电感耦合等离子体原子发射光谱法

合集下载

电感耦合等离子体发射光谱实验报告

电感耦合等离子体发射光谱实验报告

电感耦合等离子体发射光谱法1.基本原理1.1概述原子发射光谱分析(atomic emission spectrometry,AES)是一种已有一个世纪以上悠久历史的分析方法,原子发射光谱分析的进展,在很大程度上依赖于激发光源的改进。

到了60年代中期,Fassel和Greenfield分别报道了各自取得的重要研究成果,创立了电感耦合等离子体(inductively coupled plasma,ICP)原子发射光谱(ICP-AES)新技术,这在光谱化学分析上是一次重大的突破,从此,原子发射光谱分析技术又进入一个崭新的发展时期。

1.2方法原理原子发射光谱是价电子受到激发跃迁到激发态,再由高能态回到较低的能态或基态时,以辐射形式放出其激发能而产生的光谱。

1.2.1定性原理原子发射光谱法的量子力学基本原理如下:(1)原子或离子可处于不连续的能量状态,该状态可以光谱项来描述;(2)当处于基态的气态原子或离子吸收了一定的外界能量时,其核外电子就从一种能量状态(基态)跃迁到另一能量状态(激发态),设高能级的能量为E2,低能级的能量为E1,发射光谱的波长为λ(或频率ν),则电子能级跃迁释放出的能量△E与发射光谱的波长关系为△E= E2- E1=hν=hc/λ(3)处于激发态的原子或离子很不稳定,经约10-8秒便跃迁返回到基态,并将激发所吸收的能量以一定的电磁波辐射出来;(4)将这些电磁波按一定波长顺序排列即为原子光谱(线状光谱);(5)由于原子或离子的能级很多并且不同元素的结构是不同的,因此,对特定元素的原子或离子可产生一系列不同波长的特征光谱,通过识别待测元素的特征谱线存在与否进行定性分析。

1.2.2半定量原理半定量是对样品中一些元素的浓度进行大致估算。

一种半定量的方法是对许多元素进行一次曲线校正,并将标准曲线储存起来。

然后在需要进行半定量时,直接采用原来的曲线对样品进行测试。

结果会因仪器的飘移而产生误差或因样品基体的不同而产生误差,但对于半定量来说,可以接受。

电感耦合等离子体原子发射光谱分析

电感耦合等离子体原子发射光谱分析
随着科学技术的不断发展,ICP-AES技术在不断改进和完善,为各领域的科学研究 提供了有力支持。
电感耦合等离子体原子发射光谱分析简介
ICP-AES基本原理
利用电感耦合等离子体作为激发光源,使样 品中的原子或离子被激发并发射出特征光谱 ,通过对光谱的分析确定元素的种类和含量 。
ICP-AES仪器组成
仪器操作与实验过程
仪器准备
检查仪器状态,确保各 部件正常运行。开启仪 器,进行预热和校准。
样品引入
将制备好的样品引入等 离子体焰炬中,注意控
制引入速度和量。
光谱采集
设置合适的观测参数, 如波长范围、扫描速度
等,采集光谱信号。
数据处理与分析
对采集的光谱信号进行背景 校正、干扰元素校正等处理
,得到准确的分析结果。
生物医学材料研究
ICP-AES可分析生物医学材料(如生物陶瓷、生物降解塑料等)中的 元素组成和含量,为材料设计和性能优化提供数据支持。
THANKS FOR WATCHING
感谢您的观看
光谱仪
包括光栅或棱镜分光系统、光电 倍增管或固态检测器等,用于分 散和检测发射出的特征光谱。
工作气体
通常使用氩气作为工作气体, 用于维持等离子体的稳定性和 激发样品中的原子或离子。
环境条件
需要保持实验室的清洁、干燥和恒 温等环境条件,以确保仪器设备的
正常运行和实验结果的准确性。
样品前处理技术
样品消解
电感耦合等离子体原子发射光谱分 析
contents
目录
• 引言 • 实验原理与技术 • 实验方法与步骤 • 结果分析与讨论 • 应用领域与案例
01 引言
背景与意义
电感耦合等离子体原子发射光谱分析(ICP-AES)是一种广泛应用于元素分析的技 术。

化学试剂电感耦合等离子体原子发射光谱法通则

化学试剂电感耦合等离子体原子发射光谱法通则

化学试剂电感耦合等离子体原子发射光谱法(ICP-AES)是一种广泛应用于化学分析领域的重要技术。

它通过高温等离子体激发原子发射光谱,在元素分析和化学成分检测中发挥着关键作用。

本文将从浅入深地探讨ICP-AES的基本原理、应用领域和发展趋势,以便读者更深入地了解这一分析技术。

1. ICP-AES的原理及基本概念在ICP-AES分析中,样品先经过化学处理,将其中的元素转化为易于激发的原子态。

样品以细雾状喷入电感耦合等离子体中,在高温等离子体中原子被激发、发射特征光谱信号。

这些信号被光谱仪检测、分析,并得到样品中各元素的浓度信息。

ICP-AES技术以其快速、准确和多元素分析的特点,在环境、食品安全、医药等领域得到了广泛应用。

2. ICP-AES在环境监测中的应用环境监测是ICP-AES的重要应用领域之一。

通过ICP-AES技术,可以快速分析水体、土壤和大气中的元素成分,从而评估环境污染程度、监测工业废水、城市垃圾焚烧的排放情况等。

这对保护环境、维护生态平衡具有重要意义。

3. ICP-AES在食品安全中的应用食品安全是社会关注的重要议题,ICP-AES技术在食品成分分析和添加剂检测中具有广泛应用。

通过ICP-AES技术,可以快速准确地测定食品中的微量元素、有害金属和重金属等成分,保障食品安全,维护消费者权益。

4. ICP-AES的发展趋势随着科学技术的不断进步,ICP-AES技术也在不断发展。

近年来,ICP-AES在快速元素成分分析、多元素联合检测等方面取得了新进展,为其在化学分析领域的应用提供了更广阔的空间。

未来,随着ICP-AES技术的不断完善,相信其在环境、食品、医药等领域的应用会更加广泛,为人类社会的可持续发展做出更大的贡献。

总结回顾通过本文的介绍,我们深入了解了ICP-AES技术的基本原理和应用领域。

ICP-AES作为一种重要的化学分析技术,对环境监测、食品安全等方面具有重要意义,其发展趋势也在不断向着更加高效、精准的方向发展。

电感耦合等离子体原子发射光谱法、X射线荧光光谱法和摄谱法测定

电感耦合等离子体原子发射光谱法、X射线荧光光谱法和摄谱法测定

2017年01月电感耦合等离子体原子发射光谱法、X 射线荧光光谱法和摄谱法测定地球化学样品中铜、铅、锌、镍的比较洪宏春(广东省肇庆市端州区大冲水基第五地质大队实验室,广东肇庆526000)摘要:通过分析样品的制备、分析方法的精密度等,对电感耦合等离子体原子发射光谱法、X 射线荧光光谱法和摄谱法测定地球化学样品中的铜、铅、锌、镍进行比较。

对电感耦合等离子体原子发射光谱法进行测定所采用的是干扰较少的分析线;X 射线荧光光谱法采用岩石、土壤、水系沉积物和合成灰岩光谱分析标准物质等国家标准物质绘制校准曲线;摄谱法是不用称样的,所采用的是碘酸钾饱和溶液。

在经过了比较之后,可以得出:等离子体原子发射光谱法测量范围宽、检出限低、精密度高、准确度高,适合大批量地球化学样品中铜、铅、锌、镍的测定;X 射线荧光光谱法检出限、精密度和准确度在一定程度上可以满足区域地球化学调查规范的要求;摄谱法的检出限、精密度和准确度也是基本符合要求的,但是其分析的流程较长、操作较为繁琐。

关键词:电感耦合等离子体原子发射光谱法;X 射线荧光光谱法;摄谱法;地球化学样品区域地球化学调查样品分析是具备一定的特征的,包括分析元素和样品的数量较多、分析方法检出限低、精密度好等等,基于这些特征,分析方法的选择上需要将区域地球化学调查的要求作为重要的基础和依据,同时将现代分析仪器多元素同时测定的优势充分发挥出来,从而对于分析方法做出更好的选择。

下图为电感耦合等离子体原子发射光谱法和X 射线荧光光谱法原理图。

图1.电感耦合等离子体原子发射光谱法图2.X 射线荧光光谱法1实验部分1.1在实验过程中所应用到的主要设备和需要具备的主要条件是有着相应的设定的。

电感耦合等离子体发射光谱仪:高岩雾化器,其射频功率是1300瓦,等离子体的气流量每分钟是15升,辅助气流量每分钟是0.21升,雾化器气体流量每分钟是0.8升,垂直观测高度是15毫米,溶液提升量是每分钟1.5毫升,读数延迟时间是30秒,自动积分时间在1-5秒的范围之内,重复的次数是两次,主要的观测方式是轴向观测。

ICP-AES电感耦合等离子体原子发射光谱法

ICP-AES电感耦合等离子体原子发射光谱法
通过对某元素原子谱线或离子谱线的 测定,可以对元素进行定性或定量分 析
发射光谱分析
根据原子或分子的特征发射光谱研究 物质结构和化学成分
发射光谱的激发光源:火焰、光花、 弧光、激光、等离子体
发射光谱的波长与原子或分子的能级 有关
原子发射光谱定性分析依据
不同元素原子能级结构不同
不同能级间的跃迁产生的谱线有不 同的波长特征
Mg:I 285.21 nm ;II 280.27 nm;
Na (Z=11)能级图 由各种高能级跃迁到同 一低能级时发射的一系 列光谱线;
K 元 素 (Z=19) 的 能级图 由各种高能级跃 迁到同一低能级 时发射的一系列 光谱线;
Mg 元素的能级图
基本原理
激发态的原子或离子返回基态时放射 出相应的原子谱线或离子谱线
光谱知识
发射光谱
原子或分子吸收外界能量,以光能
形式发射辐射,形成的光谱 荧光光谱
原子或分子吸收光子能量,以光能
形式发射辐射,形成的光谱 吸收光谱
原子或分子吸收光子能量,不发射
辐射,把光能转变形成为热能或其 它形式的能量,形成的光谱
原子发射光谱--AES
atomic emission spectrometry,AES
(2)温度升高,谱线强度增大, 但易电离。
谱线的自吸与自蚀
self-absorption and self reversal of spectrum line
自吸
等离子体内中间的温度、激发态原 子浓度高,边缘反之。
中心发射的辐射被边缘的同种基态 原子吸收,使辐射强度降低的现象 为自吸
谱线的自吸与自蚀
由光谱中各谱线波长特征右确定元 素种类
谱线强度
原子由某一激发态 i 向低能级 j 跃迁,所发射的谱线 强度与激发态原子数成正比。

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体为激发光源的原子发射光谱分析方法,可进行多元素的同时测定。

样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。

根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析);根据特征谱线强度确定样品中相应元素的含量(定量分析)。

本法适用于各类药品中从痕量到常量的元素分析,尤其是矿物类中药、营养补充剂等药品中的元素定性定量测定。

1、对仪器的一般要求电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、分光系统、检测系统等构成,另有计算机控制及数据处理系统,冷却系统、气体控制系统等。

样品引入系统按样品状态不同可以分为以液体、气体或固体进样,通常采用液体进样方式。

样品引入系统由两个主要部分组成:样品提升部分和雾化部分。

样品提升部分一般为蠕动泵,也可使用自提升雾化器。

要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速地泵入,废液顺畅地排出。

雾化部分包括雾化器和雾化室。

样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。

要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并需经常清洗。

常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。

实际应用中宜根据样品基质,待测元素,灵敏度等因素选择合适的雾化器和雾化室。

电感耦合等离子体(ICP)光源电感耦合等离子体光源的“点燃”,需具备持续稳定的高纯氩气流,炬管、感应圈、高频发生器,冷却系统等条件。

样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂、蒸发、离解、激发、电离、发射谱线。

根据光路采光方向,可分为水平观察ICP源和垂直观察ICP源;双向观察ICP 光源可实现垂直/水平双向观察。

电感耦合等离子体发射光谱法

电感耦合等离子体发射光谱法

电感耦合等离子体发射光谱法电感耦合等离子体发射光谱法(Inductively Coupled Plasma-Atomic Emission Spectroscopy,ICP-AES)是一种常用的化学分析方法,用于确定样品中各种金属元素的含量和组成。

下面将详细介绍该方法的原理、应用、优缺点以及具体步骤。

原理:ICP-AES利用电感耦合等离子体(ICP)作为样品原子激发源,产生高温、高能量的等离子体,在此等离子体内,样品中的原子会被激发至激发态。

当激发的原子退回基态时,会释放出特定的光谱辐射。

通过收集和分析这些光谱辐射,可以确定样品中各种元素的含量。

应用:ICP-AES广泛应用于金属、合金、矿石、环境样品、食品、农产品等不同领域的元素分析。

例如,可以用于矿石中金属元素的分析、环境样品中重金属污染物的测定、食品中微量元素含量的分析等。

优点:1.高灵敏度:ICP-AES具有高灵敏度,可以检测到极低浓度的元素。

2.宽线性范围:ICP-AES对多个元素具有宽线性范围,可以同时测量多种元素。

3.高精密度和准确度:通过仔细的方法优化和校准,可以实现高精密度和准确度的分析结果。

4.多元素分析能力:ICP-AES可以在同一分析中同时检测多种元素,提高分析效率。

缺点:1.分析前需样品溶解和稀释:ICP-AES要求样品必须是溶解状态,对于固体和不易溶解的样品需要进行前处理和稀释。

2.对矩阵效应敏感:样品基质的成分和浓度可能会影响分析结果,因此需要进行矩阵校正和干扰校正。

3.无法测定非金属元素:ICP-AES只能测定金属和金属元素,无法测定非金属元素。

具体步骤:1.样品制备:将样品准备成溶液状态。

对于固体样品,需要先进行溶解。

可使用适当的溶剂,如酸溶解。

必要时,还可以进行稀释以调整样品的浓度,确保分析所需的元素含量处于可测范围之内。

2.仪器准备:确保ICP-AES仪器及配件的干净和正常运行。

检查气体供应、冷却水流量、等离子体源和光谱仪等部分的状态,确保其正常工作。

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法2015年版《药典》四部通则0411电感耦合等离子体原子发射光谱法是以等离子体为激发光源的原子发射光谱分析方法,可进行多元素的同时测定。

样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体的中心通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。

根据各元素特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析根据特征谱线强度测定样品中相应元素的含量(定量分析)。

本法适用于各类药品中从痕量到常量的元素分析,尤其是矿物类中药、营养补充剂等的元素定性定量测定。

1.仪器的一般要求电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、色散系统、检测系统等构成,并配有计算机控制及数据处理系统,冷却系统、气体控制系统等。

样品引入系统同电感耦合等离子体质谱法(通则0412)。

电感耦合等离子体(ICP)光源电感耦合等离子体光源的“点燃”,需具备持续稳定的纯氩气流,炬管、感应圈、高频发生器,冷却系统等条件。

样品气溶胶被引入等离子体后,在6000~10 000K的高温下,发生去溶剂、蒸发、解离、激发或电离、发射谱线。

根据光路采光方向,可分为水平观察ICP源和垂直观察ICP源;双向观察ICP光源可实现垂直/水平双向观察。

实际应用中宜根据样品基质、待测元素、波长、灵敏度等因素选择合适的观察方式。

色散系统电感耦合等离子体原子发射光谱的单色器通常采用棱镜或棱镜与光栅的组合,光源发出的复合光经色散系统分解成按波长顺序排列的谱线,形成光谱。

检测系统电感耦合等离子体原子发射光谱的检测系统为光电转换器,它是利用光电效应将不同波长光的辐射能转化成光电流信号。

常见的光电转换器有光电倍增管和固态成像系统两类。

固态成像系统是一类以半导体硅片为基材的光敏元件制成的多元阵列集成电路式的焦平面检测器,如电荷耦合器件(CCD)、电荷注入器件(CID)等,具有多谱线同时检测能力,检测速度快,动态线性范围宽,灵敏度高等特点。

电感耦合等离子体发射光谱法icp-oes

电感耦合等离子体发射光谱法icp-oes

电感耦合等离子体发射光谱法icp-oes一. 设备型号:钢研纳克Plasma 2000型 ICP光谱仪ICP:电感耦合等离子体。

可用“ICP”来代替“ICP-OES,和ICP-AES”。

两者都是指电感耦合等离子体原子发射光谱,是一样的。

因为俄歇电子能谱的缩写也是AES,所以后来ICP-AES通常都被叫做ICP-OES。

Plasma2000 型 ICP-OES 是用于测定样品中元素含量的高新技术产品,具有稳定性好、检测限低、快速分析、抗干扰能力强等特点:(1)可测元素70多种;(2)分析速度快,一分钟可测5-8个元素,中阶梯二维分光系统,具备更高的分辨能力;(3)多元素同时进行定性定量分析,客户可以自由选择元素数量与安排测量顺序;(4)高灵敏度,检出限低,达到ppb量级,Ba甚至达到0.7ppb;(5)线性动态范围宽,高达6个数量级,高低含量可以同时测量;(6)高精度(CV<1%),化学干扰少且分析成本低。

二、工作原理:待测试样经喷雾器形成气溶胶进入石英炬管等离子体中心通道中,经光源激发以后所辐射的谱线,经入射狭缝到色散系统光栅,分光后的待测元素特征谱线光投射到 CCD上,再经电路处理,由计算机进行数据处理来确定元素的含量。

三、主要性能及技术参数:主要参数:1.分光系统:光路形式:中阶梯光栅和棱镜二维分光;波长范围:175nm~810nm;光栅类型:中阶梯光栅;光栅尺寸:50mm×100mm;刻线密度:52.67g/mm;分辨率:0.007nm@200nm;光室恒温:38℃± 0.1℃;光室环境:充氩或氮(流量可调);CCD像素:1024×1024;单像素面积:24μm×24μm。

2.射频发生器震荡频率:27.12MHz;功放型式:晶体管固态功率放大器,自动匹配调谐;功率范围:800W~1600W 连续1W可调;功率稳定性:≤0.1%;频率稳定性:≤0.01%。

材料科学研究-电感耦合等离子体原子发射光谱

材料科学研究-电感耦合等离子体原子发射光谱

一、电感耦合等离子体原子发射光谱
H
He
Li Be
ICP能分析的元素
B C N O F Ne
Na Mg
Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Me I Xe
材料研究方法
电感耦合等离子体原子发射光谱(ICP-AES)
课程内容
一 电感耦合等离子体原子发射光谱

应用实例
一、电感耦合等离子体原子发射光谱
原子发射光谱分析(Atomic Emission Spectrometry, AES)是光谱分析技术中发展最早的一种方 法,在建立原子结构理论的过程中,提供了大量的最直接的数据。其原理是利用物质在热激发或电 激发下,由基态跃迁到激发态,在返回基态时每种元素的原子或离子发射特征光谱(线状光谱)来 判断物质的组成,而进行元素的定性与定量分析的。
Cs Ba L Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra A
L La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
A
Ac Th Pa
U
Np Pu
A m
C m
Bk
Cf
Es
Fm
M d
No
Lr
二、应用实例
一、电感耦合等离子体原子发射光谱
电感耦合等离子体原子发射光谱法(ICP-AES):是以电感耦合等离子矩为激发光源的光谱分析方法, 具有准确度高和精密度高、检出限低、测定快速、线性范围宽、可同时测定多种元素等优点,国外已 广泛用于环境样品及岩石、矿物、金属等样品中数十种元素的测定。

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法电感耦合等离子体原子发射光谱法 (ICP-AES)是一种用于定量分析物质含量的一种光谱方法,可实时、快速地测定被测物质中各种元素的组成,包括含量低的微量元素和高价元素,广泛应用于土壤、水,食品及环境等实验室的精密分析领域。

I. 基本原理1. 基本概念电感耦合等离子体原子发射光谱法(ICP-AES)是将等离子体生成装置与原子发射光谱仪(AES)相结合,将原子发射光谱技术用于研究物质组成的有效技术手段。

根据它的原理,采用高频电感耦合方式,使物质在放电的同时流入等离子体,经原子高温热解的过程中,物质被分解成常见的原子离子核心状态,并释放出内部能量。

在此能量降落过程中,经由原子核发出的原子发射谱线可以把物质的组成成分用不同的光谱线表示出来,而这些谱线和元素种类以及它们的含量有直接关联,从而确认物质的组成结构和物质含量。

2. 优点电感耦合等离子体原子发射光谱法(ICP-AES)具有多种优点,如快速、精确,可以同时测定金属元素、非金属元素、电解质离子、有机氯离子和其他复杂物质等。

可以分析无金属和金属两种物质。

另外,大量分析样品不影响测试精度,量级区间宽,可测定高、中、低价元素以及极低的微量元素,可以分析微量物质,同时减小输入量。

3. 缺点电感耦合等离子体原子发射光谱法(ICP-AES)的缺点在于系统背景噪音较大,而且系统复杂,调节和维护复杂,耗费时间和经费,以及分析过程中也容易受到干扰。

II. 用途1. 环境监测电感耦合等离子体原子发射光谱(ICP-AES)技术可以用于环境样品的分析,快速准确地测定出被测样品的成分,用于环境的基础监测,监测土壤中营养元素和有害元素。

2. 工业实验室分析电感耦合等离子体原子发射光谱(ICP-AES)技术在工业实验室分析中也广泛应用,如可以分析广泛工程材料、金属、有机、无机混合物,以及钽、放射性元素等物质。

3. 药物和生物分析电感耦合等离子体原子发射光谱(ICP-AES)技术也可用于药物和生物分析,它可以用于药物的成分检测,测定活性成份,进行食品安全性的检测,以及分析生物体内有用元素的含量等。

电感耦合等离子体原子发射光谱法检测稀土元素

电感耦合等离子体原子发射光谱法检测稀土元素

电感耦合等离子体原子发射光谱法检测稀土元素
电感耦合等离子体原子发射光谱法(ICP-AES)是一种常用的分析稀土元素的方法。

稀土元素是指原子序数为57到71的元素,它们在自然界中分布广泛,具有重要的应用价值。

稀土元素在材料科学、化工工业、电子工业、石油化工等领域有广泛的应用,因此对其进行准确快速的检测具有重要意义。

ICP-AES技术是一种基于原子发射光谱的分析方法。

其原理是将样品溶解在酸中,然后将其喷入高温等离子体中,产生电离和激发,从而产生原子发射光谱。

通过检测不同元素的特征光谱线,可以得到样品中各元素的含量。

ICP-AES技术具有高灵敏度、高准确度、高分辨率等优点,可以同时检测多种元素。

ICP-AES技术在稀土元素分析中的应用已经得到广泛认可。

一般情况下,稀土元素的检测需要对样品进行前处理,如样品的预处理和分离。

在ICP-AES技术中,可以通过合适的样品前处理方法和仪器参数设置,实现对稀土元素的高效快速检测。

ICP-AES技术不仅可以用于稀土元素的分析,还可以用于其他元素的分析。

ICP-AES技术在环境监测、食品安全、药物分析等领域也有广泛应用。

随着仪器技术的不断进步和改进,ICP-AES技术将会在更多领域得到应用。

总之,ICP-AES技术是一种有效的分析稀土元素的方法。

其高灵敏度、高准确度、高分辨率等优点使其在稀土元素分析中得到广泛应用。

随着仪器技术的不断进步和改进,ICP-AES技术将会在更多领域得到应用。

ICP-AES 电感耦合等离子体原子发射光谱分析

ICP-AES 电感耦合等离子体原子发射光谱分析

6. ICP发射光谱分析的基本过程
ICP发射光谱分析过程主要分为三步, 即激发、 分光和检测。 1.利用等离子体激发光源( ICP)使试样蒸发汽 化, 离解或分解为原子状态,原子可能进一步 电离成离子状态,原子及离子在光源中激发发 光。 2.利用光谱仪器将光源发射的光分解为按波长排 列的光谱。 3.利用光电器件检测光谱,按测定得到的光谱波 长对试样进行定性分析,按发射光强度进行定 量分析。

地矿样品:地质样品、矿石及矿物 钢铁及其合金:碳素钢、铸铁、合金钢、高纯铁、铁合金 有色金属及其合金 化学化工产品:化学试剂、化工产品、无机材料等 水质样品:饮用水、地表水、矿泉水、高纯水及废水 环境样品:土壤、粉煤灰、大气飘尘 动植物及生化样品:植物、中药及动物组织、生化样品 核工业产品:核燃料、核材料 食品及饮料
火花放电、太阳和恒星表面的电离层等都是等离子体。
(2)ICP的形成
形成稳定的ICP炬焰的 四个条件: 高频高强度的电磁场、 工作气体、 维持气体稳定放电的 石英炬管、 电子—离子源
当高频发生器接通电源后, 高频电流通过感应线圈产生交 变磁场。开始时,管内为氩气 不导电,需要用高压电火花触 发,使气体电离。在高频交流 电场的作用下,带电粒子高速 运动、碰撞,形成“雪崩”式 放电,产生等离子体气流。在 垂直于磁场方向将产生感应电 流,强大的电流产生的高温又 将气体加热电离,在管口形成 稳定的等离子体焰炬。
2.ICP-AES仪的发展
中阶梯光栅+固体检测器(CID,CCD) 全谱直读 单道扫描;单道+多通道 多通道
平面光栅+光电倍增管
凹面光栅谱仪
检测系统为照相干板,拍摄下光谱谱线 优点:
具有同时观察整个发射光谱的能力 定性分析、定量分析 可日后再分析

211171116_电感耦合_等离子体原子发射光谱法(ICP-OES)测定高硅铝合金中的7种元素

211171116_电感耦合_等离子体原子发射光谱法(ICP-OES)测定高硅铝合金中的7种元素

世界有色金属 2023年 1月下140化学化工C hemical Engineering电感耦合等离子体原子发射光谱法(ICP-OES )测定高硅铝合金中的7种元素张晓曼,吴 思,周 磊(安徽省铝制品质量监督检验中心,安徽 濉溪 235100)摘 要:实验采用氢氧化钠溶解高硅铝合金之后加入过氧化钠继续反应溶解,再加入盐酸,运用电感耦合等离子体原子发射光谱法(ICP-OES)测定高硅铝合金中硅、铁、铜、硼、钛、镁、锌7种元素的含量,该方法能完全溶解样品特别是硼、钛含量高的高硅铝合金样品。

通过基体匹配的方法配制系列标准溶液,试验结果良好,线性关系大于0.9995,回收率95.1%~105.2%。

关键词:电感耦合等离子体原子发射光谱;高硅铝合金;碱溶(过氧化钠)中图分类号:TG115.3 文献标识码:A 文章编号:1002-5065(2023)02-0140-3Determination of seven elements in high silicon aluminum alloy by inductively coupledplasma atomic emission spectrometryZHANG Xiao-Man, WU Si, ZHOU Lei(Anhui aluminum products quality supervision and inspection center, Suixi 235100,China)Abstract: In the experiment, sodium hydroxide was used to dissolve the high silicon aluminum alloy,sodium peroxide was added to continue to react and dissolve. And then added hydrochloric acid, The content of seven elements of silicon, iron, copper, boron, titanium, magnesium and zinc in high silicon aluminum alloy is determined by ICP-OES method. The method can completely dissolve samples, especially high-silicon aluminum alloy samples with high boron and titanium contents. A series of standard solutions were prepared by matrix matching method. The experimental results were good, the linear relationship was greater than 0.9995, and the recovery was 95.1%~105.2%Keywords: Inductively coupled plasma atomic emission spectrometry; High silicon aluminum alloy; Alkali solution (sodium peroxide)收稿日期:2022-12基金项目:2019年安徽省市场监督管理局科技计划项目 编号:2019MK012。

电感耦合高频等离子体原子发射光谱分析(ICP—AES)

电感耦合高频等离子体原子发射光谱分析(ICP—AES)

电感耦合高频等离子体原子发射光谱分析(ICP—AES)本章要求:电感耦合高频等离子体原子发射光谱法是以电感耦合等离子焰炬为激光源的一类新型光谱分析方法(Inductively Coupled Plasma—Atomic Emission Spectrometry,简称ICP—AES)。

由于该法具有检出限较低、准确度及精密度高、分析速度快和线性范围宽等许多独特的优点,因此在国外ICP—AES法已发展成为一种极为普遍、适用范围极广的常规分析方法,并广泛用于环境试样、岩石矿物、生物医学以及金属与合金中数十种元素的分析测定。

在国内ICP—AES法的研究工作始于1974年,现已有上千个科研单位、大专院校、工厂以及环境监测等部门拥有了此种分析手段,ICP—AES法已成为近年来我国分析测试领域中发展最快的测试方法之一。

为了使这种新型分析技术在环境监测中得到普及,环境监测人员必须对ICP—AES法有所了解,在学习中应掌握以下几方面的知识。

1、电感耦合等离子体(ICP)光谱技术的发展概况。

2、ICP光源的理论基础。

3、ICP所用的高频电源。

4、ICP所需的进样装臵。

5、ICP炬管及工作气体。

6、ICP仪器的分光、测光装臵。

7、ICP-AES法的分析技术。

8、ICP-AES法的应用。

9、有机试液的ICP光谱分析。

10、ICP-AES法和其他分析技术的比较。

参考文献1、光谱学与光谱分析编辑部,《ICP光谱分析应用技术》,1982年,北京大学出版社。

2、蔡德,《光谱分析辞典》,1987年,光谱实验室编辑部。

3、陈新坤,《电感耦合等离子体光谱法原理和应用》,1987年,南开大学出版社。

4、不破敬一郎,《ICP发射光谱分析》,1987年,化学工业出版社。

5、辛仁轩,《电感耦合等离子体光源—原理、装臵和应用》,1984年,光谱实验室编辑部。

6、《分析技术辞典,发射光谱分析》,1980年,科学出版社。

7、高铮德,《光谱分析常识》,1985年,光谱实验室编辑部。

电感耦合等离子体原子发射光谱分析讲课件

电感耦合等离子体原子发射光谱分析讲课件

火焰 光源
略低
10005000 好
溶液、碱金属、 碱土金属
2024/8/8
感耦等离子体原子发射光谱分析
14
等离子体光源
最常用的等离子体光源是直流等离子焰 (DCP)、感耦高频等离子炬(ICP)、容耦微波等离 子炬(CMP)和微波诱导等离子体(MIP)等。
2024/8/8
感耦等离子体原子发射光谱分析
在氩气为工作气体时,氩气是单原子分子, 不存在分子的解离。在10000 K的氩气等离子体 成分中,Ar、Ar+和e占主要成分,Ar2+的浓度很 低。
在氮气为工作气体时,存在氮分子的解离。 在更高的温度下,还会产生N2+和N3+,因此在氮 气等离子体成分中,存在N2、N、e、N+、N2+和 N3+。
2024/8/8
2024/8/8
感耦等离子体原子发射光谱分析
10
直流电弧
优点:电极头温度相对比较高(40007000K, 与其它光源比),蒸发能力强、绝对灵敏度 高、背景小;
缺点:放电不稳定,且弧较厚,自吸现象严 重,故不适宜用于高含量定量分析,但可 很好地应用于矿石等的定性、半定量及痕 量元素的定量分析。
交流电弧
18
紫铜管(内通冷却水) 绕成的高频线圈
由三层同心石 英管构成,直 径为2.53cm
2024/8/8


感耦等离子体原子发射光谱分析
19
常温下氩气是不导电的,所以不会有感应电流,因而也就不会 形成ICP炬焰。但如果此时引入很少的电子或离子。这些电子或离 子就会在高频电场的作用下作高速旋转,碰撞气体分子或原子并 使之电离,产生更多的电子和离子。瞬间可使气体中的分子、原 子、电子和离子急剧升温,最高温度达到上万度,如此高的温度 足可以使气体发射出强烈的光谱来,形成像火焰一样的等离子体 炬。当发射出的能量与由高频线圈引入的能量相等时,电荷密度 不再增加,等离子体炬维持稳定。

电感耦合等离子体原子发射光谱法和原子吸收光谱法在药品质量控制中的应用

电感耦合等离子体原子发射光谱法和原子吸收光谱法在药品质量控制中的应用

电感耦合等离子体原子发射光谱法和原子吸收光谱法
在药品质量控制中的应用
一、背景介绍
随着现代医学的发展,药品质量控制变得越来越重要。

其中,快速、
准确地检测药品中的元素含量是保障药品质量的重要手段。

电感耦合
等离子体原子发射光谱法(ICP-AES)和原子吸收光谱法(AAS)是常用的元素分析技术。

二、ICP-AES在药品质量控制中的应用
ICP-AES是一种基于等离子体产生的发光信号来检测元素含量的技术。

它具有高分辨率、高灵敏度和多元素同时分析的优势。

在药品质量控
制中,ICP-AES可以用来检测金属元素(如铁、锌、铜等)的含量。

这些元素是药品中常见的添加剂或污染物,其超标可能会导致药品的
质量问题,甚至对人体健康造成危害。

因此,通过ICP-AES检测药品
中金属元素的含量,有助于保障药品质量和安全性。

三、AAS在药品质量控制中的应用
AAS是一种基于元素原子吸收光谱来检测元素含量的技术。

它具有高
精度和高选择性的优势。

在药品质量控制中,AAS常常用来检测药品
中微量元素(如镉、铅、汞等)的含量。

这些元素是药品中常见的有害物质,其存在会对人体健康造成威胁。

因此,通过AAS检测药品中微量元素的含量,有助于保障药品质量和安全性。

四、结论
ICP-AES和AAS作为常用的元素分析技术,在药品质量控制中发挥着重要作用。

它们能够快速、准确地检测药品中的元素含量,为保障药品质量和安全性提供了有力支持。

因此,在药品生产和使用过程中,应广泛采用ICP-AES和AAS这两种技术,以确保药品质量和安全。

电感耦合等离子体原子发射光谱法实验报告

电感耦合等离子体原子发射光谱法实验报告

电感耦合等离子体原子发射光谱法实验报告
电感耦合等离子体原子发射光谱(ICP-AES)法是当今分析化学中使用最广泛的原子发射
光谱技术。

它是利用电感耦合等离子体(ICP)作为原子离子源进行原子发射光谱分析,
并将原子发射射线测定术(AES)和离子化学分析术相结合,是一项精密,准确,可靠,
重复性好的分析技术。

电感耦合等离子体原子发射光谱(ICP-AES)法实验旨在使用ICP-AES进行超含氧量检测,以判断和表征样品中超含氧元素(如Si, Al, Ba等)的浓度。

实验用到的主要仪器是Perkin Elmer 400系列电感耦合等离子体发射光谱仪,其具有极好的稳定性和低的噪声。

实验从粉末样品中提取一定的量,放入带有细堵子的橄榄小瓶中,
将样品中的超含氧元素分解为离子流,
再由电管入口处的离子,经电感耦合等离子体发生器高能电场和电离过程,转化为原子态,并具有应变释放效应,将原子发射成发射射线,
经电光箱校正和滤波后,而穿过DDL D正电子探测器被检测出来,与吸光度计样品出口
上的流出比较,来获得超含氧元素的浓度,每种元素的吸光度下降的程度可以反映其含量大小。

本实验采用的是0.1mol/L的氯化铵溶液,其浓度稳定、持续不变,温度为低于200℃时
是稳定的。

根据试样中元素浓度的高低,可以选择合适的采样灵敏度,
以保证对元素的精准测定。

高浓度时,可以选择低灵敏度,反之,则可以选择高灵敏度,
以保证实验数据的准确性和稳定性。

实验采用Perkin Elmer 400系列电感耦合等离子体发射光谱仪进行实验,取得的结果良好,准确可靠,反映了超含氧元素在各种样品中浓度大小的变化,为对样品中构成进行全面研究及进一步应用奠定基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电感耦合等离子体原子发射光谱法
电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体为激发光源的原子发射光谱分析方法,可进行多元素的同时测定。

样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。

根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析);根据特征谱线强度确定样品中相应元素的含量(定量分析)。

本法适用于各类药品中从痕量到常量的元素分析,尤其是矿物类中药、营养补充剂等药品中的元素定性定量测定。

1、对仪器的一般要求
电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、分光系统、检测系统等构成,另有计算机控制及数据处理系统,冷却系统、气体控制系统等。

样品引入系统
按样品状态不同可以分为以液体、气体或固体进样,通常采用液体进样方式。

样品引入系统由两个主要部分组成:样品提升部分和雾化部分。

样品提升部分一般为蠕动泵,也可使用自提升雾化器。

要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速地泵入,废液顺畅地排出。

雾化部分包括雾化器和雾化室。

样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。

要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并需经常清洗。

常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。

实际应用中宜根据样品基质,待测元素,灵敏度等因
素选择合适的雾化器和雾化室。

电感耦合等离子体(ICP)光源
电感耦合等离子体光源的“点燃”,需具备持续稳定的高纯氩气流,炬管、感应圈、高频发生器,冷却系统等条件。

样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂、蒸发、离解、激发、电离、发射谱线。

根据光路采光方向,可分为水平观察ICP源和垂直观察ICP源;双向观察ICP 光源可实现垂直/水平双向观察。

实际应用中宜根据样品基质、待测元素、波长、灵敏度等因素选择合适的观察方式。

色散系统
电感耦合等离子体原子发射光谱的色散系统通常采用棱镜或光栅分光,光源发出的复合光经色散系统分解成按波长顺序排列的谱线,形成光谱。

检测系统
电感耦合等离子体原子发射光谱的检测系统为光电转换器,它是利用光电效应将不同波长光的辐射能转化成电信号。

常见的光电转换器有光电倍增管和固态成像系统两类。

固态成像系统是一类以半导体硅片为基材的光敏元件制成的多元阵列集成电路式的焦平面检测器,如电荷注入器件(CID)、电荷耦合器件(CCD)等,具有多谱线同时检测能力,检测速度快,动态线性范围宽,灵敏度高等特点。

检测系统应保持性能稳定,具有良好的灵敏度、分辨率和光谱响应范围。

冷却和气体控制系统
冷却系统包括排风系统和循环水系统,其功能主要是有效地排出仪器内部的热量。

循环水温度和排风口温度应控制在仪器要求范围内。

气体控制系统须稳定正常地运行,氩气的纯度应不小于99.99%。

2、干扰和校正
电感耦合等离子体原子发射光谱法测定中通常存在的干扰大致可分为两类:
一类是光谱干扰,主要包括连续背景和谱线重叠干扰;另一类是非光谱干扰,主要包括化学干扰、电离干扰、物理干扰及去溶剂干扰等。

除选择适宜的分析谱线外,干扰的消除和校正可采用空白校正,稀释校正,内标校正法,背景扣除校正,干扰系数校正、标准加入等方法。

3、供试品溶液的制备
所用试剂一般是酸类,包括硝酸、盐酸、过氧化氢、高氯酸、硫酸、氢氟酸,以及混合酸如王水等,纯度应为优级纯。

其中硝酸引起的干扰最小,是供试品溶液制备的首选酸。

试验用水应为去离子水(电阻率应不小于18MΩ)。

供试品溶液制备时应同时制备试剂空白,标准溶液的介质和酸度应与供试品溶液保持一致。

固体样品 除另有规定外,一般称取样品适量(0.1g~3g),结合实验室条件以及样品基质类型选用合适的消解方法。

消解方法一般有敞口容器消解法、密闭容器消解法和微波消解法。

微波消解法所需试剂少,消解效率高,对于降低试剂空白值、减少样品制备过程中的污染或待测元素的挥发损失以及保护环境都是有益的,可作为首选方法。

样品消解后根据待测元素含量定容至适当体积后即可进行光谱测定。

液体样品 根据样品的基质、有机物含量和待测元素含量等情况,可选用直接分析、稀释或浓缩后分析、消化处理后分析等不同的测定方式。

4、 测定法
分析谱线的选择原则一般是选择干扰少,灵敏度高的谱线;同时应考虑分析对象:对于微量元素的分析,采用灵敏线,而对于高含量元素的分析,可采用弱线。

定性鉴别
根据原子发射光谱中各元素特征谱线的存在与否可以确定供试品中是否含
有相应的元素。

元素特征光谱中强度最大的谱线为元素的灵敏线。

在供试品光谱中,应检出某元素的灵敏线。

定量测定
(1) 标准曲线法
在选定的分析条件下,测定待测元素三个或三个以上的含有不同浓度的标准系列溶液(标准溶液的介质和酸度应与供试品溶液一致),以分析线的响应值为纵坐标,浓度为横坐标,绘制标准曲线,计算回归方程,相关系数应不低于0.99。

在同样的分析条件下,同时测定供试品溶液和试剂空白,扣除试剂空白,从标准曲线或回归方程中查得相应的浓度,计算样品中各待测元素的含量。

附 内标校正的标准曲线法
在每个样品(包括标准溶液、供试品溶液和试剂空白)中添加相同浓度的内标(ISTD)元素,以标准溶液待测元素分析线的响应值与内标元素参比线响应值的比值为纵坐标,浓度为横坐标,绘制标准曲线,计算回归方程。

利用供试品中待测元素分析线的响应值和内标元素参比线响应值的比值,从标准曲线或回归方程中查得相应的浓度,计算样品中含待测元素的含量。

内标元素及参比线的选择原则如下:内标元素的选择1)外加内标元素在分析试样品中应不存在或含量极微;如样品基体元素的含量较稳时,亦可用该基体元素作内标;2)内标元素与待测元素应有相近的特性;3)同族元素,具相近的电离能。

参比线的选择1)激发能应尽量相近;2)分析线与参比线的波长及强度接近;3)无自吸现象且不受其它元素干扰;4)背景应尽量小。

内标的加入可以通过在每个样品和标准溶液中分别加入,也可通过蠕动泵在线加入。

(2) 标准加入法
取同体积的供试品溶液4份,分别置4个同体积的量瓶中,除第1个量瓶外,在其它3个量瓶中分别精密加入不同浓度的待测元素标准溶液,分别稀释至刻
度,摇匀,制成系列待测溶液。

在选定的分析条件下分别测定,以分析线的响应值为纵坐标,待测元素加入量为横坐标,绘制标准曲线,将标准曲线延长交于横坐标,交点与原点的距离所相应的含量,即为供试品取用量中待测元素的含量,再以此计算供试品中待测元素的含量。

此法仅适用于第(1)法中标准曲线呈线性并通过原点的情况。

相关文档
最新文档