems.2.Evaluation criteriaCapacity of evaluation criteria Robot capability evaluation criteria include: intelligence, refers to feelings and perceptions, including memory, calculation, comparison, identification, judging, decision-making, learning and logical reasoning, etc.; function, refers to flexibility, versatility or space occupied, etc.; physics can be means the power, speed, continuous operation capability, reliability, combined with nature, life and so on. Therefore, it can be said robot is a biological function of three-dimensional coordinates of the machine.position of the robotThe composition of the robot Robots in general by the executing agency, drives, detection devices and control system, etc.. Implementing agency, the robot body, the buttocks generally use the space for open-chain linkages, the movement of which the Deputy (rotate or move the Deputy Vice-) often referred to as joints, and joints shall be the number of robots are usually a fewdegrees of freedom. According to joint configuration types and the different forms of movement coordinates, the robot implementing agencies can be divided into rectangular type, cylindrical coordinate type, polar coordinate type and other types of joint coordinate type. For anthropomorphic considerations, often the relevant parts of the robot body are known as the base, waist, arm, wrist, hand (gripper or end effector) and the Ministry of walking (for mobile robot), etc. . Drive device is driven by movement of the body implementing agencies, in accordance with the directives issued by the signal control system, by means of dynamic components, the robot action is needed. It is the input signal, the output is the line, the amount of angular displacement. Drive robot is mainly used in electric drives, such as stepper motors, servo motors, etc. In addition, there is also hydraulic, pneumatic, etc. drives.Detecting device is the role of real-time detection robot's movement and work of the required feedback to the control system, compared with the configuration information, the right to adjust the implementing agencies to ensure the robot's movements to meet the intended requirements. As a sensor detecting device can be divided into two categories: one is internal information sensors for detecting the internal situation in various parts of robots, such as the joint position, velocity, acceleration, etc., and the measured information as a feedback the signal sent to the controller, to form a closed-loop control. The other is external information sensors, used to obtain information about the operation of robots and other objects and external environment of information, so that the robot moves to adapt to changing circumstances, so that to achieve a higher level of automation, even the machine person has a certain "feel" to the intelligent development, such as visual, sound and other external sensors sense given object of work,information about the working environment, the use of such information constitutes a major feedback loop, which will greatly enhance the work of the robot accuracy. Control system in two ways. One is the centralized control, that is, the robot's control by a microcomputer to complete. The other is decentralized (level)-type control, which uses multiple computers to share the control of robots, such as when using the upper and lower two computers together to complete the robot control, the host often used for system management, communication, kinematics and dynamics calculations, to send commands to the lower-level computer information; as a junior from the machine, the joints corresponding to a CPU, for interpolation and servo control processing operations to achieve a given movement, to the host feedback. According to the different operational mission requirements, the robot control mode can be divided into point to point control, continuous path control and force (torque) control.4.History of RobotsRobot History 1920 Czechoslovakia writer Karel Capek in his • sci-fi novel "Rossum's Universal Robots company", according to Robota (Czech, intended to "labor, slave labor") and Robotnik (Polish, the original intent as "workers"), to create a "robot" is the word. World Expo 1939 in New York on display at the Westinghouse Electric Company manufactured home robot Elektro. It is controlled by a cable, you can walk, say 77 words, or even smoke, but still far from the real chores. But it give people a vision of domestic robots to become more specific. Asimov sci-fi masters 1942, the United States put forward the "Three Laws of Robotics." Although this is only the creation of science fiction, but later became the principle of academic research and development by default. • In 1948 Norbert Weiner published in "control theory" to explain the machine in the communication and control function and the nervous, sensory function of the common law, first proposed as the core of computer-automated factory. 1954, American George • Dwyer created the world's first programmable robot and registered patents. This mechanical hand in accordance with different programs in different jobs, so has the versatility and flexibility. 1956 Dartmouth meeting • Marvin Minsky has made his views on intelligent machines: Smart Machine "to create an abstract model of the surrounding environment, if you encounter problems, from abstract model to find a solution" . This definition affects the subsequent 30 years of intelligent robot research direction. Dwyer and the United States in1959, inventor Joseph • Ingeborg joined hands to create the first industrial robot. Subsequently, the establishment of the world's first a robot manufacturing plant - Unimation company. As Ingeborg R & D for industrial robots and publicity, he was known as the "father of industrial robots." AMF Inc. in 1962, the United States produced "VERSTRAN" (meaning universal handling), and Unimation produced Unimate as a truly commercial industrial robots, and exported to countries around the world, setting off a worldwide study of robots and robot the globe. 1962 -1,963 years the application of sensors to improve the operability of the robot. People try all kinds of sensors installed on the robot, including the 1961 Ernst used in tactile sensors, Tomovic and Boni 1962, the world's first "smart hand" on the use of pressure sensors, while the McCarthy in 1963, has begun to add visual sensor in robot system, and in 1965, helped MIT launched the world's first with a vision sensor that can identify and locate building blocks of the robotic system. 1965 Johns Hopkins University Applied Physics Laboratory • developed Beast robot. Beast has been through sonar systems, photoelectric tubes and other devices, the environmental correction own position. 60 mid-20th century, the U.S. Massachusetts Institute of Technology, Stanford University, University of Edinburgh, been set up in the robot lab. The United States with the rise of the second-generation sensors research, "there feel" of the robot, artificial intelligence and to work towards it. The world's first intelligent robot Shakey Stanford Research Institute in 1968, the United States announced that they successfully developed a robot Shakey. It is with a vision sensor, according to the instructions of people to discover and crawl the building blocks of a computer to control it, but there is a room so much. Shakey can be regarded as the world's first intelligent robot, beginning the prelude to the third generation of robot research and development. 1969, Ichiro Kato, Waseda University Laboratory developed the first robot to walk, walk. Ichiro Kato, the long-term commitment to research humanoid robot, known as "the father of humanoid robot." Japanese experts has been to develop humanoid robots and robot technology, known for entertainment, then go one step further hastened the development of Honda's ASIMO and Sony's QRIO. In 1973 the world's first robot and small computers to work together, they gave birth to the U.S. company Cincinnati Milacron robot T3. Unimation introduced in 1978, the U.S. general industrial robot PUMA, which marks the industrial robot technology has reached full maturity. PUMA is still work in the factory in the forefront. 1984 Ingeborg pushed robot Helpmate, the robot can deliver mealsto patients in the hospital and get drugs, to send e-mail. In the same year, he predicted: "I want robots to clean the floor, cooking, washing out to help me to check security." In 1998 Denmark introduced Lego Robot (Mind-storms) package, so get with the building-block robot manufacturing the same, relatively simple and can arbitrarily assembled, the robot started to enter the private world. In 1999 Sony introduced Aibo robot dog (AIBO), immediately sold out, and from entertainment robots become the robot forward one of the ways ordinary family. In 2002 the U.S. introduced the iRobot robotic vacuum cleaner Roomba, it can avoid obstacles, automatic design of the road route, but also in the power is insufficient, automatically towards charging seat. Roomba is the world's largest-selling and most commercial household robots. an authorized agent iRobot Corporation Beijing: Beijing Science and Technology Co., Ltd. Micro-Mesh, Tomohiro http / / net cn. In June 2006, Microsoft launched the Microsoft Robotics Studio, robotics modular, unified platform, it became increasingly evident, Bill • Gates predicted that household robots will soon be sweeping the world5.Robot category articlesBeing born in science fiction, like, people are full of fantasy robot. Perhaps it is because the definition of fuzzy robots, which gave the people full of imagination and creative space. Domestic robots: to help people take care of life, to do simple household chores. Manipulator-type robot: Can automatic, repeatable programming, multi-functional, there are several degrees of freedom can be fixed or movement, for associated automation systems. Programmable Robot: According to the order and conditions of apre-requirement in turn control the robot's mechanical movements.Teaching-playback robot: Adoption of the guidance or other means, the first robot moves the church, enter the work process, the robot will automatically repeat operations. NC robots: do not have to move the robot through the values, language, etc. for teaching the robot, the robot according to the information after teaching job. Feel-controlled robot: the use of sensors to obtain information on control of robot action. Adaptive control robot: able to adapt to changes in the environment, control their own actions. Learning control for robots: can "understand" the work experience, with a certain degree of learning function, and the "learning" experience for the work. Intelligent Robots: The artificial intelligence robot to determine its actions. China's environment, starting from the application of robotics experts, robotsare divided into two categories, namely industrial robots and special robot. The so-called industrial robots for industrial areas of multi-joint or multi-DOF robot manipulators. In addition to the special robot is outside of industrial robots used for non-manufacturing and the service of mankind advanced robots, including: service robots, underwater robots, entertainment robots, military robots, agricultural robots, robot-based machinery. In the special robots, some branches have developed rapidly, there is a separate system for trends, such as service robots, underwater robots, military robots,micro-operation of robots. At present, the international robot scholars, starting from the application environment, the robot is also divided into two categories: manufacturing environment of industrial robots and the non-manufacturing environment, the service and humanoid robots, This classification is consistent with our The. Also known as unmanned aerial robot machines, in recent years, the family in the military robotics, unmanned aerial vehicles are the most active research activities, technological progress, the largest research and procurement of funds into the largest and most experienced in the field of combat. 80 years, the world is basically the development of unmanned aerial vehicles based on the main line of the United States to move forward, regardless of the technical level, the types and number of UAVs, the U.S. ranking first in the world.6.Robot varieties articles6.1 Unmanned aircraftdrones "Detachment" Unmanned Aerial Vehicle Throughout the history of UAV development can be said that modern warfare is to promote the UAV development. The impact of modern warfare UAV is also growing. The first and during World War II, despite the emergence and use of unmanned aerial vehicles, but because of low levels of technology, unmanned aerial vehicles does not play a significant role. The Korean War in the United States use of unmanned reconnaissance and attack aircraft, but in limited quantities. In the ensuing war in Vietnam, the Middle East war, UAVs have become an essential weapon systems. In the Gulf War, the war in Bosnia and Kosovo war, has become the main reconnaissance UAV types. French "Red Hawk" unmanned aerial vehicle U.S. Air Force suffered heavy losses during the Vietnam War, was shot down aircraft, 2500, killed more than 5,000 pilots, the U.S. domestic public outcry. To this end the Air Force increased use of theUAV. Such as "buffalo hunters" UAV mission over North Vietnam 2500 times, low altitude photographs, injury rate of only 4%. AQM-34Q-type 147 firebee UAV Flight 500 several times, to conduct electronic eavesdropping, radio interference, dispersal of metal chaff and for some people to open up access, and so the aircraft. High-altitude unmanned reconnaissance aircraft In the 1982 war in the Bekaa Valley, Israeli forces discovered through aerial reconnaissance. Syria in the Bekaa Valley, a large concentration of troops. June 9, the Israeli army deployed US-made E-2C "Hawkeye" early warning surveillance aircraft to Syrian forces, and sent every day, "Scout" and "vicious dog" and unmanned aerial vehicles more than 70 sorties against Syrian forces in air defense positions Airport repeated reconnaissance, and to send images taken early warning aircraft and ground command. In this way, the Israeli army and accurately identify the location of the radar of the Syrian forces, and then launch the "wolf" type of anti-radar missiles, destroying the Syrian forces a lot of radar, missiles and automatic antiaircraft guns, and forced Syrian forces did not dare turn the radar, in order to in order to Army was the target to create the conditions for the aircraft. Phantom UAV The outbreak of the Gulf War in 1991, the U.S. military first face the problem of the Sand Sea is to be found in the vast hidden Iraqi Scud missile launchers. If someone reconnaissance aircraft, it must be round-trip flights over the desert, long exposure to the Iraqi army antiaircraft fire, under extremely dangerous. To this end, the U.S. military unmanned aerial surveillance has become the main force. Throughout the Gulf War, "Pioneer," the U.S. military to use unmanned aerial vehicles UAVs most kinds of U.S. forces deployed in the Gulf region a total of six Pioneer unmanned aerial vehicles with a total of 522 sorties flown, flight time of up to 1640 hours . At that time, regardless of day or night, every day there is always a Pioneer UAV flying over the Gulf. In order to destroy the Iraqi forces in the coastal fortifications built by strong, February 4 USS Missouri Chengye reaching offshore area, Pioneer UAV taking off from its deck, using infrared detectors were shot and send the images of ground targets to the command center. A few minutes later, warships and 406 mm guns began to bombard targets, unmanned aerial vehicles for the gun to school constantly firing. USS Wisconsin took over after the Missouri, so bombarded for three days straight, so that Iraqi artillery positions, radar network, command and communications center was completely destroyed. During the Gulf War, taking off only from the two battleships there is a pioneer in UAV 151 sorties, flying more than 530 hoursto complete the target search, battlefield warning, maritime interdiction and naval gunfire support missions. Brevel UAV During the Gulf War, the Pioneer unmanned aerial vehicles have become pioneers of the U.S. Army troops. It is for the Army's 7th Army for aerial reconnaissance, shooting a large number of Iraqi tanks, command centers and missile launch position of the image, and send it to the helicopter unit, followed by the U.S. military sent the "Apache" attack helicopters of the targets attack, if necessary, can call for artillery fire support units. Pioneer aircraft survivability strong in the 319 sorties were flown, only one was hit, there are 4 ~ 5 due to electromagnetic interference and distress. In addition to the U.S., the United Kingdom, France, Canada also deployed unmanned aerial vehicles. Such as France's "fawn" division is equipped with a "Malte" UAV row. When the French troops fighting in Iraqin-depth, first sending the enemy reconnaissance unmanned aerial vehicles, according to detected conditions, the French escaped the Iraqi army tanks and artillery positions. 1995 Bosnian war, because troops need, "Predator" unmanned aerial vehicles will soon be transported to the front. Serb forces in the NATO air strikes of the supply lines, ammunition depots, command center, the "Predator" has played an important role. It first carried out reconnaissance and found that target to guide the aircraft to attack someone, and then for the war effort. It also provided for the United Nations peacekeeping force in Bosnia and Herzegovina on the main road military vehicles movement, and to determine whether the parties complied with the peace agreement. U.S. military and thus the "Predator," called the "battle of the low-altitude satellites." In fact, satellites can only provide instant images on the battlefield, while the UAV could be a long time hovering over the battlefield to stay on the battlefield and thus able to provide continuous real-time image, unmanned aerial vehicles is also much cheaper than using satellites. March 24, 1999, the US-led NATO banner of "safeguarding human rights" under the guise of the Federal Republic of Yugoslavia began bombing the outbreak of that shocked the world, "the Kosovo war." In the 78 days of bombing, NATO deployed a total of 32 million per aircraft, ships into more than 40 vessels, dropped bombs, 13 million tons, resulted in an unprecedented catastrophe in Europe since World War II. Federal Republic of Yugoslavia is mountainous and forest terrain, as well as more than rainy days more than the climatic conditions significantly affected the NATO reconnaissance satellites andhigh-altitude reconnaissance plane effect, the Sierra Leone Army also brings a fierce anti-aircraft fire, it was not low-flying reconnaissance planes,resulting in NATO Air Force does not recognize and attack the clouds below target. In order to reduce casualties, NATO's extensive use of unmanned aerial vehicles. The Kosovo war was the use of local wars in the world the largest number of unmanned aerial vehicles, unmanned aerial vehicles play a role in the greatest war. Although the UAV fly slowly at low altitudes, but it is small, radar and infrared characteristics of small, good for hiding, can not easily be hit, suitable for low-altitude reconnaissance, you can see the satellite and reconnaissance aircraft was See unclear objectives. During the Kosovo war, the United States, Germany, France and Britain dispatched a total of 6 different types of unmanned aerial vehicles, more than 200 planes, which are: U.S. Air Force's "Predator" (Predator), the Army's "Hunter" (Hunter) , and the Navy's "Pioneer" (Pioneer); German CL-289; France's "Red Falcon" (Crecerelles), "Hunter", and the United Kingdom's "Phoenix" (Phoenix) and other unmanned aerial vehicles. UAV in the Kosovo war, some of the major completed the following tasks: low-altitude reconnaissance and battlefield surveillance, electronic interference, victories assessment, targeting, weather data collection, distribution of leaflets, and rescue pilot, and so on. The Kosovo war has not only greatly increased the UAV's position in the war, but also aroused the attention of Governments on the UAV. U.S. Senate Armed Services Committee requested that the military should be prepared to 10 years, a sufficient number of unmanned systems tolow-altitude attack aircraft in one-third of UAVs; 15 years, one-third of ground combat vehicles unmanned systems should be in . This is not to use unmanned aircraft to replace the pilot and it was, but some people use them to add the capacity of the aircraft in order to high-risk tasks to minimize use of the pilot. UAV's development will accelerate the theory of modern warfare and unmanned warfare systems development.6.2 Special features robotspecial feature of the robot Machine Police The so-called military robots on the ground is used on the ground robot system, they are not only in times of peace can help police rule out bomb to complete the task should be to the security in wartime can be replaced by soldiers of mine, reconnaissance and attack a variety of tasks such as Today, the United States, Britain, Germany, France, Japan and other countries have developed various types of ground military robots. Britain's "trolley" robot In Western countries, terrorism has always been one to make the headache problem. The United Kingdom due toethnic conflicts, suffering from the threat of explosives, so as early as 60 years on the successful development of EOD robot. British developed crawler-style "trolleys" and "super cart" EOD robot, has more than 50 countries and police agencies has sold more than 800 units. Recently, Britain has in turn trolley robot to be optimized, prairie dogs and bison have developed two kinds of remote control electric EOD robot, the British Royal Engineers in Bosnia-Herzegovina and Kosovo are using them to detect and deal with explosives. Prairie dogs weigh 35 kilograms, the mast is equipped with two cameras. Bison weighed about 210 kilograms and can carry 100 kg of load. Both use radio control system, remote control distance of about 1 km. "Prairie Dog" and "Maverick" and EOD robot In addition to a bomb planted by terrorists outside the war-torn countries in many of the world, and everywhere a variety of scattered unexploded munitions. For example, in Kuwait after the Gulf War as an ammunition depot could explode at any time. In theIraq-Kuwait border over 10,000 square kilometer area, there are 16 countries manufacture of 25 million mines, 85 million rounds of ammunition, and the multinational forces dropped bombs and cluster bombs mines of 25 million bullets, of which at least 20% No explosion. And now, even in many countries there is residual in the First World War and World War II unexploded bombs and landmines. Therefore, explosive ordnance disposal robot is a great demand. Wheeled robot with the Removal of Explosive Devices and tracked, and they are generally small size, steering a flexible, easy to work in a small space, the operator can be a few hundred meters to several kilometers away through radio or optical control of their activities. Robot cars general color CCD camera is equipped with multiple pairs of explosives used for observation; more than one degree of freedom manipulator, with its gripper or clamp may be explosives, fuses or detonators screwed down, and to transport explosives walking; car was also equipped with shotguns, using a laser pointer aimed at, it can be to the timing device and detonating explosive devices to destroy; some robot is equipped with high-pressure water gun, you can cut explosives. Germany's EOD robot In France, the Air Force, Army and Police Department have purchased Cybernetics developed TRS200medium-sized companies EOD robot. DM's robots have been developedRM35 Paris Airport Authority selected. German peacekeepers in Bosnia and Herzegovina equipped Telerob team returned the company's MV4 series of robots. Developed by the Shenyang Institute of Automation of China's PXJ-2 robot has joined the ranks of security forces. U.S. Remotec's Andros series ofrobots were welcomed by national uniformed services, the White House and congressional buildings, police stations have to buy this robot. Before the presidential election in South Africa, the police bought a four AndrosVIA robots, they are in the electoral process carried out in a total of 100 multiple tasks. Andros robot can be used for small-scale random explosive ordnance disposal, it is the U.S. Air Force aircraft and passenger cars for use only robots. After the Gulf War, the U.S. Navy has used such a robot in Saudi Arabia and Kuwait Air Force Base in clearing mines and unexploded ordnance. U.S. Air Force also sent five sets Andros robot to Kosovo, for the clean-up of explosives and sub-shells. Each active duty Air Force explosives disposal team and air rescue centers are equipped with a Andros VI. EOD robot developed in China EOD robot can not only rule out the bombs, reconnaissance sensors can also use it to monitor the activities of criminals. Surveillance personnel in the far right criminals day and night to observe, listen to their conversation, do not expose themselves very well could be right. In early 1993, in the United States occurred in Waco estate lesson plans, in order to get the activities of the Puritans who, the FBI used two kinds of robots. One is Remotec's AndrosVA type and Andros MarkVIA-type robot, the other is developed by RST company STV robots. STV is a six remote control cars, using radio and cable communications. On board can be raised to a 45-meter bracket, the above three-dimensional with color camera, day-optic sight, night vision sights, binaural audio detectors, chemical detectors, satellite positioning systems, target tracking using The forward-looking infrared sensors. The car takes only one operator, remote control distance of 10 kilometers. During the operation, sent out three sets STV, the operator remote control robot moving to a place 548 meters away from the manor to stop, the car bracket raised the use of video cameras and infrared detectors to the window spying, FBI officials were observed around the screen back to the image sensor, the activities of the house can be seen clearly.6.3 civil robotRobot commandThird, civil robot Robot command In fact, people do not want to the robot is not a complete definition, since the robot from the date of the birth of people will continue to try to explain what a robot in the end. But with the rapid development of robot technology and information era, the robot covers the contents of the increasingly rich and constantly enrich the definition of robot。

机械手英语文献翻译

机械手英语文献翻译

1 英文文献翻译1.1 Cherry-harvesting robot1.1.1 IntroductionIn Japan, cherries are harvested carefully by human labor. As the harvesting season is short, the harvesting work is concentrated in a short time period and labor shortage tends to limit the farm acreage. Moreover, cherry trees are tall, and so the harvesting work must be conducted using pairs of steps. This makes harvesting dangerous and inefficient. To save on labor, a cherry-harvesting robot was manufactured for trial purposes and initial experiments were conducted. Research on fruit-harvesting robots has already been conducted (Kawamura etal., 1984; Harrell et al., 1990; Fujiura et al., 1990; Hanten et al.,2002). Many of the fruit-harvesting robots previously reported are equipped with a video camera. Fruit images are distinguished from the background by the difference in color or the spectral reflectance. The 3-D location of the fruit was calculated using binocular stereo-vision (Kawamura et al., 1985)or by visual feedback control (Kondo and Endo, 1989). Applications of a 3-D vision sensor have also been reported (Subrata etal., 1996; Gao et al., 1997). The 3-D vision sensor has the advantage that each pixel of the image has distance information.Making use of this advantage, the object can be recognized by the 3-D shape. As for the cherry-harvesting work, it is necessary to harvest the fruit while avoiding collisions with obstacles such as leaves and stems. To obtain a successful harvesting motion, detection of obstacles as well as the red ripe fruit is required. To achieve this, a 3-D vision system that has two laser diodes was manufactured. One of them emits a red beam and the other an infrared beam. To prevent the influence of the sunlight, position sensitive devices (PSDs) were used todetect the r eflected light. By blinking the laser beams at a high frequency, the signal components of the laser from PSDs were distinguished from that of the sunlight. The 3-D shape of the object was measured by scanning the laser beams and the red fruits were distinguished from other objects by the different cein the spectral-reflection characteristics between the red andinfrared laser beams. The robot needs to harvest correctly and efficiently without damaging the fruits and branches under the environment (temperature, sunshine, etc.) of the orchard. Many cherry trees are cultivated in rain-cover vinyl tents to protect against rain. A robot that works in the tent is not exposed to wind and rain. Cherry fruit, both for the fresh market and for processing, must be harvested with its peduncle.In the case of manual harvesting, therefore, farmers grip the upper part of the peduncle with their fingers, and lift it upward to detach it from the tree. For the same reason, the robot manufactured for the experiment also gripped the upper part of the peduncle just like farmers and lifted it upward to detach the peduncle from the tree.1.1.2 Materials and methodsThe robot consists of a manipulator 4 degrees of freedom (DOF), a 3-D vision sensor, an end effector, a computer, and a traveling device (Fig. 2). It is about 1.2m high, 2.3m wide, and 1.2m long. The 3-D vision sensor is attached to the manipulator to scan from different viewpoints by the motion of the manipulator. A vacuum is used to suck the fruit into the sucking pipe of the end effector.Cherry trees cultivated by the method of single trunk training distribute their fruits around the main trunk. In order to harvest a fruit while avoiding obstacles, such as leaves and trunks, the end effector needs to approach the fruit from the outside of the trunk. For this reason, in this study, we manufactured an articulated manipulator with an axis of up-down traverse and three axes of right-left turning, so that the fruits could be harvested in any direction (Fig. 2). The up-down traverse requires comparatively large force caused by the gravity. Therefore, it is driven by an AC servomotor (Yaskawa Electric, SGMAH-01BAA2C, rated power 100W, rated torque 0.318Nm, rated speed 3000min−1) and a screw mechanism (lead 10mm). Three axes of the right–left turning do not require large torque. Axes of the first and second right–left turning are driven by small AC servomotors (Yaskawa Electric, SGMAH-A5BAA21, rated power 50W, rated torque 0.159N m,rated speed 3000min−1) and harmonic reduction gears (reduction gear ratio100). The remaining axis of right–left turning is driven by a small DC motor with reduction gears. The manipulator is designed to be able to move round the circumference of the tree trunk so that notonly fruits on the front side of the trunk but also the fruits on the other side of the trunk could be harvested.Since the fruits are located around the tree trunk, if the vision sensor scans from one viewpoint, fruits beyond the trunk are hidden. To scan from different viewpoints, the 3-D vision sensor was attached to the second arm. The movement of the manipulator changed the location and directionof the 3-D vision sensor so that the dead angle becomes small.The 3-D vision sensor is equipped with a light projector, a photo detector, and a scanning device (Fig. 3). The light projector consists of an infrared laser module, a red laser module, cold mirrors, a half mirror, and two full-reflecting mirrors. The photo detector consists of two PSDs, a lens, and a red optical filter that weakens the influence of su nlight. The scanning device consists of a galvanometer scanner and a stepping motor. The galvanometer scanner scans vertically and the stepping motor scans horizontally. Red and infrared laser beams are united in the same optical axis by a cold mirror that transmits infrared light and reflects visible right. The beam is further split into two beams (each still including both wavelengths) by a half mirror. These two beams scan the object simultaneously. Light of the two beams reflected from the object is focused onto two PSDs. The distance from the 3-D vision sensor to the object is calculated by a triangulation method using the ratio of the currents of both electrodes of the PSDs. The laser beams emit blinking signals in order to eliminate the influence of sunl ight.By this method, reflected light is separated from the sunlight, thus resulting in continuous light. Infrared light with wavelengths about 700–1000 nm is reflected well by all parts of the cherry tree. On the other hand, red light at about 690 nm is n ot reflected well by unripe fruit, leaves, and stalks, but is reflected well by red ripe fruit. In this study, an infrared light beam of830 nm and a red light beam of 690 nm were used. The infrared laser beam (830 nm) measures the distance to each part of the cherry tree from the 3-D vision sensor and the red laser beam(690 nm) detects the red fruit to be harvested.As mentioned above, the laser beam is split into two beams. The 3-D vision sensor scans these two beams simultaneously, and two pixels were measured at once to increase the scanning speed. The number of pixels was 50,000 (250 in the vertical and 200 in the horizontal direction). The scan time was 1.5 s. The field of vision was 43.8◦ in vertical direction and 40.6◦ in horizontal direction. The effective range of the sensor was from170mmto 500mm. If the object was too far from the sensor, the detected light was weakened and the measuring accuracy was not good.The reflected light from these laser beams is detected by two PSDs, one for each beam. The signals from the PSDs include red and infrared components. To acquire the red and infrared signals separately, the red and infrared laser lights were emitted at a blinking frequency of 41.6 kHz with a phase shift of 90◦. Photoelectric currents from PSDs are amplified. Red and infrared signals are detected separately using lock-in amplifiers, which also eliminate the influence of ambient light. The 3-D vision sensor can be used even under sunlight, where the illuminance is 100 klx. A red image and an infraredimage are fed to the computer, and then a range image and segmentation are obtained.The range image is calculated by triangulation using the infrared signals from anode A and B of the PSD. Segmentation is obtained from the ratio between the infrared and red signals. Red fruits were distinguished from other objects such as leaves by the reflectivity of the red laser. However, the trunk as well as the fruits reflect a red laser beam. Therefore, it was distinguished from fruits using other methods. Fruits reflect with specula phenomenon. When they are scanned, the fruit center reflects the laser beam well. How- ever, this phenomenon does not occur at the trunk surface. The center of each fruitwas recognized using this specula phenomenon. When the center of a fruit is visible from the 3-D vision sensor, fruits could be recognized by this method. By processing these images, the location of red fruits and obstacles, such as leaves and trunks, could be recognized.Fig. 4 shows examples of the image. The range image was obtained by the method of triangulation using the infrared signals of the PSD. By processing the infrared, red, and the range images, the object was segmented into red fruits and others. The image in the right side shows the result of segmentation.Cherry fruit must be harvested with its peduncle attached. The tensile strength needed to detach the fruit was measured. The strength between the peduncle and the fruit was about 1N. On the other hand, the strength between the peduncle and the branch was about 2.5N. Therefore, if the fruit was pulled it would detach the peduncle and the fruit because the strength in that area isthe weakest. To harvest the fruit with its peduncle, a special end effector was used. It consisted of a fruit sucking device, an open-close mechanism, a back-and- forth mechanism, and a pair of fingers. It is about 80 mm high, 30 mm wide, and 145 mm long (Fig. 5). The vacuum pressure from the vacuum cleaner sucks the fruit so that the fruit position is fixed at the tip of the pipe. The fin ger can be opened or closed by the rotation of a servomotor attached on the end effector. After the fingers grasp the peduncle, the end effector is lifted up to remove the peduncle from the tree.Fig. 6 shows the motion of the end effector. First, the finger s are opened and retracted by the servomotors. Then, the end effector approaches a fruit and sucks it. After sucking the fruit, the fingers move halfway forward, and close halfway until the clearance between fingers becomes 5mm. In order to enclose only the target fruit, the fingers are equipped with soft rubber components for obstacle exclusion, so that other fruits may not enter between the fingers. It is necessary to grip the peduncle as near as possible to its root . Therefore, after the fingers are closed halfway, they move further forward. Then, they close completely and grasp the peduncle. Finally, the end effector moves upward to detach the peduncle. The end effector moves to the position above a fruit box, and the fingers open and release the fruit.……1.2 樱桃采摘机器人1.2.1 简介在日本,采摘樱桃是一项细致的人工劳动。

机器人视觉伺服控制外文文献翻译、中英文翻译

机器人视觉伺服控制外文文献翻译、中英文翻译

附录1:外文翻译摘要本文介绍了机器人视觉伺服控制的入门教程,由于该课题涉及许多学科,我们的目标仅限于提供一个基本的概念框架工作。

首先,我们从机器人学和计算机视觉的前提条件,包括坐标变换,速度表示,以及图像形成过程的几何方面的描述进行简要回顾。

然后,我们提出了视觉伺服控制系统的分类。

然后详细讨论了基于位置和基于图像的系统的两大类。

由于任何视觉伺服系统必须能够跟踪图像序列中的图像特征,所以我们还包括基于特征和基于相关性的跟踪方法的概述。

我们结束了教程与一些服务的当前方向的研究领域的视觉伺服控制当今绝大多数增长的机器人人口都在工厂里工作,在那里工厂可以制造出适合机器人的环境。

在工作环境和物体放置不能精确控制的应用中,机器人的影响要小得多。

这种局限性很大程度上是由于现代商业机器人系统固有的感觉能力不足。

人们早已认识到,传感器集成是提高机器人的通用性和应用领域的基础,但迄今为止,这还没有证明在制造业中大量的机器人应用是有效的。

机器人在日常生活中的“前沿”为这项研究提供了新的动力。

与制造业的应用不同,重新设计“我们的世界”并不适合于机器人。

视觉是一种有用的机器人传感器,因为它模仿人类的视觉,并允许对环境进行非接触测量。

自从Shirai 和伊努埃(1)的早,期工作(谁描述了如何使用视觉反馈回路来校正机器人的位置以提高任务精度)大量的EORT 一直致力于机器人的视觉控制。

机器人控制器完全集成的视觉系统现在可以从多个供应商获得。

通常,视觉感知和操作以开环的方式组合,“看”然后“移动”。

所得到的操作的精度直接取决于视觉传感器和机器人末端Ecter 的精度。

增加这些子系统的精度的一个替代方法是使用视觉反馈控制回路,这将增加系统的整体精度,这是大多数应用中的一个主要问题。

极端地,机器视觉可以为机器人端部控制器提供闭环位置控制。

这被称为视觉伺服。

这个词似乎已经被RHT 和Park(2)在1979 中介绍了,以区别他们的方法与先前的“块世界”实验,其中系统在拍照和移动之间交替。

机器人外文翻译(文献翻译_中英文翻译)

机器人外文翻译(文献翻译_中英文翻译)

外文翻译外文资料:RobotsFirst, I explain the background robots, robot technology development. It should be said it is a common scientific and technological development of a comprehensive results, for the socio-economic development of a significant impact on a science and technology. It attributed the development of all countries in the Second World War to strengthen the economic input on strengthening the country's economic development. But they also demand the development of the productive forces the inevitable result of human development itself is the inevitable result then with the development of humanity, people constantly discuss the natural process, in understanding and reconstructing the natural process, people need to be able to liberate a slave. So this is the slave people to be able to replace the complex and engaged in heavy manual labor, People do not realize right up to the world's understanding and transformation of this technology as well as people in the development process of an objective need. Robots are three stages of development, in other words, we are accustomed to regarding robots are divided into three categories. is a first-generation robots, also known as teach-type robot, it is through a computer, to control over one of a mechanical degrees of freedom Through teaching and information stored procedures, working hours to read out information, and then issued a directive so the robot can repeat according to the people at that time said the results show this kind of movement again, For example, the car spot welding robots, only to put this spot welding process, after teaching, and it is always a repeat of a work It has the external environment is no perception that the force manipulation of the size of the work piece there does not exist, welding 0S It does not know, then this fact from the first generation robot, it will exist this shortcoming, it in the 20th century, the late 1970s, people started to study the second-generation robot, called Robot with the feeling that This feeling with the robot is similar in function of a certain feeling, forinstance, force and touch, slipping, visual, hearing and who is analogous to that with all kinds of feelings, say in a robot grasping objects, In fact, it can be the size of feeling out, it can through visual, to be able to feel and identify its shape, size, color Grasping an egg, it adopted a acumen, aware of its power and the size of the slide. Third-generation robots, we were a robotics ideal pursued by the most advanced stage, called intelligent robots, So long as tell it what to do, not how to tell it to do, it will be able to complete the campaign, thinking and perception of this man-machine communication function and function Well, this current development or relative is in a smart part of the concept and meaning But the real significance of the integrity of this intelligent robot did not actually exist, but as we continued the development of science and technology, the concept of intelligent increasingly rich, it grows ever wider connotations.Now, I would like to briefly outline some of the industrial robot situation. So far, the industrial robot is the most mature and widely used category of a robot, now the world's total sales of 1.1 million Taiwan, which is the 1999 statistics, however, 1.1 million in Taiwan have been using the equipment is 75 million, this volume is not small. Overall, the Japanese industrial robots in this one, is the first of the robots to become the Kingdom, the United States have developed rapidly. Newly installed in several areas of Taiwan, which already exceeds Japan, China has only just begun to enter the stage of industrialization, has developed a variety of industrial robot prototype and small batch has been used in production.Spot welding robot is the auto production line, improve production efficiency and raise the quality of welding car, reduce the labor intensity of a robot. It is characterized by two pairs of robots for spot welding of steel plate, bearing a great need for the welding tongs, general in dozens of kilograms or more, then its speed in meters per second a 5-2 meter of such high-speed movement. So it is generally five to six degrees of freedom, load 30 to 120 kilograms, the great space, probably expected that the work of a spherical space, a high velocity, the concept of freedom, that is to say, Movement is relatively independent of the number of components, the equivalent of our body, waist is a rotary degree of freedom We have to be able to hold his arm, Arm can be bent, then this three degrees of freedom, Meanwhile there is a wristposture adjustment to the use of the three autonomy, the general robot has six degrees of freedom. We will be able to space the three locations, three postures, the robot fully achieved, and of course we have less than six degrees of freedom. Have more than six degrees of freedom robot, in different occasions the need to configure.The second category of service robots, with the development of industrialization, especially in the past decade, Robot development in the areas of application are continuously expanding, and now a very important characteristic, as we all know, Robot has gradually shifted from manufacturing to non-manufacturing and service industries, we are talking about the car manufacturer belonging to the manufacturing industry, However, the services sector including cleaning, refueling, rescue, rescue, relief, etc. These belong to the non-manufacturing industries and service industries, so here is compared with the industrial robot, it is a very important difference. It is primarily a mobile platform, it can move to sports, there are some arms operate, also installed some as a force sensor and visual sensors, ultrasonic ranging sensors, etc. It’s surrounding environment for the conduct of identification, to determine its campaign to complete some work, this is service robot’s one of the basic characteristics.For example, domestic robot is mainly embodied in the example of some of the carpets and flooring it to the regular cleaning and vacuuming. The robot it is very meaningful, it has sensors, it can furniture and people can identify, It automatically according to a law put to the ground under the road all cleaned up. This is also the home of some robot performance.The medical robots, nearly five years of relatively rapid development of new application areas. If people in the course of an operation, doctors surgery, is a fatigue, and the other manually operated accuracy is limited. Some universities in Germany, which, facing the spine, lumbar disc disease, the identification, can automatically use the robot-aided positioning, operation and surgery Like the United States have been more than 1,000 cases of human eyeball robot surgery, the robot, also including remote-controlled approach, the right of such gastrointestinal surgery, we see on the television inside. a manipulator, about the thickness fingers such a manipulator, inserted through the abdominal viscera, people on the screen operating the machines hand, it also used the method of laser lesion laser treatment, this is the case, peoplewould not have a very big damage to the human body.In reality, this right as a human liberation is a very good robots, medical robots it is very complex, while it is fully automated to complete all the work, there are difficulties, and generally are people to participate. This is America, the development of such a surgery Lin Bai an example, through the screen, through a remote control operator to control another manipulator, through the realization of the right abdominal surgery A few years ago our country the exhibition, the United States has been successful in achieving the right to the heart valve surgery and bypass surgery. This robot has in the area, caused a great sensation, but also, AESOP's surgical robot, In fact, it through some equipment to some of the lesions inspections, through a manipulator can be achieved on some parts of the operation Also including remotely operated manipulator, and many doctors are able to participate in the robot under surgery Robot doctor to include doctors with pliers, tweezers or a knife to replace the nurses, while lighting automatically to the doctor's movements linked, the doctor hands off, lighting went off, This is very good, a doctor's assistant.Robot is mankind's right-hand man; friendly coexistence can be a reliable friend. In future, we will see and there will be a robot space inside, as a mutual aide and friend. Robots will create the jobs issue. We believe that there would not be a "robot appointment of workers being laid off" situation, because people with the development of society, In fact the people from the heavy physical and dangerous environment liberated, so that people have a better position to work, to create a better spiritual wealth and cultural wealth.译文资料:机器人首先我介绍一下机器人产生的背景,机器人技术的发展,它应该说是一个科学技术发展共同的一个综合性的结果,同时,为社会经济发展产生了一个重大影响的一门科学技术,它的发展归功于在第二次世界大战中各国加强了经济的投入,就加强了本国的经济的发展。

人工智能英文文献原文及译文

人工智能英文文献原文及译文

附件四英文文献原文Artificial Intelligence"Artificial intelligence" is a word was originally Dartmouth in 1956 to put forward. From then on, researchers have developed many theories and principles, the concept of artificial intelligence is also expands. Artificial intelligence is a challenging job of science, the person must know computer knowledge, psychology and philosophy. Artificial intelligence is included a wide range of science, it is composed of different fields, such as machine learning, computer vision, etc, on the whole, the research on artificial intelligence is one of the main goals of the machine can do some usually need to perform complex human intelligence. But in different times and different people in the "complex" understanding is different. Such as heavy science and engineering calculation was supposed to be the brain to undertake, now computer can not only complete this calculation, and faster than the human brain can more accurately, and thus the people no longer put this calculation is regarded as "the need to perform complex human intelligence, complex tasks" work is defined as the development of The Times and the progress of technology, artificial intelligence is the science of specific target and nature as The Times change and development. On the one hand it continues to gain new progress on the one hand, and turning to more meaningful, the more difficult the target. Current can be used to study the main material of artificial intelligence and artificial intelligence technology to realize the machine is a computer, the development history of artificial intelligence is computer science and technology and the development together. Besides the computer science and artificial intelligence also involves information, cybernetics, automation, bionics, biology, psychology, logic, linguistics, medicine and philosophy and multi-discipline. Artificial intelligence research include: knowledge representation, automatic reasoning and search method, machine learning and knowledge acquisition and processing of knowledge system, natural language processing, computer vision, intelligent robot, automatic program design, etc.Practical application of machine vision: fingerprint identification,face recognition, retina identification, iris identification, palm, expert system, intelligent identification, search, theorem proving game, automatic programming, and aerospace applications.Artificial intelligence is a subject categories, belong to the door edge discipline of natural science and social science.Involving scientific philosophy and cognitive science, mathematics, neurophysiological, psychology, computer science, information theory, cybernetics, not qualitative theory, bionics.The research category of natural language processing, knowledge representation, intelligent search, reasoning, planning, machine learning, knowledge acquisition, combined scheduling problem, perception, pattern recognition, logic design program, soft calculation, inaccurate and uncertainty, the management of artificial life, neural network, and complex system, human thinking mode of genetic algorithm.Applications of intelligent control, robotics, language and image understanding, genetic programming robot factory.Safety problemsArtificial intelligence is currently in the study, but some scholars think that letting computers have IQ is very dangerous, it may be against humanity. The hidden danger in many movie happened.The definition of artificial intelligenceDefinition of artificial intelligence can be divided into two parts, namely "artificial" or "intelligent". "Artificial" better understanding, also is controversial. Sometimes we will consider what people can make, or people have high degree of intelligence to create artificial intelligence, etc. But generally speaking, "artificial system" is usually significance of artificial system.What is the "smart", with many problems. This involves other such as consciousness, ego, thinking (including the unconscious thoughts etc. People only know of intelligence is one intelligent, this is the universal view of our own. But we are very limited understanding of the intelligence of the intelligent people constitute elements are necessary to find, so it is difficult to define what is "artificial" manufacturing "intelligent". So the artificial intelligence research often involved in the study of intelligent itself. Other about animal or other artificial intelligence system is widely considered to be related to the study of artificial intelligence.Artificial intelligence is currently in the computer field, the moreextensive attention. And in the robot, economic and political decisions, control system, simulation system application. In other areas, it also played an indispensable role.The famous American Stanford university professor nelson artificial intelligence research center of artificial intelligence under such a definition: "artificial intelligence about the knowledge of the subject is and how to represent knowledge -- how to gain knowledge and use of scientific knowledge. But another American MIT professor Winston thought: "artificial intelligence is how to make the computer to do what only can do intelligent work." These comments reflect the artificial intelligence discipline basic ideas and basic content. Namely artificial intelligence is the study of human intelligence activities, has certain law, research of artificial intelligence system, how to make the computer to complete before the intelligence needs to do work, also is to study how the application of computer hardware and software to simulate human some intelligent behavior of the basic theory, methods and techniques.Artificial intelligence is a branch of computer science, since the 1970s, known as one of the three technologies (space technology, energy technology, artificial intelligence). Also considered the 21st century (genetic engineering, nano science, artificial intelligence) is one of the three technologies. It is nearly three years it has been developed rapidly, and in many fields are widely applied, and have made great achievements, artificial intelligence has gradually become an independent branch, both in theory and practice are already becomes a system. Its research results are gradually integrated into people's lives, and create more happiness for mankind.Artificial intelligence is that the computer simulation research of some thinking process and intelligent behavior (such as study, reasoning, thinking, planning, etc.), including computer to realize intelligent principle, make similar to that of human intelligence, computer can achieve higher level of computer application. Artificial intelligence will involve the computer science, philosophy and linguistics, psychology, etc. That was almost natural science and social science disciplines, the scope of all already far beyond the scope of computer science and artificial intelligence and thinking science is the relationship between theory and practice, artificial intelligence is in the mode of thinking science technology application level, is one of its application. From the view of thinking, artificial intelligence is not limited to logicalthinking, want to consider the thinking in image, the inspiration of thought of artificial intelligence can promote the development of the breakthrough, mathematics are often thought of as a variety of basic science, mathematics and language, thought into fields, artificial intelligence subject also must not use mathematical tool, mathematical logic, the fuzzy mathematics in standard etc, mathematics into the scope of artificial intelligence discipline, they will promote each other and develop faster.A brief history of artificial intelligenceArtificial intelligence can be traced back to ancient Egypt's legend, but with 1941, since the development of computer technology has finally can create machine intelligence, "artificial intelligence" is a word in 1956 was first proposed, Dartmouth learned since then, researchers have developed many theories and principles, the concept of artificial intelligence, it expands and not in the long history of the development of artificial intelligence, the slower than expected, but has been in advance, from 40 years ago, now appears to have many AI programs, and they also affected the development of other technologies. The emergence of AI programs, creating immeasurable wealth for the community, promoting the development of human civilization.The computer era1941 an invention that information storage and handling all aspects of the revolution happened. This also appeared in the U.S. and Germany's invention is the first electronic computer. Take a few big pack of air conditioning room, the programmer's nightmare: just run a program for thousands of lines to set the 1949. After improvement can be stored procedure computer programs that make it easier to input, and the development of the theory of computer science, and ultimately computer ai. This in electronic computer processing methods of data, for the invention of artificial intelligence could provide a kind of media.The beginning of AIAlthough the computer AI provides necessary for technical basis, but until the early 1950s, people noticed between machine and human intelligence. Norbert Wiener is the study of the theory of American feedback. Most familiar feedback control example is the thermostat. It will be collected room temperature and hope, and reaction temperature compared to open or close small heater, thus controlling environmental temperature. The importance of the study lies in the feedback loop Wiener:all theoretically the intelligence activities are a result of feedback mechanism and feedback mechanism is. Can use machine. The findings of the simulation of early development of AI.1955, Simon and end Newell called "a logical experts" program. This program is considered by many to be the first AI programs. It will each problem is expressed as a tree, then choose the model may be correct conclusion that a problem to solve. "logic" to the public and the AI expert research field effect makes it AI developing an important milestone in 1956, is considered to be the father of artificial intelligence of John McCarthy organized a society, will be a lot of interest machine intelligence experts and scholars together for a month. He asked them to Vermont Dartmouth in "artificial intelligence research in summer." since then, this area was named "artificial intelligence" although Dartmouth learn not very successful, but it was the founder of the centralized and AI AI research for later laid a foundation.After the meeting of Dartmouth, AI research started seven years. Although the rapid development of field haven't define some of the ideas, meeting has been reconsidered and Carnegie Mellon university. And MIT began to build AI research center is confronted with new challenges. Research needs to establish the: more effective to solve the problem of the system, such as "logic" in reducing search; expert There is the establishment of the system can be self learning.In 1957, "a new program general problem-solving machine" first version was tested. This program is by the same logic "experts" group development. The GPS expanded Wiener feedback principle, can solve many common problem. Two years later, IBM has established a grind investigate group Herbert AI. Gelerneter spent three years to make a geometric theorem of solutions of the program. This achievement was a sensation.When more and more programs, McCarthy busy emerge in the history of an AI. 1958 McCarthy announced his new fruit: LISP until today still LISP language. In. "" mean" LISP list processing ", it quickly adopted for most AI developers.In 1963 MIT from the United States government got a pen is 22millions dollars funding for research funding. The machine auxiliary recognition from the defense advanced research program, have guaranteed in the technological progress on this plan ahead of the Soviet union. Attracted worldwide computer scientists, accelerate the pace of development of AI research.Large programAfter years of program. It appeared a famous called "SHRDLU." SHRDLU "is" the tiny part of the world "project, including the world (for example, only limited quantity of geometrical form of research and programming). In the MIT leadership of Minsky Marvin by researchers found, facing the object, the small computer programs can solve the problem space and logic. Other as in the late 1960's STUDENT", "can solve algebraic problems," SIR "can understand the simple English sentence. These procedures for handling the language understanding and logic.In the 1970s another expert system. An expert system is a intelligent computer program system, and its internal contains a lot of certain areas of experience and knowledge with expert level, can use the human experts' knowledge and methods to solve the problems to deal with this problem domain. That is, the expert system is a specialized knowledge and experience of the program system. Progress is the expert system could predict under certain conditions, the probability of a solution for the computer already has. Great capacity, expert systems possible from the data of expert system. It is widely used in the market. Ten years, expert system used in stock, advance help doctors diagnose diseases, and determine the position of mineral instructions miners. All of this because of expert system of law and information storage capacity and become possible.In the 1970s, a new method was used for many developing, famous as AI Minsky tectonic theory put forward David Marr. Another new theory of machine vision square, for example, how a pair of image by shadow, shape, color, texture and basic information border. Through the analysis of these images distinguish letter, can infer what might be the image in the same period. PROLOGE result is another language, in 1972. In the 1980s, the more rapid progress during the AI, and more to go into business. 1986, the AI related software and hardware sales $4.25 billion dollars. Expert system for its utility, especially by demand. Like digital electric company with such company XCON expert system for the VAX mainframe programming. Dupont, general motors and Boeing has lots of dependence of expert system for computer expert. Some production expert system of manufacture software auxiliary, such as Teknowledge and Intellicorp established. In order to find and correct the mistakes, existing expert system and some other experts system was designed,such as teach users learn TVC expert system of the operating system.From the lab to daily lifePeople began to feel the computer technique and artificial intelligence. No influence of computer technology belong to a group of researchers in the lab. Personal computers and computer technology to numerous technical magazine now before a people. Like the United States artificial intelligence association foundation. Because of the need to develop, AI had a private company researchers into the boom. More than 150 a DEC (it employs more than 700 employees engaged in AI research) that have spent 10 billion dollars in internal AI team.Some other AI areas in the 1980s to enter the market. One is the machine vision Marr and achievements of Minsky. Now use the camera and production, quality control computer. Although still very humble, these systems have been able to distinguish the objects and through the different shape. Until 1985 America has more than 100 companies producing machine vision systems, sales were us $8 million.But the 1980s to AI and industrial all is not a good year for years. 1986-87 AI system requirements, the loss of industry nearly five hundred million dollars. Teknowledge like Intellicorp and two loss of more than $6 million, about one-third of the profits of the huge losses forced many research funding cuts the guide led. Another disappointing is the defense advanced research programme support of so-called "intelligent" this project truck purpose is to develop a can finish the task in many battlefield robot. Since the defects and successful hopeless, Pentagon stopped project funding.Despite these setbacks, AI is still in development of new technology slowly. In Japan were developed in the United States, such as the fuzzy logic, it can never determine the conditions of decision making, And neural network, regarded as the possible approaches to realizing artificial intelligence. Anyhow, the eighties was introduced into the market, the AI and shows the practical value. Sure, it will be the key to the 21st century. "artificial intelligence technology acceptance inspection in desert storm" action of military intelligence test equipment through war. Artificial intelligence technology is used to display the missile system and warning and other advanced weapons. AI technology has also entered family. Intelligent computer increase attracting public interest. The emergence of network game, enriching people's life.Some of the main Macintosh and IBM for application software such as voice and character recognition has can buy, Using fuzzy logic,AI technology to simplify the camera equipment. The artificial intelligence technology related to promote greater demand for new progress appear constantly. In a word ,Artificial intelligence has and will continue to inevitably changed our life.附件三英文文献译文人工智能“人工智能”一词最初是在1956 年Dartmouth在学会上提出来的。

机器人视觉伺服系统综述

机器人视觉伺服系统综述

机器人视觉伺服系统综述摘要:对机器人视觉伺服系统进行阐述,介绍了机器人视觉伺服系统的概念、发展历程以及研究背景;并从不同的角度对机器人视觉伺服系统进行了分类。

最后介绍了该领域的研究现状、所取得的成就,以及今后的发展趋势。

关键词:机器人;视觉伺服;综述Survey of robot visual servoing systemAbstract:: In this paper,the survey of robot visual servoing system are introduced.The paper reviews the concept and history background of robot visual servoing system.This article also classify the robot visual servo system from different aspects. Finally, it introduce the research status quo, achievements and future trends in the field.Key words:robot, visual servoing, summary1.引言随着先进科学技术的不断发展,机器人已经在生产和生活中起到了越来越重要的作用,因次人们不断对机器人技术提出更高的要求。

为了使机器人能够完成更加复杂的工作,适应更加复杂的环境,机器人不仅需要更加完善的控制统,还需要能够更多的感知环境的变化。

而影响其发展的一个重要原因就是机器人缺少像人一样的感知能力,在人们为机器人添加各种外部传感器的过程中,机器人视觉以其信息大、信息完整成为最重要的机器人感知功能[1]。

机器人的视觉伺服系统是机器人的视觉和机器人控制的相结合的复杂系统。

其内容包括了图像的采集与处理、运动学和动力学、自动控制理论及其系统数据实时分析等领域于一体的新兴交叉学科。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录1:外文翻译摘要本文介绍了机器人视觉伺服控制的入门教程,由于该课题涉及许多学科,我们的目标仅限于提供一个基本的概念框架工作。

首先,我们从机器人学和计算机视觉的前提条件,包括坐标变换,速度表示,以及图像形成过程的几何方面的描述进行简要回顾。

然后,我们提出了视觉伺服控制系统的分类。

然后详细讨论了基于位置和基于图像的系统的两大类。

由于任何视觉伺服系统必须能够跟踪图像序列中的图像特征,所以我们还包括基于特征和基于相关性的跟踪方法的概述。

我们结束了教程与一些服务的当前方向的研究领域的视觉伺服控制当今绝大多数增长的机器人人口都在工厂里工作,在那里工厂可以制造出适合机器人的环境。

在工作环境和物体放置不能精确控制的应用中,机器人的影响要小得多。

这种局限性很大程度上是由于现代商业机器人系统固有的感觉能力不足。

人们早已认识到,传感器集成是提高机器人的通用性和应用领域的基础,但迄今为止,这还没有证明在制造业中大量的机器人应用是有效的。

机器人在日常生活中的“前沿”为这项研究提供了新的动力。

与制造业的应用不同,重新设计“我们的世界”并不适合于机器人。

视觉是一种有用的机器人传感器,因为它模仿人类的视觉,并允许对环境进行非接触测量。

自从Shirai 和伊努埃(1)的早,期工作(谁描述了如何使用视觉反馈回路来校正机器人的位置以提高任务精度)大量的EORT 一直致力于机器人的视觉控制。

机器人控制器完全集成的视觉系统现在可以从多个供应商获得。

通常,视觉感知和操作以开环的方式组合,“看”然后“移动”。

所得到的操作的精度直接取决于视觉传感器和机器人末端Ecter 的精度。

增加这些子系统的精度的一个替代方法是使用视觉反馈控制回路,这将增加系统的整体精度,这是大多数应用中的一个主要问题。

极端地,机器视觉可以为机器人端部控制器提供闭环位置控制。

这被称为视觉伺服。

这个词似乎已经被RHT 和Park(2)在1979 中介绍了,以区别他们的方法与先前的“块世界”实验,其中系统在拍照和移动之间交替。

在引入这个术语之前,一般使用较少的视觉术语视觉反馈。

为了这篇文章的目的,视觉伺服中的任务是使用视觉信息来控制机器人的末端ECT 相对于目标对象或一组目标特征的姿态。

该任务也可用于移动机器人,其中,它成为控制车辆的姿态相对于一些地标。

视觉伺服是融合许多领域的结果,包括高速图像处理、运动学、动力学、控制理论和实时计算。

它与主动视觉和运动结构的研究有很多共同点,但与在分层任务级机器人控制系统中经常使用的视觉非常不同。

许多控制和视觉问题类似于那些正在建造“机器人头”的主动视觉研究者所反对的。

然而,视觉伺服中的任务是控制机器人利用视觉来操纵环境,而不是仅仅观察环境。

本课程的教程介绍。

我们的目标是帮助其他人通过提供一致的术语和术语来创建视觉伺服系统,并欣赏可能的应用。

为了帮助新手到领域,我们将描述的技术,只需要简单的视觉硬件(只是数字化仪),自由可用的Visio 假设关于机器人及其控制系统。

这是对许多不需要高控制和/或视觉性能的应用程序的开始调查。

在这样一篇文章中的一个难点是该主题跨越许多不能在单个文章中得到充分解决的学科。

例如,底层控制问题从根本上来说是非线性的,视觉识别、跟踪和重构本身就是ELD。

因此,我们专注于每个学科的某些基本方面,并提供了广泛的书目,以帮助读者寻求更详细的比这里可以提供。

我们的偏好总是呈现那些我们已经发现在实践中很好地发挥作用并且具有某种通用适用性的想法和技术。

另一个DICTY 是基于视觉的运动控制文献的当前快速增长,它包含许多涉及的理论和技术问题的解决方案和有前途的方法。

我们再一次拥有提出了我们认为是最基本的概念,并再次参考读者的书目。

本文的其余部分结构如下。

第2 节回顾了坐标变形、姿态表示和图像形成的。

在相关基础。

在第3 节中,我们提出了视觉伺服控制系统的分类(改编自[ 5 ])第4 和第5 节中分别讨论了基于位置视觉伺服系统和基于图像的视觉伺服系统的两大类。

由于任何视觉伺服系统必须能够跟踪图像序列中的图像特征,所以第6 节描述了视觉跟踪的一些方法,这些方法具有广泛的适用性,并且可以使用最少的专用硬件来实现。

最后,第7 节给出了关于视觉伺服控制研究领域的当前方向的大量观测结果。

2 背景在本节中,我们提供了一些与机器人视觉伺服控制相关的机器人和计算机视觉的简要概述。

我们首先从术语和符号来表示坐标变换和通过工作空间移动的刚性物体的速度(第2.1 和2.2 节)。

在此之后,我们讨论了与图像形成有关的几个,以及可能的相机/机器人拥塞(第2.5 节)。

熟悉这些主问题(第2.3 和2.4 节)题的读者可能希望直接进行第 3 节。

3文以机器人的任务空间为例,以T 为代表的机器人的任务空间,是机器人所能达到的一组位置和方位。

由于任务空间仅仅是RooTooTo 工具的配置空间,任务。

如果工具是在三维工作空间中任意移动的空间是平滑的M 流形(见,例如,6)单个刚体,则t= SE=R S O,并且M- 6,任务空间可以被限制为SE 的子空间。

例如,,而对于跟踪对象并保持它对于拾取和放置,我们可以考虑纯平移(t= r,对于m -3),通常,相对于一个或多个坐标帧在视图中,我们可能只考虑旋转(t=SO,M=3)指定机器人任务。

例如,摄像机可以提供关于摄像机相对于摄像机的位置的信息,而用于抓取物体的配置可以相对于附着在物体上的坐标框架来指定。

我们用非P. Given 两帧表示点P 相对于坐标系A 的坐标。

A 和U 表示帧Y 相对于帧A 的方向的旋转矩阵表示为=R,。

帧Y的原点相对于帧的位置由向量T表示。

位置和方向框架一起指定一个姿势,我们用一个“X”表示。

如果主标上标R 不是指定的,则世界坐标系被保证,我们也可以使用姿态来指定坐标变换。

我们使用函数表示一个点的坐标变化。

特别地,如果我们给出p(坐标p 相对于框架y)的坐标,和x,则通过应用坐标变换规则得到p 与坐标 A 的坐标。

续集中,我们将使用符号-X 来表示坐标变换或TOA 姿态,它们分别由旋转矩阵和平移、R 和T 指定。

同样,我们将使用术语姿势和协调TMNSechange 互换。

一般来说,在“X”的两种解释之间不存在歧义,通常,我们必须组成多个坐标变换以获得期望的坐标变化。

例如,假设我们给出姿势X,ANX,。

如果我们给出p,并且希望计算=p,我们可以使用坐标变换的组成。

如图所示,我们表示坐标变换的组成,并用对点p 进行相应的坐标变换。

对应矩阵和平移由需要经常使用的一些坐标框架由下列上标/下标引用e 附着在机器人末端执行器上的坐标系T 坐标系附于目标0 机器人的底架摄像机的坐标系SE,我们将使用符号x.e t 来表示端效坐标系相对于世界框架的姿态。

在这种情况下,我们通常喜欢使用平移向量和三个角度(例如,滚动、俯仰和偏航7)来参数化APOSE。

虽然SUCH 参数化本质上是局部的,但是通常用向量R E 来表示姿态,而不是由X。

E 表示。

例如,当t= r 时,我们将通过r=x,y,21 来参数化任务空间。

在续篇中,如果我们考虑一个特定的任务,我们将假设RE。

通过注意交叉乘积可以用斜对称矩阵表示,这可以用矩阵形式简洁地写出2。

摄像机保护模型利用计算机视觉系统提供的信息来控制机器人是必要的,要了解HE 成像过程的几何方面,每个摄像机都包含一个透镜,该透镜在传感器所在的图像平面上形成并保护场景。

这种保护导致直接信息丢失,使得图像平面上的每个点对应于射线。

在三维空间中。

因此,需要一些附加信息来确定对应于图像平面点的3D 坐标。

该信息可以来自多个摄像机、多个摄像机和多个目标点上的几何关系之间的几何关系。

在这一部分中,我们描述了三种已经被广泛用于建模图像形成过程的投影模型:透视投影、比例正交投影和仿射投影。

虽然我们简要地描述了这些投影模型中的每一个,但在本教程的其余部分中,我们将假定使用透视投影。

对于三个投影模型中的每一个,我们分配相机坐标系,其中A 轴和Y 轴形成图像平面的基础,即轴。

垂直于图,并且原点位于图像平面后面的距离A 处,其中A 是相机镜头像平面(沿着光轴)的焦距。

如图1 所示。

在文献中,图像特征是任何结构特征,而不是提取图像(E.GeeGe-Cern),图像特征将对应于某物体(例如,机器人工具)的物理特征投影到摄像机图像平面上的良好特征点是一个。

可以在场景的不同视图中明确地定位,例如垫圈10中的孔或设计图案11, 12。

我们将图像特征参数定义为可以从一个或多个图像特征中计算出来的任何实值量,用于视觉伺服控制的一些特征参数包括图像11, 14,15、16, 17, 18、19 中的点的图像平面坐标,距离为在图像平面中的两点和连接两个点10, 20 的线的方向,投影表面的感知边缘长度21a 和两个投影表面的相对面积21,投影表面的质心和阶次矩。

Ne 11,以及图像平面11 中的椭圆的参数。

在本课题中,我们将限的点特征,其参数是它们的图像平面坐标。

可以使用摄像机的投影几何来计算从末端执行器的位置和方向到相应的图像特征参数的映射。

我们将用 F 来对他的映射进行降噪,其中例如,如果是U,Y 图像平面坐标的空间,用于投影到图像平面上,(19)的精确形式那么,假设透视投影,其中u和u be 由(16)给出。

将部分取决于下一节中讨论的T HM 相机和端部执行器的相对配置。

2.5 相机配置视觉伺服系统通常使用两种相机配置中的一种:末端执行器安装或固定工作空间。

第一种,通常称为手眼配置,摄像机安装在机器人末端执行器上。

在这里,存在一个已知。

我们通过ARGET 的的,往往是恒定的关系之间的相机的姿势(砂的姿势的末端执行器)姿势来表示这种关系:相对于相机框架用X 表示。

这些姿态之间的关系如图2 中所示,第二种配置有固定在工作空间中的摄像机。

在这种情况下,摄像机(X)与X 的机器人的基本坐标系相关,而X 则与目标有关。

当然,在。

一该摄像机中,目标的摄像机图像与机器人运动无关(除非目标ISED 执行器本身)种变体是为了使相机灵活,安装在另一个机器人平移/倾斜头上,以便从最佳摄像机25 观察视觉控制的机器人,以供选择摄像机配置,在执行视觉伺服任务之前,必须按顺序执行摄像机标定。

确定摄像机内部参数如焦距必须建立坐标系,并将其封装在外部参数确定CAMELL 校准过程中。

对于手眼的情况,必须考虑相对姿势X,这就是手/EVE 校准问题。

校准是计算机视觉界的一个长期的研究(在许多参考文献中可以找到校准问题的良好解决方案,例如。

(, 27, 28)因此,由此产生的分类学有四大类,我们现在来描述。

这些基本结构在图3至6 中示意性地示出,如果控制体系结构是分层的,并且使用视觉系统来提供关节点控制器的设置点输入,从而利用联合反馈来将机器人稳定在内部称为动态观察A。

相关文档
最新文档