鲍威尔法概述及算例求解
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
并求出 (5)计算 判断
是否成立 若成立,则由 出发沿 方向进行一维搜索,求出目标 函数f(x)的极小点 ,并作为k+1轮的初始点 ,然后进行 k+1轮搜索,挤掉 ,同时把 放在方向组的最后 构成新一轮的方向组。
(6)若上述判断条件不成立,则k+1轮的初始点和方向组为 = 即此时k+1轮的n个搜索方向全部用第k轮的搜索方向。 (7)每轮迭代结束,都应检验收敛条件,若能满足:
则可输出最优解,迭代结束。否则进入下一轮迭代,即转 步骤(2)
(5)计算举例 例:用鲍威尔法求目标函数 解(极小值)。已知,初始点
的最优 ,收敛精度
满足
进行第二次循环
总结 : (1)共轭方向及共轭向量 (2)鲍威尔修正算法,判别条件及计算步骤。
(二)共轭向量的性质 设A为n×n阶实对称正定矩阵, (i=1,2,…n) 是关于A的n个互相共轭的非零向量,对于正 定二次函数f(x)的极小化寻优问题,从任何初 始点出发,依次沿 方向经n次一维搜索即可 收敛到极小点 = 沿n元二次正定函数的n个共轭方向进行n次 一维搜索就可达到目标函数的极小点。
根据这一原理构造的迭代算法称为鲍威尔基 本算法。
(二)鲍威尔法的缺陷
鲍威尔基本算法不可能对每一个都起作用,因为在迭代 过程中的n个搜索方向有时会变成线性相关的,而不能形 成共轭方向,导致随后的迭代搜索在降维(退化)的空间 中进行,可能求不到极小点,故而进行改进。
(三)鲍威尔修正算法
为了避免这种“退化”现象的发生,鲍威尔对这一算法 进行了修正。即在每一轮产生新的搜索方向 后,首先 判断原搜索方向组是否可以直接用下一轮迭代的方向组, 若可以,即用。否则,还要进一步判断原搜索方向组中哪 个方向上的函数值下降量最大,然后再用新搜索方向替换 这个下降量最大的搜索方向,以保证逐次生成共轭方向, 即每一轮迭代的搜索方向组线性无关。
二 鲍威尔法
(一)鲍威尔法的基本原理和ห้องสมุดไป่ตู้代过程
(1)采用坐标轮换法顺次沿n个坐标方向进行一维搜索, 然后以初始点 和终点 构成一个新的方向 ,并依此 方向为搜索方向再作一维搜索得到极小点 (2)取始点 = ,并去掉原搜索方向组中的第一个 方向 = ,而将第一轮构成的新搜索方向 作为最 末一个方向,以此组成第二轮迭代的n个方向。 依次进行下去,直到获得满足迭代收敛精度要求的近似 极小点为止。
鲍威尔法
鲍威尔(Powell)法又称方向加速度法, 它是利用共轭方向可以加快收敛速度的性质 形成的一种搜索方法。该方法不用对目标函 数求导,当目标函数的导数不连续时也能应 用,因此,鲍威尔法是一种十分有效的直接 搜索法。
一 共轭方向的概念与共轭向量的性质
(一)共轭方向 设A为n阶实对称正定矩阵,若有两个n维向量 和 能满足 A =0 则称向量 与 对矩阵A共轭,共轭向量的 方向称为共轭方向。
其中: —第k起始点函数值 — k轮方向组一维搜索终点函数值 — 对 的映射点函数值 — 第k轮方向组沿诸方向一维搜索所得的各 函数下降量中最大者,其对应的方向即是
鲍威尔修正算法的判别条件
(四)鲍威尔法的计算步骤
(1)给定初始点 和计算精度 ,即取初始方向组为n 个单位坐标向量。 (2)沿 各方向进行一轮n次一维搜索 即: minf( +a )= f( + ) 得到: = 这一步相当于最优步长的坐标轮换法。 (3)经计算求出共轭方向和映射点分别为 = (4)计算k轮中相邻两点目标函数值的下降量,并求出下 降量最大者及其相应的方向