电感耦合等离子体原子发射光谱法(ICP
简述原子发射光谱法中电感耦合等离子体(icp)光源的特点。
简述原子发射光谱法中电感耦合等离子体(icp)光源的特点。
原子发射光谱法中电感耦合等离子体(ICP)光源的特点主要有以下几个方面:
1.高效能:ICP光源具有很高的能量,可以同时激发多个原子或离子,产生大量的光谱线。
因此,它可以在较短的时间内对样品进行全面的元素分析。
2.稳定性好:ICP光源的稳定性非常好,可以长时间稳定运行,从而保证了分析的精密度和准确度。
3.宽广的应用范围:ICP光源可以用于分析各种不同种类的元素,包括金属元素、非金属元素以及有机物等。
此外,它还可以用于分析不同形态的样品,如固体、液体和气体。
4.较低的检出限:ICP光源产生的光谱线非常纯净,没有基体干扰,因此具有较低的检出限,可以检测出样品中微量的元素。
5.环保型:ICP光源的运行过程中不会产生有害物质,因此是一种环保型的技术。
6.需要使用惰性气体:为了维持等离子的稳定性,ICP光源需要使用惰性气体(如氩气或氮气)作为工作气体。
7.设备成本高:ICP光谱仪的设备成本较高,而且需要专业的技术人员进行操作和维护。
总的来说,电感耦合等离子体(ICP)光源是一种非常有效的元素分析方法,具有广泛的应用前景。
电感耦合等离子体原子发射光谱分析
电感耦合等离子体原子发射光谱分析简介
ICP-AES基本原理
利用电感耦合等离子体作为激发光源,使样 品中的原子或离子被激发并发射出特征光谱 ,通过对光谱的分析确定元素的种类和含量 。
ICP-AES仪器组成
仪器操作与实验过程
仪器准备
检查仪器状态,确保各 部件正常运行。开启仪 器,进行预热和校准。
样品引入
将制备好的样品引入等 离子体焰炬中,注意控
制引入速度和量。
光谱采集
设置合适的观测参数, 如波长范围、扫描速度
等,采集光谱信号。
数据处理与分析
对采集的光谱信号进行背景 校正、干扰元素校正等处理
,得到准确的分析结果。
生物医学材料研究
ICP-AES可分析生物医学材料(如生物陶瓷、生物降解塑料等)中的 元素组成和含量,为材料设计和性能优化提供数据支持。
THANKS FOR WATCHING
感谢您的观看
光谱仪
包括光栅或棱镜分光系统、光电 倍增管或固态检测器等,用于分 散和检测发射出的特征光谱。
工作气体
通常使用氩气作为工作气体, 用于维持等离子体的稳定性和 激发样品中的原子或离子。
环境条件
需要保持实验室的清洁、干燥和恒 温等环境条件,以确保仪器设备的
正常运行和实验结果的准确性。
样品前处理技术
样品消解
电感耦合等离子体原子发射光谱分 析
contents
目录
• 引言 • 实验原理与技术 • 实验方法与步骤 • 结果分析与讨论 • 应用领域与案例
01 引言
背景与意义
电感耦合等离子体原子发射光谱分析(ICP-AES)是一种广泛应用于元素分析的技 术。
ICP-AES电感耦合等离子体原子发射光谱法
发射光谱分析
根据原子或分子的特征发射光谱研究 物质结构和化学成分
发射光谱的激发光源:火焰、光花、 弧光、激光、等离子体
发射光谱的波长与原子或分子的能级 有关
原子发射光谱定性分析依据
不同元素原子能级结构不同
不同能级间的跃迁产生的谱线有不 同的波长特征
Mg:I 285.21 nm ;II 280.27 nm;
Na (Z=11)能级图 由各种高能级跃迁到同 一低能级时发射的一系 列光谱线;
K 元 素 (Z=19) 的 能级图 由各种高能级跃 迁到同一低能级 时发射的一系列 光谱线;
Mg 元素的能级图
基本原理
激发态的原子或离子返回基态时放射 出相应的原子谱线或离子谱线
光谱知识
发射光谱
原子或分子吸收外界能量,以光能
形式发射辐射,形成的光谱 荧光光谱
原子或分子吸收光子能量,以光能
形式发射辐射,形成的光谱 吸收光谱
原子或分子吸收光子能量,不发射
辐射,把光能转变形成为热能或其 它形式的能量,形成的光谱
原子发射光谱--AES
atomic emission spectrometry,AES
(2)温度升高,谱线强度增大, 但易电离。
谱线的自吸与自蚀
self-absorption and self reversal of spectrum line
自吸
等离子体内中间的温度、激发态原 子浓度高,边缘反之。
中心发射的辐射被边缘的同种基态 原子吸收,使辐射强度降低的现象 为自吸
谱线的自吸与自蚀
由光谱中各谱线波长特征右确定元 素种类
谱线强度
原子由某一激发态 i 向低能级 j 跃迁,所发射的谱线 强度与激发态原子数成正比。
电感耦合等离子体原子发射光谱(ICP-AES)法测定人发中铜、锌、钙、镁、铁
电感耦合等离子体原子发射光谱(ICP-AES)法测定人发中铜、锌、钙、镁、铁王生进;张琳;刘春虎;董龙腾;韩夫强【摘要】样品经硝酸-高氯酸消化溶解,高氯酸冒烟,盐酸溶解盐类后,在盐酸(5%)介质中,在选定的测定条件下,用电感耦合等离子体原子发射光谱(ICP-AES)法测定人发中微量元素铜、锌、铁、镁、钙.选择Cu 327.3、Zn 206.2、Fe 238.2、Mg 279.5、Ca 315.8 nm分别作为铜、锌、铁、镁、钙的分析线与混合标准溶液同时测定;方法加标回收率为98.6%~101%,铜、锌、铁、镁、钙的精密度(RSD,n=8)为0.37%~2%,准确度(RE)为-3.4%~1.15%,检出限分别为0.002 3、0.001 6、0.004 6、0.003 0、0.001 4 μg/mL.方法克服了分光光度法和原子吸收光谱法操作繁琐、周期长、成本高、灵敏度低等缺点.用于测定人发样品中的铜、锌、铁、镁、钙元素,测定结果与原子吸收光谱法测定值基本一致.经GB-WO7061标准物质和自制标样分析验证,测定值与标准值吻合,结果准确可靠.【期刊名称】《中国无机分析化学》【年(卷),期】2016(006)001【总页数】4页(P69-72)【关键词】铜;锌;铁;镁;钙;人发;电感耦合等离子体原子发射光谱法【作者】王生进;张琳;刘春虎;董龙腾;韩夫强【作者单位】河北省地矿局第十一地质大队,河北邢台054000;河北地质职工大学,石家庄050081;河北省地矿局第十一地质大队,河北邢台054000;河北省地矿局第十一地质大队,河北邢台054000;河北省地矿局第十一地质大队,河北邢台054000【正文语种】中文【中图分类】O657.31;TH744.11现代科学研究证明,微量元素在人体中起着极其重要的作用,它的缺乏或过剩与人的健康休戚相关,微量元素与人发有特殊的亲和力,身体中微量元素积蓄于人发中,其含量过高或偏低预示着会患有某种疾病的危险[1]。
电感耦合等离子体光谱仪(ICP-OES)
电感耦合等离子体光谱仪(ICP-OES)等离子体发射光谱分析法是光谱分析技术中,以等离子体炬作为激发光源的一种发射光谱分析技术。
其中以电感耦合等离子体(inductively coupled plasma,简称为ICP)作为激发光源的发射光谱分析方法,简称为ICP-OES,是光谱分析中研究zui为深入和应用、有效的分析技术之一。
电感耦合等离子体发射光谱仪ICP-OES的分析原理:电感耦合等离子体焰矩温度可达6000~10000摄氏度,当将试样由进样器引入雾化器,并被氩载气带入焰矩时,则试样中组分被原子化、电离、激发,以光的形式发射出能量。
不同元素的原子在激发或电离时,发射不同波长的特征光谱,故根据特征光的波长可进行定性分析;元素的含量不同时,发射特征光的强弱也不同,据此可进行定量分析。
可用于地质、环保、化工、生物、医药、食品、冶金、农业等方面样品中七十多种金属元素和部分非金属元素的定性、定量分析。
电感耦合等离子体发射光谱仪ICP-OES的应用领域:1.材料类:难熔合金的元素含量分析;高纯有色金属及其合金的元素微量分析;金属材料、电源材料、贵金属研究和生产用微量元素分析;电子、通讯材料及其包装材料中的有害物质元素含量检测;医疗器械及其包装材料中的有害物质及化学成分2.环境与安全类:食具容器、包装材料的成分分析及有害物质分析;应用于食品卫生重金属含量测试和食品检测分析;水(污水、饮用水、矿泉水等)中的:有害重金属及阴离子等;玩具、儿童用品及其包装材料中的:有害重金属(锑、砷、钡、铬、镉、铅、汞等);肥料中的重金属及微量元素:砷、汞、铅、隔、铬、锰、铁等;化妆品、洗涤剂及其包装材料中的有害成分:砷、汞、铅等3.医药食品类:中西药及其包装材料中的有害重金属、微量元素、有效成分等;生物组织中的重金属、微量元素及有机成分;保健品及生物制品中的有害成分、营养成分等;食品及其包装材料中的有害物质、重金属、微量元素及其它营养成分4.地质、矿产、农业、大学:地质、土壤的元素含量检测;用于地质、土壤的研究所、环境监测站;矿物质的定性和定量分析;农业研究所或大学用的材料元素含量检测、地质土壤元素检测、环境样品检测分析5.任何高纯物质检测:氯碱化工的高纯烧碱及其原材料的微量元素分析;高纯药品中间体。
电感耦合等离子体原子发射光谱法(ICP-AES)测定红土镍矿中的Cd、Co、Cu、Mg、Mn、Ni、Pb、Zn、Ca9种元
S m u t n o s De e m i to fCd,Co,Cu,M g, i la e u t r na i n o M n,Ni ,Pb,Zn a d Ca i t r t c lOr y I d c i ey n n La e ie Ni ke e b n u tv l
件 下直 接 测 定 。各 元 素 的测 定 检 出 限为 0 0 0 ~ 0 03  ̄/ , 对 标 准 偏 差 ( S 一 6 为 0 1 . 0 1 . 0 3/ mL 相 g R D, ) .5
~
1 8 % 。对 样 品进 行 加 标 回收 试 验 , .9 回收 率 在 9 . ~ 1 7 2 14 0 . %之 间 。经 比对 试 验 证 明 , 法 测 定 值 本
Th ee t n l t o a h ee n r . 0 1 ~ 0 0 3 Ⅱ / n h eaie sa d r e ito s ed t ci i sf re c lme twe e0 0 0 o mi . 0 3 g mL a d t er lt t n ad d vain v
Co p e l s o i u ld P a ma At m c Emiso p c r me r ( CP AES si n S e t o ty I — )
HE Fedn , IHu c a g ,F ii g L a h n ENG a j 。 Xini n
与火 焰 原 子 吸收 光 谱 法 测 定 值 一 致 。
关 键 词 红 土 镍 矿 ; P A S 多元 素 ; 时 测 定 I E ; C 同 中 图分 类 号 : 5 . 1 O6 7 3 文 献标 识码 : A 文 章 编 号 : 0 5 1 3 ( 0 1 0 —0 3 — 0 2 9 — 0 5 2 i )2 0 9 3
电感耦合等离子体原子发射光谱法
电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体为激发光源的原子发射光谱分析方法,可进行多元素的同时测定。
样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。
根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析);根据特征谱线强度确定样品中相应元素的含量(定量分析)。
本法适用于各类药品中从痕量到常量的元素分析,尤其是矿物类中药、营养补充剂等药品中的元素定性定量测定。
1、对仪器的一般要求电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、分光系统、检测系统等构成,另有计算机控制及数据处理系统,冷却系统、气体控制系统等。
样品引入系统按样品状态不同可以分为以液体、气体或固体进样,通常采用液体进样方式。
样品引入系统由两个主要部分组成:样品提升部分和雾化部分。
样品提升部分一般为蠕动泵,也可使用自提升雾化器。
要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速地泵入,废液顺畅地排出。
雾化部分包括雾化器和雾化室。
样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。
要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并需经常清洗。
常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。
实际应用中宜根据样品基质,待测元素,灵敏度等因素选择合适的雾化器和雾化室。
电感耦合等离子体(ICP)光源电感耦合等离子体光源的“点燃”,需具备持续稳定的高纯氩气流,炬管、感应圈、高频发生器,冷却系统等条件。
样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂、蒸发、离解、激发、电离、发射谱线。
根据光路采光方向,可分为水平观察ICP源和垂直观察ICP源;双向观察ICP 光源可实现垂直/水平双向观察。
电感耦合等离子体发射光谱法(ICP-OES)测定三元前驱体中的硫含量
125化学化工C hemical Engineering电感耦合等离子体发射光谱法(ICP-OES )测定三元前驱体中的硫含量陈珍华,骆月英,冯焕村(广东佳纳能源科技有限公司,广东 英德 513056)摘 要:镍钴锰三元素复合氢氧化物(化学式NixCoyMn1-x-y(OH)2,俗称三元前驱体)是锂电池正极材料的重要原料之一。
三元前驱体中硫含量的高低会对锂电池性能产生影响,因此硫含量是三元前驱体中的重要技术指标。
通常硫含量的检测方法有离子色谱法测定硫酸根、比浊法测定硫酸根、碳硫仪测定硫含量、ICP-OES法测定硫含量等方法。
本文主要研究探讨电感耦合等离子体发射光谱法(ICP-OES法)测定三元前驱体中硫含量的过程中,镍、钴、锰对硫含量的干扰,筛选合适的谱线,确定优化的方法。
方法无需进行基体匹配等繁琐操作步骤就能得到准确、稳定的测量结果,同时提高工作效率。
经过优化后ICP-OES法的工作条件参数,采用谱线182.562,可以不用考虑镍、钴、锰三元素的干扰,加标回收率在94%~96%,而且测试结果与碳硫仪测试结果基本接近。
关键词:电感耦合等离子体发射光谱法;ICP-OES;电池材料;镍钴锰三元素复合氢氧化物;三元前驱体;硫;硫酸根中图分类号:O657.31 文献标识码:A 文章编号:1002-5065(2021)05-0125-4Determination of sulfur in ternary precursors by inductively coupled plasmaatomic emission spectrometry (ICP-OES)CHEN Zhen-hua, LUO Yue-ying, FENG Huan-cun(Guangdong Jiana Energy Technology Co., Ltd,Yingde 513056,China)Abstract: Nickel cobalt manganese three element complex hydroxide (chemical type NixCoyMn1-x-y(OH)2, commonly known as ternary precursor, is one of the important raw materials of positive materials for lithium battery. The sulfur content in the ternary precursor will affect the performance of lithium battery, so the sulfur content is an important technical index in the precursor. Generally, the methods of sulfur content determination include ion chromatography, turbidimetry, carbon sulfur meter, ICP-OES. This paper mainly studies the interference of nickel, cobalt and manganese on sulfur content in the process of determination of sulfur content in ternary precursor by ICP-OES, and selects the appropriate spectral line and determines the optimization method. The method can get accurate and stable measurement results without the complicated operation steps such as matrix matching, and improve the working efficiency. The optimized working conditions of ICP-OES Method, with the spectral line 182.562, can be used without considering the interference of nickel, cobalt and manganese, and the recovery rate of the standard addition is 94%~96%, and the test results are almost close to those of carbon sulfur meter.Keywords: inductively coupled plasma emission spectrometry; ICP OES; battery materials; nickel cobalt manganese three element complex hydroxide; ternary precursor; sulfur; sulfate收稿日期:2021-02基金项目:广东省高性能锂电池正极材料前驱体研发与应用企业重点实验室(项目编号2020B121202007)。
电感耦合等离子体发射光谱法icp-oes
电感耦合等离子体发射光谱法icp-oes一. 设备型号:钢研纳克Plasma 2000型 ICP光谱仪ICP:电感耦合等离子体。
可用“ICP”来代替“ICP-OES,和ICP-AES”。
两者都是指电感耦合等离子体原子发射光谱,是一样的。
因为俄歇电子能谱的缩写也是AES,所以后来ICP-AES通常都被叫做ICP-OES。
Plasma2000 型 ICP-OES 是用于测定样品中元素含量的高新技术产品,具有稳定性好、检测限低、快速分析、抗干扰能力强等特点:(1)可测元素70多种;(2)分析速度快,一分钟可测5-8个元素,中阶梯二维分光系统,具备更高的分辨能力;(3)多元素同时进行定性定量分析,客户可以自由选择元素数量与安排测量顺序;(4)高灵敏度,检出限低,达到ppb量级,Ba甚至达到0.7ppb;(5)线性动态范围宽,高达6个数量级,高低含量可以同时测量;(6)高精度(CV<1%),化学干扰少且分析成本低。
二、工作原理:待测试样经喷雾器形成气溶胶进入石英炬管等离子体中心通道中,经光源激发以后所辐射的谱线,经入射狭缝到色散系统光栅,分光后的待测元素特征谱线光投射到 CCD上,再经电路处理,由计算机进行数据处理来确定元素的含量。
三、主要性能及技术参数:主要参数:1.分光系统:光路形式:中阶梯光栅和棱镜二维分光;波长范围:175nm~810nm;光栅类型:中阶梯光栅;光栅尺寸:50mm×100mm;刻线密度:52.67g/mm;分辨率:0.007nm@200nm;光室恒温:38℃± 0.1℃;光室环境:充氩或氮(流量可调);CCD像素:1024×1024;单像素面积:24μm×24μm。
2.射频发生器震荡频率:27.12MHz;功放型式:晶体管固态功率放大器,自动匹配调谐;功率范围:800W~1600W 连续1W可调;功率稳定性:≤0.1%;频率稳定性:≤0.01%。
电感耦合等离子体原子发射光谱法
电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱法 (ICP-AES)是一种用于定量分析物质含量的一种光谱方法,可实时、快速地测定被测物质中各种元素的组成,包括含量低的微量元素和高价元素,广泛应用于土壤、水,食品及环境等实验室的精密分析领域。
I. 基本原理1. 基本概念电感耦合等离子体原子发射光谱法(ICP-AES)是将等离子体生成装置与原子发射光谱仪(AES)相结合,将原子发射光谱技术用于研究物质组成的有效技术手段。
根据它的原理,采用高频电感耦合方式,使物质在放电的同时流入等离子体,经原子高温热解的过程中,物质被分解成常见的原子离子核心状态,并释放出内部能量。
在此能量降落过程中,经由原子核发出的原子发射谱线可以把物质的组成成分用不同的光谱线表示出来,而这些谱线和元素种类以及它们的含量有直接关联,从而确认物质的组成结构和物质含量。
2. 优点电感耦合等离子体原子发射光谱法(ICP-AES)具有多种优点,如快速、精确,可以同时测定金属元素、非金属元素、电解质离子、有机氯离子和其他复杂物质等。
可以分析无金属和金属两种物质。
另外,大量分析样品不影响测试精度,量级区间宽,可测定高、中、低价元素以及极低的微量元素,可以分析微量物质,同时减小输入量。
3. 缺点电感耦合等离子体原子发射光谱法(ICP-AES)的缺点在于系统背景噪音较大,而且系统复杂,调节和维护复杂,耗费时间和经费,以及分析过程中也容易受到干扰。
II. 用途1. 环境监测电感耦合等离子体原子发射光谱(ICP-AES)技术可以用于环境样品的分析,快速准确地测定出被测样品的成分,用于环境的基础监测,监测土壤中营养元素和有害元素。
2. 工业实验室分析电感耦合等离子体原子发射光谱(ICP-AES)技术在工业实验室分析中也广泛应用,如可以分析广泛工程材料、金属、有机、无机混合物,以及钽、放射性元素等物质。
3. 药物和生物分析电感耦合等离子体原子发射光谱(ICP-AES)技术也可用于药物和生物分析,它可以用于药物的成分检测,测定活性成份,进行食品安全性的检测,以及分析生物体内有用元素的含量等。
电感耦合等离子体发射光谱法
一般包括四个基本单元: 等离子体光源系统、进样系统 、光学系统、检测和数据处理系统 • ICP 等离子体光源系统由 RF高频发生器、等离子炬管 、气路系统等组成 • 进样系统包括蠕动泵、雾化系统等组成 • 光学系统相对比较复杂 , 但其作用与原理与其它光谱 类似,即将复合光分解为单色光。原子发射光谱的分光系 统通常由狭缝、准直镜、色散元件、凹面镜等组成
• ICP-AES需要考虑分析试液中总固体溶解量(TDS),高的 TDS将造成: a 基体效应干扰 b 谱线干扰和背景干扰 c 雾化系统及ICP炬的堵塞 • 一般来讲,对于TDS在10mg/ mL左右的试液,在连续进 样时,是会堵塞的,在常规分析工作中,分析试液的TDS 愈低愈好,一般控制在1 mg/ mL左右,在测定元素灵敏度 满足的情况下,有时TDS控制在0.5 mg/ mL以下。因此, ICP-AES的样品处理在尽可能情况下采用酸分解而不用碱 融,稀释倍数为1000倍左右。
5.质量分析器 不同种类质谱仪的主要区分之处。
<四极杆分析器> 利用四极杆对不同荷质比的元素离子的筛选作 用,达到书序分析粒子质量的目的。两对电极分别正负直流电压和相位 差为180度的射频信号,只有特定荷质比的离子才能通过,从而实现了 质量筛选。
6.检测器 通过四极杆的离子流在某一时刻认为只有单一的荷质比,检测器 的作用是对这些离子计数,得到离子的相对强度。 通常使用电子倍增器作为检测器。结构类似电子倍增管。
•
•
ICP 检测器早期主要用光电倍增管 (PMT) 检测器, 目 前已逐步被各种固体检测器代替固体检测器,作为光电元 件具有暗电流小、灵敏度高、信噪比较高的特点 , 具有 很高的量子效率, 而且是超小型的、大规模集成的元件, 可以制成线阵式和面阵式的检测器, 能同时记录成千上万 条谱线,并大大缩短了分光系统的焦距,使多元素同时测定 功能大为提高并成为全谱直读光谱仪
电感耦合等离子体发射光谱法
原子发射光谱法是根据处于激发态的待测元素原子回到基态时发 射的特征谱线对待测元素进行分析的方法。
原子发射光谱法包括了三个主要的过程,即:
样品激发
分光
检测器
• 由光源提供能量使样品蒸发、形成气态原子、并进一步使气 态原子激发而产生光辐射;
• 将光源发出的复合光经单色器分解成按波长顺序排列的谱线, 形成光谱;
的线性范围可达5~6个数量级,有的仪器甚至可以达到7~8个数量级; (3)ICP-OES法具有较高的蒸发、原子化和激发能力,且无电极放电,无电
极沾污; (4)ICP-OES法具有溶液进样分析方法的稳定性和测量精度 (5)ICP-AES法采用相应的进样技术可以对固、液、气态样品直接进行分析。 (6)不足:对非金属测定的灵敏度低,仪器昂贵,操作费用高。
(3)共振线 原子的外层能级间电子在其临近的能级间跃迁所产生的谱线,当电子由 激发态返回基态所辐射谱线叫共振线,一般是原子线中该元素的最灵敏 的谱线,但在ICP光源中并不全是如此,因为有亚稳态氩原子的作用。
(4)自吸收线 在光谱光源中,中心发出的辐射受到周围该原子的基态原子所吸收,使 该谱线强度降低,这种现象叫自吸收。有较强自吸收的谱线叫自吸收 线, 自吸收线一般都是原子线,激发电位较低,例 Na 588.995nm, Mg 285.213nm,它们的标准曲线线性范围较窄。标准曲线容易弯曲。
(1)光源中分析物激发态原子(离子 浓度)
Em
Nn K 'N0e RT
(2)谱线强度
Em
I Nn Anmh K ' AnmhN0e RT
I aC
Nn-激发态原子(离子) 浓度
Anm-迁几率跃 hγ-光子
I aCb (b 1) 考虑到光源
ICP-AES 电感耦合等离子体原子发射光谱分析
6. ICP发射光谱分析的基本过程
ICP发射光谱分析过程主要分为三步, 即激发、 分光和检测。 1.利用等离子体激发光源( ICP)使试样蒸发汽 化, 离解或分解为原子状态,原子可能进一步 电离成离子状态,原子及离子在光源中激发发 光。 2.利用光谱仪器将光源发射的光分解为按波长排 列的光谱。 3.利用光电器件检测光谱,按测定得到的光谱波 长对试样进行定性分析,按发射光强度进行定 量分析。
地矿样品:地质样品、矿石及矿物 钢铁及其合金:碳素钢、铸铁、合金钢、高纯铁、铁合金 有色金属及其合金 化学化工产品:化学试剂、化工产品、无机材料等 水质样品:饮用水、地表水、矿泉水、高纯水及废水 环境样品:土壤、粉煤灰、大气飘尘 动植物及生化样品:植物、中药及动物组织、生化样品 核工业产品:核燃料、核材料 食品及饮料
火花放电、太阳和恒星表面的电离层等都是等离子体。
(2)ICP的形成
形成稳定的ICP炬焰的 四个条件: 高频高强度的电磁场、 工作气体、 维持气体稳定放电的 石英炬管、 电子—离子源
当高频发生器接通电源后, 高频电流通过感应线圈产生交 变磁场。开始时,管内为氩气 不导电,需要用高压电火花触 发,使气体电离。在高频交流 电场的作用下,带电粒子高速 运动、碰撞,形成“雪崩”式 放电,产生等离子体气流。在 垂直于磁场方向将产生感应电 流,强大的电流产生的高温又 将气体加热电离,在管口形成 稳定的等离子体焰炬。
2.ICP-AES仪的发展
中阶梯光栅+固体检测器(CID,CCD) 全谱直读 单道扫描;单道+多通道 多通道
平面光栅+光电倍增管
凹面光栅谱仪
检测系统为照相干板,拍摄下光谱谱线 优点:
具有同时观察整个发射光谱的能力 定性分析、定量分析 可日后再分析
211171116_电感耦合_等离子体原子发射光谱法(ICP-OES)测定高硅铝合金中的7种元素
世界有色金属 2023年 1月下140化学化工C hemical Engineering电感耦合等离子体原子发射光谱法(ICP-OES )测定高硅铝合金中的7种元素张晓曼,吴 思,周 磊(安徽省铝制品质量监督检验中心,安徽 濉溪 235100)摘 要:实验采用氢氧化钠溶解高硅铝合金之后加入过氧化钠继续反应溶解,再加入盐酸,运用电感耦合等离子体原子发射光谱法(ICP-OES)测定高硅铝合金中硅、铁、铜、硼、钛、镁、锌7种元素的含量,该方法能完全溶解样品特别是硼、钛含量高的高硅铝合金样品。
通过基体匹配的方法配制系列标准溶液,试验结果良好,线性关系大于0.9995,回收率95.1%~105.2%。
关键词:电感耦合等离子体原子发射光谱;高硅铝合金;碱溶(过氧化钠)中图分类号:TG115.3 文献标识码:A 文章编号:1002-5065(2023)02-0140-3Determination of seven elements in high silicon aluminum alloy by inductively coupledplasma atomic emission spectrometryZHANG Xiao-Man, WU Si, ZHOU Lei(Anhui aluminum products quality supervision and inspection center, Suixi 235100,China)Abstract: In the experiment, sodium hydroxide was used to dissolve the high silicon aluminum alloy,sodium peroxide was added to continue to react and dissolve. And then added hydrochloric acid, The content of seven elements of silicon, iron, copper, boron, titanium, magnesium and zinc in high silicon aluminum alloy is determined by ICP-OES method. The method can completely dissolve samples, especially high-silicon aluminum alloy samples with high boron and titanium contents. A series of standard solutions were prepared by matrix matching method. The experimental results were good, the linear relationship was greater than 0.9995, and the recovery was 95.1%~105.2%Keywords: Inductively coupled plasma atomic emission spectrometry; High silicon aluminum alloy; Alkali solution (sodium peroxide)收稿日期:2022-12基金项目:2019年安徽省市场监督管理局科技计划项目 编号:2019MK012。
电感耦合高频等离子体原子发射光谱分析(ICP—AES)
电感耦合高频等离子体原子发射光谱分析(ICP—AES)本章要求:电感耦合高频等离子体原子发射光谱法是以电感耦合等离子焰炬为激光源的一类新型光谱分析方法(Inductively Coupled Plasma—Atomic Emission Spectrometry,简称ICP—AES)。
由于该法具有检出限较低、准确度及精密度高、分析速度快和线性范围宽等许多独特的优点,因此在国外ICP—AES法已发展成为一种极为普遍、适用范围极广的常规分析方法,并广泛用于环境试样、岩石矿物、生物医学以及金属与合金中数十种元素的分析测定。
在国内ICP—AES法的研究工作始于1974年,现已有上千个科研单位、大专院校、工厂以及环境监测等部门拥有了此种分析手段,ICP—AES法已成为近年来我国分析测试领域中发展最快的测试方法之一。
为了使这种新型分析技术在环境监测中得到普及,环境监测人员必须对ICP—AES法有所了解,在学习中应掌握以下几方面的知识。
1、电感耦合等离子体(ICP)光谱技术的发展概况。
2、ICP光源的理论基础。
3、ICP所用的高频电源。
4、ICP所需的进样装臵。
5、ICP炬管及工作气体。
6、ICP仪器的分光、测光装臵。
7、ICP-AES法的分析技术。
8、ICP-AES法的应用。
9、有机试液的ICP光谱分析。
10、ICP-AES法和其他分析技术的比较。
参考文献1、光谱学与光谱分析编辑部,《ICP光谱分析应用技术》,1982年,北京大学出版社。
2、蔡德,《光谱分析辞典》,1987年,光谱实验室编辑部。
3、陈新坤,《电感耦合等离子体光谱法原理和应用》,1987年,南开大学出版社。
4、不破敬一郎,《ICP发射光谱分析》,1987年,化学工业出版社。
5、辛仁轩,《电感耦合等离子体光源—原理、装臵和应用》,1984年,光谱实验室编辑部。
6、《分析技术辞典,发射光谱分析》,1980年,科学出版社。
7、高铮德,《光谱分析常识》,1985年,光谱实验室编辑部。
电感耦合等离子体原子发射光谱法(ICP—AES)测定稀土镁合金中锆
+氢氟 酸 +高氯 酸 、 硝 酸 +硫 酸 、 硫酸) 分解 , 将 试 液 转入 1 0 0 mL容 量 瓶 中 , 加水定容至刻度 , 摇匀 , 按 仪 器工 作条 件进行 测定 。
1 . 3 . 2 实 验方 法 I 1
法, X射 线 荧 光 光 谱 法 , E D TA 滴 定 法 等 。由 于 电
8 3~ 8 5
d o i : 1 0 . 3 9 6 9 / j . i s s n . 2 0 9 5 — 1 0 3 5 . 2 0 1 3 . z 1 . 0 2 8
电感耦 合 等 离子体 原 子 发 射 光 谱 法 ( I C P — AES ) 测定 稀 土 镁 合 金 中锆
2 . 1 . 1 硝 酸 溶 解
功率: 1 2 0 0 w; 等离子气 流量 : 1 5 . 0 L / mi n ; 雾 化器 流 量: 0 . 7 5 L / mi n ; 辅 助气 流量 : 1 . 5 0 L / m i n ; 一 次 读 数
时间 : 5 s ; 仪 器稳定延迟 时间 : 1 5 S ; 清洗 时间 : 1 0 s ; 元
0 . 1 g ( 精确 至 0 . 0 0 0 1 g ) 稀土镁 合金试 样 B , 分
别 通过 3 种 消解 方式 ( 硝酸 、 硝 酸+氢氟 酸 +高氯酸 、
硝酸+硫酸 ) 分解 , 将试 Байду номын сангаас 转入 1 0 0 mL容量 瓶 中 , 加
水定容至 刻度 , 摇匀 , 按仪器工作 条件进行测定 。
0 . 0 0 2 ̄ t g / mL , 方法用于稀土镁合金中锆的测定 , 加 标 回收率 为 1 0 3 . 5 %, i i次 平 行 测 定 的 相 对 标 准 偏
电感耦合等离子体发射光谱仪和原子发射光谱仪
电感耦合等离子体发射光谱仪和原子发射光谱仪
电感耦合等离子体发射光谱仪(Inductively Coupled Plasma Emission Spectrometer, ICP-OES)和原子发射光谱仪(Atomic Emission Spectrometer, AES)是常见的光谱技术仪器,用于化
学分析和元素定量分析。
1. 电感耦合等离子体发射光谱仪(ICP-OES):
ICP-OES是一种高灵敏度、高选择性的光谱仪器。
它使用电感耦合等离子体作为激发源,把样品中的元素激发到高能级,然后测量元素在发射光谱上的特征峰强度,从而确定样品中各元素的含量。
ICP-OES能够同时测量多种元素,通常用于分析元素含量、溶液中金属离子的浓度、环境监测等。
2. 原子发射光谱仪(AES):
AES是一种基于原子发射现象的光谱仪器。
它使用火焰、电
弧等激发源激发样品中的原子,然后测量原子在发射光谱上的特征峰强度。
通过测量特定波长的光线强度,可以确定样品中元素的含量。
AES通常用于快速的元素分析,如金属、合金、土壤和水样中元素的定量分析。
ICP-OES和AES的主要区别在于激发源、分析样品的类型和
检测灵敏度。
ICP-OES使用电感耦合等离子体作为激发源,适用于分析浓度较低的溶液样品,能够同时分析多种元素;而AES使用火焰或电弧激发源,适用于快速的元素分析,通常
用于固体和液体样品的分析。
同时,ICP-OES通常具有更高的灵敏度和较大的线性范围。
电感耦合等离子体原子发射光谱法实验报告
电感耦合等离子体原子发射光谱法实验报告
电感耦合等离子体原子发射光谱(ICP-AES)法是当今分析化学中使用最广泛的原子发射
光谱技术。
它是利用电感耦合等离子体(ICP)作为原子离子源进行原子发射光谱分析,
并将原子发射射线测定术(AES)和离子化学分析术相结合,是一项精密,准确,可靠,
重复性好的分析技术。
电感耦合等离子体原子发射光谱(ICP-AES)法实验旨在使用ICP-AES进行超含氧量检测,以判断和表征样品中超含氧元素(如Si, Al, Ba等)的浓度。
实验用到的主要仪器是Perkin Elmer 400系列电感耦合等离子体发射光谱仪,其具有极好的稳定性和低的噪声。
实验从粉末样品中提取一定的量,放入带有细堵子的橄榄小瓶中,
将样品中的超含氧元素分解为离子流,
再由电管入口处的离子,经电感耦合等离子体发生器高能电场和电离过程,转化为原子态,并具有应变释放效应,将原子发射成发射射线,
经电光箱校正和滤波后,而穿过DDL D正电子探测器被检测出来,与吸光度计样品出口
上的流出比较,来获得超含氧元素的浓度,每种元素的吸光度下降的程度可以反映其含量大小。
本实验采用的是0.1mol/L的氯化铵溶液,其浓度稳定、持续不变,温度为低于200℃时
是稳定的。
根据试样中元素浓度的高低,可以选择合适的采样灵敏度,
以保证对元素的精准测定。
高浓度时,可以选择低灵敏度,反之,则可以选择高灵敏度,
以保证实验数据的准确性和稳定性。
实验采用Perkin Elmer 400系列电感耦合等离子体发射光谱仪进行实验,取得的结果良好,准确可靠,反映了超含氧元素在各种样品中浓度大小的变化,为对样品中构成进行全面研究及进一步应用奠定基础。
电感耦合等离子体原子发射光谱法
电感耦合等离子体原子发射光谱法(ICP-AES)的研究进展1 概述1.1 ICP-AES分析技术的发展电感耦合等离子体原子发射光谱法(ICP-AES)是以电感耦合等离子炬为激发光源的一类光谱分析方法,它是一种由原子发射光谱法衍生出来的新型分析技术。
它能够方便、快速、准确地测定水样中的多种金属元素和准金属元素,且没有显著的基体效应。
早在1884年Hittorf就注意到,当高频电流通过感应线圈时,装在该线圈所环绕的真空管中的残留气体会发生辉光,这是高频感应放电的最初观察。
1942年Babat采用大功率电子振荡器实现了石英管中在不同压强和非流动气流下的高频感应放电,为这种放电的实用化奠定了基础。
1961年Reed设计了一种从石英管的切向通入冷却气的较为合理的高频放电装置,它采用Ar或含Ar的混合气体为冷却气,并用碳棒或钨棒来引燃。
Reed把这种在大气压下所得到的外观类似火焰的稳定的高频无极放电称为电感耦合等离子炬(ICP)。
Reed的工作引起了Greenfield、Wenat和Fassel的极大兴趣,他们首先把Reed的ICP 装置用于AES,并分别于1964年和1965年发表了他们的研究成果,开创了ICP在原子光谱分析上的应用历史。
20世纪70年代,ICP-AES进入实质应用阶段。
1975年美国的ARL公司生产出了第一台商品ICP-AES多色仪,此后各种类型的商品仪器相继出现。
今天ICP-AES分析技术已成为现代检测技术的一个重要组成部分。
近年来,人们逐渐认识到,在有ICP产生的6000-10000K的高温下,试样中的大多数组分经原子化后又进一步发生了电离,所以由此得到的光谱实际上是一种离子光谱,而不是原先认为的原子光谱,所以在最近的一些文献资料中,一些作者将ICP-AES改名为ICP-OES。
1.2 ICP-AES方法的优缺点与其他方法相比,ICP-AES方法具有以下几个优点:(1)分析速度快。
ICP-AES法干扰低、时间分布稳定、线性范围宽,能够一次同时读出多种被测元素的特征光谱,同时对多种元素进行定量和定性分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电感耦合等离子体原子发射光谱法(ICP
摘要:本文采用电感耦合全谱直读等离子体原子发射光谱法(icp-aes)对未知元素组成和含量的铝合金中钛、铜、镁、锰、锌、铬、硅和铁的测定进行了研究,所测试的结果具有较好的精密度和准确度。
关键词:电感耦合等离子体原子发射光谱法元素组成和含量铝合金钛、铜、镁、锰、锌、铬、硅和铁
一、引言
铝合金具有较高的强度,良好的塑性成形能力和机械加工性能,在航空工业中具有重要的应用前景[1-3]。
铝合金中其它金属的含量,如金属元素钛、铜、镁、锰、锌、铬、硅和铁等,对其性质和应用具有很大的影响[3-6]。
所以,准确测定铝合金中其它金属的含量显得尤为重要。
对金属材料的成分进行表征分析,可以深入了解材料的组成元素及其内部构造,可以为我们更好地去研发设计复杂的金属材料提供依据[7]。
为此必需建立一个快速、准确的分析方法,以控制其化学成分,使该材料获得良好的物理性能。
国内外常用和新发展的分析方法包括[7-13]:分光光度法、滴定分析法、原子光谱分析法、x射线荧光光谱法、电化学分析法、电感耦合等离子体质谱法、激光诱导等离子体光谱法、电感耦合等离子原子发射光谱法(icp-aes)和石墨炉原子吸收法。
一般铝合金中元素的测定分析方法采用icp-aes和石墨炉原子吸收法[9,
14-18]。
icp-aes[19]作为一种新型的分析方法,较其它分析方法
而言,具有灵敏度高、精密度好、线性范围宽、基体效应小、动态范围宽、快速简便并可同时进行多元素分析的优点,已成为铝合金常用的分析方法之一。
基于以上的背景调研,我们拟采用icp-aes法对未知元素组成和含量的铝合金样品中其它金属元素的组成和含量进行研究,为铝合金材料的潜在应用和材料制备提供理论基础。
通过查阅相关文献[3-5],可以知道铝合金材料中可能含有的金属元素;因此,本文主要研究并测定了铝合金中可能存在的金属元素,如钛、铜、镁、锰、锌、铬、硅和铁的含量。
二、实验部分
1.主要仪器及实验条件
铝合金样品(元素组成和含量未知),水(二次去离子),盐酸(优级纯),硝酸(优级纯)。
icp 6300型电感耦合等离子体发射光谱仪。
工作参数:射频功率1.15 kw,氩气浓度99.9%,蠕动泵转速50r.min,辅助气流量0.5 l·min-1,雾化器压力0.2mpa,积分时间长波5s、短波15s,冲洗时间30s,观察高度15mm。
2.样品制备
2.1 干扰试验
配制铝(al)元素含量 91.0%,钇(y)元素含量1.0%,其它元素(ti 、cu、mg 、mn 、zn 、cr 、si和fe)的含量各1. 0%的溶液。
标记为sample 1。
2.2 校准曲线
分别配制各金属元素ti 、cu、mg 、mn 、zn 、cr 、si和fe
的标准空白溶液和标准溶液。
其中,标准溶液中金属元素的含量分别为0. 05%、0. 10%、0. 15%、0. 20%、0. 30%。
2.3 酸度试验
称取0.10g铝合金试样于100 ml玻璃烧杯中,分别用5、10、15、20和30 ml盐酸溶解铝合金试样,待剧烈反应后加入5ml硝酸至试样完全溶解。
所得溶液样品煮沸,以除去氮的氧化物,之后冷却室温,将溶液移入100 ml容量瓶中,加入2.00 ml 钇(y)内标溶液(0.2mg·min-1),用水稀释至刻度,混匀,待测。
2.4 待测样品制备
称取0.10g铝合金试样于100 ml玻璃烧杯中,用20 ml盐酸溶解铝合金试样,待剧烈反应后加入5ml硝酸至试样完全溶解。
所得溶液样品煮沸,以除去氮的氧化物,之后冷却室温,将溶液移入100 ml容量瓶中,加入2.00 ml 钇(y)内标溶液(0.2mg·min-1),用水稀释至刻度,混匀,待测。
三、结果与讨论
1.干扰试验
icp具有放电较强的激发和电离能力,具有较丰富的原子线和离子谱线,多线光谱的谱线重叠是icp光谱法中最主要的光谱干扰之一。
所以,我们首先研究溶液中基体、合金元素、各共存元素及内标元素间是否有光谱相互干扰。
在光谱仪的谱线库中选出各待测元
素的较灵敏的谱线,对sample 1中样品溶液进行干扰试验测试,在所选择的谱线附近扫描,得到待测元素的谱线扫描图。
测试结果表明,基体、合金元素、各共存元素及内标元素间没有光谱相互干扰。
2.校准曲线
对实验2.2.2中的样品进行校准曲线测试,依次测定各元素的发射强度。
以各元素的浓度c为横坐标,发射强度i为纵坐标进行线性拟合,绘制各元素的标准曲线,计算回归方程和相关系数,结果见表2。
由表2看出,各元素在测试含量范围内呈良好的线性关系。
3.酸度试验
一般而言,盐酸、硝酸等无机酸的引入影响分析物的测试结果,同时也会使谱线强度减小。
为了验证溶解样品所用酸对测试结果的影响,我们在不同酸度条件下(盐酸的加入量的不同,而固定硝酸的加入量相同),对未知铝合金样品进行测试。
对实验2.2.3中的样品进行测试,所得结果如表3所示。
由表3结果可知,盐酸的用量变化,所有元素的强度比没有明显变化,酸度的变化对测试结果影响不大。
我们推测其可能原因是:盐酸的用量不同对待测的元素(ti 、cu、mg 、mn 、zn 、cr 、si和fe)和内标元素钇(y)均具有影响,待测元素和内标元素进入icp激发区域同步增加或减少。
即在测试过程中加入内标元素,可以减小或消除酸加入不同的影响,使得酸度的变化对测试结果影
响不大。
4.准确度和精密度
按所选定的仪器工作参数与分析方法,经过十次平行测定,得到各元素的rsd值(表4)。
由表4结果可知,各元素的rsd值均在0.83-3.35%之间,即本方法有较好的精密度和准确度。
四、总结
本文采用icp-aes对未知元素组成和含量的铝合金样品中其它金属元素(钛、铜、镁、锰、锌、铬、硅和铁)的组成和含量进行了系统地研究。
通过干扰试验、校准曲线以及酸度试验等研究结果表明,采用icp-aes法测定未知其它元素组成和含量的铝合金样品,其测试结果准确可靠,有较好的精密度和准确度。
参考文献
[1]董天祥;杨春晟;李帆;王荣;杨党纲,国内航空金属材料成分分析技术现状及发展. 材料工程 2002, 12 (3), 5.
[2]宋仁国,高强度铝合金的研究现状及发展趋势. 材料导报2000, 14 (1), 20-21.
[3]mazzolani, f., aluminium alloy structures. taylor & francis: 2002.
[4]杨守杰;戴圣龙,航空铝合金的发展回顾与展望. 材料导报 2005, 19 (2), 76-80.
[5]张君尧,铝合金材料的新进展(1). 轻合金加工技术 1998,
26 (5), 1-6.
[6]李元元;郭国文;罗宗强;龙雁,高强韧铸造铝合金材料研究进展. 特种铸造及有色合金 2000, 6, 45-47.
[7]李大为,金属材料成分分析方法现状与趋势. 工业设计(3).
[8]周家琥,对常用有色金属的成分研究. 河南科技(3).
[9]费浩;卢菊生, icp-aes 法测定铝及铝合金中 7 种杂质元素. 冶金分析 2004, 24 (4), 28-30.
[10]刘英;李宝成;张金娥,高纯金属分析技术. 全国有色金属理化检验学术报告会论文集.
[11]马冲先,中美金属材料标准分析方法的最新进展. 理化检验(化学分册) 10, 042.
[12]薛广鹏,浅析金属材料的分析方法. 科技资讯 25, 072.
[13]赵黎锋,各种金属材料成分分析方法现状与趋势. 科技创新导报(5), 143-143.
[14]李帆;田丹华;张宝松;王宝如, icp-aes 法测定铝合金中主量元素和杂质元素的方法. 材料工程 2002, 12, 006. [15]卢菊生;盛红伍;侯列奇;倪智勇;李洁, icp-aes 法测定铝硅合金中杂质元素. 冶金分析 2004, 24 (2), 48-48.
[16]莫庆军,电感耦合等离子体原子发射光谱法测定硅铝钡合金中 7 种主次量元素. 冶金分析 2006, 26 (5), 44-47. [17]谢绍金;杨春晟 in icp-aes 测定 2e12 铝合金中的钛,
铜,镁,锰,锌,铬,硅和铁的研究,全国生物医药色谱及相关技术学术交流会(2012)会议手册.
[18]谢绍金;杨春晟, icp-aes 法测定 7b50 铝合金中锌,镁和铜的研究. 分析仪器 2, 27.
[19]boumans, p. w. j. m., inductively coupled plasma emission spectroscopy. part ii: applications and fundamentals. volume 2. 1987.
[20]汤普森;沃尔什;符斌;殷欣平;分析化学, icp 光谱分析指南. 冶金工业出版社: 1991.。