鲍威尔法
05.第五讲 鲍威尔共轭方向法

k f2 f (X n ) , f 3 f ( X nk1 ) f (2 X nk X 0k ) ; 5.如果满足判别准则,则在下一次循环时,用新方 向 Snk1 补入k+1次循环基本方向组的最后,并去 k 掉 Sm ,从而构成新的方向组。并取第k+1次循环 的起始点为 X X 。 k k* S X ( n1 为第k次循环中沿新方向 n1 一维搜索的极 小点) 如果不能满足判别准则,则第k+1次循环时仍用 原来的方向组,而初始点按下式选取:
鲍威尔共轭方向法
1.共轭方向的定义:
设A为 n n 阶实对称正定矩阵,而 S 1
2 S , 为n维欧式空
间 R n 中的两个非零向量,如果满足 [ S 1 ]T AS 2 0 ,则称 1 2 S S 向量 与 关于是实对称正定矩阵A是共轭的,或简称 S 1 2 S 与 关于A共轭。
2.坐标轮换法的缺陷
; 2.取n个坐标轴的单位向量 ei (i 1,2,n) 为搜索方向
k X0 ; Sik ei ,置k=1(k为迭代轮数), X 0
k k S X 3. 从 0 出发,分别沿 i (i 1,2,n) 作一维搜索,依次
k 得n个极小点 X i ,计算各相邻极小点目标函数的差值 ,并
坐标轮换法的收敛速度很慢,其原因在于其搜索方向总是 平行于坐标轴,不适用函数的变化情况。
3.共轭方向法
1 S 设给定两个平行方向 ,沿这两个方向分别进行一维搜
2 2 索,求得极小点 X 1 和 X 。显然, X 1 和 X 分别是两条
2 平行线与函数等值线的相切点,连接这两个切点构成向量 S 1 2 2 2 1 S S S X X ,即 ,可证明 与 关于函数f(X)的海 塞矩阵H共轭。
鲍威尔法

② 对目标函数解析性质不作苛刻要求
a) b) 属于直接求解方法; 对函数类型要求较少,适用面广;
③ 收敛速度较快
直接法收敛速度较慢,但鲍威尔法寻找最速收敛方向,故属直接 法中最有效的方法;
3.7.2 鲍威尔法基本思想
• 性质一:同心椭圆簇; • 性质二:平行切点的连线必经过椭圆簇中心; • 性质三:椭圆中心即为极小点。 • 基本思想:二次函数应用共轭方向法 上述三条性质,因此 ,P0 是P1 共轭的。
?
3.7.4 鲍威尔法计算步骤---改进算法
3.7.5 鲍威尔法算例
3.7.5 鲍威尔法算例
P法计算步骤---原始算法
• 鲍威尔原始算法缺点:直接用新产生的搜 索方向替换最早的搜索方向而不顾及后果, 易产生线性相关或接近线性相关的向量而 不能张成n维空间 ,因此改进算法会在n+1 个方向中选出n个最接近共轭的方向。
3.7.4 鲍威尔法计算步骤---改进算法
内容要点
• • • • • 3.7.1 鲍威尔方法优点 3.7.2 鲍威尔方法基本思想 3.7.3 鲍威尔方法计算步骤—原始算法 3.7.4 鲍威尔方法计算步骤—改进算法 3.7.5 鲍威尔方法算例
3.7.1 鲍威尔法优点
① 无需求解目标函数一阶和二阶导数
a) b) 不明确目标函数表达式; 目标函数复杂;
matlab实验鲍威尔法

实验报告实验名称:鲍威尔法院(系):机电学院专业班级:机械制造及其自动化姓名:学号:2013年5 月13 日实验一:鲍威尔法实验日期:2013年5 月13 日一、实验目的了解MATLAB的基本运用了解MATLB在优化中的使用二、实验原理鲍威尔法也是一种共轭法,利用函数值来构造共轭方向,同时引入坐标轮换的概念,利用搜索前后两个点之间的连线形成新的共轭方向,替换旧的共轭方向。
三、实验内容鲍威尔法程序:x0=[12;10];xk=x0;ie=10^(-7);ae=1;%初始化搜索方向d=zeros(2,2);d(:,1)=[1;0];d(:,2)=[0;1];Inc=zeros(2,1);k=0;MLN=100;%迭代求解while (ae>ie&&k<MLN)syms x1syms x2xktemp=xk;fun1=fun(x1,x2);fun1=inline(fun1);f0=feval(fun1,xk(1),xk(2));F0=f0;if k>0F0=eval(F0);end%沿d1方向进行一维搜索syms asyms x1;syms x2;xk1=xk+a*d(:,1);x1=xk1(1);x2=xk1(2);fun1=fun(x1,x2);fxa=diff(fun1,'a');a=solve(fxa);xk1=inline(xk1);xk1=feval(xk1,a);xk1(1)=eval(xk1(1));xk1(2)=eval(xk1(2));syms x1;syms x2;fun1=fun(x1,x2);fun1=inline(fun1);f1=feval(fun1,xk1(1),xk1(2)); f1=eval(f1);Inc(1)=f0-f1;%沿d2方向进行搜索syms a;syms x1;syms x2;xk2=xk1+a*d(:,2);x1=xk2(1);x2=xk2(2);fun1=fun(x1,x2);fxa=diff(fun1,'a');a=solve(fxa);xk2=inline(xk2);xk2=feval(xk2,a);xk2(1)=eval(xk2(1));xk2(2)=eval(xk2(2));syms x1;syms x2;fun1=fun(x1,x2);fun1=inline(fun1);f2=feval(fun1,xk2(1),xk2(2));f2=eval(f2);F2=f2;Inc(2)=f1-f2;[Incm,row]=max(Inc);x3=2*xk2-xk;%计算反射点syms x1;syms x2;fun1=fun(x1,x2);fun1=inline(fun1);f3=feval(fun1,x3(1),x3(2));f3=eval(f3);F3=f3;temp1=(F0-2*F2+F3)*(F0-F2-Incm)^2; temp2=0.5*Incm*(F0-F3)^2;%判断是否更换搜索方向if (F3<F0&&temp1<temp2)syms a;syms x1;syms x2;d(:,row)=xk2-xk;xk=xk2+a*d(:,row);x1=xk(1);x2=xk(2);fun1=fun(x1,x2);fxa=diff(fun1,'a');a=solve(fxa);xk=inline(xk);xk=feval(xk,a);%不更换搜索方向else if F2<F3xk=xk2;elsexk=x3;endendxkerror=eval(xk2-xktemp); ae=norm(xkerror);k=k+1;endx=eval(xk)函数程序:function [f]=fun(x1,x2)f=2*x1^2+4*x1*x2+x2^2执行结果:x =四、实验小结通过本实验了解了了matlab的基本操作方法,了解鲍威尔法的原理与基本运用。
优化设计-鲍威尔法

Ⅱ、鲍威尔法缺陷
• 当某一循环方向组中的矢量系出现线性相关的情况(退 化、病态)时,搜索过程在降维的空间进行,致使计算 不能收敛而失败。
e3
新一轮搜 索方向
新一轮搜索 e3 方向和原方
向线性相关
e2
e2
(1)
X0
(1)
S4
(1)
X3
(1)
S4
(1)
X3
e1
(1)
X1
(1)
X2
e1
(1)
X0
(1)
X1
1 1
2 0.5
沿 S (1) 作一维搜索:
x (1) 3
x (1) 2
(1) 3
S
(1)
3 1.5
(1) 3
2 0.5
3 1.5
2 3(1) 0.5
(1) 3
代入f(X),令dfd(3(31(1)) ) 0 得
(1) 3
=
2 5
故有
19
x (1) 3
5
17
,
f (x3(1) ) 7.9
第一个方向S1(k)的办法,而是计算函数值并根
据是否满足条件计算:
Sk (n)
➢ f1=f(Xk(0))
X2
f3
➢ f2=f(Xk(n)) ➢ f3=f(Xk(n+2))
X (n2) k
f2
X (n1) k
X k(n)
f1
2
X k (0)
1
X k (1)
X1
• 找出前一轮迭代法中函数值下降最多的方向 m及下降量△m,即:
10
故以
x(2) 0
x
(1)为新起点,沿(
机械优化设计——鲍威尔法

机械优化设计——鲍威尔法机械优化设计是指在构筑机械产品或系统时,通过优化设计、算法分析等手段,使得机械产品或系统达到最佳的性能和效率。
鲍威尔法(Broyden-Fletcher-Goldfarb-Shanno algorithm,简称BFGS算法)是一种求解非线性最优化问题的拟牛顿法,广泛应用于机械优化设计中。
鲍威尔法是由四位科学家共同提出的,在非线性优化问题中具有很高的效率和可靠性。
它与传统的牛顿法相比,具有更好的收敛性能和更小的存储需求。
鲍威尔法是一种迭代的方法,通过不断更新设计变量的值,使得目标函数的值不断接近最优值。
鲍威尔法的核心思想是利用目标函数的梯度信息来指导方向和步长的选择。
在每一次迭代中,鲍威尔法通过构造一个正定的Hessian矩阵的近似来逼近目标函数的二次泰勒展开式,从而求取方向。
而步长的选择则通过线方法来确定,确保目标函数值在每次迭代中都能够下降。
在机械优化设计中,鲍威尔法可以应用于多种问题,如结构优化、参数优化等。
以结构优化为例,鲍威尔法可以通过不断调整结构的几何形状或内部结构的参数,来使得结构的重量最小或强度最大。
在进行参数优化时,鲍威尔法可以通过调整设计变量的取值,使得可以在给定约束条件下,最大化或最小化一些性能指标。
机械优化设计中的鲍威尔法需要满足一定的数学条件才能保证其收敛性和稳定性。
首先,目标函数必须是连续可微的。
其次,初始设计点的选取对于迭代过程的收敛性也有一定的影响。
一般情况下,选择一个合适的初始设计点可以加快鲍威尔法的收敛速度。
总结起来,鲍威尔法是机械优化设计中一种常用的求解非线性最优化问题的方法。
它可以通过迭代更新设计变量的值,使得目标函数达到最优值。
鲍威尔法不仅具有较好的收敛性能和计算效率,而且对于各种类型的机械优化设计问题都具有很好的适应性。
机械优化设计鲍威尔法编程

机械优化设计鲍威尔法编程鲍威尔法(Powell's method)是一种常用于机械优化设计的迭代算法,它基于步长的方向进行,进而找到局部或全局最优解。
该算法主要用于解决无约束优化问题,即不涉及约束条件的优化设计。
下面将详细介绍鲍威尔法的编程实现。
鲍威尔法的基本思路是在迭代过程中通过多次步长方向,找到全局最优解。
具体步骤如下:1.初始化:设置初始点x0和迭代次数k=0。
2.计算方向:选择一个初始的方向d0和步长α,并将d0归一化为单位向量。
3. 求解新的迭代点:通过计算当前点xk加上步长α乘以方向dk,得到新的迭代点xk+14. 更新方向:计算新的方向dk+15. 判断是否达到终止条件:如果达到了终止条件,则输出当前点xk+1为最优解;否则,令k=k+1,返回第3步继续进行迭代。
下面给出一个使用Python编程实现鲍威尔法的示例代码:```pythonimport numpy as npdef powell_method(f, x0, alpha, eps, max_iter):#初始化x=x0d = np.eye(len(x0))k=0while k < max_iter:#计算方向和步长g=f(x)d_norm = np.linalg.norm(d, axis=0) d = d / d_normalpha = alpha / d_norm#求解新的迭代点x_new = x + alpha * d#更新方向g_new = f(x_new)delta = g_new - gd = np.roll(d, -1, axis=0)d[-1] = (x_new - x) / alpha#判断终止条件if np.linalg.norm(delta) < eps: return x_new#更新迭代点x = x_newk+=1return x#示例函数,目标是求解f(x)=(x[0]-1)^2+(x[1]-2)^2 def f(x):return (x[0] - 1) ** 2 + (x[1] - 2) ** 2#设置初始点、步长、终止条件和最大迭代次数x0 = np.array([0.0, 0.0])alpha = 0.1eps = 1e-6max_iter = 100#调用鲍威尔法进行优化设计x_opt = powell_method(f, x0, alpha, eps, max_iter) #输出最优解print("Optimal solution: ", x_opt)print("Optimal value: ", f(x_opt))```在上述代码中,目标函数f(x)为示例函数,可以根据具体的优化设计问题进行修改。
鲍威尔法

鲍威尔法二级斜齿轮减速器的优化设计姓名:王剑锋学号:109011159班级:机制096班一、基本原理前已述及,对于n维无约束最优化问题,采用原始共轭方向法在产生n个共轭方向时,有可能是线性相关或接近线性相关的,如遇这种情况,会导致在降维空间寻优使迭代计算不能收敛到真正最优点而失败。
鲍威尔在1964年提出了对上述原始共轭方向法的改进方法—鲍威尔共轭方向法。
这个改进方法与原始共轭方向法的关键区别是在构成第k + 1环基本方向组时,不再总是不管好坏一律去掉前一环的第一个方向,并再将前一环的新生方向补于最后,而是首先判断前一环的基本方向组是否需要更换;如需更换,还要进一步判断前一环原基本方向组中沿某一个方向作一维搜索函数值下降量最大,去掉该方向再将新生方向补入最后构成第k+1环的基本方向组以避免线性相关并最接近共轭。
判别前一环基本方向组是否需要更换的依据,则按导出的下列两个条件式。
(1)(2)是否得到满足来进行处理,式中各符号的涵义可参阅图5-13(P62)说明如下——k环起始点的函数值;——k环沿基本方向组依次一维搜索后的终点的函数值;——对的映射点的函数值,;——k环基本方向组中沿诸方向一维搜索所得各目标函数值下降量中之最大者,对应方向。
若条件式(1)或(2)中至少有一个成立,则第k +1环的基本方向组仍用原来第k环的基本方向组。
k十1环的初始点应选取、两点中函数值小者,亦即当时,取;时,取。
若式(1)及式(2)均不成立,则去掉原来第k环基本方向组中函数值下降量最大的方向,再将第k环所产生的新生方向补入k+1环基本方向组的最后,即以构成第k+l环的基本方向组。
k+1环的初始点应取第k环中沿方向一维搜索的极小点,亦即取。
图2显示了二维正定二次函数用鲍威尔共轭方向法求极小点的搜索路线,其几何意义亦完全可推广到n维正定二次函数。
二、迭代过程及算法框图鲍威尔共轭方向法的具体迭代步骤如下:(1)给定初始点,迭代精度,维数n,。
数据分析知识:数据分析中的鲍威尔法

数据分析知识:数据分析中的鲍威尔法在数据分析中,鲍威尔法(Box-Jenkins方法)是一种常用的时间序列分析方法。
它的主要目的是利用历史数据来预测未来数据,以便制定在合适的时间做出相应决策的策略。
本文将对于鲍威尔法进行详细介绍。
一、鲍威尔法鲍威尔法是由英国统计学家George Box和美国统计学家GM Jenkins于1970年提出来的。
它是一种识别、估计和预测时间序列模型的方法,包括(AR)自回归模型、(MA)移动平均模型和(ARIMA)自回归移动平均模型等。
定量的时间序列数据越来越广泛地应用于经济、金融、气象等日常领域和科学研究中,准确预测和解释时间序列数据的变化越来越重要。
鲍威尔法的基本思路是把观察到的时间序列数据转变成计算机可以处理的数据模型,然后利用这些模型来预测未来的数据。
这样,它可以帮助我们更好地理解与预测一系列未知的数据,包括预测市场趋势、月销量、流量分析、旅游业务、未来的气温和气候变化等。
二、鲍威尔法模型的建立鲍威尔法的建立是一个动态迭代过程,包含模型的建立、模型诊断、模型修正和模型的应用等步骤。
下面,我们将详细讲述具体流程。
1.模型的建立首先,我们需要定义时间序列模型的“参数集”,包括“自回归”参数、“移动平均”参数和“截距”参数等。
自回归是指复杂系统内部的历史行为会影响未来行为的现象,移动平均是指未来行为可能会受到突发事件或预测错误影响的现象。
基于已有的数据,我们需要计算各个参数的值,建立时间序列模型。
2.模型诊断在模型诊断的过程中,我们需要评估和诊断模型的各个方面和参数选择的合理性,以确定模型是否能够有效预测未来数据。
其中,常用的诊断工具包括统计检验、残差诊断以及预测诊断等。
通过对时间序列数据的观察和诊断,可以找出模型中可能存在的错误和不一致之处,并根据诊断的结果及时地修正和更新模型。
3.模型修正在模型修正的过程中,如果我们发现时间序列的参数集合不足以对未来数据进行准确的预测,我们需要对模型进行修正。
004第四章Powell法

例4-2 74页
上述基本算法仅具有理论意义 :
3.改进的鲍威尔方法
在改进的算法中首先判断原向量组是否需要替换。 如果需要替换,还要进一步判断原向量组中 哪个向量最坏,然后再用新产生的向量替换这个 最坏的向量,以保证逐次生成共轭方向。
3.改进的鲍威尔方法
为此,要解决两个关键问题:
(1)dk+1是否较好?是否应该进入新的方向组? 即方向组是否进行更新?
0 1 2 2 x d d x 此轮基本方向组为 3 , 3 ,起始点为 0 = ,先 1 0 d 后沿 d 3 , 3 方向,进行一维搜索,得
4 x , 2
2 1
4 x 2
2 2
4 x , 2
2 1
4 x 2
2 2
检验终止条件
x22 x02 0
3.96 x 1.9
1 2
f 2 f ( x1 ) 7.996 2
• (2)第2轮迭代计算
3.96 x 1.9
1 2
f 2 f ( x1 ) 7.996 2
构成新的方向
3.96 3.8 0.16 d x x 1.94 1.7 0.24
1.共轭方向
(d 0 )T Gd 1 0 (d 0 )T 2 f ( x)d 1 0
就是使d1直指极小点x* , d1所必须满足的条件 。
两个向量 d 和d1称为G的共轭向量,或称
d 和d 对G是共轭方向。
0 1
0
共轭方向的性质
性质1 性质2 性质3 若非零向量系d0,d1,d2,…,dm-1是对G共轭, 在n维空间中互相共轭的非零向量的个数 从任意初始点出发,顺次沿n个G的共轭方 则这m个向量是线性无关的。
机械优化设计鲍威尔法

机械优化设计鲍威尔法
机械优化设计鲍威尔法(Powell method)是一种常用的非线性优化
算法,它以鲍威尔的名字命名,用于解决无约束非线性优化问题。
该方法
在各个领域都有广泛的应用,如工程优化设计、机器学习等。
下面将详细
介绍机械优化设计鲍威尔法的原理及应用。
鲍威尔法的具体步骤如下:
1.初始化参数:选择初始设计参数和方向。
2.寻找一维极小值点:沿着方向找到目标函数在该方向上的极小值点。
3.更新方向:通过比较前后两个极小值点的差异来更新方向。
4.迭代优化:重复步骤2和步骤3,直到达到指定的收敛条件。
鲍威尔法的优点是收敛速度较快、计算量较小,同时可以处理非线性
的优化问题。
然而,该方法也存在一些不足之处,如可能陷入局部最优解、对初值敏感等。
机械优化设计鲍威尔法在工程领域中有广泛的应用。
例如,在机械结
构设计中,可以利用鲍威尔法来优化结构参数,以满足特定的性能指标。
在汽车工业中,可以使用鲍威尔法来优化车辆的燃油效率和性能。
在航空
航天领域,可以利用该方法来优化飞行器的飞行性能。
此外,该方法还可
以用于机器学习中的参数优化,如调整神经网络的权重和偏置等。
总之,机械优化设计鲍威尔法是一种常用的非线性优化算法,通过迭
代逼近最优解。
虽然该方法有一些不足之处,但在实际应用中具有广泛的
适用性,尤其在工程优化设计和机器学习等领域。
通过使用该方法,可以
优化设计参数,改进性能指标,提高工程效率和产品质量。
鲍威尔法

根据这一原理构造的迭代算法称为鲍威尔基 本算法。
(二)鲍威尔法的缺陷
鲍威尔基本算法不可能对每一个都起作用,因为在迭代 过程中的n个搜索方向有时会变成线性相关的,而不能形 成共轭方向,导致随后的迭代搜索在降维(退化)的空间 中进行,可能求不到极小点,故而进行改进。
(三)鲍威尔修正算法
为了避免这种“退化”现象的发生,鲍威尔对这一算法 进行了修正。即在每一轮产生新的搜索方向 后,首先 判断原搜索方向组是否可以直接用下一轮迭代的方向组, 若可以,即用。否则,还要进一步判断原搜索方向组中哪 个方向上的函数值下降量最大,然后再用新搜索方向替换 这个下降量最大的搜索方向,以保证逐次生成共轭方向, 即每一轮迭代的搜索方向组线性无关。
并求出 (5)计算 判断
是否成立 若成立,则由 出发沿 方向进行一维搜索,求出目标 函数f(x)的极小点 ,并作为k+1轮的初始点 ,然后进行 k+1轮搜索,挤掉 ,同时把 放在方向组的最后 构成新一轮的方向组。
(6)若上述判断条件不成立,则k+1轮的初始点和方向组为 = 即此时k+1轮的n个搜索方向全部用第k轮的搜索方向。 (7)每轮迭代结束,都应检验收敛条件,若能满足:
鲍威尔法
鲍威尔(Powell)法又称方向加速度法, 它是利用共轭方向可以加快收敛速度的性质 形成的一种搜索方法。该方法不用对目标函 数求导,当目标函数的导数不连续时也能应 用,因此,鲍威尔法是一种十分有效的直接 搜索法。
一 共轭方向的概念与共轭向量的性质
(一)共轭方向 设A为n阶实对称正定矩阵,若有两个n维向量 和 能满足 A =0 则称向量 与 对矩阵A共轭,共轭向量的 方向称为共轭方向。
二 鲍威尔法
(一)鲍威尔法的基本原理和迭代过程
机械优化设计鲍威尔法编程

}
}
// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
UpdateData(true);
int i,n;
double h1,h2,h3,m,flag,X00[2][1],d01[2][1],d02[2][1],d03[2][1]; //确定键的执行程序
double X01[2][1],X02[2][1],X03[2][1];
double F0,F1,F2,F3,e1,e2,em;
// the minimized window.
HCURSOR CMyDlg::OnQueryDragIcon()
{
return (HCURSOR) m_hIcon;
}
void CMyDlg::OnOK()
{
// TODO: Add extra validation here
//CDialog::OnOK();
F1=(X01[0][0]*X01[0][0]+2*X01[1][0]*X01[1][0]-4*X01[0][0]-2*X01[0][0]*X01[1][0]),f1=F1; //确定F的函数值
h2=(4*d02[0][0]+2*d02[0][0]*X01[1][0]+2*d02[1][0]*X01[0][0])/(2*d02[0][0]*d02[0][0]+ //确定搜索步长
机械优化设计鲍威尔法编程

机械优化设计鲍威尔法编程鲍威尔法编程,又称行进法、射线法,是一种无约束极值问题的最优化算法。
其核心思想是通过不断更新方向,寻找函数极小值点。
鲍威尔法编程结合了线和模式的特点,具有全局能力和局部能力,因此在机械优化设计中得到广泛应用。
在机械优化设计中,通常需要考虑多个设计参数对机械性能的影响。
鲍威尔法编程可以通过不断迭代的方式,寻找最佳的设计参数组合,以达到设计要求。
其具体步骤如下:1.初始化设计参数和步长。
2.计算当前设计参数下的目标函数值。
3.在当前方向上进行线,找到使目标函数值下降的步长。
4.更新设计参数,将方向和步长相乘加到当前设计参数上。
5.检查当前设计参数的变化是否满足终止条件,如果满足则结束,否则返回步骤26.返回最佳设计参数组合及对应的目标函数值。
下面以一个简单的机械优化设计案例为例进行详细说明。
假设有一个弹簧悬挂系统,需要设计合适的弹簧刚度和阻尼系数来满足特定的振动要求。
目标函数为最小化系统振动幅值。
首先,需要定义设计参数和目标函数。
设计参数可以选择弹簧刚度和阻尼系数。
目标函数可以定义为系统振动幅值的平方。
其次,需要确定方向和初始步长。
对于弹簧刚度和阻尼系数来说,方向可以选择正方向和负方向。
初始步长可以根据经验或试验来确定。
然后,根据鲍威尔法编程的步骤,进行迭代。
首先,初始化设计参数和步长。
然后,计算当前设计参数下的目标函数值。
接下来,根据当前方向和步长进行线,找到使目标函数值下降的步长。
再更新设计参数,将方向和步长相乘加到当前设计参数上。
最后,检查当前设计参数的变化是否满足终止条件,如果满足则结束,否则返回到线步骤继续。
最后,得到最佳的设计参数组合及对应的目标函数值。
可以根据实际情况进行设计参数的调整和优化,以获得更好的机械性能。
总之,鲍威尔法编程是一种常用的机械优化设计方法。
通过不断迭代的方式,寻找最佳的设计参数组合,以满足设计要求。
其原理和步骤相对简单,但需要结合具体问题进行参数的选择和调整。
十一、Powell算法(鲍威尔算法)原理以及实现

⼗⼀、Powell算法(鲍威尔算法)原理以及实现⼀、介绍 Powell算法是图像配准⾥⾯的常⽤的加速算法,可以加快搜索速度,⽽且对于低维函数的效果很好,所以本篇博客主要是为了介绍Powell算法的原理以及实现。
由于⽹上已经有了对于Powell算法的讲解,所以我只是把链接放出来(我觉得⾃⼰⽬前还没有这个讲解的能⼒),⼤家⾃⼰去了解。
放在这⾥主要也是为了节省⼤家搜索的时间。
(都是我⾟⾟苦苦搜出来的^-^)。
⼆、预备知识 了解⼀维搜索算法:进退法,消去法,黄⾦分割法 阅读以下博客:三、鲍威尔算法 具体原理阅读这⾥: 参考博客: 原理与例⼦(⼀个例⼦的计算过程):四、matlab代码实现⼀个简单函数的求解 代码来源: 这个代码的程序与思路很是简洁,我觉得写得很好。
原⽂代码放在这⾥: ⽂件:MyPowell.m function MyPowell()syms x1 x2 x3 a;f=10*(x1+x2-5)^4+(x1-x2+x3)^2 +(x2+x3)^6;error=10^(-3);D=eye(3);x0=[000]';for k=1:1:10^6MaxLength=0;x00=x0;m=0;if k==1,s=D;endfor i=1:3x=x0+a*s(:,i);ff=subs(f,{x1,x2,x3},{x(1),x(2),x(3)});t=Divide(ff,a); %调⽤了进退法分割区间aa=OneDemensionslSearch(ff,a,t); %调⽤了0.618法进⾏⼀维搜索 xx=x0+aa*s(:,i);fx0=subs(f,{x1,x2,x3},{x0(1),x0(2),x0(3)});fxx=subs(f,{x1,x2,x3},{xx(1),xx(2),xx(3)});length=fx0-fxx;if length>MaxLength,MaxLength=length;m=m+1;endx0=xx;endss=x0-x00;ReflectX=2*x0-x00;f1=subs(f,{x1,x2,x3},{x00(1),x00(2),x00(3)});f2=subs(f,{x1,x2,x3},{x0(1),x0(2),x0(3)});f3=subs(f,{x1,x2,x3},{ReflectX(1),ReflectX(2),ReflectX(3)});if f3<f1&&(f1+f3-2*f2)*(f1-f2-MaxLength)^2<0.5*MaxLength*(f1-f3)^2x=x0+a*ss;ff=subs(f,{x1,x2,x3},{x(1),x(2),x(3)});t=Divide(ff,a);aa=OneDemensionslSearch(ff,a,t);x0=x0+aa*ss;for j=m:(3-1),s(:,j)=s(:,j+1);ends(:,3)=ss;elseif f2>f3, x0=ReflectX;endendif norm(x00-x0)<error,break;endk;x0;endopx=x0;val=subs(f,{x1,x2,x3},{opx(1),opx(2),opx(3)});disp('最优点:');opx'disp('最优化值:');valdisp('迭代次数:');k ⽂件 Divide.m :%对任意⼀个⼀维函数函数进⾏区间分割,使其出现“⾼—低—⾼”的型式function output=Divide(f,x,m,n)if nargin<4,n=1e-6;endif nargin<3,m=0;endstep=n;t0=m;ft0=subs(f,{x},{t0});t1=t0+step;ft1=subs(f,{x},{t1});if ft0>=ft1t2=t1+step;ft2=subs(f,{x},{t2});while ft1>ft2t0=t1;%ft0=ft1;t1=t2;ft1=ft2;step=2*step;t2=t1+step;ft2=subs(f,{x},{t2});endelsestep=-step;t=t0;t0=t1;t1=t;ft=ft0;%ft0=ft1;ft1=ft;t2=t1+step;ft2=subs(f,{x},{t2});while ft1>ft2t0=t1;%ft0=ft1;t1=t2;ft1=ft2;step=2*step;t2=t1+step;ft2=subs(f,{x},{t2});endendoutput=[t0,t2];View Code ⽂件:OneDemensionslSearch.mfunction output=OneDemensionslSearch(f,x,s,r)if nargin<4,r=1e-6;enda=s(1);b=s(2);a1=a+0.382*(b-a);fa1=subs(f,{x},{a1});a2=a+0.618*(b-a);fa2=subs(f,{x},{a2});while abs((b-a)/b)>r && abs((fa2-fa1)/fa2)>rif fa1<fa2b=a2;a2=a1;fa2=fa1;a1=a+0.382*(b-a);fa1=subs(f,{x},{a1});elsea=a1;a1=a2;fa1=fa2;a2=a+0.618*(b-a);fa2=subs(f,{x},{a2});endendop=(a+b)/2;%fop=subs(f,{x},{op});output=op;View Code 全部放到同⼀个⼯程⽬录⾥⾯,设置为当前⽬录,然后输⼊Powell即可运⾏得到结果。
机械优化设计方法——鲍威尔法,坐标轮换法

鲍威尔法
机械优化设计方法——鲍威尔法
鲍威尔(Powell)法是直接利用函数值 来构造共扼方向的一种共扼方向法。基本 思想是在不用求导数的前提下,在迭代中 逐次构造Hessian矩阵G的共扼方向。
原始共轭法的缺点
对于n维无约束最优化问题,采用原始共轭 方向法在产生n个共轭方向时,有可能是线 性相关或接近线性相关的,遇这种情况, 会导致在降维空间寻优使迭代计算不能收 敛到真正最优点而失败 。
(4)判断是否满足收敛准则。
即
X k 1 X k
。若满足,则
X k1 0
为
极小点,否则应置 k k 1 ,返回,
继续进行下一轮迭代。
计算 f (X ) x12 25x22 的极小值
解 : 选取初始点为 X 0 2,2T,初试搜索方向
为 d10 1,0T,d20 0,1 T。初始点处 的函数
值
F1
f
(
X
0 0
)
104
第一轮迭代:沿 d10 方向进行一维搜
索,得
X10
X
0
1d10
2
1
1 0
2
1
2
将
X
0 1
代入原方程得:
f1 f (X10) (2 1)2 2522 4 41 12 100
最佳步长
:
df ( d
)
4
21
0
1 2
X10
2 2
210
0 2
X
0 1
鲍威尔法计算步骤与程序原理
(1)任选一初始点 X 0 ,
X
0 0
X
0
,选取初
试方向组,它由n个线性无关的向量
matlab鲍威尔法求二元二次函数的极小值

matlab鲍威尔法求二元二次函数的极小值鲍威尔法(Powell's method)是一种用于求解无约束优化问题的迭代算法。
在MATLAB中,你可以使用内建函数,比如fminunc 或fminsearch,或者手动实现鲍威尔法来求解二元二次函数的极小值。
不过,MATLAB并没有直接提供鲍威尔法的内建函数,因此你需要自己实现它。
下面是一个简化的鲍威尔法实现,用于求解二元二次函数的极小值。
假设我们的二元二次函数是f(x, y) = ax^2 + bxy + cy^2 + dx + ey + f。
matlabfunction [xmin, fmin] = powell_method(func, x0, tol, max_iter) % func: 目标函数句柄% x0: 初始点% tol: 收敛容忍度% max_iter: 最大迭代次数n = length(x0); % 变量的维数x = x0;B = eye(n); % 初始基矩阵为单位矩阵for k = 1:max_iter% 在当前基方向上进行一维搜索for i = 1:n% 定义搜索方向d = B(:, i);% 一维线搜索确定步长alpha = linesearch(func, x, d);% 更新当前点x_new = x + alpha * d;% 检查收敛性if norm(x_new - x) < tolreturnend% 更新xx = x_new;% 更新基矩阵B(:, n) = x_new - x;B = B(:, 1:n-1);end% 使用QR分解更新基矩阵[Q, R] = qr(B);B = Q(:, 1:n);endxmin = x;fmin = func(x);endfunction alpha = linesearch(func, x, d)% 简单的线搜索实现(这里假设函数是凸的)alpha = 0.1; % 初始步长c1 = 1e-4; % 足够小的正数while func(x + alpha * d) > func(x) + c1 * alpha * d' * grad(func, x)alpha = alpha / 2;endendfunction g = grad(func, x)% 计算梯度(这里需要func的梯度信息)% 对于二次函数ax^2 + bxy + cy^2 + dx + ey + f% 梯度是[2ax + by + d, bx + 2cy + e]'% 这里只是一个示例,你需要根据实际的func来计算梯度% 假设a = 1;b = 2;c = 1;d = -4;e = -6;g = [2*a*x(1) + b*x(2) + d; b*x(1) + 2*c*x(2) + e];end% 示例:求解函数f(x, y) = x^2 + 2xy + y^2 - 4x - 6y 的极小值func = @(x) x(1)^2 + 2*x(1)*x(2) + x(2)^2 - 4*x(1) - 6*x(2);x0 = [0; 0]; % 初始点tol = 1e-6; % 容忍度max_iter = 1000; % 最大迭代次数% 调用鲍威尔法[xmin, fmin] = powell_method(func, x0, tol, max_iter);% 显示结果disp(['极小值点:', mat2str(xmin)]);disp(['函数极小值:', num2str(fmin)]);请注意,上面的代码片段中有几个地方需要特别注意:grad 函数需要根据你的目标函数来计算梯度。
改进鲍威尔法更新寻优方向组条件的证明与补充

改进鲍威尔法更新寻优方向组条件的证明与补充鲍威尔法是一种常用的寻优算法,它通常用于求解无约束优化问题。
该算法通过权衡历史搜索方向和当前梯度信息,寻找最优解的方向。
然而,鲍威尔法在更新搜索方向时需要一系列条件的约束,在某些情况下可能会导致算法失效。
本文将对鲍威尔法的更新搜索方向的条件进行改进,并加以证明与补充。
首先,我们回顾鲍威尔法的基本思想。
在每一次迭代中,鲍威尔法首先计算当前的梯度方向g,然后选择一个搜索方向p。
在原始的鲍威尔法中,p的选择是基于历史搜索方向的加权和,即:p = -g + βp_his其中,p_his表示历史搜索方向的加权和,β是一个权衡历史搜索方向和当前梯度信息的参数。
然而,这种简单的更新方式可能导致搜索方向在某些情况下不准确或无效。
为了解决这个问题,我们对原始的鲍威尔法进行改进。
改进的思路是通过增加一系列条件来限制搜索方向的选择,以提高搜索的准确性和有效性。
具体来说,我们可以添加以下三个条件:1.搜索方向与梯度方向的夹角小于90度:这个条件的目的是确保搜索方向与梯度方向足够接近,从而使得搜索方向在靠近最优解的路径上。
为了满足这个条件,我们可以引入一个夹角限制参数φ,然后更新搜索方向p如下:p = -g + βp_his, if |cos(φ)| < 1否则,我们选择梯度方向作为搜索方向,即p = -g。
2.搜索方向的长度小于历史搜索方向的加权和的长度:这个条件的目的是确保搜索方向的长度不会大于历史搜索方向的长度,从而避免搜索方向过长。
为了满足这个条件,我们可以引入一个长度限制参数λ,然后更新搜索方向p如下:p = min(-g + βp_his, λ)其中,min()函数表示取两个向量中长度较小的一个。
3.在搜索方向与梯度方向夹角大于90度的情况下,搜索方向与历史搜索方向夹角小于90度:这个条件的目的是在搜索方向与梯度方向夹角大于90度的情况下,尽可能减小搜索方向与历史搜索方向的夹角。
第八节鲍威尔方法

第八节鲍威尔方法1方法介绍1.1方法原理简介鲍威尔法是直接利用函数值来构造共轭方向的一种共轭方向法。
这种方法是在研究具有 正定矩阵G 的二次函数1()2TT f x x Gx b x c =++ 的极小化问题时形成的。
其基本思想是在不用导数的前提下,在迭代中逐次构造G 的共轭方 向。
一、共轭方向的生成设1x k k x +、 为从不同点出发,沿同一方向j d 进行一维搜索而得到的两个极小点,如图 1所示。
根据梯度和等值面相垂直的性质,j d 和1x k k x +、两点处的梯度1g g k k +、 之间存在关系1()0()0j T k j Tk d g d g +==另一方面,对于上述二次函数,其1x k k x+、两点处的梯度可表示为11g g k k k k Gx b Gxb++=+=+两式相减,得11g ()k k k k g G x x ++-=-因而有11()g ()()=0j T j T k k k k d g d G x x ++-=-() 若取方向1d k k kx x +=- 如图1所示,则d k 和d j 对G 共轭。
这说明只要沿d j方向分别对函数作两次一维搜索,得到两个极小点x k 和1k x + 。
那么这两点的连线所给出的方向就是与d j一起对G 共轭的方向。
对于二维问题,()f x 的等值线为一族椭圆,A 、B 为沿1x 轴方向上的两个极小点,分别处于等值线与1x 轴方向的切点上,如图2所示。
根据上述分析,则A 、B 两点的连线 就是与1x 轴一起对G 共轭的方向。
沿此共轭方向进行一维搜索就可找到函数()f x 的极小点x *。
二、基本算法图 1现在针对二维情况来描述鲍威尔法的基本算法,如图3所示。
1) 任选一初始点0x ,再选两个线性无关的矢量,如坐标轴单位矢量1(10)T e = 和1(01)T e =作为初始搜索方向。
2) 从0x 出发,顺次沿12e e 、 作一维搜索,得到点0012x x 、 两点连线得一新方向 1002d x x =-用1d 代替1e 形成两个线性无关矢量作为下一轮迭代的搜索方向。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
实验名称:鲍威尔法
院(系):机电学院
专业班级:机械制造及其自动化
姓名:赵丹
学号:100710431
2013年5 月3 日
实验一:鲍威尔法实验日期:2013年5 月3 日一、实验目的
了解MATLAB的基本运用
了解MATLB在优化中的使用
二、实验原理
鲍威尔法也是一种共轭法,利用函数值来构造共轭方向,同时引入坐标轮换的概念,利用搜索前后两个点之间的连线形成新的共轭方向,替换旧的共轭方向。
三、实验内容
鲍威尔法程序:
%文件名 xiti5_4.m
clc
x0=[1;2];%设置初始点
xk=x0;
ideal_error=10^(-7); %设置收敛精度
actural_error=1; %实际收敛精度
%初始化搜索方向
d=zeros(2,2);
d(:,1)=[1;0];
d(:,2)=[0;1];
Inc=zeros(2,1); %初始化增量向量
k=0; %初始化迭代变量
MaxLoopNum=100; %初始化最大迭代次数
%迭代求解
while(actural_error>ideal_error&&k<MaxLoopNum)
syms x1
syms x2
xktemp=xk;
fun1=fun(x1,x2);
fun1=inline(fun1);
f0=feval(fun1,xk(1),xk(2)); %求初始点处函数值
F0=f0;
if k>0
F0=eval(F0);
end
%沿d1方向进行一维搜索
syms a;
syms x1;
syms x2;
xk1=xk+a*d(:,1);
x1=xk1(1);
x2=xk1(2);
fun1=fun(x1,x2);
fxa=diff(fun1,'a');
a=solve(fxa);
xk1=inline(xk1);
xk1=feval(xk1,a);
xk1(1)=eval(xk1(1));
xk1(2)=eval(xk1(2));
syms x1;
syms x2;
fun1=fun(x1,x2);
fun1=inline(fun1);
f1=feval(fun1,xk1(1),xk1(2)); f1=eval(f1);
Inc(1)=f0-f1;
%沿d2方向进行搜索
syms a;
syms x1;
syms x2;
xk2=xk1+a*d(:,2);
x1=xk2(1);
x2=xk2(2);
fun1=fun(x1,x2);
fxa=diff(fun1,'a');
a=solve(fxa);
xk2=inline(xk2);
xk2=feval(xk2,a);
xk2(1)=eval(xk2(1));
xk2(2)=eval(xk2(2));
syms x1;
syms x2;
fun1=fun(x1,x2);
fun1=inline(fun1);
f2=feval(fun1,xk2(1),xk2(2));
f2=eval(f2);
F2=f2;
Inc(2)=f1-f2;
[Incm,row]=max(Inc);
x3=2*xk2-xk; %计算反射点syms x1;
syms x2;
fun1=fun(x1,x2);
fun1=inline(fun1);
f3=feval(fun1,x3(1),x3(2));
f3=eval(f3);
F3=f3;
temp1=(F0-2*F2+F3)*(F0-F2-Incm)^2;
temp2=0.5*Incm*(F0-F3)^2;
%判断是否更换搜索方向
if(F3<F0&&temp1<temp2)
syms a;
syms x1;
syms x2;
d(:,row)=xk2-xk;%计算新的搜索方向
xk=xk2+a*d(:,row);
x1=xk(1);
x2=xk(2);
fun1=fun(x1,x2);
fxa=diff(fun1,'a');
a=solve(fxa);
xk=inline(xk);
xk=feval(xk,a);
%不更换搜索方向
else if F2<F3
xk=xk2;
else
xk=x3;
end
end
xkerror=eval(xk2-xktemp);%计算实际收敛精度
actural_error=norm(xkerror);
k=k+1;
end
x=eval(xk)
函数程序:
function [fval]=fun(x1,x2)
fval=2*x1^2+4*x1*x2+x2^2;
end
执行结果:
x =
四、实验小结
通过本实验了解了了matlab的基本操作方法,了解鲍威尔法的原理与基本运用。