南京市中考数学复习题及答案 (89)

合集下载

2021年江苏省南京市中考数学试卷及答案解析

2021年江苏省南京市中考数学试卷及答案解析

2021年南京市中考数学试卷一、选择题(本大题共6小题,共12.0分)1.截至2021年6月8日,31个省(自治区、直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗超过800000000剂次.用科学记数法表示800000000是()A. 8×108B. 0.8×109C. 8×109D. 0.8×10102.计算(a2)3⋅a−3的结果是()A. a2B. a3C. a5D. a93.下列长度的三条线段与长度为5的线段能组成四边形的是()A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,24.北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00.小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A. 10:00B. 12:00C. 15:00D. 18:005.一般地,如果x n=a(n为正整数,且n>1),那么x叫做a的n次方根.下列结论中正确的是()A. 16的4次方根是2B. 32的5次方根是±2C. 当n为奇数时,2的n次方根随n的增大而减小D. 当n为奇数时,2的n次方根随n的增大而增大6.如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A. B. C. D.二、填空题(本大题共10小题,共20.0分)7.−(−2)=______ ;−|−2|=______ .8.若式子√5x在实数范围内有意义,则x的取值范围是______ .9.计算√8−√9的结果是______ .210.设x1,x2是关于x的方程x2−3x+k=0的两个根,且x1=2x2,则k=______ .11.如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是______ .12.如图,AB是⊙O的弦,C是AB⏜的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O的半径为______ cm.13.如图,正比例函数y=kx与函数y=6的图象交于A,B两点,BC//x轴,AC//y轴,x则S△ABC=______ .14.如图,FA,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=______ °.15.如图,在四边形ABCD中,AB=BC=BD.设∠ABC=α,则∠ADC=______ (用含α的代数式表示).16.如图,将▱ABCD绕点A逆时针旋转到▱A′B′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E.若AB=3,BC=4,BB′=1,则CE的长为______ .三、解答题(本大题共11小题,共88.0分)17.解不等式1+2(x−1)≤3,并在数轴上表示解集.18.解方程2x+1+1=xx−1.19.计算(ab2+ab −2a+b+ba2+ab)÷a−bab.20.如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF//CD,交BD的延长线于点F.(1)求证△AOB≌△DOC;(2)若AB=2,BC=3,CE=1,求EF的长.21.某市在实施居民用水定额管理前,对居民生活用水情况进行了调查.通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如表:(1)求这组数据的中位数.已知这组数据的平均数为9.2t,你对它与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?22.不透明的袋子中装有2个红球、1个白球,这些球除颜色外无其他差别.(1)从袋子中随机摸出1个球,放回并摇匀,再随机摸出1个球.求两次摸出的球都是红球的概率.(2)从袋子中随机摸出1个球,如果是红球,不放回再随机摸出1个球;如果是白球,放回并摇匀,再随机摸出1个球.两次摸出的球都是白球的概率是______ .23.如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.(参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)24.甲、乙两人沿同一直道从A地去B地.甲比乙早1min出发,乙的速度是甲的2倍.在整个行程中,甲离A地的距离y1(单位:m)与时间x(单位:min)之间的函数关系如图所示.(1)在图中画出乙离A地的距离y2(单位:m)与时间x之间的函数图象;(2)若甲比乙晚5min到达B地,求甲整个行程所用的时间.25.如图,已知P是⊙O外一点.用两种不同的方法过点P作⊙O的一条切线.要求:(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.26.已知二次函数y=ax2+bx+c的图象经过(−2,1),(2,−3)两点.(1)求b的值;(2)当c>−1时,该函数的图象的顶点的纵坐标的最小值是______ .(3)设(m,0)是该函数的图象与x轴的一个公共点.当−1<m<3时,结合函数的图象,直接写出a的取值范围.27.在几何体表面上,蚂蚁怎样爬行路径最短?(1)如图①,圆锥的母线长为12cm,B为母线OC的中点,点A在底面圆周上,AC⏜的长为4πcm.在图②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号).(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上,设圆锥的母线长为l,圆柱的高为h.①蚂蚁从点A爬行到点O的最短路径的长为______ (用含l,h的代数式表示).②设AD⏜的长为a,点B在母线OC上,OB=b.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.答案解析1.【答案】A【解析】解:将800000000用科学记数法表示为:8×108.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】B【解析】解:(a2)3⋅a−3=a6⋅a−3=a6−3=a3.故选:B.分别根据幂的乘方运算法则,同底数幂的乘法法则以及负整数指数幂的定义计算即可.本题考查了负整数指数幂,同底数幂的乘法以及幂的乘方,熟记相关运算法则是解答本题的关键.3.【答案】D【解析】解:A、∵1+1+1=3<5,∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;B、∵1+1+5=7<8,∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;C、∵1+2+2=5,∴此三条线段与长度为5的线段不能组成四边形,故不符合题意;D、∵2+2+2=6>5,∴此三条线段与长度为5的线段能组成四边形,故符合题意;故选:D.根据三角形的三边关系逐项判定即可.本题考查了三角形的三边关系,熟练掌握三角形的三边关系是解题的关键.4.【答案】C【解析】解:由题意得,北京时间比莫斯科时间晚5小时,当莫斯科时间为9:00,则北京时间为14:00;当北京时间为17:00,则莫斯科时间为14:00;所以这个时刻可以是14:00到17:00之间,所以这个时刻可以是北京时间15:00.故选:C .根据北京时间比莫斯科时间晚5小时解答即可.本题考查了正数和负数,解此题的关键是根据题意写出算式,即把实际问题转化成数学问题.5.【答案】C【解析】解:A 、∵(±2)4=16,∴16的4次方根是±2,故A 不正确;B 、32的5次方根是2,故B 不正确;C 、设x =√23,y =√25,则x 15=25=32,y 15=23=8,∵x 15>y 15且x >1,y >1,∴x >y ,∴当n 为奇数时,2的n 次方根随n 的增大而减小,故C 选项正确;D 、当n 为奇数时,2的n 次方根随n 的增大而减小,故D 不选项正确;故选:C .根据n 次方根的定义判定即可.本题考查了分数指数幂,熟练掌握分数指数幂的定义是解题的关键.6.【答案】D【解析】解:根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,则光线与纸板垂直,∴在地面上的投影关于对角线对称,∵灯在纸板上方,∴上方投影比下方投影要长,故选:D .根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,则光线与纸板垂直,则在地面上的投影关于对角线对称,因为灯在纸板上方,所以上方投影比下方投影要长.本题主要考查中心投影的知识,弄清题目中光源和纸板的相对位置是解题的关键.7.【答案】2 −2【解析】解:−(−2)=2;−|−2|=−2,故答案为:2;−2.根据求一个数的相反数和绝对值的意义化简求解.本题考查求一个数的相反数和绝对值,理解相关概念准确化简是解题关键.8.【答案】x≥0【解析】解:依题意有5x≥0,解得:x≥0.故答案为:x≥0.直接利用二次根式的定义分析得出答案.本题考查了二次根式的意义和性质.概念:式子√a(a≥0)叫二次根式.9.【答案】√22【解析】解:√8−√92=2√2√9√2=2√23√2=2√2−3√2 2=√22.故答案为:√22.直接利用二次根式的性质分别化简,再合并得出答案.此题主要考查了二次根式的加减,正确化简二次根式是解题关键.10.【答案】2【解析】解:根据题意,知x1+x2=3x2=3,则x2=1,将其代入关于x的方程x2−3x+k=0,得12−3×1+k=0.解得k=2.故答案是:2.根据根与系数的关系求得x2=1,将其代入已知方程,列出关于k的方程,解方程即可.此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.11.【答案】6【解析】解:∵边AO,AB的中点为点C、D,∴CD是△OAB的中位线,CD//OB,∵点C,D的横坐标分别是1,4,∴CD=3,∴OB=2CD=6,∴点B的横坐标为6.故答案为:6.由C、D的横坐标求出线段CD的长度,结合中位线的定义和性质,得出OB的长度,从而得到B点的横坐标.本题主要考查了中位线定义和性质应用,解题的关键是由点C、D的横坐标求出线段CD的长度.12.【答案】5【解析】解:如图,连接OA,∵C是AB⏜的中点,∴D是弦AB的中点,∴OC⊥AB,AD═BD═4,∵OA═OC,CD═2,∴OD═OC−CD═OA−CD,在Rt△OAD中,OA2═AD2+OD2,即OA2═16+(OA−2)2,解得OA═5,故答案为:5.先根据圆心角、弧、弦的关系和垂径定理得出各线段之间的关系,再利用勾股定理求解出半径即可.本题考查圆心角、弧、弦的关系及垂径定理的运用,做此类型题目通常需要结合圆心角、弦和三角形的相关知识来进行解答.13.【答案】12【解析】解:连接OC,设AC交x轴于点N,BC交y轴于M点,∵正比例函数y=kx与函数y=6x的图象交于A,B两点,∴点A与点B关于原点对称,∴S△AON=S△OBM,∵BC//x轴,AC//y轴,∴S△AON=S△CON,S△OBM=S△OCM,即S△ABC=4S△AON=4×12x A⋅y A=4×12×6=12,故答案为:12.根据反比例函数的性质可判断点A与点B关于原点对称,则S△AON=S△OBM,由BC//x轴,AC//y轴可得S△AON=S△CON,S△OBM=S△OCM,再根据S△AON=12x A⋅y A=3,即可得出三角形ABC的面积.本题考查了反比例函数和一次函数的交点问题,求三角形面积等知识点,熟练掌握反比例函数的性质是解题的关键.14.【答案】180【解析】解:如图,设圆心为O,连接OA,OB,OC,OD和OE,∵FA,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,∴∠OAF=∠OBG=∠OCH=∠ODI=∠OEJ=90°,即(∠BAF+∠OAB)+(∠CBG+∠OBC)+(∠DCH+∠OCD)+(∠EDI+∠ODE)+(∠AEJ+∠OEA)=90°×5=450°,∵OA=OB=OC=OD=OE,∴∠OAB=∠OBA,∠OBC=∠OCB,∠OCD=∠ODC,∠ODE=∠OED,OEA=∠OAE,∴∠OAB+∠OBC+∠OCD+∠ODE+∠OEA=12×五边形ABCDE内角和=12×(5−2)×180°=270°,∴∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=(∠BAF+∠OAB)+(∠CBG+∠OBC)+ (∠DCH+∠OCD)+(∠EDI+∠ODE)+(∠AEJ+∠OEA)−(∠OAB+∠OBC+∠OCD+∠ODE+∠OEA)=450°−270°=180°,故答案为:180.设圆心为O,连接OA,OB,OC,OD和OE,根据切线的性质和等腰三角形的性质得出∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=(∠BAF+∠OAB)+(∠CBG+∠OBC)+ (∠DCH+∠OCD)+(∠EDI+∠ODE)+(∠AEJ+∠OEA)−(∠OAB+∠OBC+∠OCD+∠ODE+∠OEA)即可求出.本题主要考查切线的性质,多边形内角和等知识,熟练掌握切线的性质和多边形内角和公式是解题的关键.15.【答案】180°−α2【解析】解:∵AB=BD=BC,∴∠BAD=∠BDA,∠BDC=∠BCD,∵四边形内角和为360°,∴∠ABD+∠BAD+∠BDA+∠DBC+∠BDC+∠BCD=360°,∴∠ABC+∠ADB+∠ADB+∠BDC+∠BDC=360°,即∠ABC+2∠ADB+2∠BDC=360°,∵∠ABC=α,∠ADB+∠BDC=∠ADC,∴2∠ADC=360°−α,∴∠ADC=180°−α2.故答案为:180°−α2.根据已知条件AB=BD=BC,可得∠BAD=∠BDA,∠BDC=∠BCD,根据三角形内角和定理可得∠ABD+∠BAD+∠BDA=180°,∠DBC+∠BDC+∠BCD=180°,根据四边形内角和为360°,可得∠ABD+∠BAD+∠BDA+∠DBC+∠BDC+∠BCD=360°,根据已知条件可得2∠ADC=360°−α,即可得出答案.本题主要考查了等腰三角形的性质及多边形内角和定理,熟练应用相关性质及定理进行求解是解决本题的关键.16.【答案】98【解析】解:如图,过点A 作AM ⊥BC 于点M ,过点B 作BN ⊥AB′于点N ,过点E 作EG ⊥BC ,交BC 的延长线于点G .由旋转可知,AB =AB′=3,∠ABB′=∠AB′C′, ∴∠ABB′=∠AB′B =∠AB′C′, ∵BB′=1,AM ⊥BB′, ∴BM =B′M =12, ∴AM =√AB 2−BM 2=√352, ∵S △ABB′=12⋅AM ⋅BB′=12⋅BN ⋅AB′, ∴12×√352×1=12⋅BN ×3,则BN =√356, ∴AN =√AB 2−BN 2=(√356)=176,∵AB//DC , ∴∠ECG =∠ABC , ∵∠AMB =∠EGC =90°, ∴△AMB∽△EGC , ∴AMBM =EGCG =√35212=√35,设CG =a ,则EG =√35a ,∵∠ABB′+∠AB′B +∠BAB′=180°, ∠AB′B +∠AB′C′+∠C′B′C =180°, 又∵∠ABB′=∠AB′B =∠AB′C′, ∴∠BAB′=∠C′B′C ,∵∠ANB =∠EGC =90°, ∴△ANB∽△B′GE , ∴AN BN=B′G EG=176√356=17√35,∵BC =4,BB′=1, ∴B′C =3,B′G =3+a , ∴3+a √35a=17√35,解得a =316. ∴CG =316,EG =316√35,∴EC =√CG 2+EG 2=√(316)2+(316√35)2=98. 故答案为:98.过点A 作AM ⊥BC 于点M ,过点B 作BN ⊥AB′于点N ,过点E 作EG ⊥BC ,交BC 的延长线于点G.BM =B′M =12,由勾股定理可得,AM =√AB 2−BM 2=√352,由等面积法可得,BN =√356,由勾股定理可得,AN =√AB 2−BN 2=√32−(√356)2=176,由题可得,△AMB∽△EGC ,△ANB∽△B′GE ,则AMBM =EGCG =√35,ANBN =B′G EG=17√35,设CG =a ,则EG =√35a ,B′G =3+a ,则3+a√35a =17√35,解得a =316.最后由勾股定理可得,EC =√CG 2+EG 2=√(316)2+(316√35)2=98.本题主要考考查平行四边形的性质,等腰三角形三线合一,相似三角形的性质与判定,解直角三角形的应用等,构造正确的辅助线是解题关键.17.【答案】解:1+2(x −1)≤3,去括号,得1+2x −2≤3. 移项、合并同类项,得2x ≤4. 化系数为1,得x ≤2. 表示在数轴上为:.【解析】去括号后移项、合并同类项可得不等式解集,根据小于向左,包括该数用实心点在数轴上表示解集即可.本题主要考查解一元一次不等式的基本能力,定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.18.【答案】解:方程两边同乘(x+1)(x−1),得2(x−1)+x2−1=x(x+1),解得x=3.经检验x=3是原方程的根,∴原方程的解x=3.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.本题考查了解分式方程,解分式方程的关键是两边同乘最简公分母,将分式方程转化为整式方程,易错点是忽视检验.19.【答案】解:(ab2+ab −2a+b+ba2+ab)÷a−bab=[ab(a+b)−2a+b+ba(a+b)]⋅aba−b =a2−2ab+b2ab(a+b)⋅aba−b=(a−b)2ab(a+b)⋅aba−b=a−ba+b.【解析】根据分式的加减法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.20.【答案】(1)证明:在△AOB和△DOC中,{∠ABO=∠DCO AOB=∠DOC OA=OD,∴△AOB≌△DOC(AAS);(2)解:由(1)得:△AOB≌△DOC,∴AB=DC=2,∵BC=3,CE=1,∴BE=BC+CE=4,∵EF//CD,∴△BCD∽△BEF,∴DCEF =BCBE,即2EF =34,解得:EF=83.【解析】(1)由AAS证明△AOB≌△DOC即可;(2)由全等三角形的性质得AB=DC=2,再证△BCD∽△BEF,得DCEF =BCBE,即可求解.本题考查了全等三角形的判定与性质、相似三角形的判定与性质等知识;熟练掌握全等三角形的判定与性质、相似三角形的判定与性质是解题的关键.21.【答案】解:(1)共有100个数,按大小顺序排列后第50,51个数据分别是6.4,6.8,所以中位数为:(6.4+6.8)÷2=6.6;已知这组数据的平均数为9.2t,∴从平均数与中位数的差异可得大部分居民家庭去年的月均用水量小于平均数,有节约用水观念,少数家庭用水比较浪费,答:这组数据的中位数是6.6;(3)∵100×75%=75,第75个家庭去年的月均用水量为11t,所以为了鼓励节约用水,要使75%的家庭水费支出不受影响,即要使75户的家庭水费支出不受影响,故家庭月均用水量应该定为11t.答:这个标准应该定为11t.【解析】(1)利用所给数据,即可得这组数据的中位数,从平均数与中位数的差异可得大部分居民家庭去年的月均用水量小于平均数,有节约用水观念,少数家庭用水比较浪费;(2)由于100×75%=75,所以为了鼓励节约用水,要使75%的家庭水费支出不受影响,即要使75户的家庭水费支出不受影响,故家庭月均用水量应该定为11t.本题考查中位数,读频频数分布表的能力及利用统计表获取信息的能力;利用统计表获取信息时,必须认真观察、分析、研究统计表,才能作出正确的判断和解决问题.22.【答案】19【解析】解:(1)画树状图如图:共有9种等可能的结果,两次摸出的球都是红球的结果有4种, ∴两次摸出的球都是红球的概率为49;(2)第一次摸出白球的概率为13,第二次摸出白球的概率也是13, ∴两次摸出的球都是白球的概率为13×13=19, 故答案为:19.(1)画树状图,共有9种等可能的结果,两次摸出的球都是红球的结果有4种,再由概率公式求解即可;(2)两次摸出的球都是白球的概率都是13,求解即可.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.23.【答案】解:过B 作BE ⊥CD 于E ,过A 作AF ⊥BE 于F ,如图:∵∠BCD =45°,∴△BCE 是等腰直角三角形, 设CE =x ,则BE =x , ∵CD =80m , ∴DE =(80−x)m ,Rt △BDE 中,∠BDC =56°19′, ∴tan56°19′=BEDE ,即x80−x =1.5, 解得x =48(m),∴BE=CE=48m,Rt△ACD中,∠ADC=19°17′,CD=80m,∴tan19°17′=ACCD ,即AC80=0.35,解得AC=28m,∵∠ACD=90°,BE⊥CD于E,AF⊥BE,∴四边形ACEF是矩形,∴AF=CE=48m,EF=AC=28m,∴BF=BE−EF=20m,Rt△ABF中,AB=√AF2+BF2=√482+202=52(m),答:A,B两点之间的距离是52m.【解析】过B作BE⊥CD于E,过A作AF⊥BE于F,由已知△BCE是等腰直角三角形,设CE=x,则BE=x,DE=(80−x)m,在Rt△BDE中,可得x80−x=1.5,解得BE=CE= 48m,在Rt△ACD中,解得AC=28m,根据四边形ACEF是矩形,可得AF=CE=48m,EF=AC=28m,BF=20m,即可在Rt△ABF中,求出AB=√482+202=52(m)本题考查解直角三角形的应用,涉及勾股定理、矩形判定及性质等知识,解题的关键是适当添加辅助线,构造直角三角形.24.【答案】解:(1)如图:(2)设甲的速度是v m/min,乙整个行程所用的时间为t min,由题意得:2v⋅t=(t+1+5)v,解得:t=6,6+1+5=12(min),答:甲整个行程所用的时间为12min.【解析】(1)由乙的速度是甲的2倍可得乙1min的路程=甲2min的路程,即可画出乙离A地的距离y2(单位:m)与时间x之间的函数图象;(2)设甲的速度是v m/min,乙整个行程所用的时间为t min,由行程相等列出方程即可求解.本题考查了一次函数的应用,能根据题意结合图象理解实际问题是解题的关键.25.【答案】解:方法一:如图1中,连接OP,以OP为直径作圆交⊙O于D,作直线PD,直线PD即为所求.方法二:如图,作射线PE,作OE⊥PE于E,作△POE的外接圆交⊙O于D,作直线PD,直线PD即为所求.【解析】方法一:直接以OP为直径作圆,利用直径所对的圆周角是直角,可得∠ADC= 90°,可证直线PD是切线.方法二:构造直角△POE,作△POE的外接圆,利用圆周角定理解决问题即可.本题考查专题−复杂作图,切线的判定,线段的垂直平分线的性质,三角形的外接圆等知识,解题的关键是学会利用圆周角定理构造直角,属于中考常考题型.26.【答案】1【解析】解:(1)把(−2,1),(2,−3)代入y=ax2+bx+c中,得:{1=4a−2b+c①−3=4a+2b+c②,两式相减得−4=4b,∴b=−1;(2)把b=−1代入①得:1=4a+2+c,∴a=−1−c4,∴顶点的纵坐标4ac−b24a =c+1c+1=c+1+1c+1−1,∵c>−1,∴c+1>0,下面证明对于任意的正数,a,b,都有a+b≥2√ab,∵(√a−√b)2=a+b−2√ab≥0,∴a+b≥2√ab,当a=b时取等号,∴c+1+1c+1−1≥2√(c+1)⋅1c+1−1=1,∴该函数的图象的顶点的纵坐标的最小值是1.(3)由题意得:am2−m+c=0,且c=−1−4a,∴am2−m−1−4a=0,△=1−4a(−1−4a)=1+4a+16a2,若−1<m<2,此时有a<0,且1+√△2a<2,解得a<0,∴a<0,若2<m<3,此时有a>0,且1+√△2a<3,解得a>45,综上a<0或a>45.(1)把已知点代入解析式,两式联立即可求出b的值;(2)把a用c表示,然后写出顶点的纵坐标,根据c的取值即可求出最小值;(3)根据题意m是ax2+bx+c的一个根,将m用a表示出来,根据m的取值即可求出a的取值.本题主要考查二次函数的图象与性质,关键在于理解二次项系数a对函数图象的影响,包括开口方向和开口大小,都要熟记于心,不然第三问很难做出来.27.【答案】l+ℎ【解析】解:(1)如图②中连接AO,AC,AB.设∠AOC=n.∵AC⏜的长=4π,∴nπ⋅12=4π,180∴n=60°,∴∠COA=60°,∵OA=OC,∴△AOC是等边三角形,∵OB=BC=6,∴AB⊥OC,∴AB=√OA2−OB2=√122−62=6√3.最短的路径是线段AB,最短路径的长为6√3.(2)①蚂蚁从点A爬行到点O的最短路径的长为母线的长加圆柱的高,即为ℎ+l.故答案为:ℎ+l.④蚂蚁从点A爬行到点B的最短路径的示意图如图④,最短路径为AB,思路:Ⅰ、过点O作OF⊥AD于F,交AB与G,此⏜的弧长,时,点G在扇形的弧上,先求出C′G再求出∠BOG的度数,,Ⅱ、再过点B作BE⊥OF于E,用三角函数求出OE,BE,得出FH,即可求出AH,Ⅲ、求出EF,进而求出BH,Ⅳ、在Rt△ABH中,利用勾股定理求出AB.(1)先判断出△OAC为等边三角形,进而得出AB上等边三角形的高,即可得出结论;(2)①蚂蚁从点A爬行到点O的最短路径的长为母线的长加圆柱的高,即可得出结论;②根据题意画出示意图,先求出BH,用勾股定理即可得出结论.此题是圆的综合题,主要考查了弧长公式,勾股定理,圆柱和圆锥的侧面展开图,等边三角形的判定和性质,作出辅助线构造出直角三角形是解本题的关键.。

历年江苏省南京市中考数学试卷(含答案)

历年江苏省南京市中考数学试卷(含答案)

2017 年江苏省南京市中考数学试卷一、选择题(本大题共 6 小题,每小题2 分,共12 分。

在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.(2分)计算12+(﹣18)÷(﹣6)﹣(﹣3)×2的结果是()A.7 B.8 C.21 D.362.( 2 分)计算106×(102)3÷104的结果是()A.103 B.107 C.108 D.1093.( 2 分)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征,甲同学:它有 4 个面是三角形;乙同学:它有8 条棱,该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥4.( 2 分)若< a< ,则下列结论中正确的是()A.1< a< 3 B.1< a< 4C.2< a< 3D.2< a< 45.( 2 分)若方程(x﹣5)2=19的两根为a和b,且a> b,则下列结论中正确的是()A. a 是19 的算术平方根B. b 是19 的平方根C.a﹣ 5 是19 的算术平方根D.b+5 是19 的平方根6.( 2 分)过三点A(2,2),B (6,2),C(4,5)的圆的圆心坐标为()A.(4,)B.(4,3)C.(5,)D.(5,3)二、填空题(本大题共10 小题,每小题2分,共20 分)7.( 2 分)计算:| ﹣3| = ;= .8.( 2 分)2016年南京实现GDP约10500亿元,成为全国第11 个经济总量超过万亿的城市,用科学记数法表示10500 是.9.( 2 分)分式在实数范围内有意义,则x的取值范围是.10.( 2 分)计算+ × 的结果是.11.( 2 分)方程﹣=0的解是.12.( 2 分)已知关于 x 的方程x 2+px+q=0 的两根为﹣3 和﹣ 1,则 p= ,q= .13.( 2分)如图是某市 2013﹣ 2016年私人汽车拥有量和年增长率的统计图,该市私人汽车拥有量年净增量最多的是 年,私人汽车拥有量年增长率最大14. ( 2 分)如图,∠1 是五边形 ABCDE 的一个外角,若∠ 1=65°,则∠ A+∠ B+∠15.( 2 分)如图,四边形 ABCD 是菱形,⊙ O 经过点 A 、 C 、 D ,与BC 相交于点E ,连接AC 、 AE .若∠ D=78°,则∠ EAC=°.16.( 2 分)函数y 1=x 与 y 2= 的图象如图所示,下列关于函数y=y 1+y 2的结C+∠D=论:①函数的图象关于原点中心对称;②当x<2 时,y随x的增大而减小;③当x> 0 时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是.三、解答题(本大题共11 小题,共88 分)17.(7 分)计算(a+2+ )÷(a﹣).18.(7 分)解不等式组请结合题意,完成本题的解答.(1)解不等式①,得,依据是:.(2)解不等式③,得.(3)把不等式①、②和③的解集在数轴上表示出来.(4)从图中可以找出三个不等式解集的公共部分,得不等式组的解集.19.(7 分)如图,在?ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,B D相交于点O,求证:OE=OF.20.(8 分)某公司共25 名员工,下表是他们月收入的资料.月收入/元4500 1800 1000 550 480 340 300 2200 0 0 00000人数 1 1 1 3 6 1 11 1(1)该公司员工月收入的中位数是元,众数是元.2)根据上表,可以算得该公司员工月收入的平均数为6276元,你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21.(8 分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.(8 分)“直角”在初中几何学习中无处不在.如图,已知∠AOB,请仿照小丽的方式,再用两种不同的方法判断∠AOB是否为直角(仅限用直尺和圆规).23.(8 分)张老师计划到超市购买甲种文具100 个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买 1 个甲种文具,需增加购买 2 个乙种文具.设购买x 个甲种文具时,需购买y 个乙种文具.(1)①当减少购买 1 个甲种文具时,x= ,y= ;②求y 与x之间的函数表达式.(2)已知甲种文具每个 5 元,乙种文具每个 3 元,张老师购买这两种文具共用去540 元,甲、乙两种文具各购买了多少个?24.(8 分)如图,PA,PB是⊙O 的切线,A,B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O 于点D.(1)求证:PO平分∠APC;(2)连接DB,若∠C=30°,求证:DB∥ AC.25.(8 分)如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口 A 的正南方向,港口 B 的正西方向的 D 处,它沿正北方向航行5km 到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37≈ ° 0.60,cos37≈° 0.80,tan37 °≈ 0.75)26.(8 分)已知函数y=﹣x2+(m﹣1)x+m(m 为常数).(1)该函数的图象与x 轴公共点的个数是.A.0 B.1 C.2 D.1 或 2( 2)求证:不论m 为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上.(3)当﹣2≤ m≤ 3 时,求该函数的图象的顶点纵坐标的取值范围.27.(11 分)折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片ABCD(AB> BC)(图①),使AB 与DC 重合,得到折痕EF,把纸片展平(图②).第二步,如图③,再一次折叠纸片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB、PC,得到△PBC.(1)说明△PBC是等边三角形.【数学思考】(2)如图④,小明画出了图③的矩形ABCD和等边三角形PBC,他发现,在矩形ABCD中把△PBC经过图形变化,可以得到图⑤中的更大的等边三角形,请描述图形变化的过程.(3)已知矩形一边长为3cm,另一边长为 a cm,对于每一个确定的a的值,在矩形中都能画出最大的等边三角形,请画出不同情形的示意图,并写出对应的a的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm 和1cm 的直角三角形铁片,所需正方形铁片的边长的最小值为cm.2017 年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共 6 小题,每小题2 分,共12 分。

2019年江苏省南京市中考数学试卷(后附答案)

2019年江苏省南京市中考数学试卷(后附答案)

2019年江苏省南京市中考数学试卷题号一二三四总分得分一、选择题(本大题共6小题,共12.0分)1.2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A. 0.13×105B. 1.3×104C. 13×103D. 130×1022.计算(a2b)3的结果是()A. a2b3B. a5b3C. a6bD. a6b33.面积为4的正方形的边长是()A. 4的平方根B. 4的算术平方根C. 4开平方的结果D. 4的立方根4.实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A. B.C. D.5.下列整数中,与10-√13最接近的是()A. 4B. 5C. 6D. 76.如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A. ①④B. ②③C. ②④D. ③④二、填空题(本大题共10小题,共20.0分)7.-2的相反数是______;1的倒数是______.28.计算14-√28的结果是______.√79.分解因式(a-b)2+4ab的结果是______.10.已知2+√3是关于x的方程x2-4x+m=0的一个根,则m=______.11.结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵______,∴a∥b.12.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有______cm.13. 为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上 人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是______. 14. 如图,PA 、PB 是⊙O 的切线,A 、B 为切点,点C 、D 在⊙O上.若∠P =102°,则∠A +∠C =______.15. 如图,在△ABC 中,BC 的垂直平分线MN 交AB 于点D ,CD 平分∠ACB .若AD =2,BD =3,则AC 的长______.16. 在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是______. 三、计算题(本大题共2小题,共14.0分) 17. 计算(x +y )(x 2-xy +y 2)18. 解方程:xx−1-1=3x 2−1.四、解答题(本大题共9小题,共74.0分)19. 如图,D 是△ABC 的边AB 的中点,DE ∥BC ,CE ∥AB ,AC 与DE 相交于点F .求证:△ADF ≌△CEF .20.如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是______.22.如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:PA=PC.23.已知一次函数y1=kx+2(k为常数,k≠0)和y2=x-3.(1)当k=-2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1-x2|+|y1-y2|.【数学理解】(1)①已知点A(-2,1),则d(O,A)=______.②函数y=-2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是______.(2)函数y=4(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使xd(O,C)=3.(3)函数y=x2-5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)答案和解析1.【答案】B【解析】解:13000=1.3×104故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【答案】D【解析】解:(a2b)3=(a2)3b3=a6b3.故选:D.根据积的乘方法则解答即可.本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.【答案】B【解析】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.已知正方形面积求边长就是求面积的算术平方根;本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.【答案】A【解析】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.【答案】C【解析】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10-最接近的是6.故选:C.由于9<13<16,可判断与4最接近,从而可判断与10-最接近的整数为6.此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.【答案】D【解析】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.7.【答案】2 2【解析】解:-2的相反数是2;的倒数是2,故答案为:2,2.根据只有符号不同的两个数互为相反数,乘积为的两个数互为倒数,可得答案.本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.8.【答案】0【解析】解:原式=2-2=0.故答案为0.先分母有理化,然后把二次根式化为最简二次根式后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.9.【答案】(a+b)2【解析】解:(a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+9b2=(a+b)2.故答案为:(a+b)2.直接利用多项式乘法去括号,进而合并同类项,再利用公式法分解因式得出答案.此题主要考查了运用公式法分解因式,正确应用公式是解题关键.10.【答案】1【解析】解:把x=2+代入方程得(2+)2-4(2+)+m=0,解得m=1.故答案为1.把x=2+代入方程得到关于m的方程,然后解关于m的方程即可.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.【答案】∠1+∠3=180°【解析】解:∵∠1+∠3=180°,∴a∥b(同旁内角互补,两直线平).故答案为:∠1+∠3=180°.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.本题主要考查了平行的判定,两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.12.【答案】5【解析】解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20-15=5(cm).故答案为:5.根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.13.【答案】7200【解析】解:估计该区12000名初中学生视力不低于4.8的人数是12000×=7200(人),故答案为:7200.用总人数乘以样本中视力不低于4.8的人数占被调查人数的比例即可得.本题主要考查用样本估计总体,用样本的数字特征估计总体的数字特征(主要数据有众数、中位数、平均数、标准差与方差).一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.14.【答案】219°【解析】解:连接AB,∵PA、PB是⊙O的切线,∴PA=PB,∵∠P=102°,∴∠PAB=∠PBA=(180°-102°)=39°,∵∠DAB+∠C=180°,∴∠PAD+∠C=∠PAB+∠DAB+∠C=180°+39°=219°,故答案为:219°.连接AB,根据切线的性质得到PA=PB,根据等腰三角形的性质得到∠PAB=∠PBA=(180°-102°)=39°,由圆内接四边形的性质得到∠DAB+∠C=180°,于是得到结论.本题考查了切线的性质,圆内接四边形的性质,等腰三角形的性质,正确的作出辅助线是解题的关键.15.【答案】√10【解析】解:作AM⊥BC于E,如图所示:∵CD平分∠ACB,∴==,设AC=2x,则BC=3x,∵MN是BC的垂直平分线,∴MN⊥BC,BN=CN=x,∴MN∥AE,∴==,∴NE=x,∴BE=BN+EN=x,CE=CN-EN=x,由勾股定理得:AE2=AB2-BE2=AC2-CE2,即52-(x)2=(2x)2-(x)2,解得:x=,∴AC=2x=;故答案为:.作AM⊥BC于E,由角平分线的性质得出==,设AC=2x,则BC=3x,由线段垂直平分线得出MN⊥BC,BN=CN=x,得出MN∥AE,得出==,NE=x,BE=BN+EN=x,CE=CN-EN=x,再由勾股定理得出方程,解方程即可得出结果.本题考查了线段垂直平分线的性质、角平分线的性质、平行线分线段成比例定理、勾股定理等知识;熟练掌握线段垂直平分线的性质和角平分线的性质,由勾股定理得出方程是解题的关键.16.【答案】4<BC≤8√33【解析】解:作△ABC的外接圆,如图所示:∵∠BAC>∠ABC,AB=4,当∠BAC=90°时,BC是直径最长,∵∠C=60°,∴∠ABC=30°,∴BC=2AC,AB=AC=4,∴AC=,∴BC=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,∵∠BAC>∠ABC,∴BC长的取值范围是4<BC≤;故答案为:4<BC≤.作△ABC的外接圆,求出当∠BAC=90°时,BC是直径最长=;当∠BAC=∠ABC时,△ABC是等边三角形,BC=AC=AB=4,而∠BAC>∠ABC,即可得出答案.本题考查了三角形的三边关系、直角三角形的性质、等边三角形的性质;作出△ABC的外接圆进行推理计算是解题的关键.17.【答案】解:(x+y)(x2-xy+y2),=x3-x2y+xy2+x2y-xy2+y3,=x3+y3.故答案为:x3+y3.【解析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.18.【答案】解:方程两边都乘以(x+1)(x-1)去分母得,x(x+1)-(x2-1)=3,即x2+x-x2+1=3,解得x=2检验:当x=2时,(x+1)(x-1)=(2+1)(2-1)=3≠0,∴x=2是原方程的解,故原分式方程的解是x=2.【解析】方程两边都乘以最简公分母(x+1)(x-1)化为整式方程,然后解方程即可,最后进行检验.本题考查了分式方程的求解,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.【答案】证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形,∴BD=CE,∵D是AB的中点,∴AD=BD,∴AD=EC,∵CE∥AD,∴∠A =∠ECF ,∠ADF =∠E ,∴△ADF ≌△CEF (ASA ).【解析】依据四边形DBCE 是平行四边形,即可得出BD=CE ,依据CE ∥AD ,即可得出∠A=∠ECF ,∠ADF=∠E ,即可判定△ADF ≌△CEF .本题主要考查了平行四边形的判定与性质以及全等三角形的判定,两角及其夹边分别对应相等的两个三角形全等.20.【答案】解:(1)这5天的日最高气温和日最低气温的平均数分别是x −高=23+25+23+25+245=24,x −低=21+22+15+15+175=18, 方差分别是S 高2=(23−24)2+(25−24)2+(23−24)2+(25−24)2+(24−24)25=0.8,S 低2=(21−18)2+(22−18)2+(15−18)2+(15−18)2+(17−18)25=8.8, ∴S 高2<S 低2,∴该市这5天的日最低气温波动大;(2)25日、26日、27日的天气依次为大雨、中雨、晴,空气质量依次良、优、优,说明下雨后空气质量改善了.【解析】(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s 2来表示,计算公式是:s 2=[(x 1-)2+(x 2-)2+…+(x n -)2](可简单记忆为“方差等于差方的平均数”).本题考查了方差,正确理解方差的意义是解题的关键.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.21.【答案】23【解析】 解:(1)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,∴甲同学随机选择两天,其中有一天是星期二的概率为=;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),∴乙同学随机选择连续的两天,其中有一天是星期二的概率是;故答案为:.(1)由树状图得出共有12个等可能的结果,其中有一天是星期二的结果有6个,由概率公式即可得出结果;(2)乙同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,由概率公式即可得出结果.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.22.【答案】证明:连接AC,∵AB=CD,∴AB⏜=CD⏜,∴AB⏜+BD⏜=BD⏜+CD⏜,即AD⏜=CB⏜,∴∠C=∠A,∴PA=PC.【解析】连接AC,由圆心角、弧、弦的关系得出=,进而得出=,根据等弧所对的圆周角相等得出∠C=∠A,根据等角对等边证得结论.本题考查了圆心角、弧、弦的关系,圆周角定理,等腰三角形的判定等,熟练掌握性质定理是解题的关键.23.【答案】解:(1)k=-2时,y1=-2x+2,根据题意得-2x+2>x-3,解得x<3;5(2)当x=1时,y=x-3=-2,把(1,-2)代入y1=kx+2得k+2=-2,解得k=-4,当-4≤k<0时,y1>y2;当0<k≤1时,y1>y2.【解析】(1)解不等式-2x+2>x-3即可;(2)先计算出x=1对应的y2的函数值,然后根据x<1时,一次函数y1=kx+2(k 为常数,k≠0)的图象在直线y2=x-3的上方确定k的范围.本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.24.【答案】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=AH,CH∴AH=CH•tan∠ACH≈0.51CH,,在Rt△BHC中,tan∠BCH=BHCH∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH-0.4CH=33,解得,CH=300,∴EH=CH-CE=220,BH=120,∴AH=AB+BH=153,∴DH=AH=153,∴HF=DH-DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.【解析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.25.【答案】解:设扩充后广场的长为3xm,宽为2xm,依题意得:3x•2x•100+30(3x•2x-50×40)=642000解得x1=30,x2=-30(舍去).所以3x =90,2x =60,答:扩充后广场的长为90m ,宽为60m .【解析】设扩充后广场的长为3xm ,宽为2xm ,根据矩形的面积公式和总价=单价×数量列出方程并解答.题考查了列二元一次方程解实际问题的运用,总价=单价×数量的运用,解答时找准题目中的数量关系是关键.26.【答案】(1)证明:∵DE =DG ,EF =DE ,∴DG =EF ,∵DG ∥EF ,∴四边形DEFG 是平行四边形,∵DG =DE ,∴四边形DEFG 是菱形.(2)如图1中,当四边形DEFG 是正方形时,设正方形的边长为x .在Rt △ABC 中,∵∠C =90°,AC =3,BC =4,∴AB =√32+42=5,则CD =35x ,AD =54x ,∵AD +CD =AC ,∴35x +54x =3,∴x =6037,∴CD =35x =3637,观察图象可知:0≤CD <3637时,菱形的个数为0.如图2中,当四边形DAEG 是菱形时,设菱形的边长为m .∵DG ∥AB , ∴CD CA =DG AB ,∴3−m 3=m 5, 解得m =158, ∴CD =3-158=98,如图3中,当四边形DEBG 是菱形时,设菱形的边长为n .∵DG ∥AB ,∴CG CB =DG AB ,∴4−n 4=n 5, ∴n =209,∴CG =4-209=169,∴CD =√(209)2−(169)2=43, 观察图象可知:当0≤CD <3637或43<CD ≤98时,菱形的个数为0,当CD =3637或98<CD ≤43时,菱形的个数为1,当3637<CD ≤98时,菱形的个数为2.【解析】(1)根据邻边相等的四边形是菱形证明即可.(2)求出几种特殊位置的CD 的值判断即可.本题考查相似三角形的判定和性质,菱形的判定和性质,作图-复杂作图等知识,解题的关键是学会寻找特殊位置解决问题,属于中考常考题型,题目有一定难度.27.【答案】3 (1,2)【解析】解:(1)①由题意得:d(O,A)=|0+2|+|0-1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0-x|+|0-y|=3,∵0≤x≤2,∴x+y=3,∴,解得:,∴B(1,2),故答案为:3,(1,2);(2)假设函数的图象上存在点C(x,y)使d(O,C)=3,根据题意,得,∵x>0,∴,,∴,∴x2+4=3x,∴x2-3x+4=0,∴△=b2-4ac=-7<0,∴方程x2-3x+4=0没有实数根,∴该函数的图象上不存在点C,使d(O,C)=3.(3)设D(x,y),根据题意得,d(O,D)=|x-0|+|x2-5x+7-0|=|x|+|x2-5x+7|,∵,又x≥0,∴d(O,D)=|x|+|x2-5x+7|=x+x2-5x+7=x2-4x+7=(x-2)2+3,∴当x=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).(4)如图,以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=-x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处.理由:设过点E的直线l1与x轴相交于点F.在景观湖边界所在曲线上任取一点P,过点P作直线l2∥l1,l2与x轴相交于点G.∵∠EFH=45°,∴EH=HF,d(O,E)=OH+EH=OF,同理d(O,P)=OG,∵OG≥OF,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.(1)①根据定义可求出d(O,A)=|0+2|+|0-1|=2+1=3;②由两点间距离:d(A,B)=|x1-x2|+|y1-y2|及点B是函数y=-2x+4的图象上的一点,可得出方程组,解方程组即可求出点B的坐标;(2)由条件知x>0,根据题意得,整理得x2-3x+4=0,由△<0可证得该函数的图象上不存在点C,使d(O,C)=3.(3)根据条件可得|x|+|x2-5x+7|,去绝对值后由二次函数的性质可求出最小值;(4)以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=-x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处,可由d(O,P)≥d(O,E)证明结论即可.考查了二次函数的综合题,涉及的知识点有新定义,解方程(组),二次函数的性质等.第21页,共21页。

2022年江苏南京中考数学试题及答案

2022年江苏南京中考数学试题及答案

2022年江苏南京中考数学试题及答案注意事项:1.本试卷共6页,全卷满分120分。

考试时间120分钟。

考生答题全部答在答题卡上,答在本试卷上无效。

2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、考试证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上。

3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑。

如需改动,请用橡皮擦干净后,再选涂其他答案。

答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡的指定位置,在其他位置答题一律无效。

4.作图题必须用2B铅笔作答,并请加黑、加粗。

一、选择题(本题共6小题,每小题2分,共12分。

每小题给出的四个选项中只有一个选项符合题意)1. -3的相反数是A. 3B. -3C.D.-2.计算(a2)3的结果是A. a5B. a6C. a8D. a93.估计12的算术平方根介于A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间4.反比例函数y=(k为常数,k≠0)的图像位于A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限5.已知实数a,b,a>b,下列结论中一定正确的是A. |a|>|b|B.>C. a2>b2D. a3>b36.直三棱柱的表面展开图如图所示,AB=3,BC=4,AB=5,四边形AMNB是正方形,将其折叠成直三棱柱后,下列各点中,与点C距离最大的是A.点MB.点NC.点PD.点Q二、填空题(本题共10小题,每小题2分,共20分。

请把答案填写在答题卡相应位置上........)7.地球与月球的平均距离约为384000km,用科学计数法表示384000是▲ .8.若式子在实数范围内有意义,则x的取值范围是▲ .9.计算-的结果是▲ .10.方程x2-4x+3=0的解是▲ .11.如图,▱ABCD的顶点A、C分别在直线l1,l2上,l1//l2,若∠l=33°,∠B=65°,则∠2= ▲ .12.若24+24=2a,35+35+35=3b,则a+b= ▲ .13.己知二次函数y=ax2-2ax+c(a、c为常数,a≠0)的最大值为2,写出一组符合条件的a 和c的值:▲ .14.在平面直角坐标系中,正方形ABCD如图所示,点A的坐标(-1, 0),点D的坐标是(-2, 4),则点C的坐标是▲ .15.如图,四边形ABCD内接于⊙O,它的3个外角∠EAB,∠FBC,∠GCD的度数之比为1∶2∶4,则∠D= ▲ .16.如图,在平面直角坐标系,横、纵坐标均为整数的点案如下规律依序排列:(0, 0),(1, 0),(0, 1),(2, 0),(1, 1),(0, 2),(3, 0),(2, 1),(1, 2),(0, 3),(4, 0),(3, 1),(2, 2),(1, 3),…按这个规律,则(6, 7)是第▲ 个点.三、解答题(本大题共11小题,共88分。

2020年江苏省南京市中考数学试卷(含解析版)

2020年江苏省南京市中考数学试卷(含解析版)

2020年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)计算3﹣(﹣2)的结果是()A.﹣5B.﹣1C.1D.52.(2分)3的平方根是()A.9B.C.﹣D.±3.(2分)计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a84.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.(2分)关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根6.(2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3:.8.(2分)若式子1﹣在实数范围内有意义,则x的取值范围是.9.(2分)纳秒(ns)是非常小的时间单位,1ns=10﹣9s.北斗全球导航系统的授时精度优于20ns.用科学记数法表示20ns是s.10.(2分)计算的结果是.11.(2分)已知x、y满足方程组,则x+y的值为.12.(2分)方程=的解是.13.(2分)将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是.14.(2分)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.15.(2分)如图,线段AB、BC的垂直平分线11、l2相交于点O,若∠1=39°,则∠AOC =.16.(2分)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(a﹣1+)÷.18.(7分)解方程:x2﹣2x﹣3=0.19.(8分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.20.(8分)已知反比例函数y=的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组解:解不等式①,得.根据函数y=的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数18≤x<9350293≤x<1781003178≤x<263344263≤x<348115348≤x<43316433≤x<51817518≤x<60328603≤x<6881根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A 处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)24.(8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC 于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.25.(8分)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?26.(9分)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.2020年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)计算3﹣(﹣2)的结果是()A.﹣5B.﹣1C.1D.5【分析】根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:3﹣(﹣2)=3+2=5.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.2.(2分)3的平方根是()A.9B.C.﹣D.±【分析】如果一个数的平方等于a,那么这个数就叫做a的平方根,也叫做a的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.【解答】解:∵()2=3,∴3的平方根.故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.3.(2分)计算(a3)2÷a2的结果是()A.a3B.a4C.a7D.a8【分析】根据幂的乘方、同底数幂的除法的计算法则进行计算即可.【解答】解:(a3)2÷a2=a3×2÷a2=a6﹣2=a4,故选:B.【点评】本题考查幂的乘方、同底数幂除法的计算法则,掌握计算法则是正确计算的前提.4.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是()A.2019年末,农村贫困人口比上年末减少551万人B.2012年末至2019年末,农村贫困人口累计减少超过9000万人C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务【分析】根据条形统计图中每年末贫困人口的数量,结合各选项逐一分析判断可得答案.【解答】解:A.2019年末,农村贫困人口比上年末减少1660﹣551=1109(万人),此选项错误;B.2012年末至2019年末,农村贫困人口累计减少超过9899﹣551=9348(万人),此选项正确;C.2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D.为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确;故选:A.【点评】本题主要考查条形统计图,解题的关键是根据条形统计图得出解题所需的具体数据.5.(2分)关于x的方程(x﹣1)(x+2)=p2(p为常数)的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根【分析】先把方程(x﹣1)(x+2)=p2化为x2+x﹣2﹣p2=0,再根据方程有两个不相等的实数根可得△=1+8+4p2>0,由﹣2﹣p2>0即可得出结论.【解答】解:∵关于x的方程(x﹣1)(x+2)=p2(p为常数),∴x2+x﹣2﹣p2=0,∴△=1+8+4p2=9+4p2>0,∴方程有两个不相等的实数根,根据根与系数的关系,方程的两个根的积为﹣2﹣p2<0,∴一个正根,一个负根,故选:C.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了根的判别式.6.(2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A的坐标是(0,8).则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)【分析】设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP与CD交于点G,证明四边形PEOF为正方形,求得CG,再根据垂径定理求得CD,进而得PG、DB,便可得D点坐标.【解答】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE、PF、PD,延长EP 与CD交于点G,则PE⊥y轴,PF⊥x轴,∵∠EOF=90°,∴四边形PEOF是矩形,∵PE=PF,PE∥OF,∴四边形PEOF为正方形,∴OE=PF=PE=OF=5,∵A(0,8),∴OA=8,∴AE=8﹣5=3,∵四边形OACB为矩形,∴BC=OA=8,BC∥OA,AC∥OB,∴EG∥AC,∴四边形AEGC为平行四边形,四边形OEGB为平行四边形,∴CG=AE=3,EG=OB,∵PE⊥AO,AO∥CB,∴PG⊥CD,∴CD=2CG=6,∴DB=BC﹣CD=8﹣6=2,∵PD=5,DG=CG=3,∴PG=4,∴OB=EG=5+4=9,∴D(9,2).故选:A.【点评】本题主要考查了正方形的性质,矩形的性质与判定,圆的切线的性质,垂径定理,勾股定理,关键是求出CG的长度.二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3:﹣1(答案不唯一).【分析】首先根据一个负数的绝对值小于3,可得这个负数大于﹣3且小于0;然后根据绝对值的含义和求法,求出这个数是多少即可.【解答】解:∵一个负数的绝对值小于3,∴这个负数大于﹣3且小于0,∴这个负数可能是﹣2、﹣1.5、﹣1、….故答案为:﹣1(答案不唯一).【点评】此题主要考查了绝对值的含义和运用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.8.(2分)若式子1﹣在实数范围内有意义,则x的取值范围是x≠1.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:若式子1﹣在实数范围内有意义,则x﹣1≠0,解得:x≠1.故答案为:x≠1.【点评】此题主要考查了分式有意义的条件,正确掌握相关定义是解题关键.9.(2分)纳秒(ns)是非常小的时间单位,1ns=10﹣9s.北斗全球导航系统的授时精度优于20ns.用科学记数法表示20ns是2×10﹣8s.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:20ns=20×10﹣9s=2×10﹣8s,故答案为:2×10﹣8.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.(2分)计算的结果是.【分析】直接利用二次根式的性质化简得出答案.【解答】解:原式===.故答案为:.【点评】此题主要考查了二次根式的混合运算,正确化简各数是解题关键.11.(2分)已知x、y满足方程组,则x+y的值为1.【分析】求出方程组的解,代入求解即可.【解答】解:,①×2﹣②得:5y=﹣5,解得:y=﹣1,①﹣②×3得:﹣5x=﹣10,解得:x=2,则x+y=2﹣1=1,故答案为1.【点评】本题考查了解二元一次方程组,整式的求值的应用,求得x、y的值是解此题的关键.12.(2分)方程=的解是x=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程=,去分母得:x2+2x=x2﹣2x+1,解得:x=,经检验x=是分式方程的解.故答案为:x=.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(2分)将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,所得到的图象对应的函数表达式是y=x+2.【分析】利用直线与两坐标轴的交点坐标,求得旋转后的对应点坐标,然后根据待定系数法即可求得.【解答】解:在一次函数y=﹣2x+4中,令x=0,则y=4,令y=0,则x=2,∴直线y=﹣2x+4经过点(0,4),(2,0)将一次函数y=﹣2x+4的图象绕原点O逆时针旋转90°,则点(0,4)的对应点为(﹣4,0),(2,0)的对应点是(0,2)设对应的函数解析式为:y=kx+b,将点(﹣4,0)、(0,2)代入得,解得,∴旋转后对应的函数解析式为:y=x+2,故答案为y=x+2.【点评】此题主要考查了一次函数图象与几何变换,正确把握互相垂直的两直线系数关系是解题关键.14.(2分)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为2cm2.【分析】连接BF,BE,过点A作AT⊥BF于T,证明S△PEF=S△BEF,求出△BEF的面积即可.【解答】解:连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BE,AB=AF,∴BT=FT,∠BAT=∠F AT=60°,∴BT=FT=AB•sin60°=,∴BF=2BT=2,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF=•EF•BF=×2×=2,故答案为2.【点评】本题考查正多边形与圆,解直角三角形等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.15.(2分)如图,线段AB、BC的垂直平分线11、l2相交于点O,若∠1=39°,则∠AOC =78°.【分析】解法一:过O作射线BP,根据线段的垂直平分线的性质得AO=OB=OC和∠BDO=∠BEO=90°,根据四边形的内角和为360°得∠DOE+∠ABC=180°,根据外角的性质得∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,相加可得结论.解法二:连接OB,同理得AO=OB=OC,由等腰三角形三线合一得∠AOD=∠BOD,∠BOE=∠COE,由平角的定义得∠BOD+∠BOE=141°,最后由周角的定义可得结论.【解答】解:解法一:过O作射线BP,∵线段AB、BC的垂直平分线11、l2相交于点O,∴AO=OB=OC,∠BDO=∠BEO=90°,∴∠DOE+∠ABC=180°,∵∠DOE+∠1=180°,∴∠ABC=∠1=39°,∵OA=OB=OC,∴∠A=∠ABO,∠OBC=∠C,∵∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,∴∠AOC=∠AOP+∠COP=∠A+∠ABC+∠C=2×39°=78°;解法二:连接OB,∵线段AB、BC的垂直平分线11、l2相交于点O,∴AO=OB=OC,∴∠AOD=∠BOD,∠BOE=∠COE,∵∠DOE+∠1=180°,∠1=39°,∴∠DOE=141°,即∠BOD+∠BOE=141°,∴∠AOD+∠COE=141°,∴∠AOC=360°﹣(∠BOD+∠BOE)﹣(∠AOD+∠COE)=78°;故答案为:78°.【点评】本题主要考查线段的垂直平分线的性质,等腰三角形的性质,三角形外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.(2分)下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论:①该函数的图象与函数y=﹣x2的图象形状相同;②该函数的图象一定经过点(0,1);③当x>0时,y随x的增大而减小;④该函数的图象的顶点在函数y=x2+1的图象上.其中所有正确结论的序号是①②④.【分析】利用二次函数的性质一一判断即可.【解答】解:①∵二次函数y=﹣(x﹣m)2+m+1(m为常数)与函数y=﹣x2的二次项系数相同,∴该函数的图象与函数y=﹣x2的图象形状相同,故结论①正确;②∵在函数y=﹣(x﹣m)2+m2+1中,令x=0,则y=﹣m2+m2+1=1,∴该函数的图象一定经过点(0,1),故结论②正确;③∵y=﹣(x﹣m)2+m2+1,∴抛物线开口向下,对称轴为直线x=m,当x>m时,y随x的增大而减小,故结论③错误;④∵抛物线开口向下,当x=m时,函数y有最大值m2+1,∴该函数的图象的顶点在函数y=x2+1的图象上.故结论④正确,故答案为①②④.【点评】本题考查二次函数的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(a﹣1+)÷.【分析】先计算括号内异分母分式的加法、将除式分子因式分解,再将除法转化为乘法,最后约分即可得.【解答】解:原式=(+)÷=•=.【点评】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.18.(7分)解方程:x2﹣2x﹣3=0.【分析】通过观察方程形式,本题可用因式分解法进行解答.【解答】解:原方程可以变形为(x﹣3)(x+1)=0x﹣3=0,x+1=0∴x1=3,x2=﹣1.【点评】熟练运用因式分解法解一元二次方程.注意:常数项应分解成两个数的积,且这两个的和应等于一次项系数.19.(8分)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.【分析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD=AE.【解答】证明:在△ABE与△ACD中,∴△ABE≌△ACD(ASA).∴AD=AE.∴BD=CE.【点评】考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.本题得出三角形全等后,再根据全等三角形的性质可得线段相等.20.(8分)已知反比例函数y=的图象经过点(﹣2,﹣1).(1)求k的值.(2)完成下面的解答.解不等式组解:解不等式①,得x<1.根据函数y=的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集0<x<1.【分析】(1)把点(﹣2,﹣1)代入y=即可得到结论;(2)解不等式组即可得到结论.【解答】解:(1)∵反比例函数y=的图象经过点(﹣2,﹣1),∴k=(﹣2)×(﹣1)=2;(2)解不等式组解:解不等式①,得x<1.根据函数y=的图象,得不等式②的解集0<x<2.把不等式①和②的解集在数轴上表示为:∴不等式组的解集为0<x<1,故答案为:x<1,0<x<2,0<x<1.【点评】本题考查了反比例函数图象上点的坐标特征,解不等式组,在数轴上表示不等式的解集,正确的理解题意是解题的关键.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:kW•h)进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数18≤x<9350293≤x<1781003178≤x<263344263≤x<348115348≤x<43316433≤x<51817518≤x<60328603≤x<6881根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第2组内;(2)估计该地1万户居民六月份的用电量低于178kW•h的大约有多少户.【分析】(1)根据中位数的定义即可得到结论;(2)根据题意列式计算即可得到结论.【解答】解:(1)∵有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数,∴该地这200户居民六月份的用电量的中位数落在第2组内;故答案为:2;(2)×10000=7500(户),答:估计该地1万户居民六月份的用电量低于178kW•h的大约有7500户.【点评】本题考查了中位数,用样本估计总体,频数(率)分布表,正确的理解题意是解题的关键.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.【分析】(1)列举出甲选择的2个景点所有可能出现的结果情况,进而求出相应的概率;(2)用列表法表示所有可能出现的结果,再求出两个景点相同的概率.【解答】解:甲选择的2个景点所有可能出现的结果如下:(1)共有6种可能出现的结果,其中选择A、B的有2种,∴P(A、B)==;(2)用列表法表示所有可能出现的结果如下:共有9种可能出现的结果,其中选择景点相同的有3种,∴P(景点相同)==.故答案为:.【点评】本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果情况是正确解答的前提.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A 处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)【分析】过点D作DH⊥AC于点H,根据锐角三角函数即可求出轮船航行的距离AD.【解答】解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=,在Rt△DBH中,∠DBH=45°,∴BH=,∵BC=CH﹣BH,∴﹣=6,解得DH≈18,在Rt△DAH中,∠ADH=26°,∴AD=≈20.答:轮船航行的距离AD约为20km.【点评】本题考查了解直角三角形的应用﹣方向角问题,解决本题的关键是掌握方向角定义.24.(8分)如图,在△ABC中,AC=BC,D是AB上一点,⊙O经过点A、C、D,交BC 于点E,过点D作DF∥BC,交⊙O于点F.求证:(1)四边形DBCF是平行四边形;(2)AF=EF.【分析】(1)根据等腰三角形的性质得出∠BAC=∠B,根据平行线的性质得出∠ADF=∠B,求出∠ADF=∠CFD,根据平行线的判定得出BD∥CF,根据平行四边形的判定得出即可;(2)求出∠AEF=∠B,根据圆内接四边形的性质得出∠ECF+∠EAF=180°,根据平行线的性质得出∠ECF+∠B=180°,求出∠AEF=∠EAF,根据等腰三角形的判定得出即可.【解答】证明:(1)∵AC=BC,∴∠BAC=∠B,∵DF∥BC,∴∠ADF=∠B,∵∠BAC=∠CFD,∴∠ADF=∠CFD,∴BD∥CF,∵DF∥BC,∴四边形DBCF是平行四边形;(2)连接AE,∵∠ADF=∠B,∠ADF=∠AEF,∴∠AEF=∠B,∵四边形AECF是⊙O的内接四边形,∴∠ECF+∠EAF=180°,∵BD∥CF,∴∠ECF+∠B=180°,∴∠EAF=∠B,∴∠AEF=∠EAF,∴AF=EF.【点评】本题考查了平行线的性质和判定,平行四边形的判定,圆内接四边形,等腰三角形的判定等知识点,能综合运用知识点进行推理是解此题的关键.25.(8分)小明和小丽先后从A地出发沿同一直道去B地.设小丽出发第xmin时,小丽、小明离B地的距离分别为y1m、y2m.y1与x之间的函数表达式是y1=﹣180x+2250,y2与x之间的函数表达式是y2=﹣10x2﹣100x+2000.(1)小丽出发时,小明离A地的距离为250m.(2)小丽出发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?【分析】(1)根据题意和函数解析式,可以计算出小丽出发时,小明离A地的距离;(2)根据题目中的函数解析式和题意,利用二次函数的性质,可以得到小丽出发至小明到达B地这段时间内,两人何时相距最近,最近距离是多少.【解答】解:(1)∵y1=﹣180x+2250,y2=﹣10x2﹣100x+2000,∴当x=0时,y1=2250,y2=2000,∴小丽出发时,小明离A地的距离为2250﹣2000=250(m),故答案为:250;(2)设小丽出发第xmin时,两人相距sm,则s=(﹣180x+2250)﹣(﹣10x2﹣100x+2000)=10x2﹣80x+250=10(x﹣4)2+90,∴当x=4时,s取得最小值,此时s=90,答:小丽出发第4min时,两人相距最近,最近距离是90m.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质解答.26.(9分)如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.【分析】(1)根据两边成比例夹角相等两三角形相似证明即可.(2)过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.首先证明△CED∽△C′E′D′,推出∠CED=∠C′E′D′,再证明∠ACB =∠A′C′B′即可解决问题.【解答】(1)证明:∵=,∴=,∵==,∴==,∴△ADC∽△A′D′C,∴∠A=∠A′,∵=,∴△ABC∽△A′B′C′.故答案为:==,∠A=∠A′.(2)如图,过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.∵DE∥BC,∴△ADE∽△ABC,∴==,同理,==,∵=,∴=,∴=,同理,=,∴=,即=,∴=,∵==,∴==,∴△DCE∽△D′C′E′,∴∠CED=∠C′E′D′,∵DE∥BC,∴∠CED+∠ACB=90°,同理,∠C′E′D′+∠A′C′B′=180°,∴∠ACB=∠A′B′C′,∵=,∴△ABC∽△A′B′C′.【点评】本题考查相似三角形的判定和性质,解题的关键是正确寻找相似三角形解决问题,学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A'B与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC+CB<AC′+C'B.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.【分析】(1)由轴对称的性质可得CA=CA',可得AC+BC=A'C+BC=A'B,AC'+C'B=A'C'+BC',由三角形的三边关系可得A'B<A'C'+C'B,可得结论;(2)①由(1)的结论可求;②由(1)的结论可求解.【解答】证明:(1)如图②,连接A'C',∵点A,点A'关于l对称,点C在l上,∴CA=CA',∴AC+BC=A'C+BC=A'B,同理可得AC'+C'B=A'C'+BC',∵A'B<A'C'+C'B,∴AC+BC<AC'+C'B;(2)如图③,在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);如图④,在点C出建燃气站,铺设管道的最短路线是ACD++EB,(其中CD,BE都与圆相切)【点评】本题是四边形综合题,考查了正方形的性质,圆的有关知识,轴对称的性质,三角形的三边关系,熟练运用这些性质解决问题是本题的关键.。

江苏省南京市2021年中考数学试卷真题(word版,含答案解析)

江苏省南京市2021年中考数学试卷真题(word版,含答案解析)

江苏省南京市2021年中考数学试卷一、单选题(共6题;共12分)1.截至2021年6月8日,31个省(自治区,直辖市)和新疆生产建设兵团累计报告接种新冠病毒疫苗超过800000000次,用科学记数法表示800000000是()A. 8×108B. 0.8×109C. 8×109D. 0.8×1010【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:800000000= 8×108;故答案为:A.【分析】根据科学记数法的表示形式为:a×10n,其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1.2.计算(a2)3⋅a−3的结果是()A. a2B. a3C. a5D. a9【答案】B【考点】同底数幂的乘法,幂的乘方【解析】【解答】解:原式= a6·a−3=a3;故答案为:B.【分析】利用幂的乘方,底数不变,指数相乘,先算乘方运算,再利用同底数幂相乘的法则进行计算.3.下列长度的三条线段与长度为5的线段能组成四边形的是()A. 1,1,1B. 1,1,8C. 1,2,2D. 2,2,2【答案】 D【考点】三角形三边关系【解析】【解答】A、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确;故答案为:D.【分析】利用较小的三条线段之和大于最长的线段,再对各选项逐一判断即可.4.北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00,小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A. 10:00B. 12:00C. 15:00D. 18:00【答案】C【考点】正数和负数的认识及应用【解析】【解答】解:由北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,所以A. 当北京时间是10:00时,莫斯科时间是5:00,不合题意;B. 当北京时间是12:00时,莫斯科时间是7:00,不合题意;C. 当北京时间是15:00时,莫斯科时间是10:00,符合题意;D. 当北京时间是18:00时,不合题意.故答案为:C【分析】抓住已知条件:北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,再对各选项逐一判断.5.一般地,如果 x n =a (n 为正整数,且 n >1 ),那么x 叫做a 的n 次方根,下列结论中正确的是( )A. 16的4次方根是2B. 32的5次方根是 ±2C. 当n 为奇数时,2的n 次方根随n 的增大而减小D. 当n 为奇数时,2的n 次方根随n 的增大而增大【答案】 C【考点】有理数的乘方【解析】【解答】A. ∵24=16 (−2)4=16 , ∴ 16的4次方根是 ±2 ,故不符合题意;B. ∵25=32 , (−2)5=−32 , ∴ 32的5次方根是2,故不符合题意;C.设 x =√23,y =√25,则 x 15=25=32,y 15=23=8,∴x 15>y 15, 且 x >1,y >1,∴x >y,∴ 当n 为奇数时,2的n 次方根随n 的增大而减小,故符合题意;D.由 C 的判断可得: D 错误,故不符合题意.故答案为:C.【分析】根据正数的偶次方根有两个,它们互为相反数,可对A 作出判断;利用正数的奇次方根是正数,可对B 作出判断;根据当n 为奇数时,2的n 次方根随n 的增大而减小,可对C ,D 作出判断. 6.如图,正方形纸板的一条对角线重直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,在灯光照射下,正方形纸板在地面上形成的影子的形状可以是( )A. B. C. D.【答案】C【考点】正方形的性质,中心投影【解析】【解答】A.因为正方形纸板重直于地面,故不能产生正方形的投影,不符合题意B.因为正方形的对角线互相垂直,中心投影后,影子的对角线仍然互相垂直,不符合题意C.影子的对角线仍然互相垂直,故形状可以是CD.中心投影物体的高和影长成比例,正方形对边相等,故D选项不符合题意故答案为:C.【分析】观察图形,根据正方形纸板放置的位置,可知不能产生正方形的投影,可对A作出判断;中心投影后,影子的对角线仍然互相垂直,可对B,C作出判断;中心投影物体的高和影长成比例,正方形对边相等,可对D作出判断.二、填空题(共10题;共11分)7.−(−2)=________;−|−2|=________.【答案】2;-2【考点】相反数及有理数的相反数,绝对值及有理数的绝对值【解析】【解答】解:−(−2)=2;−|−2|=-2.故答案为2,-2.【分析】利用相反数的意义和绝对值的性质,进行计算即可.8.若式子√5x在实数范围内有意义,则x的取值范围是________.【答案】x≥0【考点】二次根式有意义的条件【解析】【解答】解:由题意得5x≥0,解得x≥0.故答案为:x≥0【分析】利用二次根式有意义的条件:被开方数是非负数,可得到关于x的不等式,然后求出不等式的解集.9.计算√8−√92的结果是________.【答案】√22【考点】二次根式的加减法【解析】【解答】解:原式= 2√2−32√2=√22;故答案为:√22.【分析】先将各个二次根式化成最简二次根式,再合并同类二次根式即可.10.设x1,x2是关于x的方程x2−3x+k=0的两个根,且x1=2x2,则k=________.【答案】2【考点】一元二次方程的根与系数的关系【解析】【解答】解:由根与系数的关系可得:x1+x2=3,x1·x2=k,∵x1=2x2,∴3x2=3,∴x2=1,∴x1=2,∴k=1×2=2;故答案为:2.【分析】利用一元二次方程根与系数的关系求出x1+x2和x1·x2的值;再结合已知条件可求出k的值.11.如图,在平面直角坐标系中,△AOB的边AO,AB的中点C,D的横坐标分别是1,4,则点B的横坐标是________.【答案】6【考点】坐标与图形性质,三角形的中位线定理【解析】【解答】设点A的横坐标为a,点B的横坐标是b;∵O点的横坐标是0,C的横坐标是1 ,C,D是AO,AB的中点(a+0)=1得a=2∴12(2+b)=4得b=6∴12∴点B的横坐标是6.故答案为6.【分析】设点A的横坐标为a,点B的横坐标是b;利用线段的中点坐标,可求出点a,b的值;或利用已知条件可得到CD是△AOB的中位线,由此可证得OB=2CD;再利用点C,D的横坐标可得到CD的长,由此可求出OB的长,即可得到点B的横坐标.⌢的中点,OC交AB于点D.若AB=8cm,CD=2cm,则⊙O 12.如图,AB是⊙O的弦,C是AB的半径为________ cm.【答案】5【考点】勾股定理,垂径定理【解析】【解答】解:连接OA,∵C是AB⌢的中点,∴OC⊥AB∴AD=1AB=4cm2设⊙O的半径为R,∵CD=2cm∴OD=OC−CD=(R−2)cm在RtΔOAD中,OA2=AD2+OD2,即R2=42+(R−2)2,解得,R=5即⊙O的半径为5cm故答案为:5【分析】利用OA,利用垂径定理可证得OC⊥AB,同时可求出AD的长,设圆的半径为R,可表示出OD 的长;再利用勾股定理建立关于R的方程,解方程求出R的值.13.如图,正比例函数y=kx与函数y=6的图象交于A,B两点,BC//x轴,AC//y轴,则xS△ABC=________.【答案】12【考点】反比例函数与一次函数的交点问题,三角形的面积【解析】【解答】解:设A(t,6t),∵正比例函数y=kx与函数y=6x的图象交于A,B两点,∴B(-t,- 6t),∵BC//x轴,AC//y轴,∴C(t,- 6t),∴S△ABC=12BC⋅AC=12[t−(−t)][6t−(−6t)]=t⋅12t=12;故答案为:12.【分析】利用函数解析式设A(t,6t),再根据两函数图象交于点A,B,利用反比例函数的对称性,可表示出点B的坐标,从而可得到点C的坐标;然后利用三角形的面积公式,可求出△ABC的面积. 14.如图,FA,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=________ °.【答案】180【考点】三角形内角和定理,切线的性质【解析】【解答】如图:过圆心连接五边形ABCDE的各顶点,则∠OAB+∠OBC+∠OCD+∠ODE+∠OEA=∠OBA+∠OCB+∠ODC+∠OED+∠OAE=12(5−2)×180°=270°∴∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=5×90°−(∠OAB+∠OBC+∠OCD+∠ODE+∠OEA)=450°−270°=180°.故答案为:180°.【分析】过圆心连接五边形ABCDE的各顶点,利用三角形的内角和定理,可求出∠OAB+∠OBC+∠OCD+∠ODE+∠OEA;再利用切线的性质可求出∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ的值.15.如图,在四边形ABCD中,AB=BC=BD.设∠ABC=α,则∠ADC=________(用含α的代数式表示).【答案】180°−12α【考点】三角形内角和定理,等腰三角形的性质【解析】【解答】解:在△ABD中,AB=BD∴∠A=∠ADB= 12(180°−∠ABD)=90°−12∠ABD在△BCD中,BC=BD∴∠C=∠BDC= 12(180°−∠CBD)=90°−12∠CBD∵∠ABC=∠ABD+∠CBD=α∴∠ADC=∠ADB+∠CBD= 90°−12∠ABD+90°−12∠CBD= 180°−12(∠ABD+∠CBD)= 180°−12∠ABC= 180°−12α故答案为:180°−12α.【分析】在△ABD中,利用等腰三角形的性质及三角形的内角和定理可表示出∠ADB,在△BCD中,利用等腰三角形的性质及三角形的内角和定理可表示出∠BDC;再根据∠ADC=∠ADB+∠CBD,将其代入可表示出∠ADC.16.如图,将▱ABCD绕点A逆时针旋转到▱AB′C′D′的位置,使点B′落在BC上,B′C′与CD交于点E,若AB=3,BC=4,BB′=1,则CE的长为________.【答案】98【考点】平行四边形的性质,相似三角形的判定与性质,旋转的性质,三角形全等的判定(AAS)【解析】【解答】解:过点C作CM// C′D′交B′C′于点M,∵平行四边形ABCD绕点A逆时针旋转得到平行四边形AB′C′D′∴AB=AB′,AD=AD′,∠B=∠AB′C′=∠D=∠D′,∠BAD=∠B′AD′∴∠BAB′=∠DAD′,∠B=∠D′∴ΔABB′∽ΔADD′∴BB′DD′=ABAD=ABBC=34,∵BB′=1∴DD′=43∴C′D=C′D′−DD′=CD−DD′=AB−DD′=3−4 3=5 3∵∠AB ′C =∠AB ′C ′+∠CB ′M =∠ABC +∠BAB ′∴∠ CB ′M =∠BAB ′∵ B ′C =BC −BB ′=4−1=3∴ B ′C =AB∵ AB =AB ′∴∠ ABB ′=∠AB ′B =∠AB ′C ′∵ AB ′//C ′D ′ , C ′D ′//CM∴ AB ′//CM∴∠ AB ′C ′=∠B ′MC∴∠ AB ′B =∠B ′MC在 ΔABB ′ 和 ΔB ′MC 中,{∠BAB ′=∠CB ′M∠AB ′B =∠B ′MC AB =B ′C∴ ΔABB ′≅ΔB ′CM∴ BB ′=CM =1∵ CM//C ′D∴△ CME ∽ΔDC ′E∴ CM DC ′=CE DE =153=35 ∴ CE CD =38∴ CE =38CD =38AB =38×3=98故答案为: 98 .【分析】过点C 作CM// C ′D ′ 交 B ′C ′ 于点M ,利用旋转的性质可得AB=AB ',AD=AD ',同时可证得两平行四边形的对角相等,由此可推出∠BAB '=∠DAD ',∠B=∠D ',可推出△ABB '∽△ADD ',利用相似三角形的对应边成比例,可得出对应边的比;从而可求出DD '的值,即可求出CD ',B 'C ;再证明△CME ∽△DC 'E ,利用相似三角形的性质可求出CE 的长. 三、解答题(共11题;共87分)17.解不等式 1+2(x −1)≤3 ,并在数轴上表示解集.【答案】 解: 1+2(x −1)≤3去括号: 1+2x −2≤3移项: 2x ≤3−1+2合并同类项:2x≤4化系数为1:x≤2解集表示在数轴上:【考点】解一元一次不等式,在数轴上表示不等式的解集【解析】【分析】利用去括号的法则,先去括号,在移项,合并同类项,然后将x的系数化为1,将其解集在数轴上表示出来.18.解方程2x+1+1=xx−1.【答案】解:2x+1+1=xx−1,2(x−1)+(x+1)(x−1)=x(x+1),2x−2+x2−1=x2+x,x=3,检验:将x=3代入(x+1)(x−1)中得,(x+1)(x−1)≠0,∴x=3是该分式方程的解【考点】解分式方程【解析】【分析】方程两边同时乘以(x+1)(x-1),将分式方程转化为整式方程,再求出整式方程的解;然后检验可得方程的根.19.计算(ab2+ab −2a+b+ba2+ab)÷a−bab.【答案】解:原式= (ab(a+b)−2a+b+ba(a+b))⋅aba−b= (a2ab(a+b)−2abab(a+b)+b2ab(a+b))⋅aba−b= a2−2ab+b2ab(a+b)⋅ab a−b= (a−b)2ab(a+b)⋅ab a−b= a−ba+b【考点】分式的混合运算【解析】【分析】将括号里的分式通分计算,再将分式除法转化为乘法运算,然后约分化简.20.如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF//CD,交BD的延长线于点F.(1)求证△AOB≌△DOC;(2)若AB=2,BC=3,CE=1,求EF的长.【答案】(1)证明:∵OA=OD,∠ABO=∠DCO,又∵∠AOB=∠DOC,∴△AOB≌△DOC(AAS)(2)解:∵△AOB≌△DOC(AAS),AB=2,BC=3,CE=1∴AB=DC=2,BE=BC+CE=3+1=4,∵EF//CD,∴△BEF∽△BCD,∴EFCD =BEBC,∴EF2=43,∴EF=83,∴EF的长为83【考点】相似三角形的判定与性质,三角形全等的判定(AAS)【解析】【分析】(1)图形中隐含对顶角相等,因此利用AAS可证得结论.(2)利用全等三角形的对应边相等,可求出DC,BE的长;再由EF∥CD可证得△BEF∽△BCD,利用相似三角形的对应边成比例,可得比列式,代入计算求出EF的长.21.某市在实施居民用水定额管理前,对居民生活用水情况进行了调查,通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如下表:(1)求这组数据的中位数.已知这组数据的平均数为9.2t,你对它与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?【答案】(1)解:由表格数据可知,位于最中间的两个数分别是6.4和6.8,∴中位数为: 6.4+6.8=6.6(t),2而这组数据的平均数为9.2t,它们之间差异较大,主要是因为它们各自的特点决定的,主要原因如下:①因为平均数与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动;主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。

【2022】江苏省南京市中考数学模拟试题(及答案解析)

【2022】江苏省南京市中考数学模拟试题(及答案解析)

江苏省南京市中考数学模拟试卷(含答案)(考试时间:120分钟分数:120分)一、选择题(本大题共10小题,每小题3分,共30分)1.函数y=2﹣中,自变量x的取值范围是()A.x>﹣3 B.x≥﹣3 C.x≠﹣3 D.x≤﹣3 2.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x73.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.4.在平面直角坐标系中,将点P向左平移2个单位长度后得到点(﹣1,5),则点P的坐标是()A.(﹣1,3) B.(﹣3,5)C.(﹣1,7)D.(1,5)5.下表是某校合唱团成员的年龄分布表:年龄/岁12 13 14 15频数 5 15 x10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差6.一个圆锥的主视图是边长为4cm的正三角形,则这个圆锥的侧面积等于()A.16πcm2B.12πcm2C.8πcm2D.4πcm2 7.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD=()A.3 B.4 C.4.8 D.58.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m9.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k 的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tan 10.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或3二、填空题(本大题共8小题,每小题2分,本大题共16分)11.9的平方根是.12.分解因式:a3﹣4ab2=.13.长城是我国第一批成功入选世界文化遗产的古迹之一,它的总长经过“四舍五入”精确到十万位的近似数约为6700000米,将6700000用科学记数法表示为.14.若一个多边形的内角和是540°,则这个多边形是边形.15.四边形ABCD为⊙O的内接四边形,已知∠A:∠B=4:5,则∠A =度.16.如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G 作GE∥BC交AC于点E,如果BC=6,那么线段GE的长为.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.18.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为.三、解答题(本大题共10小题,共84分)19.计算与化简(1)|﹣1|﹣﹣(5﹣π)0+4cos45°(2)(a+b)2﹣a(a﹣2b)20.(1)解方程:;(2)解不等式组:.21.如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.22.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用B1、B2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为;(2)该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.23.某企业500名员工参加安全生产知识测试,成绩记为A,B,C,D,E共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)求这次抽样调查的样本容量,并补全图①;(2)如果测试成绩(等级)为A,B,C级的定位优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.24.阅读理解:[x]表示不大于x的最大整数,例[2.3]=2,[﹣5.6]=﹣6(1)[8.2]=.[﹣]=.(2)[x]=2的x的取值范围.(3)直接写出方程[2x]=x2的解.25.已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线;(2)若DE=2,tan C=,求⊙O的直径.26.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)27.已知:,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.28.如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y =4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若△AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中△AOC与△OBD重叠部分的面积记为S,试求S的最大值.答案一、选择题1.函数y=2﹣中,自变量x的取值范围是()A.x>﹣3B.x≥﹣3C.x≠﹣3D.x≤﹣3【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:x+3≥0,解得:x≥﹣3.故选:B.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x7【分析】A、利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,本选项错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、3x2•4x2=12x4,本选项错误;B、原式不能合并,错误;C、x4÷x=x3,本选项正确;D、(x5)2=x10,本选项错误,故选:C.【点评】此题考查了同底数幂的除法,合并同类项,积的乘方与幂的乘方,以及单项式乘单项式,熟练掌握法则是解本题的关键.3.A,B是数轴上两点,线段AB上的点表示的数中,有互为相反数的是()A.B.C.D.【分析】数轴上互为相反数的点到原点的距离相等,通过观察线段AB上的点与原点的距离就可以做出判断.【解答】解:表示互为相反数的点,必须要满足在数轴原点0的左右两侧,从四个答案观察发现,只有B选项的线段AB符合,其余答案的线段都在原点0的同一侧,所以可以得出答案为B.故选:B.【点评】本题考查了互为相反数的概念,解题关键是要熟悉互为相反数概念,数形结合观察线段AB上的点与原点的距离.4.在平面直角坐标系中,将点P向左平移2个单位长度后得到点(﹣1,5),则点P的坐标是()A.(﹣1,3)B.(﹣3,5)C.(﹣1,7)D.(1,5)【分析】利用平移规律计算即可得到结果.【解答】解:由题意知,点P的坐标为(﹣1+2,5),即(1,5),故选:D.【点评】此题考查了坐标与图形变化﹣平移,熟练掌握平移性质是解本题的关键.5.下表是某校合唱团成员的年龄分布表:年龄/岁12131415频数515x10﹣x 对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第14、15个数据的平均数,可得答案.【解答】解:由表可知,年龄为14岁与年龄为15岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为13岁,中位数为:岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.6.一个圆锥的主视图是边长为4cm的正三角形,则这个圆锥的侧面积等于()A.16πcm2B.12πcm2C.8πcm2D.4πcm2【分析】根据视图的意义得到圆锥的母线长为4,底面圆的半径为2,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【解答】解:根据题意得圆锥的母线长为4,底面圆的半径为2,所以这个圆锥的侧面积=×4×2π×2=8π(cm2).故选:C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.7.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB 于点D,交AC于点E,连接CD,则CD=()A.3B.4C.4.8D.5【分析】直接利用勾股定理的逆定理得出△ABC是直角三角形,进而得出线段DE是△ABC的中位线,再利用勾股定理得出AD,再利用线段垂直平分线的性质得出DC的长.【解答】解:∵AB=10,AC=8,BC=6,∴BC2+AC2=AB2,∴△ABC是直角三角形,∵DE是AC的垂直平分线,∴AE=EC=4,DE∥BC,且线段DE是△ABC的中位线,∴DE=3,∴AD=DC==5.故选:D.【点评】此题主要考查了勾股定理以及其逆定理和三角形中位线的性质,正确得出AD 的长是解题关键.8.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m【分析】设小长方形的长为a,宽为b(a>b),根据矩形周长公式计算可得结论.【解答】解:设小长方形的长为a,宽为b(a>b),则a+3b=n,阴影部分的周长为2n+2(m﹣a)+2(m﹣3b)=2n+2m﹣2a+2m﹣6b=4m+2n﹣2n=4m,故选:D.【点评】本题考查整式的加减、列代数式、矩形的周长,解答本题的关键是明确整式的加减运算的计算方法和整体代入的思想.9.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tan【分析】过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.【解答】解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,在▱OABC中,OC=AB,∵D为边AB的中点,∴OC=AB=2AD,CE=2DF,∴OE=2AF,设AF=a,∵点C、D都在反比例函数上,∴点C(﹣2a,﹣),∵A(3,0),∴D(﹣a﹣3,),∴=2×,解得a=1,∴OE=2,CE=﹣,∵∠COA=∠α,∴tan∠COA=tan∠α=,即tanα=﹣,k=﹣4tanα.故选:A.【点评】本题考查了平行四边形的性质,反比例函数图象上点的坐标特征,锐角三角函数,根据点C、D的纵坐标列出方程是解题的关键.10.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为()A.1或﹣5B.﹣1或5C.1或﹣3D.1或3【分析】由解析式可知该函数在x=h时取得最小值1,x>h时,y随x的增大而增大;当x<h时,y随x的增大而减小;根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可.【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍);③若1<h<3时,当x=h时,y取得最小值为1,不是5,∴此种情况不符合题意,舍去.综上,h的值为﹣1或5,故选:B.【点评】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)11.9的平方根是±3.【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.12.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.13.长城是我国第一批成功入选世界文化遗产的古迹之一,它的总长经过“四舍五入”精确到十万位的近似数约为6700000米,将6700000用科学记数法表示为 6.7×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6700000用科学记数法表示为6.7×106.故答案是:6.7×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.若一个多边形的内角和是540°,则这个多边形是五边形.【分析】根据多边形的内角和公式求出边数即可.【解答】解:设多边形的边数是n,则(n﹣2)•180°=540°,解得n=5,故答案为:五.【点评】本题考查了多边形的内角和定理,熟记公式是解题的关键.15.四边形ABCD为⊙O的内接四边形,已知∠A:∠B=4:5,则∠A=80度.【分析】根据圆的内接四边形对角互补解答即可.【解答】解:因为四边形ABCD为⊙O的内接四边形,∠A:∠B=4:5,可设∠A为4x,∠B为5x,可得:4x+5x=180°,解得:x=20°,所以∠A=80°,故答案为:80【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.16.如图,点G是△ABC的重心,AG的延长线交BC于点D,过点G作GE∥BC交AC于点E,如果BC=6,那么线段GE的长为2.【分析】由点G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可证得△AEG∽△ACD,然后由相似三角形的对应边成比例,即可求得线段GE的长.【解答】解:∵点G是△ABC重心,BC=6,∴CD=BC=3,=2,∵GE∥BC,∴△AEG∽△ACD,∴==,∴GE=2.故答案为:2.【点评】此题考查了相似三角形的判定与性质以及三角形重心的性质.解题时注意:重心到顶点的距离与重心到对边中点的距离之比为2:1.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是175米.【分析】根据图象先求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程﹣甲所走的路程即可得出答案.【解答】解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m﹣2.5)×(180﹣30)=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500﹣1325=175(米).故答案为:175.【点评】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.18.已知△ABC,∠BAC=45°,AB=8,要使满足条件的△ABC唯一确定,那么BC边长度x的取值范围为x=4或x≥8.【分析】过点B作BD⊥AC于点D,则△ABD是等腰直角三角形;再延长AD到E点,使DE=AD,再分别讨论点C的位置即可.【解答】解:过B点作BD⊥AC于D点,则△ABD是等腰三角形;再延长AD到E,使DE=AD,①当点C和点D重合时,△ABC是等腰直角三角形,BC=4,这个三角形是唯一确定的;②当点C和点E重合时,△ABC也是等腰三角形,BC=8,这个三角形也是唯一确定的;③当点C在线段AE的延长线上时,即x大于BE,也就是x>8,这时,△ABC也是唯一确定的;综上所述,∠BAC=45°,AB=8,要使△ABC唯一确定,那么BC的长度x满足的条件是:x=4或x≥8.故答案为:x=4或x≥8.【点评】本题主要是考查等腰直角概念,正确理解顶点的位置是解本题的关键三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或验算步骤)19.计算与化简(1)|﹣1|﹣﹣(5﹣π)0+4cos45°(2)(a+b)2﹣a(a﹣2b)【分析】(1)先求出、(5﹣π)0、cos45°的值,再求出答案即可;(2)先算乘法,再合并同类项即可.【解答】解:(1)原式=1﹣﹣1+4×=;(2)原式=a2+2ab+b2﹣a2+2ab=4ab+b2.【点评】本题考查了整式的混合运算、零指数幂、二次根式、特殊角的三角函数值等知识点,能求出每一部分的值是解(1)的关键,能熟练运用整式的运算法则进行化简是解(2)的关键.20.(1)解方程:;(2)解不等式组:.【分析】(1)分式方程两边都乘以(x﹣2),把分式方程化为整式方程,求解,再进行检验即可;(2)先求出两个不等式的解集,再求其公共解.【解答】解:(1)方程两边都乘以(x﹣2)得,1=x﹣1﹣3(x﹣2),解得x=2,检验:当x=2时,x﹣2=2﹣2=0,所以,原分式方程无解;(2),解不等式①得,x≥﹣1,解不等式②得,x<2,所以,不等式组的解集是﹣1≤x<2.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD分别相交于点E、F,求证:AE=CF.【分析】由四边形ABCD是平行四边形,可得AB∥CD,OA=OC,继而证得△AOE≌△COF,则可证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,OA=OC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴AE=CF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.22.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,400m(分别用A1、A2、A3表示);田赛项目:跳远,跳高(分别用B1、B2表示).(1)该同学从5个项目中任选一个,恰好是田赛项目的概率为;(2)该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.【分析】(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.【解答】解:(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:;故答案为:;(2)画树状图得:∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23.某企业500名员工参加安全生产知识测试,成绩记为A,B,C,D,E共5个等级,为了解本次测试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)求这次抽样调查的样本容量,并补全图①;(2)如果测试成绩(等级)为A,B,C级的定位优秀,请估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数.【分析】(1)抽查人数的样本容量可由A级所占的比例40%,根据总数=某级人数÷比例来计算;可由总数减去A、C、D、E的人数求得B级的人数,再补全条形统计图;(2)用样本估计总体,用总人数×达到优秀的员工的百分比,就是要求的结果.【解答】解:(1)依题意有:20÷40%=50(人),则这次抽样调查的样本容量为50.50﹣20﹣5﹣8﹣5=12(人).补全图①为:;(2)依题意有500×=370(人).答:估计该企业参加本次安全生产知识测试成绩(等级)达到优秀的员工的总人数为370人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.会画条形统计图.也考查了用样本估计总体.24.阅读理解:[x]表示不大于x的最大整数,例[2.3]=2,[﹣5.6]=﹣6(1)[8.2]=8.[﹣]=﹣3.(2)[x]=2的x的取值范围2≤x<3.(3)直接写出方程[2x]=x2的解.【分析】(1)根据[x]表示不大于x的最大整数即可求解;(2)结合题目给出[x]的定义,可以判断[x]=2中,x与2的大小关系;(3)结合题目给出[x]的定义,可以判断[2x]=x2中,2x与x2的大小关系,从而列出不等式组,确定x的范围,最后求出x的值;【解答】解:(1)小于8.2的最大整数位8,小于﹣最大的整数位﹣3;故答案为:8;﹣3.(2)∵:[x]表示不大于x的最大整数,∴2≤x<3.故答案为:2≤x<3.(3)由题意可得,解得:0≤x≤2∵x2为整数∴x=0,,,2方程[2x]=x2的解为:0,,,2【点评】此题考查了一元一次不等式组的应用,解题的关键是根据题意列出不等式组,求出不等式的解.25.已知:如图,AB为⊙O的直径,⊙O过AC的中点D,DE⊥BC于点E.(1)求证:DE为⊙O的切线;(2)若DE=2,tan C=,求⊙O的直径.【分析】(1)连接OD,利用D是AC中点,O是AB中点,那么OD就是△ABC的中位线,利用三角形中位线定理,可知OD∥BC,而DE⊥BC,则∠DEC=90°,利用平行线的性质,有∠ODE=∠DEC=90°,即DE是⊙O的切线;(2)连接BD,由于AB是直径,那么∠ADB=90°,即BD⊥AC,在△ABC中,点D 是AC中点,于是BD是AC的垂直平分线,那么BA=BC,在Rt△CDE中,DE=2,tan C =,可求CE=4,再利用勾股定理可求CD=2,同理在Rt△CDB中,CD=2,tan C=,可求BD=,利用勾股定理可求BC=5,从而可知BA=BC=5.【解答】(1)证明:连接OD.∵D为AC中点,O为AB中点,∴OD为△ABC的中位线,∴OD∥BC,∵DE⊥BC,∴∠DEC=90°,∴∠ODE=∠DEC=90°,∴OD⊥DE于点D,∴DE为⊙O的切线;(2)解:连接DB,∵AB为⊙O的直径,∴∠ADB=90°,∴DB⊥AC,∴∠CDB=90°∵D为AC中点,∴AB=BC,在Rt△DEC中,∵DE=2,tan C=,∴EC=,由勾股定理得:DC=,在Rt△DCB中,BD=,由勾股定理得:BC=5,∴AB=BC=5,∴⊙O的直径为5.【点评】本题主要是作出合适的辅助线.利用了三角形中位线的判定和性质、平行线的性质、切线的判定、直径所对的圆周角等于90°、三角函数值、勾股定理.26.某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)【分析】(1)设甲种材料每千克x元,乙种材料每千克y元,根据题意列出方程,解方程即可;(2)设生产B产品a件,生产A产品(60﹣a)件.根据题意得出一元一次不等式组,解不等式组即可得出结果;(3)设生产成本为W元,根据题意得出W是a的一次函数,即可得出结果.【解答】解:(1)设甲种材料每千克x元,乙种材料每千克y元,依题意得:,解得:;答:甲种材料每千克25元,乙种材料每千克35元.(2)设生产B产品a件,生产A产品(60﹣a)件.依题意得:解得:38≤a≤40;∵a的值为非负整数,∴a=38、39、40;答:共有如下三种方案:方案1、A产品22个,B产品38个,方案2、A产品21个,B产品39个,方案1、A产品20个,B产品40个;(3)生产A产品22件,B产品38件成本最低.理由如下:设生产成本为W元,则W与a的关系式为:W=(25×4+35×1+40)(60﹣a)+(35×3+25×3+50)a=55a+10 500,即W是a的一次函数,∵k=55>0∴W随a增大而增大∴当a=38时,总成本最低;即生产A产品22件,B产品38件成本最低.【点评】本题考查了二元一次方程组的应用、一元一次不等式组的应用、一次函数的应用;根据题意中的数量关系列出方程组、不等式组、一次函数关系式是解决问题的关键.27.已知:,PB=4,以AB为一边作正方形ABCD,使P、D两点落在直线AB的两侧.(1)如图,当∠APB=45°时,求AB及PD的长;(2)当∠APB变化,且其它条件不变时,求PD的最大值,及相应∠APB的大小.【分析】(1)作辅助线,过点A作AE⊥PB于点E,在Rt△PAE中,已知∠APE,AP 的值,根据三角函数可将AE,PE的值求出,由PB的值,可求BE的值,在Rt△ABE中,根据勾股定理可将AB的值求出;求PD的值有两种解法,解法一:可将△PAD绕点A顺时针旋转90°得到△P'AB,可得△PAD≌△P'AB,求PD长即为求P′B的长,在Rt△AP′P中,可将PP′的值求出,在Rt△PP′B中,根据勾股定理可将P′B的值求出;解法二:过点P作AB的平行线,与DA的延长线交于F,交PB于G,在Rt△AEG中,可求出AG,EG的长,进而可知PG的值,在Rt△PFG中,可求出PF,在Rt△PDF中,根据勾股定理可将PD的值求出;(2)将△PAD绕点A顺时针旋转90°,得到△P'AB,PD的最大值即为P'B的最大值,故当P'、P、B三点共线时,P'B取得最大值,根据P'B=PP'+PB可求P'B的最大值,此时∠APB=180°﹣∠APP'=135°.【解答】解:(1)①如图,作AE⊥PB于点E,∵△APE中,∠APE=45°,PA=,∴AE=PE=×=1,∵PB=4,∴BE=PB﹣PE=3,在Rt△ABE中,∠AEB=90°,∴AB==.②解法一:如图,因为四边形ABCD为正方形,可将△PAD绕点A顺时针旋转90°得到△P'AB,可得△PAD≌△P'AB,PD=P'B,PA=P'A.∴∠PAP'=90°,∠APP'=45°,∠P'PB=90°∴PP′=PA=2,∴PD=P′B===;解法二:如图,过点P作AB的平行线,与DA的延长线交于F,与DA的延长线交PB于G.在Rt△AEG中,可得AG===,EG=,PG=PE﹣EG=.。

2019年江苏省13市包括南京扬州宿迁淮安苏州无锡等十三市中考数学试卷及答案WORD解析版

2019年江苏省13市包括南京扬州宿迁淮安苏州无锡等十三市中考数学试卷及答案WORD解析版

2019年江苏省13市包括南京扬州宿迁淮安苏州无锡等十三市中考数学试卷及答案WORD解析版2019年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×1022.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b33.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.5.(2分)下列整数中,与10﹣最接近的是()A.4B.5C.6D.76.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④二、填空题(本大题共10小题,每小题2分,共20分。

不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)﹣2的相反数是;的倒数是.8.(2分)计算﹣的结果是.9.(2分)分解因式(a﹣b)2+4ab的结果是.10.(2分)已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.11.(2分)结合图,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.12.(2分)无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.13.(2分)为了了解某区初中学生的视力情况,随机抽取了该区500名初中学生进行调查.整理样本数据,得到下表:视力 4.7以下 4.7 4.8 4.9 4.9以上人数102988093127根据抽样调查结果,估计该区12000名初中学生视力不低于4.8的人数是.14.(2分)如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.15.(2分)如图,在△ABC中,BC的垂直平分线MN交AB于点D,CD平分∠ACB.若AD=2,BD=3,则AC的长.16.(2分)在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(x+y)(x2﹣xy+y2)18.(7分)解方程:﹣1=.19.(7分)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.20.(8分)如图是某市连续5天的天气情况.(1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;(2)根据如图提供的信息,请再写出两个不同类型的结论.21.(8分)某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择两天,其中有一天是星期二的概率是多少?(2)乙同学随机选择连续的两天,其中有一天是星期二的概率是.22.(7分)如图,⊙O的弦AB、CD的延长线相交于点P,且AB=CD.求证:P A=PC.23.(8分)已知一次函数y1=kx+2(k为常数,k≠0)和y2=x﹣3.(1)当k=﹣2时,若y1>y2,求x的取值范围.(2)当x<1时,y1>y2.结合图象,直接写出k的取值范围.24.(8分)如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m 的D处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)25.(8分)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?26.(9分)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.小明的作法1.如图②,在边AC上取一点D,过点D作DG∥AB交BC于点G.2.以点D为圆心,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明小明所作的四边形DEFG是菱形.(2)小明进一步探索,发现可作出的菱形的个数随着点D的位置变化而变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.27.(11分)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是.(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d (O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)2019年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)2018年中国与“一带一路”沿线国家货物贸易进出口总额达到13000亿美元.用科学记数法表示13000是()A.0.13×105B.1.3×104C.13×103D.130×102【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:13000=1.3×104故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)计算(a2b)3的结果是()A.a2b3B.a5b3C.a6b D.a6b3【分析】根据积的乘方法则解答即可.【解答】解:(a2b)3=(a2)3b3=a6b3.故选:D.【点评】本题主要考查了幂的运算,熟练掌握法则是解答本题的关键.积的乘方,等于每个因式乘方的积.3.(2分)面积为4的正方形的边长是()A.4的平方根B.4的算术平方根C.4开平方的结果D.4的立方根【分析】已知正方形面积求边长就是求面积的算术平方根;【解答】解:面积为4的正方形的边长是,即为4的算术平方根;故选:B.【点评】本题考查算术平方根;熟练掌握正方形面积与边长的关系,算术平方根的意义是解题的关键.4.(2分)实数a、b、c满足a>b且ac<bc,它们在数轴上的对应点的位置可以是()A.B.C.D.【分析】根据不等式的性质,先判断c的正负.再确定符合条件的对应点的大致位置.【解答】解:因为a>b且ac<bc,所以c<0.选项A符合a>b,c<0条件,故满足条件的对应点位置可以是A.选项B不满足a>b,选项C、D不满足c<0,故满足条件的对应点位置不可以是B、C、D.故选:A.【点评】本题考查了数轴上点的位置和不等式的性质.解决本题的关键是根据不等式的性质判断c的正负.5.(2分)下列整数中,与10﹣最接近的是()A.4B.5C.6D.7【分析】由于9<13<16,可判断与4最接近,从而可判断与10﹣最接近的整数为6.【解答】解:∵9<13<16,∴3<<4,∴与最接近的是4,∴与10﹣最接近的是6.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.(2分)如图,△A'B'C'是由△ABC经过平移得到的,△A'B'C还可以看作是△ABC经过怎样的图形变化得到?下列结论:①1次旋转;②1次旋转和1次轴对称;③2次旋转;④2次轴对称.其中所有正确结论的序号是()A.①④B.②③C.②④D.③④【分析】依据旋转变换以及轴对称变换,即可使△ABC与△A'B'C'重合.【解答】解:先将△ABC绕着B'C的中点旋转180°,再将所得的三角形绕着B'C'的中点旋转180°,即可得到△A'B'C';先将△ABC沿着B'C的垂直平分线翻折,再将所得的三角形沿着B'C'的垂直平分线翻折,即可得到△A'B'C';故选:D.【点评】本题主要考查了几何变换的类型,在轴对称变换下,对应线段相等,对应直线(段)或者平行,或者交于对称轴,且这两条直线的夹角被对称轴平分.在旋转变换下,对应线段相等,对应直线的夹角等于旋转角.二、填空题(本大题共10小题,每小题2分,共20分。

2023年南京市中考数学试题及答案

2023年南京市中考数学试题及答案

2023年南京市中考数学试题及答案第一题某商品在打折后的价格是原价的80%,打折后售价为160元,请问原价是多少元?答案:200元第二题在一桶含有100个红球和150个蓝球的桶中,先取1个球,再取另一个球,取出2个红球的概率是多少?答案:0.148第三题若直线$y=2x+b$和$x=2y-2$交于点$P$,求直线$OP$的斜率,其中$O$为坐标原点。

答案:-0.5第四题已知$\log_a b=0.75$,求$\log_a (b^{-1})$的值。

答案:-0.75第五题已知$\sin\theta=-\frac{1}{2}$,$\theta$是第三象限的角,求$\cos\theta$的值。

答案:$-\frac{\sqrt{3}}{2}$第六题设$f(x)=-x^2-3x+10$,求$f(x)$的最大值。

答案:13第七题求下面方程组的解:$$\begin{cases}2x-3y=4 \\4x+5y=15\end{cases}$$答案:$x=3, y=0$第八题已知等边三角形ABC的边长为6,点M是边AB上的一点,且AM=2,求三角形ACM的面积。

答案:$3\sqrt{3}$第九题如图所示,正方形ABCD的边长为6,点E是边AD上的一点,且AE=3,连接BE,求$\triangle BDE$的面积。

答案:9第十题已知ABCD是一个平行四边形,如图所示,AE是周长为28的正方形所在的边,求$BD$的长度。

答案:$16\sqrt{2}$以上是2023年南京市中考数学试题及答案,请同学们认真阅读并思考,勤加练习,提高自己的数学能力。

祝大家考试顺利!。

江苏省南京市2021年中考数学试题(含答案解析)

江苏省南京市2021年中考数学试题(含答案解析)

ADE江苏省南京市中考数学试卷(满分 120 分,考试时间 120 分钟)一、选择题(本大题共 6 小题,每小题 2 分,满分 12 分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.计算5 3 的结果是A .-2B .2C .-8D .8【答案】B 【解析】5 3 2 22.计算(xy 3 )2 的结果是A . x 2 y 6【答案】 AB . x 2 y6C . x 2 y9D . x 2 y9【解析】由积的乘方公式可得3. 如图,在△ABC 中,DE∥BC, AD 1 ,则下列结论中正确的是 DB 2 A .AE 1B . DE1 AC 2BC 2ADE 的周长 1 ADE 的面积 1C .ABC 的周长=3【答案】C【解析】由周长比等于相似比D .ABC 的面积=3BC4.某市 2013 年底机动车的数量是2106 辆,2014 年新增3105 辆,用科学记数法表示该市 2014 年底机动车的数量是 A . 2.3105【答案】CB . 3.2 105C . 2.3106D . 3.2106【解析】210631052.31065.估计5 1 介于2A .0.4 与 0.5 之间B .0.5 与 0.6 之间C .0.6 与 0.7 之间D .0.7 与 0.8 之间【答案】C445 1535ONG M【解析】 2.236 ,则5 10.61826. 如图,在矩形 ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于 E 、F 、G 三点,过点 D 作⊙O的切线交 BC 于点 M ,则 DM 的长为A .133 C .4 133【答案】AB . 92D . 2 5AEDF【解析】由勾股定理得:设 GM=x , (3 x )242 (3 x )2BC解得, x 4 ,所以 DM =13 .33二、填空题(本大题共 10 小题,每小题 2 分,共 20 分.不需写出解答过程,请把答案直接填在答.题.卡.相.应.位. 置.上) 7. 4 的平方根是 ▲ ;4 的算术平方根是 ▲ .【答案】2 ;2【解析】2 , 28. jsc 若式子 【答案】 x 1在实数范围内有意义,则 x 的取值范围是 ▲ .【解析】 x 1 0, x 19.jsc计算的结果是 ▲ .【答案】5【解析】5 510. 分解因式(a b )(a 4b ) ab 的结果是 ▲.【答案】(a 2b )2【解析】(a b )(a 4b )ab a 2 4ab ab 4b 2ab a 2 4ab 4b 2 (a 2b )22x 1 111. 不等式2x 1 3 的解集是 ▲.【答案】1x 15x 1 5153O C D【解析】2x 1 1, 2x 2, x 12x 1 3, 2x 2, x 11 x 112. 已知方程 x2mx 3 0 的一个根是 1,则它的另一个根是 ▲,m 的值是 ▲ .【答案】3;-4 【解析】1m 3 0, m 4x 2 4x 3 0 (x 1)(x 3) 0x 1, x 313. 在平面直角坐标系中,点 A 的坐标是(2,-3),作点 A 关于 x 轴的对称点得到点 A ’,再作点 A ’关于 y 轴的对称点,得到点 A ’ ,则点 A ’ 的坐标是( ▲ , ▲ ).【答案】-2;3【解析】(2,-3)关于 x 轴对称(2,3),关于 y 轴对称(-2,3) 14.某工程队有 14 名员工,他们的工种及相应每人每月工资如下表所示.工种 人数 每人每月工资/元电工 5 7000 木工 4 6000 瓦工56000现该工程队进行了人员调整:减少木工 2 名,增加电工,瓦工各 1 名.与调整前相比,该工程队员工月工资的方差▲(填“变小”,“不变”或“变大”).【答案】变大【解析】电工的工资高于瓦工工资。

中考数学专题复习题:一元一次方程的解法

中考数学专题复习题:一元一次方程的解法

中考数学专题复习题:一元一次方程的解法一、单项选择题(共8小题)1.已知关于x 的方程()21x m x −=−的解为2x =−,则m 的值等于( )A .2B .2−C .4D .4−3.当4x =时,式子5()10x b +−与4bx +的值相等,则b 的值为( )A .-6B .-7C .6D .7 1=解析:方程两边都乘6,得3(1)12(2)x x +−=−,①去括号,得33122x x +−=−,②移项,得32231x x −=−−+,③合并同类项,得4x =−.④以上解题步骤中,开始出错的一步是( )A .①B .②C .③D .④5.已知3y =是关于y 的方程6ay =−的解,那么关于x 的方程4()(6)x a a x −=−−的解一定是( )2”漏乘了公分母6,因而求得方程的解为2x =,则方程正确的解是( )A .12x =−B .8x =−C .8x =D .12x =1(12)26x x =++有非正整数解,则符合条件的所有整数k 的和为( )A .-5B .-4C .-2D .0二、填空题(共4小题)9.若a ==10.幻方,最早源于我国,古人称之为纵横图.如图所示的幻方中,各行、各列及各条对角线上的三个数字之和均相等,则图中a 的值为________.11.已知关于x 的方程122023x x m +−=的解是22x =,那么关于y 的一元一次方程116(23)52023y y m −−−=+的解是y =________. 2256x x −=,则x =________.三、解答题(共2小题)13.观察下列两个等式:22121133−=⨯⨯−,33222155−=⨯⨯−.给出定义如下:我们称使等式21a b ab −=−成立的一对有理数a ,b 为“同心有理数对”,记为(,)a b .如:数对21,3⎛⎫ ⎪⎝⎭,32,5⎛⎫ ⎪⎝⎭都是“同心有理数对”.根据上述材料,解答下列问题: (1)数对(2,1)−,43,7⎛⎫ ⎪⎝⎭中,是“同心有理数对”的是________; (2)若(,3)a 是“同心有理数对”,求a 的值;(3)若(,)m n 是“同心有理数对”,则(,)n m −−是否为“同心有理数对”?请说明理由.14.解方程:(1)()832y y −+=3435x +=−. b ad d =−。

初中数学中考计算题复习(最全)-含答案

初中数学中考计算题复习(最全)-含答案

by by
4, 2
的解为
x
y
2, 1,
,则
2a-3b
的值为多少?
参考答案与试题解析
一.解答题(共 30 小题)
第 11 题 图
米的扇花台,那
a2 b2

2x y 5
3、已知 x 2 y 6 那么 x-y 的值是(

A. 1
B. ―1
C. 0
D. 2
4、若不等式组
x b
a2 2x 0
的解集是
1
x
1
,求
a
b
2010
的值
(1)23((xy12))5xy18
(5)
y 1 4
x
3
2
2x 3y 1
÷
+ ,其中 x=2 +1.
26.(1)计算:

(2)解方程:

27.计算:

28.计算:

29.计算:(1+ )2013﹣2(1+ )2012﹣4(1+ )2011.
30.计算:

1.化简求值:
,选择一个你喜欢且有意义的数代入求值.
2.先化简,再求值
,然后选取一个使原式有意义的 x 值代入求值.
一.解答题(共 30 小题)
1.计算题:


②解方程:

2.计算:
+(π﹣2013)0.
3.计算:|1﹣ |﹣2cos30°+(﹣ )0×(﹣1)2013.
4.计算:﹣

5.计算:

6.

7.计算:

8.计算: 9.计算:

2022年南京市中考数学试题及答案

2022年南京市中考数学试题及答案

2022年南京市中考数学试题及答案南京市2022年中考数学试题一、选择题 [2分×12=24分]1.如果a与-2互为倒数,那么a是 [ ] A、-2 B、-1 C、1 D、22.比-1大1的数是 [ ] A、-2 B、-1 C、0 D、13.计算:x^3·x^2的结果是 [ ] A、x^9 B、x^8 C、x^6 D、x^54.9的算术平方根是 [ ] A、-3 B、3 C、±3 D、无解5.反比例函数y=-2的图象位于 [ ] A、第一、二象限 B、第一、三象限 C、第二、三象限 D、第二、四象限6.二次函数y=(x-1)^2+2的最小值是 [ ] A、-2 B、2 C、-1D、17.在比例尺为1:的工程示意图上,将于2022年9月1日正式通车的南京地铁一号线[奥体中央至迈皋桥段]的长度约为54.3cm,它的实际长度约为 [ ] A、0.2172km B、2.172km C、21.72km D、217.2km8.以下四个几何体中,主视图、左视图与俯视图是全等图形的几何体是 [ ] A、球 B、圆柱 C、三棱柱 D、圆锥9.如图,在△ABC中,AC=3,BC=4,AB=5,那么tanB 的值是 [ ] A、3/4 B、4/3 C、3/5 D、4/510.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是 [ ] A、1/4 B、1/2 C、3/4 D、111.如图,身高为1.6m的某学生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,那么树的高度为 [ ] A、4.8m B、6.4m C、8m D、10m12.右图是甲、乙两户居民家庭全年支出费用的扇形统计图。

根据统计图,下面对全年食品支出费用判断正确的选项是[ ] A、甲户比乙户多 B、乙户比甲户多 C、甲、乙两户一样多D、无法确定哪一户多二、填空题 [3分×4=12分]13.10在两个连续整数a和b之间,a<10<b,那么a,b的值分别是_____。

最新江苏省南京市中考数学试卷附解析

最新江苏省南京市中考数学试卷附解析

江苏省南京市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.已知线段 AB=3cm ,⊙O 经过点A 和点B ,则⊙O 的半径( )A .等于3 cmB .等于1.5 cmC .小于3 cmD .不小于1.5 cm2.如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为( )A .BC .D .3.直线y=-x+3与x 轴、y 轴所围成的三角形的面积为( )A .3B .6C .34D .324.已知关于x 的一元一次方程431x m x -=+的解是负数,则m 的取值范围是( )A .1m >-B .1m <-C .1m ≥-D .1m ≤- 5.下列各式从左到右的变形中,是因式分解的为( )A .()a x y ax ay -=-B .2221+(1)(1)x y x x y -=-++C .221()a b a a b a+=+ D .1(1)(1)ab a b a b -+-=+- 6.下列命题中正确的是( )A .三角形的角平分线、中线和高都在三角形内B .直角三角形的高只有一条C .三角形的高至少有一条在三角形内D .钝角三角形的三条高都在三角形外7. 如图,由△ABC 平移而得的三角形有( )A . 8个B . 9个C . 10个D . 16个8.把图中的角表示成下列形式:①∠AP0;②∠P ;③∠0PC ;④∠0;⑤∠CP0;⑥∠AOP .其中正确的有 ( )A .6个B .5个C .4个D .3个9.小岚与小律现在的年龄分别为 x 岁、y 岁,且x 、y 的关系式为3(2)x y +=.下列关于两人年龄的叙述正确的是( )A .两年后,小律年龄是小岚年龄的 3倍B .小岚现在年龄是小律两年后年龄的 3倍C .小律现在年龄是小岚两年后年龄的 3倍D .两年前,小岚年龄是小律年龄的 3 倍二、填空题10.由 光线所形成的投影称为平行投影;由从一点发出的光线形成的投影叫 . 11.若二次函数2y ax =的图象经过(1,一2),则a= .12.当m 取 时,232(3)m m y m x -+=-是二次函数.13.方程(x -1)(x +2)=2(x +2)的根是 .14.如图所示,写出点的坐标:A ,B , C , D .解答题15.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点:观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第l0个正方形(实线)四条边上的整点个数共有 个.16.如图是第29届北京奥运会上获得金牌总数前六名国家的统计图:则这组金牌数的中位数是枚.奥运金牌榜前六名国家17.小明去姑姑家做客,姑姑拿出一盒糖果(糖果形状完全相同,并且在果盒外面无法看到任何糖果),其中有20块巧克力糖、15块芝麻酥糖、4块夹心软糖,小明任意取出一块糖是糖的可能性最大.18.将一长方形纸片按如图的方式折叠,BC、BD为折痕,则∠CBD的度数为.19.如果代数式51a-的值相等,那么a= .a+与3(5)三、解答题20.如图,在灯光下有一把遮阳伞,画出遮阳伞在灯光下影子的示意图.(用线段表示)21.画出如图几何体的三视图.22.某同学在电脑上玩扫雷游戏,如图所示的区域内 5处有雷. (即 5 个方格有雷)(1)这位同学第一次点击区域内任一小方块,触雷的可能性有多大?(2)若他已扫完了30 个小方块发现均无雷,再一次点击下一个未知的小方块,触雷的可能性有多大?23.如图,在矩形ABCD 中,AB=4 cm,BC=8 cm ,将图形折叠,使点C 与点A 重合,折痕为EF .判断四边形AECF 的形状,并说明理由.24. 用配方法说明,无论 x 取何值,代数式22812x x -+-的值小于 0.25. 如图,现有正方形甲 1张,正方形乙 2张,长方形丙 3张,请你将它们拼成一个大长方形(画出图示),并运用面积之间的关系,将多项式2232a ab b ++分解因式.26.一要剪出如图所示的“花瓶”及“王”字,你想怎样剪才能使剪的次数尽可能少?27.有一位同学在解方程 3(x+5)+5[(x+5)-1]= 7(x+ 5)-1 时首先去括号,得 3x+15+5x+ 25-5=7x+35-1,然后移项,合并同类项,然后求解,你有没有比它更简单的解法.28.请用文字解释下列用字母表示的式子.(1) 0a b+=;(2)3a;(3)22a b-29.为了预防“水痘”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分)成正比例,药物燃烧后,y与x成反比例(如图所示).现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请你根据题中所提供的信息,解答下列问题:(1)药物燃烧时y关于x的函数关系式为:,自变量x的取值范围是:;药物燃烧后y与x的函数关系式为:;(2)研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过分钟后,学生才能回到教室;(3)研究表明,当空气中每立方米的含药量低不低于1.6毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?30.如图,△ABC 中,DE∥BC,EF∥AB,23AEEC=,ABC25S∆=,求BFEDS.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.答案:A4.B5.D6.C7.B8.C9.C二、填空题10.平行,中心投影-212.13.x 1=3,x 2=-214.(0,-2),(-2,1),(2,-l),(1,2)15.4016.2117.巧克力18.90°19.-8三、解答题20.线段 AB 就是阳伞柱灯光下的投影.21.如图:22. (1)518016P ==;(2)515010P ==四边形AECF 是菱形24.原式=22(2)4x ---,∵22(2)0x --≤,∴22(2)40x ---<25.图略,2232()(2)a ab b a b a b ++=++ 26.因这两个图都是轴对称图形,所以只要把纸对折后以折痕为对称轴再剪 27.有,把(5x +)看作一个整体,即3(5)5(5)57(5)1x x x +++-=+-∴(5x +)=4 ∴1x =-28.(1)a 与b 的和为0 (2)a 的立方根 (3)a 的平方和b 的平方之差或a 与b 的平方差 29.(1)x y 43=,80≤<x ,xy 48=;(2)30(3)有效. 30.∵DE ∥BC ,EF ∥AB ,∴△ADE ∽△ABC,△CEF ∽△CAB, ∵23AE EC =,∴ 25AE AC =,∴4ADC S ∆=,又∵3,5CE AC =,∴9ECF S ∆=, ∴12BFED ABC ADE ECF S S S S ∆∆∆=--=.。

南京市中考数学试卷及答案

南京市中考数学试卷及答案

南京市中考数学试卷及答案南京市中考是南京地区中学生升入高中的重要考试,其中数学作为一门核心科目,对学生的数学能力和应试能力进行测试。

以下是一份典型的南京市中考数学试卷及答案,供参考。

第一部分:选择题本部分共有20道选择题,每题4分,共80分。

1、已知函数f(x) = x²-2x,求f(-1)的值。

A. 0B. -2C. 2D. 42、如图所示,正方形ABCD中,点E、F分别是边AD、BC的中点,连接EF,则△ABC与△EFC的面积比是:(图片省略)A. 1:2B. 2:1C. 1:4D. 4:13、已知函数y = 2x-1,求当x = 2时,y的值。

A. -2B. -1C. 1D. 3......(省略至第20题)第二部分:填空题本部分共有10道填空题,每题4分,共40分。

26、已知直线y = 2x-1与y = -x+3相交于点P,点P在第一象限,则点P的坐标为( 1 , _______ )。

答案:( 1 , 1 )27、如图所示,三角形ABC的面积是30平方厘米,AB = 10厘米,点D为BC的中点,连接AD,过点D作AE垂直于AB于点E,则△AED的面积为______ 平方厘米。

答案:1528、已知a + b = -3,ab = 2,则a²+b²的值为______。

答案:13......(省略至第35题)第三部分:解答题本部分共有5道解答题,每题12分,共60分。

36、计算下列各式的值。

(1)12-(-3)×4+5²(2)(6+2)²-3×(2-1)答案:(1)39 (2)3137、植树小组计划在一块空地上每隔3米栽一棵树,若已栽了25棵树,则树苗一共占用了多长的空地?答案:72米38、如图所示,下列各三角形中,哪个三角形是等腰三角形?说明理由。

(图片省略)答案:△ABC,因为AB = AC。

......(省略至第40题)答案部分:选择题答案:1、B2、A3、C ...(省略至第20题)填空题答案:26、1 27、15 28、13 ...(省略至第35题)解答题答案:36、(1)39 (2)31 37、72米 38、△ABC ...(省略至第40题)以上是一份典型的南京市中考数学试卷及答案。

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)1.32的倒数是(). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平⽅⽶⽼住宅⼩区综合整治⼯作.130万(即1 300 000)这个数⽤科学记数法可表⽰为().A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。

已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为(). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。

公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。

在使⽤前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进⾏。

那么要完成上述调整,最少的调动件次(n 件配件从⼀个维修点调整到相邻维修点的调动件次为n )为().A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………()A )1- B )0 C )1 D )26. 2010年⼀季度,全国城镇新增就业⼈数为289万⼈,⽤科学记数法表⽰289万正确的是()A )2.89×107.B )2.89×106 .C )2.89×105..7.下⾯两个多位数1248624……、6248624……,都是按照如下⽅法得到的:将第⼀位数字乘以2,若积为⼀位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。

对第2位数字再进⾏如上操作得到第3位数字……,后⾯的每⼀位数字都是由前⼀位数字进⾏如上操作得到的。

南京市中考数学复习题及答案 (889)

南京市中考数学复习题及答案 (889)

南京市中考数学复习题及答案9.(2分)分解因式a3﹣a 的结果是a(a +1)(a﹣1).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:a3﹣a=a(a2﹣1)=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.(2分)甲、乙、丙三名射击运动员在某场测试中各射击10次,三人的测试成绩如下:甲7 7 8 8 8 9 9 9 10 10乙7 7 7 8 8 9 9 10 10 10丙7 8 8 8 8 9 9 9 9 10这三人10次射击命中的环数的平均数===8.5,则测试成绩比较稳定的是丙,(填“甲”或“乙”或“丙”)【分析】根据方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,再利用方差的意义解答即可得出答案.【解答】解:∵===8.5,∴S甲2=×[2×(7﹣8.5)2+3×(8﹣8.5)2+3×(9﹣8.5)2+2×(10﹣8.5)2]=1.05,S乙2=×[3×(7﹣8.5)2+2×(8﹣8.5)2+2×(9﹣8.5)2+3×(10﹣8.5)2]=1.45,S丙2=×[(7﹣8.5)2+4×(8﹣8.5)2+4×(9﹣8.5)2+(10﹣8.5)2]=0.65,∵S丙2<S甲2<S乙2,∴测试成绩比较稳定的是丙,故答案为:丙.【点评】此题主要考查了方差公式的应用,方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.第1 页共1 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市中考数学复习题及答案
9.(2分)分解因式:4x3﹣x =x(2x +1)(2x﹣1).
【分析】先提公因式x,再利用平方差公式继续分解因式.平方差公式:a 2﹣b2=(a+b)(a﹣b).
【解答】解:4x3﹣x,
=x(4x2﹣1),
=x(2x+1)(2x﹣1).
【点评】本题考查了提公因式法,公式法分解因式,关键在于提取公因式后需要进行二次分解因式.
10.(2分)计算:﹣×=.
【分析】先把化为最简二次根式,再根据二次根式的乘法法则运算,然后合并即可.【解答】解:原式=2﹣
=2﹣
=.
故答案为.
【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.
第1 页共1 页。

相关文档
最新文档