解析几何综合题和答案
大学解析几何考试题及答案详解
大学解析几何考试题及答案详解一、选择题1. 下列哪个选项不是平面直角坐标系中的点的坐标表示?A. (x, y)B. (y, x)C. (-3, 4)D. (2, -5)答案:B详解:在平面直角坐标系中,点的坐标表示为有序数对 (x, y),其中 x 表示横坐标,y 表示纵坐标。
选项 B 中的表示 (y, x) 与常规的坐标表示不符,因此不是正确的坐标表示。
2. 已知点 A(2, 3) 和点 B(5, 1),线段 AB 的中点 M 的坐标是多少?A. (3, 2)B. (4, 2)C. (3.5, 2)D. (2, 1)答案:B详解:线段的中点坐标可以通过求两个端点坐标的平均值得到。
对于点 A(2, 3) 和点 B(5, 1),中点 M 的坐标为:M(x, y) = ((x1 + x2) / 2, (y1 + y2) / 2) = ((2 + 5) / 2,(3 + 1) / 2) = (3.5, 2)因此,正确答案是 C,但选项 B 也正确,这里可能是题目选项设置的错误。
二、填空题1. 如果一条直线的斜率 k = 2,且通过点 (1, 3),那么这条直线的方程是 ____________。
答案:y - 3 = 2(x - 1)详解:已知直线的斜率 k 和一个点 (x1, y1),可以使用点斜式方程 y - y1 = k(x - x1) 来表示直线。
将已知的斜率 k = 2 和点 (1, 3) 代入,得到直线方程 y - 3 = 2(x - 1)。
2. 椭圆的标准方程是 ________,其中 a 和 b 是椭圆的长半轴和短半轴。
答案:(x^2 / a^2) + (y^2 / b^2) = 1详解:椭圆的标准方程是以椭圆的中心为原点的坐标系中,椭圆的长半轴为 a,短半轴为 b 时的方程。
这个方程描述了所有到椭圆两个焦点距离之和等于常数 2a 的点的集合。
三、解答题1. 已知直线 l1: y = x + 1 与直线 l2: y = -2x + 6 相交于点 P。
立体几何、解析几何综合10题(含答案)
城北中学高二上期第八周20班周末双休数学练笔题目及参考答案1、已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,求双曲线方程.解: 由椭圆方程可得椭圆的焦点为F (0,±4),离心率e =45,所以双曲线的焦点为F (0,±4),离心率为2,从而c =4,a =2,b =2 3.所以双曲线方程为y 24-x 212=1.2、如图4所示,矩形ABCD 中,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE .(1)求证:AE ⊥平面BCE ; (2)求证:AE ∥平面BFD ;(1)证明 ∵AD ⊥平面ABE ,AD ∥BC , ∴BC ⊥平面ABE ,则AE ⊥BC . 又∵BF ⊥平面ACE ,则AE ⊥BF ,又BC ∩BF =B ,∴AE ⊥平面BCE .(2)证明 由题意可得G 是AC 的中点,连结FG , ∵BF ⊥平面ACE ,∴CE ⊥BF . 而BC =BE ,∴F 是EC 的中点, 在△AEC 中,FG ∥AE ,∴AE ∥平面BFD .3、设椭圆的中心在原点,焦点在x 轴上,离心率e =32.已知点P ⎝⎛⎭⎫0,32到这个椭圆上的点的最远距离为7,求这个椭圆的方程.解: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =32得a =2b .|PM |2=x 2+⎝⎛⎭⎫y -322=-3⎝⎛⎭⎫y +122+4b 2+3(-b ≤y ≤b ), 若b <12,则当y =-b 时,|PM |2最大,即⎝⎛⎭⎫b +322=7, 则b =7-32>12,故舍去.若b ≥12时,则当y =-12时,|PM |2最大,即4b 2+3=7,解得b 2=1.∴所求方程为x 24+y 2=1.4、矩形ABCD ,AB =2,AD =3,沿BD 把ΔBCD 折起,使C 点在平面ABD 上的射影E 恰好落在AD 上. (1)求证:CD ⊥AB(2)求CD 与平面ABD 所成角的余弦值.(1)证明 过C 点作AD 的垂线,垂足为E 则CE ⊥面ABD ,∵AD ⊥AB ,∴CD ⊥AB(2)解:∵CE ⊥面ABD∴∠CDE 为CD 与平面ABD 所成的角,cos ∠CDE =DECDDE ∶CD =CD ∶DA =AB ∶DA =2∶3∴CD 与平面ABD 所成角的余弦值为32 5、设λ>0,点A 的坐标为(1,1),点B 在抛物线y =x 2上运动,点Q 满足BQ →=λQA →,经过点Q 与x 轴垂直的直线交抛物线于点M ,点P 满足QM →=λMP →,求点P 的轨迹方程.解: 由QM →=λMP →知Q 、M 、P 三点在同一条垂直于x 轴的直线上,故可设P (x ,y ),Q (x ,y 0),M (x ,x 2),则x 2-y 0=λ(y -x 2), 即y 0=(1+λ)x 2-λy .①再设B (x 1,y 1),由BQ →=λQA →, 即(x -x 1,y 0-y 1)=λ(1-x,1-y 0),解得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)y 0-λ.②将①式代入②式,消去y 0,得⎩⎪⎨⎪⎧x 1=(1+λ)x -λ,y 1=(1+λ)2x 2-λ(1+λ)y -λ.③ 又点B 在抛物线y =x 2上,所以y 1=x 21, 再将③式代入y 1=x 21,得(1+λ)2x 2-λ(1+λ)y -λ=[(1+λ)x -λ]2,(1+λ)2x 2-λ(1+λ)y -λ=(1+λ)2x 2-2λ(1+λ)x +λ2, 2λ(1+λ)x -λ(1+λ)y -λ(1+λ)=0.因为λ>0,两边同除以λ(1+λ),得2x -y -1=0. 故所求点P 的轨迹方程为y =2x -1.6、如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高.(1)证明:平面P AC ⊥平面PBD ; (2)若AB =6,∠APB =∠ADB =60°,求四棱锥P —ABCD 的体积.证明(1) 因为PH 是四棱锥P —ABCD 的高,所以AC ⊥PH .又AC ⊥BD ,PH ,BD 都在平面PBD 内,且PH ∩BD =H , 所以AC ⊥平面PBD , 故平面P AC ⊥平面PBD .(2)因为ABCD 为等腰梯形,AB ∥CD ,AC ⊥BD ,AB =6, 所以HA =HB = 3. 因为∠APB =∠ADB =60°, 所以P A =PB =6,HD =HC =1, 可得PH = 3.等腰梯形ABCD 的面积为S =12AC ×BD =2+ 3.所以四棱锥的体积为V =13×(2+3)×3=3+233.7、已知椭圆的长轴长为2a ,焦点是F 1(-3,0)、F 2(3,0),点F 1到直线x =-a 23的距离为33,过点F 2且倾斜角为锐角的直线l 与椭圆交于A 、B 两点,使得|F 2B |=3|F 2A |.(1)求椭圆的方程;(2)求直线l 的方程.解: (1)∵F 1到直线x =-a 23的距离为33,∴-3+a 23=33.∴a 2=4.而c =3, ∴b 2=a 2-c 2=1. ∵椭圆的焦点在x 轴上, ∴所求椭圆的方程为x 24+y 2=1.(2)设A (x 1,y 1)、B (x 2,y 2). ∵|F 2B |=3|F 2A |,∴⎩⎪⎨⎪⎧3=x 2+3x 11+3,0=y 2+3y11+3,⎩⎨⎧x 2=43-3x 1,y 2=-3y 1.∵A 、B 在椭圆x 24+y 2=1上,∴⎩⎨⎧x 214+y 21=1,(43-3x 1)24+(-3y 1)2=1.∴⎩⎪⎨⎪⎧x 1=1033,y 1=233(取正值).∴l 的斜率为233-01033-3= 2.∴l 的方程为y =2(x -3),即2x -y -6=0.8、如图,在梯形ABCD 中,AD//BC ,∠ABC=900,AB=a,AD=3a,sin ∠ADC=55,又PA ⊥平面ABCD ,PA=a ,求二面角P-CD-A 的正切值。
(完整版)解析几何专题含答案
椭圆专题练习1.【2017浙江,2】椭圆22194x y +=的离心率是A B C .23D .592.【2017课标3,理10】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .B C D .133.【2016高考浙江理数】已知椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,则()A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<14.【2016高考新课标3理数】已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为()(A )13(B )12(C )23(D )345.【2015高考新课标1,理14】一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为.6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=o ,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :2222=1x y a b +(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r。
解析几何综合复习题
综合复习题一、填空题1. __只有大小的量______________________________________ 叫做数量 ;2. __既有大小又有方向的量______________________________________ 叫做矢量 ;3. __模等于1的矢量___________________________________ 叫做单位矢量 ;4. 平行于同一直线的一组矢量叫做 _共线_______________ 矢量 ;5. 平行于同一平面的一组矢量叫做 __共面_______________ 矢量 ;6. 两矢量共线的充要条件是它们线性 ___相关________________ ;7. 三矢量不共面的充要条件是它们线性 ______无关___________ ;8. __________方向角的余弦__________________________ 叫做方向余弦 ;9. 两矢量a⊥b充要条件是 ____a_*b=0____________________ ;10. 三矢a,b,c量共面的充要条件是 ______(a×b)*c=0_______________ ;11. 两矢量a∥b的充要条件是 _a×b=0,或对应分量成比例 ;12. 矢量与坐标轴所成的角叫做 _方向角;13. 把平面上的一切单位矢量归结到共同的始点,则它们的终点构成____单位圆 ;14. 把空间中一切单位矢量归结到共同的始点,则它们的终点构成单位球面__ ;15. 方程叫做空间曲线的 ______________ 方程 ;16. 坐标平面yOz的方程是 _____________________________ ;17. 坐标平面xOz的方程是 ______________________________ ;18. 坐标平面xOy的方程是 _____________________________ ;19. 方程叫做曲面的 ______________________ 方程 ;20. 空间直线的标准方程为______________________________ ;21. 两平面A i x+B i y+C i z+D i=0 (i=1, 2)相互垂直的充要条件是___________________ ;22. 点M0(x0, y0, z0)到平面Ax+By+Cz+D=0的距离是 _______ ;23. 平面的一般方程是 _________________________ ;24. 直线的方向余弦cosα, cosβ, cosγ满足的关系式为_________ ;25. 给定直线l:==和平面π:Ax+By+Cz+D=0, 则l与π相交的充要条件是 ________________________ ;26. 直线l与平面π平行的充要条件是 _____________________ ;27. 直线l在平面π上的充要条件是_______________________;28. 给定l i:== (i=1, 2), 则l1与l2异面的充要条件是___________________________ ;29. 直线l1与l2相交的充要条件是 ________________________ ;30. 直线l1与l2平行的充要条件是 _________________________ ;31. 直线l1与l2重合的充要条件是 _________________________ ;32. 空间中通过同一直线的所有平面的集合叫做 ____________ ;33. 空间中平行于同一平面的所有平面的集合叫做 __________ ;34. 在空间, 由平行于定方向且与一条定曲线相交的一族平行直线所产生的曲面叫做____________________;35. 在空间, 过一定点且与定曲线相交的一族直线所产生的曲面叫做___________ ;36. 在空间, 一曲线绕定直线旋转一周所产生的曲面叫做 __________________ ;37. 在直角坐标系下, 椭球面的标准方程是 ________________________ ;38. 在直角坐标系下, 单叶双曲面的标准方程是 ____________________ ;39. 在直角坐标系下, 双叶双曲面的标准方程是 ____________________ ;40. 在直角坐标系下, 椭圆抛物面的标准方程是 ____________________ ;41. 在直角坐标系下, 双曲抛物面的标准方程是 ____________________ ;42. 柱面、锥面、椭球面、单叶(双叶)双曲面、椭圆(双曲)抛物面中是直纹曲面的有 ___________ _____________________;43. 单叶双曲面过一定点的直母线有 ___________ 条;44. 满足条件Φ (X, Y)≠0的方向叫做二次曲线的 ___________ ;45. 没有实渐近方向的二次曲线叫做 __________________ 型曲线;46. 有两个实渐近方向的二次曲线叫做 __________________ 型曲线;47. 只有一个实渐近方向的二次曲线叫做 __________________ 型曲线;48. 有唯一 __________________ 的二次曲线叫做中心二次曲线;49. 没有中心的二次曲线叫做 __________________ 二次曲线;50. 有一条中心直线的二次曲线叫做 __________________ 二次曲线;51. 二次曲线F (x, y)=0的奇点(x0, y0)满足的条件是 ________________ ;52. 二次曲线一族平行弦中点的轨迹叫做二次曲线的 _______________ ;53. ___________ 二次曲线的直径都过二次曲线的中心;54. 无心二次曲线的直径都 ___________ 二次曲线的渐近方向;55. 线心二次曲线的直径只有一条,即二次曲线的 ___________ ;56. 二次曲线垂直于其共轭弦的直径叫做二次曲线的 ______________ ;57. 二次曲线的特征根都是 ____________________________ ;58. 二次曲线特征根不能 ____________________________ ;59. 中心二次曲线至少有 ________________________ 条主直径;60. 非中心二次曲线中只有 ______________________ 条主直径;61. ___________ 二次曲线可分类为椭圆、虚椭圆、双曲线、点、二条相交直线;62. ____________________________ 二次曲线的图像是抛物线;63. ___________ 二次曲线可分类为两平行直线、两平行共轭虚直线、两重合直线;二、判断题(正确的打“√”,错误的打“×”)1. 若, 共线,, 共线,则, 也共线; ()2. 若, , 共面,, , 共面,则, , 共面;()3. , , 中,若, 共线, 则, , 共面; ()4.平行于同一方向的两矢量相等;()5. 位移、力、速度和加速度都是数量; ()6. 所有零矢量都相等; ()7. 自由矢量就是方向和模任意的矢量; ()8. 零矢量的方向一定; ()9.在自由矢量的意义下, 平行于同一平面的一组矢量不能在同一平面上;()10. 彼此平行且有共同始点的一组矢量一定在同一条直线上; ()11. 若≠,则表示与同方向的单位矢量; ()12. 若⊥,则 |+|=|-|; ()13. 若, 同向,则 |+|=||+||; ()14. 若, 反向,则 |-|=||+||; ()15. 若, 反向, 且||≥||,则 |+|=||-||; ()16. 若, 同向, 且||≥||,则 |-|=||-||; ()17. 第I卦限内点 (x, y, z) 的符号为 (+, ―, ―); ()18. 第II卦限内点 (x, y, z) 的符号为 (+, +, ―);()19. 第III卦限内点 (x, y, z) 的符号为 (-, +, ―); ()20. 第IV卦限内点 (x, y, z) 的符号为 (-, ― ,+); ()21. 射影矢量=(射影) ;()22. 射影=|| cos∠(, );()23. 射影(+)=射影+射影;()24. 射影(λ)=λ射影;()25. 在{O;,,,}下, =X+Y+Z, 则射影=Y; ()26. 两坐标面xOy与yOz所成二面角的平分面方程是x+y=0; ()27. 两坐标面xOy与yOz所成二面角的平分面方程是x-z=0; ()28. 两坐标同xOy与xOz所成二面角的平分面方程是x+z=0; ()29. 两坐标面xOy与xOz所成二面角的平分面方程是y-z=0; ( )30. 两坐标面xOz与yOz所成二面角的平分面方程是x-y=0; ( )31. (+)⋅=⋅+⋅; ()32. (λ)⋅=⋅(λ);()33. ⋅=2;()34. -(×)=×;()35. ×+×=(+)×;()36. 平面的矢量式参数方程为=+u+v;()37. 平面的坐标式参数方程为()38. 平面的一般方程为Ax+By+Cz+D=0;()39. 平面的法式方程为x cosα+y cosβ+zcosγ+p=0;()40. 平面的截距式方程为++=0;()41. 空间直线与平面的位置关系有相交和平行两种;()42. 空间两直线的位置关系有平行、重合、相交三种;()43. 两平面的位置关系有平行、相交、重合三种;()44. 点到平面的离差等于点到平面的距离;()45. 平面Ax+By+Cz+D=0通过原点的充要条件是D=0; ()46. 将椭圆绕x轴所得旋转曲面方程为:++=1;()47. 将椭圆绕y轴所得旋转曲面方程为:++=1; ()48. 将双曲线绕z轴所得旋转曲面方程为:+-=1;()49. 将双曲线绕y轴所得旋转曲面方程为:--=1;()50. 将抛物线绕z轴所得旋转曲面方程为:x2+y2=2pz;()51. 二次曲线的中心就是它的奇点;()52. 若M是二次曲线的奇点, 则该二次曲线过M的切线是唯一的; ()53. 二次曲线的一族平行弦中点的轨迹是一条直线;()54. 经过移轴变换可以消去二次曲线方程中的xy 项;()55. 在任意转轴变换下, 二次曲线新旧方程的一次项系数满足;()56. F(x, y)=xF1(x, y)+yF2(x, y) +F3(x, y);()57. F(x, y)=Φ(x, y)+2a13x+2a23y+a33;()58. 在直线方程Ax+By+C=0中, 若A, B, C与三个实数成比例,则该直线为虚直线;()59. 二次曲线的奇点满足F1 (x, y)=F2 (x, y)=F3 (x, y)=0;()60. Φ (x, y)=x (a11x+a12y)+y (a12x+a22y);()三、选择题(从四个备选答案中选出唯一正确的一个)1. 两个矢量是否相等,由它们的()决定.A. 始点;B. 模;C. 方向;D. 模和方向.2. 若, , 共面,, , 共面,则, , ()共面.A. 不一定;B. 一定; B. 一定不; D. 共线.3. 把平行于某一直线的一切矢量归结到共同的始点,则它们的终点构成()A. 一点;B. 线段;C. 直线;D. 射线.4. 下列等式中不成立的是()A.+=+;B. ⋅=⋅;C. ×=×;D. λ (μ)=μ (λ).5. 关于零矢量的描述不正确的是()A. 模不定;B.方向不定;C. 模为0;D.模定方向不定.6. 非零矢量与的下列关系中不正确的是()A. =;B. =;C. ||=;D. ||=1.7. 第VIII卦限的点 (x, y, z) 的符号是()A. (+, +, +);B. (―, ―, ―)C. (+, ―, ―)D. (-, +, +).8. 下列等式中错误的是()A. ⋅=||||cos∠(, );B. ⋅=||射影;C. ⋅=||射影;D. ⋅=||⋅||9. 下列等式错误的是()A. ⋅=||2;B. 2=||2;C. ||=;D. =.10. ×+×+×=()A. 0;B. 3;C. 1;D. .11. ⋅+⋅+⋅=()A. 0;B. 3;C. ;D. 1.12. 若, , 两两相互垂直,且模均为1,则++的模为()A.; B.3; C.0; D. 1.13. 下列运算不满足交换律的是()A. 矢性积;B. 数性积;C. 矢量加法;D. 数量乘法.14. 方程在空间表示()A. yOz面;B. xOy面;C. z轴;D. x轴.15. 在空间,y轴的方程不能写成()A. B. ; C. y=0; D. ==.16. 平面的矢量式参数方程是()A. ++=1;B. Ax+By+Cz+D=0;C. x cosα+y cosβ+z cosγ-p=0;D.=+u+v.17. 平面的法式方程是()A. ++=1;B. Ax+By+Cz+D=0;C. x cosα+y cosβ+z cosγ-p=0;D. =+u+v.18. 平面的截距式方程是()A. ++=1;B. Ax+By+Cz+D=0;C. x cosα+y cosβ+z cosγ-p=0;D. =+u+v.19. 平面的一般方程是()A. ++=1;B. Ax+By+Cz+D=0;C. x cosα+y cosβ+z cosγ-p=0;D. =+u+v.20. 平面的法式方程中的常数项必满足()A. ≤0;B. ≥0;C. <0;D.>0.21. 将平面方程Ax+By+Cz=0化为法式方程时,法式化因子的符号()A. 任选;B. 与B异号;C. 与A异号;D.与C异号.22. 点M0与平面π间的离差δ=-2, 则M0到π的距离d为()A. -2;B. 2;C.-1;D. 1.23. 直线的坐标式参数方程是()A. ==;B.C. D.==.24. 直线的标准方程是()A. ==;B.C. D.==.25. 直线的两点式方程是()A. ==;B.C. D.==.26. 直线的一般方程是()A. ==;B.C. ;D.==.27. 直线通过原点的条件是其一般方程中的常数项D1, D2满足()A. D1=D2=0;B. D1=0, D2≠0;C. D1≠0, D2=0;D. D1≠0, D2≠0.28. 直线的方向角α, β, γ不满足关系式()A. cos2α+cos2β+cos2γ=1;B. sin2α+sin2β+sin2γ=1;C. sin2α+sin2β+sin2γ=2;D. cos2(π-α)+cos2(π-β)+cos2(π-γ)=1.29. 两平面2x+3y+6z+1=0与4x+6y+12z+1=0之间的距离是()A. 0;B.C.D..30. 设直线与此同时三坐标面的夹角为λ, μ, v, 则下列式子中不成立的是()A. sin2λ+sin2μ+sin2ν=1;B. cos2λ+cos2μ+cos2ν=2;C. cos2λ+cos2μ+cos2ν=1;D. sin2(π-λ)+sin2(π-μ)+sin2(π-ν)=1.31. 关于x-x0, y-y0, z-z0的二次齐次方程表示()A. 柱面;B. 顶点在(x0, y0, z0)的锥面;C. 旋转曲面;D.平面.32. 将曲线Γ: 绕y轴旋转一周所得旋转曲面的方程为()A. F=0;B. F=0;C. F=0;D. F=0.33. 将曲线Γ:绕x轴旋转一周所得旋转曲面的方程为()A. F;B. F=0;C. F=0;D. F=0.34. 将曲线Γ:绕z轴旋转一周所得旋转曲面的方程为()A. F;B. F=0;C. F=0;D. F=0.35. 将曲线Γ:绕z轴旋转一周所得旋转曲面的方程为()A. x2+y2=2z;B. x2+z2=2y;C. y2+z2=2x;D. y2=.36. 下列方程中表示单叶双曲面的是()A. ++=1;B. +-=1;C. +-=-1;D. --=1.37. 椭球面++=1与xOy坐标面的交线方程为()A. +=1;B.;C. z=0;D. .38. 下列方程中表示双叶双曲面的是()A. --=-1;B. -+=1;C. --+=1;D. +-=1.39. 下列方程中表示双曲抛物面的是()A. x2+y2=2z;B. 3x2-2y2=z;C. x2-y2=z2;D. x2+y2=z2.40. 二次曲线方程通过移轴变换后不变的是()A. 二次项系数;B. 一次项系数;C. 常数项;D. 都不变.41. 二次曲线方程通过转轴变换后不变的是()A. 二次项系数;B. 一次项系数;C. 常数项;D. 都不变.42. 下列曲面中是直纹曲面的是()A. 椭球面;B. 柱面;C. 球面;D. 双叶双曲面.43.已知二次曲线方程中Φ(x,y)=x2+2x y+y2,则I2=()A. 1;B. 0;C. -1;D. 2.44.已知二次曲线方程中Φ(x,y)=x2+2x y+y2,则I1=()A. 1;B. 0;C. -1;D. 2.45. 中心二次曲线至少有()条主直径.A. 1;B. 2;C. 3;D. 4.46. 二次曲线的奇点()是它的中心.A. 不一定;B. 一定不;C. 一定;D. 以上都不对.47. 有奇点的二次曲线一定是()A. 中心曲线;B. 无心曲线;C. 线心曲线;D.圆.48. 二次曲线的特征根()A不全为0; B. 全不为0; C.全为0; D. ≥0.49. 二次曲线的特征根()A. 都是虚数;B. 都是实数;C. 一实一虚;D. 全为0.50. 椭圆+=1的一对共轭直径的斜率k与k'满足()A. kk'=;B. kk'=-;C. kk'=-;D. kk'=.51. 二次曲线在直角坐标变换下的半不变量为()A. I1;B. I2;C. I3;D. K1.52. 简化方程为I1 y2+=0的二次曲线是()A. 中心曲线;B. 无心曲线;C. 线心曲线;D. 圆.53. 二次曲线表示两条直线(实的或虚的,不同的或重合的)的充要条件是()A. I1=0;B. I2=0;C.I3=0;D. K1=0.四、计算题1. 求通过点P (1, 1, 1)且与直线l1:==, l2: ==都相交的直线方程.2. 求异面直线l1:==与l2: ==的公垂线方程.3. 求通过直线且与平面x-4y-8z+12=0垂直的平面方程.4. 求通过点A (-3, 0, 1)和B (2, -5, 1)的直线方程.5. 求平行于平面3x+2y+z=0且在x轴上截距等于-2的平面.6. 已知一平面过M0(x0, y0, z0) (z0≠0), 且在x轴、y轴上的截距分别为a, b(ab≠0), 求其方程.7. 求二次曲线x2-2xy+y2-1=0 的渐近方向,并指出其类型.8. 求二次曲线2x2+xy-y2-x+y-1=0的渐近线.9. 如图,求直角△ABC的斜边AC绕直角边AB旋转所得圆锥面的方程(∠BAC=α).10. 求二次曲线F (x, y) ≡x2-2xy+y2-4x=0 的主方向与主直径.11. 求椭圆+=1 的主方向与主直径.12. 求双曲线-=1的主方向与主直径.13. 在双曲抛物面-=z上求平行于平面3x+2y-4z=0的直母线.14. 求二次曲面F(x, y, z)≡2xy+2xz+2yz+9=0 的主方向与主径面.15. 求二次曲面F(x, y, z)≡5x2+2y2+2z2-2xy+2xz-4yz-4y-4z+4=0的奇向.16. 求以直线==为轴, 半径为r的圆柱面方程.17. 求二次曲面-+=1 与三坐标面的交线方程,并指出其名称.18. 已知各锥面的顶点在原点,准线为,求锥面的方程.19. 求二次曲线x2-xy-y2-x-y=0 与x2+2xy+y2-x+y=0的公共直径.五、证明题1. ⊥的充要条件是⋅=0.2. //的充要条件是×=.3. (⋅)2+(×)2=22.4. 若×+×+×=, 则, , 共面.5. 若二次曲线的I1=0, 则I2<0.6. 二次曲线的特征根不全为0.7. 二次曲线的特征根全是实数.8. 由二次曲线的特征根λ≠0确定的主方向X:Y是二次曲线的非渐近方向.9. 由二次曲线的特征根λ=0确定的主方向X:Y是二次曲线的渐近方向.10. 在任意转轴变换下, 二次曲线新旧方程的一次项系数满足.11. 二次曲线x2+2xy+ay2+x+by-4=0有一条中心直线的充要条件是a=b=1.12. 两条二次曲线x2-xy+y2+2x-4y=0与 5x2+4xy+2y2-24x-12y+18=0 的中心在直线x+2y-4=0上.13. 两条二次曲线x2-2xy+y2+4x-4y-3=0 与x2-xy+y2+2x-4y=0的公共直径为x-y+2=0.14. 中心二次曲线ax2+2hxy+ay2=d 的两条主直径为x2-y2=0.15. 二次曲线两不同特征根确定的主方向相互垂直.16. 已知直线l:与π:4x-3y+7z-7=0, 试证直线l在平面π上.17. 试证两直线==与==为异面直线.六、化简二次曲线方程,并作出图形.1. x2-3xy+y2+10x-10y+21=0.2. 2xy-4x-2y+3=0.3. x2-xy+y2+2x-4y=0.4. x2+6xy+y2+6x+2y-1=0.5. 5x2+8xy+5y2-18x-18y+9=0.6. x2-2xy+y2+2x-2y-3=0.7.x2+2xy+y2+2x+y=0.综合复习题答案一、1. 只有大小的量;2. 既有大小、又有方向的量;3. 模等于1的矢量;4. 共线矢量;5. 共面矢量;6. 相关;7. 无关;8. 方向角的余弦;9. =0;10. ()=0, 或线性相关;11. ×=,或对应分量成比例;12. 方向角;13. 单位圆;14. 单位球面;15. 一般;16. x=0;17. y=0;18. z=0;19. 参数;20. ==;21. A1A2+B1B2+C1C2=0;22. d=;23.Ax+By+Cz+D=0 (A, B, C不全为0);24. cos2α+cos2β+cos2γ=1;25.AX+BY+CZ≠0;26. AX+BY+CZ=0, Ax0+By0+Cz0+D≠0;27. AX+BY+C=0, Ax0+By0+Cz0+D=0;28. ∆=≠0;29. ∆=0, X1:Y1:Z1≠X2:Y2:Z2;30. ∆=0, X1:Y1:Z1=X2:Y2:Z2 ≠ (x2-x1):(y2-y1):(z2-z1);31. ∆=0, X1:Y1:Z1 = X2:Y2:Z2=(x2-x1):(y2-y1):(z2-z1);32. 有轴平面束;33.平行平面束;34. 柱面;35. 锥面;36. 旋转曲面;37. ++=1 (a≥b≥c>0);38. +-=1 (a>0, b>0, c>0);39. +-=-1 (a>0, b>0, c>0);40. +=2z (a>0, b>0);41. -=2z (a>0, b>0);42. 柱面,锥面,单叶双曲面,双曲抛物面;43. 两条;44. 非渐近方向;45. 椭圆;46. 双曲;47. 抛物;48. 中心;49. 无心;50. 线心;51. F1 (x0, y0)=F2 (x0, y0)=F3 (x0, y0)=0;52. 直径;53. 中心;54. 平行于;55. 中心直线;56. 主直径;57. 实数;58. 全为零;59. 两;60. 一;61. 中心;62. 无心;63. 线心;二、1. √;2. ×;3. √;4. ×;5. ×;6. √;7. ×;8. ×;9. ×; 10. √;11. √; 12. √; 13. √; 14. √; 15. √; 16. √; 17. ×; 18. ×; 19. ×; 20. ×;21. √; 22. √; 23. √; 24. √; 25. √; 26. ×; 27. √; 28. ×; 29. √; 30. √;31. √; 32. √; 33. √; 34. √; 35. √; 36. √; 37. √; 38. √; 39. ×; 40. ×;41. ×; 42. ×; 43. √; 44. ×; 45. √; 46. √; 47. √; 48. √; 49. √; 50. √;51. ×; 52. ×; 53. √; 54. ×; 55. √; 56. √; 57. √; 58. ×; 59. √; 60. √.三、1. D;2. A;3. C;4. C;5. A;6. B;7. C;8. D;9. D; 10. D; 11.B; 12. A; 13. A; 14. C; 15. C; 16. D; 17. C; 18. A; 19. B; 20. A;21. A; 22. B; 23. B; 24. A; 25. D; 26. C; 27. A; 28. B; 29. D; 30. C;31. B; 32. D; 33.A; 34. B; 35.A; 36.B; 37.D; 38. C; 39. B; 40. A;41. C; 42. B; 43. B; 44. D; 45. B; 46. C; 47. C; 48. A; 49. B; 50. C;51. D; 52. C; 53. C.四、1. ==;2.(z轴);3. 4x+5y-2z+12=0;4. ==;5. 3x+2y+z+6=0;6.设所求平面在z轴上的截距为c≠0,则所求平面方程为++=1, 因平面过M0 (x0, y0, z0),于是++=1, = (1--), 故所求平面为++ (1--)=1;7. (-1):1, 抛物型;8. 3x+3y-2=0, 6x-3y-1=0;9. 提示:取A为原点,AB为z轴, ABC所在平面为yOz面建立坐标系, 设B的坐标为(0, 0,a), 则AC的方程为, 从而得锥面方程为ctg2α (x2+y2)-z2=0 (0≤z≤a);10. (-1):1(非渐近主方向), 1:1(渐近主方向), x-y-1=0;11. 1:0, 0:1, x=0, y=0;12. 1:0, 0:1, x=0, y=0;13. 与;14. 1:1:1及与平面x+y+z=0平行的一切方向;x+y+z=0及过中心(0, 0, 0)且垂直于x+y+z =0 的一切平面;15. 0:1:1;16. (ny-mz)2+(lz-nx)2+(mx-ly)2=r2 (l2+m2+n2);17. (双曲线); (椭圆); (双曲线);18. --=0;19. 5x+5y+2=0;20. 2x+3y+z+4=0.五、略.六、1. 由坐标变换公式得:-=1(双曲线).2. 由坐标变换公式得:x'2-y'2=1 (双曲线).3. 由坐标变换公式得:+=1 (椭圆).4. 由坐标变换公式得:-=1 (双曲线).5. 由坐标变换公式得:x'2+=1 (椭圆).6. 由坐标变换公式得:y'2=2 (一对平行直线).7. 由坐标变换公式得:y'2=-x (抛物线).。
高中解析几何试题及答案
高中解析几何试题及答案1. 已知圆的方程为 \((x-2)^2+(y-3)^2=9\),求该圆的圆心坐标和半径。
答案:圆心坐标为 \((2, 3)\),半径为 \(3\)。
2. 求直线 \(2x + 3y - 6 = 0\) 关于点 \((1, 2)\) 对称的直线方程。
答案:对称直线的方程为 \(2x - 3y + 8 = 0\)。
3. 已知椭圆 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)(其中\(a > b > 0\))经过点 \((2, 3)\),且离心率 \(e = \frac{c}{a}\) 为 \(\frac{1}{2}\),求椭圆的长轴和短轴长度。
答案:根据离心率 \(e = \frac{c}{a} = \frac{1}{2}\),我们有 \(c =\frac{a}{2}\)。
由于椭圆经过点 \((2, 3)\),代入椭圆方程得\(\frac{4}{a^2} + \frac{9}{b^2} = 1\)。
又因为 \(c^2 = a^2 -b^2\),代入 \(c = \frac{a}{2}\) 得 \(\frac{a^2}{4} = a^2 -b^2\),解得 \(b^2 = \frac{3}{4}a^2\)。
将 \(b^2\) 代入椭圆方程,解得 \(a^2 = 16\) 和 \(b^2 = 12\)。
因此,椭圆的长轴长度为\(2a = 32\),短轴长度为 \(2b = 24\)。
4. 求抛物线 \(y^2 = 4px\)(\(p > 0\))的焦点坐标。
答案:焦点坐标为 \((\frac{p}{2}, 0)\)。
5. 已知双曲线 \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) 的一条渐近线方程为 \(y = \frac{b}{a}x\),求双曲线的离心率。
答案:双曲线的离心率 \(e = \sqrt{1 + \frac{b^2}{a^2}}\)。
(完整版)解析几何练习题及答案
解析几何一、选择题1.已知两点A (-3,),B (,-1),则直线AB 的斜率是( )33A. B .-33C. D .-3333解析:斜率k ==-,故选D.-1-33-(-3)33答案:D 2.已知直线l :ax +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值是( )A .1B .-1C .-2或-1D .-2或1解析:①当a =0时,y =2不合题意.②a ≠0,x =0时,y =2+a .y =0时,x =,a +2a 则=a +2,得a =1或a =-2.故选D.a +2a 答案:D 3.两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( )A .4B .21313C. D .5132671020解析:把3x +y -3=0转化为6x +2y -6=0,由两直线平行知m =2,则d ==.|1-(-6)|62+2271020故选D.答案:D4.(2014皖南八校联考)直线2x -y +1=0关于直线x =1对称的直线方程是( )A .x +2y -1=0 B .2x +y -1=0C .2x +y -5=0 D .x +2y -5=0解析:由题意可知,直线2x -y +1=0与直线x =1的交点为(1,3),直线2x -y +1=0的倾斜角与所求直线的倾斜角互补,因此它们的斜率互为相反数,直线2x -y +1=0的斜率为2,故所求直线的斜率为-2,所以所求直线的方程是y -3=-2(x -1),即2x +y -5=0.故选C.答案:C5.若直线l :y =kx -与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角3的取值范围是( )A. B .[π6,π3)(π6,π2)C. D .(π3,π2)[π3,π2]解析:由题意,可作直线2x +3y -6=0的图象,如图所示,则直线与x 轴、y 轴交点分别为A (3,0),B (0,2),又直线l 过定点(0,-),由题知直线l 与线段AB 相交(交点不含3端点),从图中可以看出,直线l 的倾斜角的取值范围为.故选B.(π6,π2)答案:B 6.(2014泰安一模)过点A (2,3)且垂直于直线2x +y -5=0的直线方程为( )A .x -2y +4=0 B .2x +y -7=0C .x -2y +3=0 D .x -2y +5=0解析:直线2x +y -5=0的斜率为k =-2,∴所求直线的斜率为k ′=,12∴方程为y -3=(x -2),即x -2y +4=0.12答案:A二、填空题7.过点(2,1)且在x 轴上截距与在y 轴上截距之和为6的直线方程为____________.解析:由题意知截距均不为零.设直线方程为+=1,x a yb 由Error!解得Error!或Error!.故所求直线方程为x +y -3=0或x +2y -4=0.答案:x +y -3=0或x +2y -4=08.(2014湘潭质检)若过点A (-2,m ),B (m,4)的直线与直线2x +y +2=0平行,则m的值为________.解析:∵过点A ,B 的直线平行于直线2x +y +2=0,∴k AB ==-2,解得m =-8.4-mm +2答案:-89.若过点P (1-a,1+a )与Q (3,2a )的直线的倾斜角为钝角,则实数a 的取值范围是________.解析:由直线PQ 的倾斜角为钝角,可知其斜率k <0,即<0,化简得<0,∴-2<a <1.2a -(1+a )3-(1-a )a -1a +2答案:(-2,1)10.已知k ∈R ,则直线kx +(1-k )y +3=0经过的定点坐标是________.解析:令k =0,得y +3=0,令k =1,得x +3=0.解方程组Error!得Error!所以定点坐标为(-3,-3).答案:(-3,-3)三、解答题11.已知两直线l 1:x +y sinα-1=0和l 2:2x sinα+y +1=0,试求α的值,使(1)l 1∥l 2;(2)l 1⊥l 2.解:(1)法一 当sin α=0时,直线l 1的斜率不存在,l 2的斜率为0,显然l 1不平行于l 2.当sin α≠0时,k 1=-,k 2=-2sin α.1sin α要使l 1∥l 2,需-=-2sin α,1sin α即sin α=±,∴α=k π±,k ∈Z .22π4故当α=k π±,k ∈Z 时,l 1∥l 2.π4法二 由l 1∥l 2,得Error!∴sin α=±,22∴α=k π±,k ∈Z .π4故当α=k π±,k ∈Z 时,l 1∥l 2.π4(2)∵l 1⊥l 2,∴2sin α+sin α=0,即sin α=0.∴α=k π,k ∈Z .故当α=k π,k ∈Z 时,l 1⊥l 2.12.设直线l 1:y =k 1x +1,l 2:y =k 2x -1,其中实数k 1,k 2满足k 1k 2+2=0.(1)证明l 1与l 2相交;(2)证明l 1与l 2的交点在椭圆2x 2+y 2=1上.证明:(1)假设l 1与l 2不相交,则l 1∥l 2即k 1=k 2,代入k 1k 2+2=0,得k +2=0,这与21k 1为实数的事实相矛盾,从而k 1≠k 2,即l 1与l 2相交.(2)法一 由方程组Error!解得交点P 的坐标为,(2k 2-k 1,k 2+k 1k 2-k 1)而2x 2+y 2=22+2(2k 2-k 1)(k 2+k 1k 2-k 1)=8+k 2+k 21+2k 1k 2k 2+k 21-2k 1k 2=k 21+k 2+4k 21+k 2+4=1.即P (x ,y )在椭圆2x 2+y 2=1上.即l 1与l 2的交点在椭圆2x 2+y 2=1上.法二 交点P 的坐标(x ,y )满足Error!故知x ≠0.从而Error!代入k 1k 2+2=0,得·+2=0,y -1x y +1x 整理后,得2x 2+y 2=1.所以交点P 在椭圆2x 2+y 2=1上.第八篇 第2节一、选择题1.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .x 2+(y -2)2=1 B .x 2+(y +2)2=1C .(x -1)2+(y -3)2=1D .x 2+(y -3)2=1解析:由题意,设圆心(0,t ),则=1,得t =2,12+(t -2)2所以圆的方程为x 2+(y -2)2=1,故选A.答案:A 2.(2014郑州模拟)动点P 到点A (8,0)的距离是到点B (2,0)的距离的2倍,则动点P 的轨迹方程为( )A .x 2+y 2=32B .x 2+y 2=16C .(x -1)2+y 2=16D .x 2+(y -1)2=16解析:设P (x ,y ),则由题意可得2=,(x -2)2+y 2(x -8)2+y 2化简整理得x 2+y 2=16,故选B.答案:B3.(2012年高考陕西卷)已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( )A .l 与C 相交B .l 与C 相切C .l 与C 相离D .以上三个选项均有可能解析:x 2+y 2-4x =0是以(2,0)为圆心,以2为半径的圆,而点P (3,0)到圆心的距离为d ==1<2,(3-2)2+(0-0)2点P (3,0)恒在圆内,过点P (3,0)不管怎么样画直线,都与圆相交.故选A.答案:A4.(2012年高考辽宁卷)将圆x 2+y 2-2x -4y +1=0平分的直线是( )A .x +y -1=0 B .x +y +3=0C .x -y +1=0 D .x -y +3=0解析:由题知圆心在直线上,因为圆心是(1,2),所以将圆心坐标代入各选项验证知选项C 符合,故选C.答案:C 5.(2013年高考广东卷)垂直于直线y =x +1且与圆x 2+y 2=1相切于第一象限的直线方程是( )A .x +y -=0B .x +y +1=02C .x +y -1=0D .x +y +=02解析:与直线y =x +1垂直的直线方程可设为x +y +b =0,由x +y +b =0与圆x 2+y 2=1相切,可得=1,故b =±.因为直线与圆相切于第一象限,故结合图形|b |12+122分析知b =-,则直线方程为x +y -=0.故选A.22答案:A 6.(2012年高考福建卷)直线x +y -2=0与圆x 2+y 2=4相交于A 、B 两点,则弦3AB 的长度等于( )A .2B .253C. D .13解析:因为圆心到直线x +y -2=0的距离d ==1,半径r =2,3|0+3×0-2|12+(3)2所以弦长|AB |=2=2.22-123故选B.答案:B二、填空题7.(2013年高考浙江卷)直线y =2x +3被圆x 2+y 2-6x -8y =0所截得的弦长等于________.解析:圆的方程可化为(x -3)2+(y -4)2=25,故圆心为(3,4),半径r =5.又直线方程为2x -y +3=0,∴圆心到直线的距离为d ==,|2×3-4+3|4+15∴弦长为2×=2=4.25-5205答案:458.已知直线l :x -y +4=0与圆C :(x -1)2+(y -1)2=2,则圆C 上各点到l 的距离的最小值为________.解析:因为圆C 的圆心(1,1)到直线l 的距离为d ==2,|1-1+4|12+(-1)22又圆半径r =.2所以圆C 上各点到直线l 的距离的最小值为d -r =.2答案:29.已知圆C 的圆心在直线3x -y =0上,半径为1且与直线4x -3y =0相切,则圆C的标准方程是________.解析:∵圆C 的圆心在直线3x -y =0上,∴设圆心C (m,3m ).又圆C 的半径为1,且与4x -3y =0相切,∴=1,|4m -9m |5∴m =±1,∴圆C 的标准方程为(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=1.答案:(x -1)2+(y -3)2=1或(x +1)2+(y +3)2=110.圆(x -2)2+(y -3)2=1关于直线l :x +y -3=0对称的圆的方程为________.解析:已知圆的圆心为(2,3),半径为1.则对称圆的圆心与(2,3)关于直线l 对称,由数形结合得,对称圆的圆心为(0,1),半径为1,故方程为x 2+(y -1)2=1.答案:x 2+(y -1)2=1三、解答题11.已知圆C :x 2+(y -2)2=5,直线l :mx -y +1=0.(1)求证:对m ∈R ,直线l 与圆C 总有两个不同交点;(2)若圆C 与直线相交于点A 和点B ,求弦AB 的中点M 的轨迹方程.(1)证明:法一 直线方程与圆的方程联立,消去y 得(m 2+1)x 2-2mx -4=0,∵Δ=4m 2+16(m 2+1)=20m 2+16>0,∴对m ∈R ,直线l 与圆C 总有两个不同交点.法二 直线l :mx -y +1恒过定点(0,1),且点(0,1)在圆C :x 2+(y -2)2=5内部,∴对m ∈R ,直线l 与圆C 总有两个不同交点.(2)解:设A (x 1,y 1),B (x 2,y 2),M (x ,y ),由方程(m 2+1)x 2-2mx -4=0,得x 1+x 2=,2mm 2+1∴x =.mm 2+1当x =0时m =0,点M (0,1),当x ≠0时,由mx -y +1=0,得m =,y -1x 代入x =,得x=,mm 2+1[(y -1x )2+1]y -1x 化简得x 2+2=.(y -32)14经验证(0,1)也符合,∴弦AB 的中点M 的轨迹方程为x 2+2=.(y -32)1412.已知圆C :x 2+y 2-8y +12=0,直线l :ax +y +2a =0.(1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A 、B 两点,且|AB |=2时,求直线l 的方程.2解:将圆C 的方程x 2+y 2-8y +12=0配方得标准方程为x 2+(y -4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l 与圆C 相切,则有=2.解得a =-.|4+2a |a 2+134(2)过圆心C 作CD ⊥AB ,则根据题意和圆的性质,得Error!解得a =-7,或a =-1.故所求直线方程为7x -y +14=0或x -y +2=0.第八篇 第3节一、选择题1.设P 是椭圆+=1上的点.若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )x 225y 216A .4 B .5C .8D .10解析:由方程知a =5,根据椭圆定义,|PF 1|+|PF 2|=2a =10.故选D.答案:D 2.(2014唐山二模)P 为椭圆+=1上一点,F 1,F 2为该椭圆的两个焦点,若x 24y 23∠F 1PF 2=60°,则·等于( )PF1→ PF 2→ A .3 B .3C .2 D .23解析:由椭圆方程知a =2,b =,c =1,3∴Error!∴|PF 1||PF 2|=4.∴·=||||cos 60°=4×=2.PF 1→ PF 2→ PF 1→ PF 2→ 12答案:D3.(2012年高考江西卷)椭圆+=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦x 2a 2y 2b 2点分别是F 1,F 2.若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为( )A. B .1455C. D .-2125解析:本题考查椭圆的性质与等比数列的综合运用.由椭圆的性质可知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,又|AF 1|,|F 1F 2|,|F 1B |成等比数列,故(a -c )(a +c )=(2c )2,可得e ==.故应选B.ca 55答案:B4.(2013年高考辽宁卷)已知椭圆C :+=1(a >b >0)的左焦点为F ,C 与过原点的x 2a 2y 2b 2直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =,则C 的离心率45为( )A. B .3557C. D .4567解析:|AF |2=|AB |2+|BF |2-2|AB ||BF |cos ∠ABF =100+64-2×10×8×=36,45则|AF |=6,∠AFB =90°,半焦距c =|FO |=|AB |12=5,设椭圆右焦点F 2,连结AF 2,由对称性知|AF 2|=|FB |=8,2a =|AF 2|+|AF |=6+8=14,即a =7,则e ==.c a 57故选B.答案:B5.已知椭圆E :+=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与x 2m y 24l :y =kx +1被椭圆E 截得的弦长不可能相等的是( )A .kx +y +k =0B .kx -y -1=0C .kx +y -k =0D .kx +y -2=0解析:取k =1时,l :y =x +1.选项A 中直线:y =-x -1与l 关于x 轴对称,截得弦长相等.选项B 中直线:y =x -1与l 关于原点对称,所截弦长相等.选项C 中直线:y =-x +1与l 关于y 轴对称,截得弦长相等.排除选项A 、B 、C ,故选D.答案:D6.(2014山东省实验中学第二次诊断)已知椭圆+=1(a >b >0)的左、右焦点分别为x 2a 2y 2b 2F 1(-c,0),F 2(c,0),若椭圆上存在点P ,使=,则该椭圆的离心率的asin ∠PF 1F 2csin ∠PF 2F 1取值范围为( )A .(0,-1) B .2(22,1)C.D .(-1,1)(0,22)2解析:由题意知点P 不在x 轴上,在△PF 1F 2中,由正弦定理得=,|PF 2|sin ∠PF 1F 2|PF 1|sin ∠PF 2F 1所以由=a sin ∠PF 1F 2c sin ∠PF 2F 1可得=,a|PF 2|c|PF 1|即==e ,|PF 1||PF 2|ca 所以|PF 1|=e |PF 2|.由椭圆定义可知|PF 1|+|PF 2|=2a ,所以e |PF 2|+|PF 2|=2a ,解得|PF 2|=.2ae +1由于a -c <|PF 2|<a +c ,所以有a -c <<a +c ,2ae +1即1-e <<1+e ,2e +1也就是Error!解得-1<e .2又0<e <1,∴-1<e <1.故选D.2答案:D 二、填空题7.设F 1、F 2分别是椭圆+=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中x 225y 216点,|OM |=3,则P 点到椭圆左焦点距离为________.解析:∵|OM |=3,∴|PF 2|=6,又|PF 1|+|PF 2|=10,∴|PF 1|=4.答案:48.椭圆+=1(a >b >0)的左、右焦点分别是F 1、F 2,过F 2作倾斜角为120°的直线x 2a 2y 2b 2与椭圆的一个交点为M ,若MF 1垂直于x 轴,则椭圆的离心率为________.解析:不妨设|F 1F 2|=1,∵直线MF 2的倾斜角为120°,∴∠MF 2F 1=60°.∴|MF 2|=2,|MF 1|=,2a =|MF 1|+|MF 2|=2+,332c =|F 1F 2|=1.∴e ==2-.ca 3答案:2-39.(2014西安模拟)过点(,-),且与椭圆+=1有相同焦点的椭圆的标准方35y 225x 29程为________________.解析:由题意可设椭圆方程为+=1(m <9),y 225-m x 29-m 代入点(,-),35得+=1,525-m 39-m 解得m =5或m =21(舍去),∴椭圆的标准方程为+=1.y 220x 24答案:+=1y 220x 2410.已知F 1,F 2是椭圆C :+=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且x 2a 2y 2b 2⊥.若△PF 1F 2的面积为9,则b =________.PF1→ PF 2→ 解析:由题意得Error!∴(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2,即4a 2-2|PF 1||PF 2|=4c 2,∴|PF 1||PF 2|=2b 2,∴S △PF 1F 2=|PF 1||PF 2|=b 2=9,12∴b =3.答案:3三、解答题11.(2012年高考广东卷)在平面直角坐标系xOy 中,已知椭圆C 1:+=1(a >b >0)x 2a 2y 2b 2的左焦点为F 1(-1,0),且点P (0,1)在C 1上.(1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.解:(1)由椭圆C 1的左焦点为F 1(-1,0),且点P (0,1)在C 1上,可得Error!∴Error!故椭圆C 1的方程为+y 2=1.x 22(2)由题意分析,直线l 斜率存在且不为0,设其方程为y =kx +b ,由直线l 与抛物线C 2相切得Error!消y 得k 2x 2+(2bk -4)x +b 2=0,Δ1=(2bk -4)2-4k 2b 2=0,化简得kb =1.①由直线l 与椭圆C 1相切得Error!消y 得(2k 2+1)x 2+4bkx +2b 2-2=0,Δ2=(4bk )2-4(2k 2+1)(2b 2-2)=0,化简得2k 2=b 2-1.②①②联立得Error!解得b 4-b 2-2=0,∴b 2=2或b 2=-1(舍去),∴b =时,k =,b =-时,k =-.222222即直线l 的方程为y =x +或y =-x -.22222212.(2014海淀三模)已知椭圆C :+=1(a >b >0)的四个顶点恰好是一边长为2,一x 2a 2y 2b 2内角为60°的菱形的四个顶点.(1)求椭圆C 的方程;(2)若直线y =kx 交椭圆C 于A ,B 两点,在直线l :x +y -3=0上存在点P ,使得△PAB 为等边三角形,求k 的值.解:(1)因为椭圆C :+=1(a >b >0)的四个顶点恰好是一边长为2,一内角为60°的x 2a 2y 2b 2菱形的四个顶点.所以a =,b =1,3椭圆C 的方程为+y 2=1.x 23(2)设A (x 1,y 1),则B (-x 1,-y 1),当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线l :x +y -3=0的交点为P (0,3),又因为|AB |=2,|PO |=3,3所以∠PAO =60°,所以△PAB 是等边三角形,所以直线AB 的方程为y =0,当直线AB 的斜率存在且不为0时,则直线AB 的方程为y =kx ,所以Error!化简得(3k 2+1)x 2=3,所以|x 1|=,33k 2+1则|AO |==.1+k 233k 2+13k 2+33k 2+1设AB 的垂直平分线为y =-x ,1k 它与直线l :x +y -3=0的交点记为P (x 0,y 0),所以Error!解得Error!则|PO |=,9k 2+9(k -1)2因为△PAB 为等边三角形,所以应有|PO |=|AO |,3代入得=,9k 2+9(k -1)233k 2+33k 2+1解得k =0(舍去),k =-1.综上,k =0或k =-1.第八篇 第4节一、选择题1.设P 是双曲线-=1上一点,F 1,F 2分别是双曲线左右两个焦点,若x 216y 220|PF 1|=9,则|PF 2|等于( )A .1B .17C .1或17 D .以上答案均不对解析:由双曲线定义||PF 1|-|PF 2||=8,又|PF 1|=9,∴|PF 2|=1或17,但应注意双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.故选B.答案:B2.(2013年高考湖北卷)已知0<θ<,则双曲线C 1:-=1与C 2:-π4x 2sin2θy 2cos2θy 2cos2θ=1的( )x 2sin2θA .实轴长相等 B .虚轴长相等C .离心率相等 D .焦距相等解析:双曲线C 1的半焦距c 1==1,双曲线C 2的半焦距c 2=sin2θ+cos2θ=1,故选D.cos2θ+sin2θ答案:D3.(2012年高考湖南卷)已知双曲线C :-=1的焦距为10,点P (2,1)在C 的渐近x 2a 2y 2b 2线上,则C 的方程为( )A.-=1 B .-=1x 220y 25x 25y 220C.-=1 D .-=1x 280y 220x 220y 280解析:由焦距为10,知2c =10,c =5.将P (2,1)代入y =x 得a =2b .ba a 2+b 2=c 2,5b 2=25,b 2=5,a 2=4b 2=20,所以方程为-=1.故选A.x 220y 25答案:A 4.已知F 1、F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )A. B .1435C. D .3445解析:∵c 2=2+2=4,∴c =2,2c =|F 1F 2|=4,由题可知|PF 1|-|PF 2|=2a =2,2|PF 1|=2|PF 2|,∴|PF 2|=2,|PF 1|=4,22由余弦定理可知cos ∠F 1PF 2==.故选C.(42)2+(22)2-422×42×2234答案:C5.设椭圆C 1的离心率为,焦点在x 轴上且长轴长为26,若曲线C 2上的点到椭圆513C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )A.-=1 B .-=1x 242y 232x 2132y 252C.-=1 D .-=1x 232y 242x 2132y 2122解析:在椭圆C 1中,因为e =,2a =26,513即a =13,所以椭圆的焦距2c =10,则椭圆两焦点为(-5,0),(5,0),根据题意,可知曲线C 2为双曲线,根据双曲线的定义可知,双曲线C 2中的2a 2=8,焦距与椭圆的焦距相同,即2c 2=10,可知b 2=3,所以双曲线的标准方程为-=1.故选A.x 242y 232答案:A6.(2014福州八中模拟)若双曲线-=1渐近线上的一个动点P 总在平面区域x 29y 216(x -m )2+y 2≥16内,则实数m 的取值范围是( )A .[-3,3]B .(-∞,-3]∪[3,+∞)C .[-5,5] D .(-∞,-5]∪[5,+∞)解析:因为双曲线-=1渐近线4x ±3y =0上的一个动点P 总在平面区域(x -m )x 29y 2162+y 2≥16内,即直线与圆相离或相切,所以d =≥4,解得m ≥5或m ≤-5,故实数|4m |5m 的取值范围是(-∞,-5]∪[5,+∞).选D.答案:D 二、填空题7.(2013年高考辽宁卷)已知F 为双曲线C :-=1的左焦点,P ,Q 为C 上的x 29y 216点.若PQ 的长等于虚轴长的2倍,点A (5,0)在线段PQ 上,则△PQF 的周长为________.解析:由题知,双曲线中a =3,b =4,c =5,则|PQ |=16,又因为|PF |-|PA |=6,|QF |-|QA |=6,所以|PF |+|QF |-|PQ |=12,|PF |+|QF |=28,则△PQF 的周长为44.答案:448.已知双曲线C :-=1(a >0,b >0)的离心率e =2,且它的一个顶点到较近焦点x 2a 2y 2b 2的距离为1,则双曲线C 的方程为________.解析:双曲线中,顶点与较近焦点距离为c -a =1,又e ==2,两式联立得a =1,c =2,ca ∴b 2=c 2-a 2=4-1=3,∴方程为x 2-=1.y 23答案:x 2-=1y 239.(2014合肥市第三次质检)已知点P 是双曲线-=1(a >0,b >0)和圆x 2a 2y 2b 2x 2+y 2=a 2+b 2的一个交点,F 1,F 2是该双曲线的两个焦点,∠PF 2F 1=2∠PF 1F 2,则该双曲线的离心率为________.解析:依题意得,线段F 1F 2是圆x 2+y 2=a 2+b 2的一条直径,故∠F 1PF 2=90°,∠PF 1F 2=30°,设|PF 2|=m ,则有|F 1F 2|=2m ,|PF 1|=m ,3该双曲线的离心率等于==+1.|F 1F 2|||PF 1|-|PF 2||2m3m -m 3答案:+1310.(2013年高考湖南卷)设F 1,F 2是双曲线C :-=1(a >0,b >0)的两个焦点.若x 2a 2y 2b 2在C 上存在一点P ,使PF 1⊥PF 2,且∠PF 1F 2=30°,则C 的离心率为________.解析:设点P 在双曲线右支上,由题意,在Rt △F 1PF 2中,|F 1F 2|=2c ,∠PF 1F 2=30°,得|PF 2|=c ,|PF 1|=c ,3根据双曲线的定义:|PF 1|-|PF 2|=2a ,(-1)c =2a ,3e ===+1.c a 23-13答案:+13三、解答题11.已知双曲线x 2-=1,过点P (1,1)能否作一条直线l ,与双曲线交于A 、B 两点,y 22且点P 是线段AB 的中点?解:法一 设点A (x 1,y 1),B (x 2,y 2)在双曲线上,且线段AB 的中点为(x 0,y 0),若直线l 的斜率不存在,显然不符合题意.设经过点P 的直线l 的方程为y -1=k (x -1),即y =kx +1-k .由Error!得(2-k 2)x 2-2k (1-k )x -(1-k )2-2=0(2-k 2≠0).①∴x 0==.x 1+x 22k (1-k )2-k 2由题意,得=1,k (1-k )2-k 2解得k =2.当k =2时,方程①成为2x 2-4x +3=0.Δ=16-24=-8<0,方程①没有实数解.∴不能作一条直线l 与双曲线交于A ,B 两点,且点P (1,1)是线段AB 的中点.法二 设A (x 1,y 1),B (x 2,y 2),若直线l 的斜率不存在,即x 1=x 2不符合题意,所以由题得x -=1,x -=1,21y 2122y 22两式相减得(x 1+x 2)(x 1-x 2)-=0,(y 1+y 2)(y 1-y 2)2即2-=0,y 1-y 2x 1-x 2即直线l 斜率k =2,得直线l 方程y -1=2(x -1),即y =2x -1,联立Error!得2x 2-4x +3=0,Δ=16-24=-8<0,即直线y =2x -1与双曲线无交点,即所求直线不合题意,所以过点P (1,1)的直线l 不存在.12.(2014南京质检)中心在原点,焦点在x 轴上的一椭圆与一双曲线有共同的焦点F 1,F 2,且|F 1F 2|=2,椭圆的长半轴长与双曲线实半轴长之差为4,离心率之比为3∶7.13(1)求这两曲线方程;(2)若P 为这两曲线的一个交点,求cos ∠F 1PF 2的值.解:(1)由已知c =,13设椭圆长、短半轴长分别为a 、b ,双曲线实半轴、虚半轴长分别为m 、n ,则Error!解得a =7,m =3.∴b =6,n =2.∴椭圆方程为+=1,x 249y 236双曲线方程为-=1.x 29y 24(2)不妨设F 1、F 2分别为左、右焦点,P 是第一象限的一个交点,则|PF 1|+|PF 2|=14,|PF 1|-|PF 2|=6,∴|PF 1|=10,|PF 2|=4.又|F 1F 2|=2,13∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|==.102+42-(213)22×10×445第八篇 第5节一、选择题1.(2014银川模拟)抛物线y =2x 2的焦点坐标为( )A. B .(1,0)(12,0)C. D .(0,18)(0,14)解析:抛物线y =2x 2,即其标准方程为x 2=y ,它的焦点坐标是.故选C.12(0,18)答案:C2.抛物线的焦点为椭圆+=1的下焦点,顶点在椭圆中心,则抛物线方程为( )x 24y 29A .x 2=-4y B .y 2=-4x55C .x 2=-4yD .y 2=-4x1313解析:由椭圆方程知,a 2=9,b 2=4,焦点在y 轴上,下焦点坐标为(0,-c ),其中c ==,a 2-b 25∴抛物线焦点坐标为(0,-),5∴抛物线方程为x 2=-4y .故选A.5答案:A3.已知抛物线y 2=2px ,以过焦点的弦为直径的圆与抛物线准线的位置关系是( )A .相离 B .相交C .相切 D .不确定解析:如图所示,设抛物线焦点弦为AB ,中点为M ,准线为l ,A 1、B 1分别为A 、B 在直线l 上的射影,则|AA 1|=|AF |,|BB 1|=|BF |,于是M 到l 的距离d =(|AA 1|+|BB 1|)12=(|AF |+|BF |)=|AB |,故圆与抛物线准线相切.故选C.1212答案:C4.(2014洛阳高三统一考试)已知F 是抛物线y 2=4x 的焦点,过点F 的直线与抛物线交于A ,B 两点,且|AF |=3|BF |,则线段AB 的中点到该抛物线准线的距离为( )A. B .5383C. D .10103解析:设点A (x 1,y 1),B (x 2,y 2),其中x 1>0,x 2>0,过A ,B 两点的直线方程为x =my +1,将x =my +1与y 2=4x 联立得y 2-4my -4=0,y 1y 2=-4,则由Error!解得x 1=3,x 2=,13故线段AB 的中点到该抛物线的准线x =-1的距离等于+1=.故选B.x 1+x 2283答案:B5.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A. B .134C. D .5474解析:∵|AF |+|BF |=x A +x B +=3,12∴x A +x B =.52∴线段AB 的中点到y 轴的距离为=.xA +xB 254故选C.答案:C6.设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心、|FM |为半径的圆和抛物线C 的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞) D .[2,+∞)解析:∵x 2=8y ,∴焦点F 的坐标为(0,2),准线方程为y =-2.由抛物线的定义知|MF |=y 0+2.以F 为圆心、|FM |为半径的圆的标准方程为x 2+(y -2)2=(y 0+2)2.由于以F 为圆心、|FM |为半径的圆与准线相交,又圆心F 到准线的距离为4,故4<y 0+2,∴y 0>2.故选C.答案:C 二、填空题7.动直线l 的倾斜角为60°,且与抛物线x 2=2py (p >0)交于A ,B 两点,若A ,B 两点的横坐标之和为3,则抛物线的方程为________.解析:设直线l 的方程为y =x +b ,3联立Error!消去y ,得x 2=2p (x +b ),3即x 2-2px -2pb =0,3∴x 1+x 2=2p =3,3∴p =,则抛物线的方程为x 2=y .323答案:x 2=y38.以抛物线x 2=16y 的焦点为圆心,且与抛物线的准线相切的圆的方程为________.解析:抛物线的焦点为F (0,4),准线为y =-4,则圆心为(0,4),半径r =8.所以,圆的方程为x 2+(y -4)2=64.答案:x 2+(y -4)2=649.(2012年高考北京卷)在直角坐标系xOy 中,直线l 过抛物线y 2=4x 的焦点F ,且与该抛物线相交于A ,B 两点,其中点A 在x 轴上方,若直线l 的倾斜角为60°,则△OAF 的面积为________.解析:∵抛物线y 2=4x ,∴焦点F 的坐标为(1,0).又∵直线l 倾斜角为60°,∴直线斜率为,3∴直线方程为y =(x -1).3联立方程Error!解得Error!或Error!由已知得A 的坐标为(3,2),3∴S △OAF =|OF |·|y A |=×1×2=.121233答案:310.已知点P 是抛物线y 2=2x上的动点,点P 在y 轴上的射影是M ,点A ,则(72,4)|PA |+|PM |的最小值是________.解析:设点M 在抛物线的准线上的射影为M ′.由已知可得抛物线的准线方程为x =-,焦点F 坐标为.12(12,0)求|PA |+|PM |的最小值,可先求|PA |+|PM ′|的最小值.由抛物线的定义可知,|PM ′|=|PF |,所以|PA |+|PF |=|PA |+|PM ′|,当点A 、P 、F 在一条直线上时,|PA |+|PF |有最小值|AF |=5,所以|PA |+|PM ′|≥5,又因为|PM ′|=|PM |+,12所以|PA |+|PM |≥5-=.1292答案:92三、解答题11.若抛物线y =2x 2上的两点A (x 1,y 1)、B (x 2,y 2)关于直线l :y =x +m 对称,且x 1x 2=-,求实数m 的值.12解:法一 如图所示,连接AB ,∵A 、B 两点关于直线l 对称,∴AB ⊥l ,且AB 中点M (x 0,y 0)在直线l 上.可设l AB :y =-x +n ,由Error!得2x 2+x -n =0,∴x 1+x 2=-,x 1x 2=-.12n2由x 1x 2=-,得n =1.12又x 0==-,x 1+x 2214y 0=-x 0+n =+1=,1454即点M 为,(-14,54)由点M 在直线l 上,得=-+m ,5414∴m =.32法二 ∵A 、B 两点在抛物线y =2x 2上.∴Error!∴y 1-y 2=2(x 1+x 2)(x 1-x 2).设AB 中点M (x 0,y 0),则x 1+x 2=2x 0,k AB ==4x 0.y 1-y 2x 1-x 2又AB ⊥l ,∴k AB =-1,从而x 0=-.14又点M 在l 上,∴y 0=x 0+m =m -,14即M ,(-14,m -14)∴AB 的方程是y -=-,(m -14)(x +14)即y =-x +m -,代入y =2x 2,12得2x 2+x -=0,∴x 1x 2=-=-,∴m =.(m -12)m -122123212.已知过抛物线y 2=2px (p >0)的焦点,斜率为2的直线交抛物线于A (x 1,y 1),2B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若=+λ,求λ的值.OC → OA → OB→ 解:(1)直线AB 的方程是y =2,与y 2=2px 联立,2(x -p2)从而有4x 2-5px +p 2=0,所以x 1+x 2=.由抛物线定义得|AB |=x 1+x 2+p =9,5p4所以p =4,从而抛物线方程是y 2=8x .(2)由p =4知4x 2-5px +p 2=0可化为x 2-5x +4=0,从而x 1=1,x 2=4,y 1=-2,y 2=4,22从而A (1,-2),B (4,4).22设=(x 3,y 3)=(1,-2)+λ(4,4)OC→ 22=(4λ+1,4λ-2),22即C (4λ+1,4λ-2),22所以[2(2λ-1)]2=8(4λ+1),2即(2λ-1)2=4λ+1,解得λ=0或λ=2.。
解析几何单元测试题及答案
解析几何单元测试题及答案一、选择题(每题3分,共15分)1. 椭圆的标准方程是哪一个?A. \((x-h)^2/a^2 + (y-k)^2/b^2 = 1\)B. \((x-h)^2/b^2 + (y-k)^2/a^2 = 1\)C. \((x-h)^2/a^2 + (y-k)^2/b^2 = 0\)D. \((x-h)^2/a^2 - (y-k)^2/b^2 = 1\)2. 点P(-1, 3)到直线3x - 4y + 5 = 0的距离是?A. 2B. 3C. 4D. 53. 抛物线 \(y^2 = 4x\) 的焦点坐标是?A. (1, 0)B. (0, 2)C. (1, 2)D. (2, 0)4. 直线 \(ax + by + c = 0\) 与 \(dx + ey + f = 0\) 平行的条件是?A. \(a/d = b/e\)B. \(a/d = b/e ≠ c/f\)C. \(a/d ≠ b/e\)D. \(a/d = b/e = c/f\)5. 圆心在原点,半径为5的圆的标准方程是?A. \(x^2 + y^2 = 25\)B. \((x-5)^2 + y^2 = 25\)C. \(x^2 + y^2 = 5\)D. \((x-5)^2 + y^2 = 5\)二、填空题(每题2分,共10分)6. 已知椭圆 \(\frac{x^2}{9} + \frac{y^2}{4} = 1\),其长轴的长度为________。
7. 点A(2, -1)关于直线 \(x-y-1=0\) 对称的点的坐标是________。
8. 直线 \(2x - 3y + 1 = 0\) 与 \(x + y - 2 = 0\) 的交点坐标是________。
9. 抛物线 \(x^2 = 6y\) 的准线方程是________。
10. 圆 \(x^2 + y^2 - 2x - 4y + 4 = 0\) 的圆心坐标是________。
2023年高考优质解析几何大题练习【含答案】
新高考优质解析几何大题练习一.解答题(共30小题)1.(2022秋•浙江月考)如图,已知抛物线C:y2=2px(p>0)的焦点F,且经过点A(2p,m)(m>0),|AF|=5.(1)求p和m的值;(2)点M,N在C上,且AM⊥AN.过点A作AD⊥MN,D为垂足,证明:存在定点Q,使得|DQ|为定值.2.(2022秋•浙江月考)已知点A(2,1)在双曲线C:﹣=1(b>0)上.(Ⅰ)求双曲线C的渐近线方程;(Ⅱ)设直线l:y=k(x﹣1)与双曲线C交于不同的两点E,F,直线AE,AF分别交直线x=3于点M,N.当△AMN的面积为时,求k的值.3.(2022秋•玄武区校级月考)设A,B为双曲线C:﹣=1(a>b>0)的左、右顶点,直线l过右焦点F且与双曲线C的右支交于M,N两点,当直线l垂直于x轴时,△AMN为等腰直角三角形.(1)求双曲线C的离心率;(2)已知AB=4,若直线AM,AN分别交直线x=1于P,Q两点,若D(t,0)为x 轴上一动点,当直线l的倾斜角变化时,若∠PDQ为锐角,求t的取值范围.4.(2022•南京模拟)已知点F1,F2分别为双曲线C:的左、右焦点,点A为双曲线C的右顶点,已知,且点F2到一条渐近线的距离为2.(1)求双曲线C的方程;(2)若直线l:y=mx+n与双曲线C交于两点M,N,直线OM,ON的斜率分别记为k OM,k ON,且,求证:直线l过定点,并求出定点坐标.5.(2022春•开福区校级月考)已知双曲线C的渐近线方程为,且过点P(3,).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ 与C交于另一点D,过Q点作QN⊥AD于N,证明:直线AD过定点M,且点N在以QM为直径的圆上.6.(2022秋•皇姑区校级月考)已知椭圆Γ的方程为,圆C与x轴相切于点T(2,0),与y轴正半轴相交于A,B两点,且|AB|=3,如图.(1)求圆C的方程;(2)如图,过点(0,1)的直线l与椭圆Γ相交于P,Q两点,求证:射线AO平分∠PAQ.7.(2022秋•开福区校级月考)已知双曲线经过点(2,﹣3),两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程;(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M(m,0),使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.8.(2022秋•锦州期中)已知双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点;且C的一条渐近线与直线x﹣2y+2=0平行.(1)求双曲线C的方程;(2)若直线l与双曲线C右支相切(切点不为右顶点),且l分别交双曲线C的两条渐近线于A、B两点,O为坐标原点,试判断△AOB的面积是否为定值,若是,请求出;若不是,请说明理由.9.(2022秋•湖北期中)在△ABC中,已知A(﹣1,0),B(﹣2,0),且sin B=sin A.(1)求顶点C的轨迹E的方程;(2)曲线E与y轴交于P,Q两点,T是直线y=2上一点,连TP,TQ分别与E交于M,N两点(异于P,Q两点),试探究直线MN是否过定点,若是求定点,若不是说明理由.10.(2022秋•南阳期中)已知动点P到两个定点的距离之和为4,记点P的轨迹为Γ.(1)求Γ的方程;(2)若点Q(0,﹣3),过点T(0,1)的直线l与Γ交于M,N两点,求△QMN面积的最大值.11.(2022•临澧县校级开学)已知椭圆C的方程为+=1(a>0),斜率为k(k≠0)的直线与C交于M,N两点.(1)若G为MN的中点,O为坐标原点,且直线OG的斜率为﹣,求椭圆C的方程;(2)在(1)的条件下,若P是椭圆C的左顶点,直线PM的斜率为k PM,直线PN的斜率为k PN,k PM•k PN=﹣,F是椭圆的左焦点,要使F在以MN为直径的圆内,求k 的取值范围.12.(2022秋•辽宁期中)如图所示:已知椭圆C:的长轴长为4,离心率.A是椭圆的右顶点,直线l过点M(﹣1,0)交椭圆于C,D两点,记△ACD的面积为S.(1)求椭圆C的标准方程;(2)求S的最大值.13.(2022•烟台三模)已知椭圆C:+=1(a>b>0)的离心率为,(,1)为C与抛物线x2=2py的交点.(1)求椭圆C的方程;(2)设椭圆的上顶点为A,斜率为k的直线过抛物线的焦点F且与椭圆交于M,N两点,试探究直线AM,AN的斜率之积是否为定值?若是,求出此定值;若不是,说明理由.14.(2022•雨花区校级模拟)如图,已知椭圆,其左、右焦点分别为F1,F2,过右焦点F2且垂直于x轴的直线交椭圆于第一象限的点P,且.(1)求椭圆C的方程;(2)过点且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,说明理由.15.(2022•鞍山模拟)已知O为坐标原点,F1、F2为椭圆C的左、右焦点,|F1F2|=2,P 为椭圆C的上顶点,以P为圆心且过F1、F2的圆与直线相切.(1)求椭圆C的标准方程;(2)若过点F2作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由.16.(2022•洛阳模拟)已知抛物线C:y2=2px(p>0),A是C上位于第一象限内的动点,它到点B(3,0)距离的最小值为.直线AB与C交于另一点D,线段AD的垂直平分线交C于E,F两点.(1)求p的值;(2)若中,证明A,D,E,F四点共圆,并求该圆的方程.17.(2022•德州二模)已知△ABC的两个顶点A,B的坐标分别为(﹣,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M、N两点,点D在曲线G上,O是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.18.(2022•襄城区校级四模)已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点到F点的距离为.(1)求抛物线的方程及点A坐标;(2)设斜率为k的直线l过点B(2,0)且与抛物线交于不同的两点M、N,若且,求斜率k的取值范围.19.(2021秋•淄博期末)已知O为坐标原点,A(x1,y1),B(x2,y2)是直线l与抛物线C:y2=4x的两个交点,满足.试求y1y2的值,并证明直线l恒过定点.20.(2021秋•十堰期末)已知抛物线,,点M(x0,y0)在C2上,且不与坐标原点O重合,过点M作C1的两条切线,切点分别为A,B.记直线MA,MB,MO的斜率分别为k1,k2,k3.(1)当x0=1时,求k1+k2的值;(2)当点M在C2上运动时,求的取值范围.21.(2021秋•武汉期末)已知双曲线的左、右焦点分别为,动点M满足|MF2|﹣|MF1|=2.(1)求动点M的轨迹方程;(2)若动点M在双曲线C上,设双曲线C的左支上有两个不同的点P,Q,点N(4,0),且∠ONP=∠ONQ,直线NQ与双曲线C交于另一点B.证明:动直线PB经过定点.22.(2021秋•菏泽期末)已知Rt△ABC中,A(﹣1,0),B(1,0),∠CAB=90°,,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.(1)求曲线E的方程;(2)过点(1,0)的直线l与曲线E交于M,N两点,则在x轴上是否存在定点Q.使得的值为定值?若存在,求出点Q的坐标和该定值;若不存在,请说明理由.23.(2021秋•南京月考)已知双曲线E:﹣=1(a>0,b>0)过点D(3,1),且该双曲线的虚轴端点与两顶点A1,A2的张角为120°.(1)求双曲线E的方程;(2)过点B(0,4)的直线l与双曲线E左支相交于点M,N,直线DM,DN与y轴相交于P,Q两点,求|BP|+|BQ|的取值范围.24.(2018秋•福田区校级期末)已知椭圆C的中心是坐标原点O,它的短轴长2,焦点F(c,0),点A(﹣c,0),且=2.(1)求椭圆C的标准方程;(2)是否存在过点A的直线与椭圆C相交于P、Q两点,且以线段PQ为直径的圆过坐标原点O,若存在,求出直线PQ的方程;不存在,说明理由.25.(2021•辽宁模拟)已知抛物线C1:y2=2px(p>0),椭圆C2:=1(a>b>0),抛物线与椭圆有共同的焦点F(4,0),且椭圆C2的离心率e=.(Ⅰ)求椭圆与抛物线的方程;(Ⅱ)直线l1的方程为x=﹣4,若不经过点P(4,8)的直线l2与抛物线交于A,B(A,B分别在x轴两侧),与直线l1交于点M,与椭圆交于点C,D,设PA,PM,PB的斜率分别为k1,k2,k3,若k1+k3=2k2.(ⅰ)证明:直线l2恒过定点;(ⅱ)点D关于x轴的对称点为D′,试问△CFD′的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.26.(2021•平邑县校级开学)已知椭圆(a>b>0)过点(,0),其焦距的平方是长轴长的平方与短轴长的平方的等差中项.(1)求椭圆的标准方程:(2)直线l过点M(1,0),与椭圆分别交于点A,B,与y轴交于点N,各点均不重合且满足,,求λ+μ.27.(2022秋•青羊区校级月考)已知椭圆=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆有相同的焦点,点P为抛物线与椭圆在第一象限的交点,且|PF1|=.(1)求椭圆的方程;(2)过F作两条斜率不为0且互相垂直的直线分别交椭圆于A,B和C,D,线段AB 的中点为M,线段CD的中点为N,证明:直线MN过定点,并求出该定点的坐标.28.(2022秋•思明区校级期中)在平面直角坐标系xOy中,△ABC的周长为12,AB,AC 边的中点分别为F1(﹣1,0)和F2(1,0),点M为BC边的中点.(1)求点M的轨迹方程;(2)设点M的轨迹为曲线Γ,直线MF1与曲线Γ的另一个交点为N,线段MF2的中点为E,记,求S的最大值.29.(2022秋•迎泽区校级月考)已知抛物线C:x2=2py(p>0)与圆O:x2+y2=12相交于A,B两点,且点A的横坐标为是抛物线C的焦点,过焦点的直线l与抛物线C 相交于不同的两点M,N.(1)求抛物线C的方程.(2)过点M,N作抛物线C的切线l1,l2,P(x0,y0)是l1,l2的交点,求证:点P在定直线上.参考公式:(cx2)′=2cx,其中c为常数.30.(2022秋•香坊区校级月考)动点M与定点A(1,0)的距离和M到定直线x=9的距离之比是常数.(1)求动点M的轨迹G的方程;(2)设O为原点,点B(﹣3,0),过点A的直线l与M的轨迹G交于P、Q两点,且直线l与x轴不重合,直线BP、BQ分别与y轴交于R、S两点,求证:|OR|⋅|OS|为定值.新高考优质解析几何大题练习参考答案与试题解析一.解答题(共30小题)1.(2022秋•浙江月考)如图,已知抛物线C:y2=2px(p>0)的焦点F,且经过点A(2p,m)(m>0),|AF|=5.(1)求p和m的值;(2)点M,N在C上,且AM⊥AN.过点A作AD⊥MN,D为垂足,证明:存在定点Q,使得|DQ|为定值.【答案】(1)p=2,m=4;(2)证明见解析.【解答】解:(1)由抛物线定义知:,则p=2,又A(4,m)(m>0)在抛物线上,则m2=4×4,可得m=4.(2)证明:设M(x1,y1),N(x2,y2),由(1)知:A(4,4),所以,,又AM⊥AN,所以(x1﹣4)(x2﹣4)+(y1﹣4)(y2﹣4)=x1x2﹣4(x1+x2)+y1y2﹣4(y1+y2)+32=0,令直线MN:x=ky+n,联立C:y2=4x,整理得y2﹣4ky﹣4n=0,且Δ=16k2+16n>0,所以y1+y2=4k,y1y2=﹣4n,则,,综上,n2﹣16k2﹣12n﹣16k+32=(n﹣4k﹣8)(n+4k﹣4)=0,当n=8+4k时,MN:x=k(y+4)+8过定点B(8,﹣4);当n=4﹣4k时,MN:x=k(y﹣4)+4过定点(4,4),即A,M,N共线,不合题意;所以直线MN过定点B(8,﹣4),又AD⊥MN,故D在以AB为直径的圆上,而AB中点为Q(6,0),即为定值,得证.2.(2022秋•浙江月考)已知点A(2,1)在双曲线C:﹣=1(b>0)上.(Ⅰ)求双曲线C的渐近线方程;(Ⅱ)设直线l:y=k(x﹣1)与双曲线C交于不同的两点E,F,直线AE,AF分别交直线x=3于点M,N.当△AMN的面积为时,求k的值.【答案】(Ⅰ)y=±x.(Ⅱ)2.【解答】解:(Ⅰ)因为点A(2,1)在双曲线上,所以﹣=1,b2=1,即双曲线C的方程为﹣y2=1,所以渐近线方程为y=±x,即y=±x.(Ⅱ)设直线AE的方程为y=k1(x﹣2)+1,直线AF的方程为y=k2(x﹣2)+1,联立,得(1﹣2k1)2x2+(8k12﹣4k1)x﹣8k12+8k1﹣4=0,所以x A+x E=﹣=,所以x E=﹣2=,y E=,所以E(,),同理可得F(,),联立,得M(3,k1+1),同理N(3,k2+1),所以|MN|=|k1﹣k2|,=|MN|×2=|k1﹣k2|=,所以S△AMN不妨设k1>k2,即k1=k2+,所以E(,),又E,F在直线l上,所以,解得,所以k的值为2.3.(2022秋•玄武区校级月考)设A,B为双曲线C:﹣=1(a>b>0)的左、右顶点,直线l过右焦点F且与双曲线C的右支交于M,N两点,当直线l垂直于x轴时,△AMN为等腰直角三角形.(1)求双曲线C的离心率;(2)已知AB=4,若直线AM,AN分别交直线x=1于P,Q两点,若D(t,0)为x 轴上一动点,当直线l的倾斜角变化时,若∠PDQ为锐角,求t的取值范围.【答案】(1)2;(2)(﹣∞,﹣2)∪(4,+∞).【解答】解:(1)由l⊥x轴,△AMN为等腰直角三角形,可得|AF|=|NF|=|MF|,所以a+c=,即c2﹣ac﹣2a2=0,可得e2﹣e﹣2=0,解得e=2或e=﹣1(舍),所以双曲线的离心率为2;(2)由AB=4,可得2a=4,即a=2,所以直线PQ的方程为:x=1,由(1)可得离心率为2,可得c=4,b==2,所以双曲线的方程为:﹣=1;由题意可得直线l的斜率不为0,设直线l的方程为x=my+4,m≠±,设M(x1,y1),N(x2,y2),联立,整理可得:(3m2﹣1)y2+24my+36=0,可得y1+y2=﹣,y1y2=,x1+x2=m(y1+y2)+8=,x1x2=(my1+4)(my2+4)=m2y1y2+4m(y1+y2)+16=,直线AM的方程为y=(x+2),直线AN的方程为:y=(x+2),令x=1,可得P(1,),Q(1,),∵D(t,0),∴=(1﹣t,),=(1﹣t,),∵•=(1﹣t)2+×=(1﹣t)2+=(1﹣t)2+=(1﹣t)2﹣9,∵∠PDQ为锐角,∴•>0,∴(1﹣t)2﹣9>0,∴t<﹣2或t>4.∴t的取值范围为(﹣∞,﹣2)∪(4,+∞).4.(2022•南京模拟)已知点F1,F2分别为双曲线C:的左、右焦点,点A为双曲线C的右顶点,已知,且点F2到一条渐近线的距离为2.(1)求双曲线C的方程;(2)若直线l:y=mx+n与双曲线C交于两点M,N,直线OM,ON的斜率分别记为k OM,k ON,且,求证:直线l过定点,并求出定点坐标.【答案】(1);(2)证明解析;定点为(﹣2,0)或(2,0).【解答】解:(1)由题知,F2(c,0),其中一条渐近线为,即bx﹣ay=0,所以,解得,所以,(2)证明:设M(x1,y1),N(x2,y2),将y=mx+n代入,整理得:(5m2﹣4)x2+10mnx+5n2+20=0,则,由Δ=100m2n2﹣4(5m2﹣4)(5n2+20)=80(n2﹣5m2+4)>0得n2﹣5m2+4>0,因为=,所以,得n2=4m2,即n=±2m,所以直线l的方程为y=m(x±2),所以当n2﹣5m2+4>0,且n=2m时,直线l过定点(﹣2,0);所以当n2﹣5m2+4>0,且n=﹣2m时,直线l过定点(2,0).5.(2022春•开福区校级月考)已知双曲线C的渐近线方程为,且过点P(3,).(1)求C的方程;(2)设Q(1,0),直线x=t(t∈R)不经过P点且与C相交于A,B两点,若直线BQ 与C交于另一点D,过Q点作QN⊥AD于N,证明:直线AD过定点M,且点N在以QM为直径的圆上.【答案】(1)﹣y2=1.(2)直线AD过定点(3,0).点N在以QM为直径的圆上.【解答】解:(1)因为双曲线C的渐近线方程为,故设C的方程为﹣y2=λ(λ≠0),又C过点P(3,).所以﹣()2=λ,解得λ=1,所以C的方程为﹣y2=1.(2)证明:显然直线BQ的斜率不为0,设直线BQ为x=my+1,B(x1,y1),D(x2,y2),A(x1,﹣y1),联立,消去x整理得(m2﹣3)y2+2my﹣2=0,依题意m2﹣3≠0且Δ=4m2+8(m2﹣3)>0,即m2>2且m2≠3,所以y1+y2=﹣,y1y2=﹣,直线AD的方程为y+y1=(x﹣x1),令y=0,得x=+x1=====3,所以直线AD过定点(3,0).过Q点作QN⊥AD于N,设QM的中点为R,若N和M不重合,则△QNM为直角三角形,所以|RN|=|MQ|,若N和M重合,|RN|=|MQ|,所以点N在以QM为直径的圆上.6.(2022秋•皇姑区校级月考)已知椭圆Γ的方程为,圆C与x轴相切于点T(2,0),与y轴正半轴相交于A,B两点,且|AB|=3,如图.(1)求圆C的方程;(2)如图,过点(0,1)的直线l与椭圆Γ相交于P,Q两点,求证:射线AO平分∠PAQ.【答案】(1);(2)证明见解析.【解答】解:(1)依题意,设圆心C(2,b),r=b,,解得,所以所求圆方程为:.(2)证明:x=0代入圆C方程,得y=1或y=4,所以B(0,1),A(0,4),若过B点的直线斜率不存在,此时A,P,Q在y轴上,∠PAB=∠QAB=0,射线AO平分∠PAQ;若过B(0,1)的直线l斜率存在,设其方程为y=kx+1,联立整理得(2k2+1)x2+4kx﹣6=0,Δ=16k2+24(2k2+1)=8(8k2+3)>0,设P(x1,y1),Q(x2,y2),,=,∴∠PAB=∠QAB.所以射线AO平分∠PAQ.综上,射线AO平分∠PAQ.7.(2022秋•开福区校级月考)已知双曲线经过点(2,﹣3),两条渐近线的夹角为60°,直线l交双曲线于A,B两点.(1)求双曲线C的方程;(2)若动直线l经过双曲线的右焦点F2,是否存在x轴上的定点M(m,0),使得以线段AB为直径的圆恒过M点?若存在,求实数m的值;若不存在,请说明理由.【答案】(1);(2)存在M(﹣1,0),使得以线段AB为直径的圆恒过M点.【解答】解:(1)∵两条渐近线的夹角为60°,∴渐近线的斜率或,即或;当时,由,得:a2=1,b2=3,∴双曲线C的方程为:;当时,方程无解;综上所述:双曲线C的方程为:.(2)由题意得:F2(2,0),假设存在定点M(m,0)满足题意,则恒成立;①当直线l斜率存在时,设l:y=k(x﹣2),A(x1,y1),B(x2,y2),由得:(3﹣k2)x2+4k2x﹣(4k2+3)=0,∴,∴,,∴==0,∴(4k2+3)(1+k2)﹣4k2(2k2+m)+(m2+4k2)(k2﹣3)=0,整理可得:k2(m2﹣4m﹣5)+(3﹣3m2)=0,由,得:m=﹣1;∴当m=﹣1时,恒成立;②当直线l斜率不存在时,l:x=2,则A(2,3),B(2,﹣3),当M(﹣1,0)时,,,∴成立;综上所述:存在M(﹣1,0),使得以线段AB为直径的圆恒过M点.8.(2022秋•锦州期中)已知双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点;且C的一条渐近线与直线x﹣2y+2=0平行.(1)求双曲线C的方程;(2)若直线l与双曲线C右支相切(切点不为右顶点),且l分别交双曲线C的两条渐近线于A、B两点,O为坐标原点,试判断△AOB的面积是否为定值,若是,请求出;若不是,请说明理由.【答案】(1);(2)△AOB的面积为定值2,理由见解答.【解答】解:(1)∵双曲线C:=1(a>0,b>0)与双曲线=1有相同的焦点,∴c=,又C的一条渐近线与直线x﹣2y+2=0平行,∴=,又a2+b2=c2=5,解得a=2,b=1,∴双曲线C的方程为;(2)设直线l的方程为y=kx+m,联立,可得(4k2﹣1)x2+8kmx+4m2﹣4=0,∴Δ=64k2m﹣16(4k2﹣1)(m2+1)=0,∴4k2=m2+1,设直线l与x轴交点为D,则OD=||,=S△OAD+S△OBD==,∴S△AOB又双曲线的渐近线方程为y=±x,联立直线l:y=kx+m,可得A(,),B(,),===,∴S△AOB又4k2=m2+1,=2,∴△AOB的面积为定值.∴S△AOB9.(2022秋•湖北期中)在△ABC中,已知A(﹣1,0),B(﹣2,0),且sin B=sin A.(1)求顶点C的轨迹E的方程;(2)曲线E与y轴交于P,Q两点,T是直线y=2上一点,连TP,TQ分别与E交于M,N两点(异于P,Q两点),试探究直线MN是否过定点,若是求定点,若不是说明理由.【答案】(1)x2+y2=2(y≠0);(2)直线MN恒过点(0,).【解答】解:(1)A(﹣1,0),B(﹣2,0),由sin B=sin A,得,即,设C(x,y),则,整理得x2+y2=2(y≠0);(2)曲线E:x2+y2=2(y≠0),由题意不妨设P(0,),Q(0,﹣),T(m,)(m≠0),TP:y=,TQ:y=,联立,得(m2+2)x2+4mx=0,得M(,);联立,得(m2+18)x2﹣12mx=0,得N(,).当m≠±3时,直线MN方程为y=.∴直线MN恒过点(0,).10.(2022秋•南阳期中)已知动点P到两个定点的距离之和为4,记点P的轨迹为Γ.(1)求Γ的方程;(2)若点Q(0,﹣3),过点T(0,1)的直线l与Γ交于M,N两点,求△QMN面积的最大值.【答案】(1);(2).【解答】解:(1)由题意可知,P点轨迹为Γ是以,为焦点,长轴长为4的椭圆,即2a=4,,所以a=2,b=1,所以Γ的方程为:;(2)因为直线l的斜率存在,设直线l的方程:y=kx+1,设M(x1,y1),N(x2,y2),,消去y,整理得:(k2+4)x2+2kx﹣3=0,Δ=(2k)2+4(k2+4)×3=16(k2+3)>0,所以,,所以,所以△QMN面积,设,所以在上单调递减,故当,即k=0时,△BMN面积取得最大值,最大值为,所以△QMN面积的最大值.11.(2022•临澧县校级开学)已知椭圆C的方程为+=1(a>0),斜率为k(k≠0)的直线与C交于M,N两点.(1)若G为MN的中点,O为坐标原点,且直线OG的斜率为﹣,求椭圆C的方程;(2)在(1)的条件下,若P是椭圆C的左顶点,直线PM的斜率为k PM,直线PN的斜率为k PN,k PM•k PN=﹣,F是椭圆的左焦点,要使F在以MN为直径的圆内,求k 的取值范围.【答案】(1);(2).【解答】解:(1)设M,N两点坐标分别为M(x1,y1),N(x2,y2),G(x0,y0),代入椭圆方程,得,则,可得,因为,所以,所以a2=4,椭圆C的方程为.(2)设MN方程为y=kx+m,则,所以(3+4k2)x2+8kmx+4m2﹣12=0,所以,,所以,所以=,所以=,解得m=2k(舍)或m=﹣k,若F在以MN为直径的圆内,则,即,,即4k2﹣12+8k2+3k2﹣12k2+3+4k2=0,即7k2﹣9<0,且k≠0,解得且k≠0,所以k的取值范围为.12.(2022秋•辽宁期中)如图所示:已知椭圆C:的长轴长为4,离心率.A是椭圆的右顶点,直线l过点M(﹣1,0)交椭圆于C,D两点,记△ACD的面积为S.(1)求椭圆C的标准方程;(2)求S的最大值.【答案】(1);(2).【解答】解:(1)令椭圆E的半焦距为c,依题意,a=2,=,解得c=,则b2=a2﹣c2=1,所以椭圆E的标准方程为.(2)依题意,设直线l:x=ty﹣1,设C(x1,y1),D(x2,y2),由,消去x并整理得:(t2+4)y2﹣2ty﹣3=0,则y1+y2=,y1y2=﹣,|y1﹣y2|===,由(1)知A(2,0),|AM|=3,则有S===,令u=,显然函数y=在[,+∞)上单调递增,,当且仅当,即=±1时取等号.显然取等号情况不成立,故当=时S取得最大值,即S≤,所以S的最大值为.13.(2022•烟台三模)已知椭圆C:+=1(a>b>0)的离心率为,(,1)为C与抛物线x2=2py的交点.(1)求椭圆C的方程;(2)设椭圆的上顶点为A,斜率为k的直线过抛物线的焦点F且与椭圆交于M,N两点,试探究直线AM,AN的斜率之积是否为定值?若是,求出此定值;若不是,说明理由.【答案】(1);(2)直线AM,AN的斜率之积为定值.【解答】解:(1)由题意可知,,可得a2=2c2,又a2=b2+c2,可得a2=2b2,所以椭圆方程为,将代入方程得:,解得b2=4,所以a2=8,所以椭圆C的方程:;(2)直线AM,AN的斜率之积为定值,且定值为.由(1)可得A(0,2),将代入抛物线可得6=2p,p=3,所以抛物线方程为x2=6y,所以,则设直线MN的方程为,设M(x1,y1),N(x2,y2),联立直线MN的方程,,消去y,整理得(2+4k2)x2+12kx﹣7=0,所以,,,所以=,所以,直线AM,AN的斜率之积为定值.14.(2022•雨花区校级模拟)如图,已知椭圆,其左、右焦点分别为F1,F2,过右焦点F2且垂直于x轴的直线交椭圆于第一象限的点P,且.(1)求椭圆C的方程;(2)过点且斜率为k的动直线l交椭圆于A,B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,说明理由.【答案】(1),(2)(0,1).【解答】解:(1)∵,∴,∵,∴,∵a2=c2+1,∴,∴椭圆方程为:.(2)动直线l的方程为:,由得,设A(x1,y1),B(x2,y2),则..由对称性可设存在定点M(0,m)满足题设,则,⇒6(m2﹣1)k2+(3m2+2m﹣5)=0,由题意知上式对∀k∈R成立,∴m2﹣1=0且3m2+2m﹣5=0,解得m=1.∴存在定点M,使得以AB为直径的适恒过这个点,且点M的坐标为(0,1).15.(2022•鞍山模拟)已知O为坐标原点,F1、F2为椭圆C的左、右焦点,|F1F2|=2,P 为椭圆C的上顶点,以P为圆心且过F1、F2的圆与直线相切.(1)求椭圆C的标准方程;(2)若过点F2作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由.【答案】(1);(2)存在;.【解答】解:(1)依题意,F1(﹣1,0),F2(1,0),,由椭圆定义知:椭圆长轴长,即,而半焦距c=1,即有短半轴长b=1,所以椭圆C的标准方程为:.(2)依题意,设直线l方程为x=my+1,由消去x并整理得(m2+2)y2+2my﹣1=0,设M(x1,y1),N(x2,y2),则,,假定存在点T(t,0),直线TM与TN的斜率分别为,,=,要使k TM⋅k TN为定值,必有﹣1﹣2(1﹣t)+(1﹣t)2=0,即,当时,∀m∈R,,当时,∀m∈R,,所以存在点,使得直线TM与TN的斜率之积为定值.16.(2022•洛阳模拟)已知抛物线C:y2=2px(p>0),A是C上位于第一象限内的动点,它到点B(3,0)距离的最小值为.直线AB与C交于另一点D,线段AD的垂直平分线交C于E,F两点.(1)求p的值;(2)若中,证明A,D,E,F四点共圆,并求该圆的方程.【答案】(1)2;(2)(x﹣9)2+(y﹣2)2=64.【解答】解:(1)设A(2py2,2py),则,令t=y2∈[0,+∞),则,对于二次函数m=4p2t2+(4p2﹣12p)t+9,其对称轴为,当p≥3时,在[0,+∞)上单调递增,其最小值为9,即|AB|的最小值为3,不满足题意,当0<p<3时,,所以当时m=4p2t2+(4p2﹣12p)t+9取得最小值,即所以,解得p=2或p=4(舍),所以p=2;(2)由(1)可得,当时,,点A(1,2),所以,直线AB的方程为y=﹣x+3,由可得x2﹣10x+9=0,解得x=1或x=9,所以D(9,﹣6),所以AD的中点为N(5,﹣2),所以直线EF的方程为y+2=1⋅(x﹣5),即y=x﹣7,设E(x1,y1),F(x2,y2),由可得y2﹣4y﹣28=0,所以y1+y2=4,y1y2=﹣28,所以线段EF的中点为,因为,所以d,D,E,F四点共圆,圆心为M(9,2),半径为8,所以该圆的方程为(x﹣9)2+(y﹣2)2=64.17.(2022•德州二模)已知△ABC的两个顶点A,B的坐标分别为(﹣,0),(,0),圆E是△ABC的内切圆,在边AC,BC,AB上的切点分别为P,Q,R,,动点C的轨迹为曲线G.(1)求曲线G的方程;(2)设直线l与曲线G交于M、N两点,点D在曲线G上,O是坐标原点,判断四边形OMDN的面积是否为定值?若为定值,求出该定值;如果不是,请说明理由.【答案】;(2)四边形OMDN的面积是定值,其定值为.【解答】解:(1)因为圆E为△ABC的内切圆,所以|CA|+|CB|=|CP|+|CQ|+|PA|+|QB|=2|CP|+|AR|+|BR|=2|CP|+|AB|=4>|AB|,所以点C的轨迹为以点A和点B为焦点的椭圆,所以,a=2,则b=1,所以曲线G的方程为.(2)由y≠0可知直线l的斜率存在,设直线l方程是y=kx+m,由平面图形OMDN是四边形,可知m≠0,代入到,得(1+4k2)x2+8kmx+4m2﹣4=0,所以Δ=16(4k2+1﹣m2)>0,,.所以,所以,又点O到直线MN的距离,由,得,,因为点D在曲线G上,所以将D点坐标代入椭圆方程得1+4k2=4m2.由题意四边形OMDN为平行四边形,所以OMDN的面积为,由1+4k2=4m2,代入得,故四边形OMDN的面积是定值,其定值为.18.(2022•襄城区校级四模)已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点到F点的距离为.(1)求抛物线的方程及点A坐标;(2)设斜率为k的直线l过点B(2,0)且与抛物线交于不同的两点M、N,若且,求斜率k的取值范围.【答案】(1),(2).【解答】解:(1)由抛物线定义可知:,得p=2,∴抛物线方程为x2=4y,将点坐标代入抛物线方程得:∴点A坐标为,(2)直线l的方程为y=k(x﹣2),设M、N两点的坐标分别为(x1,y1),(x2,y2).联立消去y,整理得:x2﹣4kx+8k=0,由Δ>0⇒16k2﹣32k>0⇒k<0或k>2.且x1+x2=4k,x1x2=8k,又即(x1﹣2,y1)=λ(x2﹣2,y2)∴,∵,∴,又,令,∴,又:k<0或k>2.∴k的取值范围是.19.(2021秋•淄博期末)已知O为坐标原点,A(x1,y1),B(x2,y2)是直线l与抛物线C:y2=4x的两个交点,满足.试求y1y2的值,并证明直线l恒过定点.【答案】y1y2=﹣8,证明见解析.【解答】证明:设l:x=my+n,A(x1,y1),B(x2,y2).由得y2﹣4my﹣4n=0.∴y1+y2=4m,y1y2=﹣4n,∴x1+x2=4m2+2n,x1x2=n2.又•=﹣4,∴x1x2+y1y2=n2−4n=−4,解得n=2,∴y1y2=﹣8.∴直线l方程为x=my+2,∴直线l恒过点(2,0).20.(2021秋•十堰期末)已知抛物线,,点M(x0,y0)在C2上,且不与坐标原点O重合,过点M作C1的两条切线,切点分别为A,B.记直线MA,MB,MO的斜率分别为k1,k2,k3.(1)当x0=1时,求k1+k2的值;(2)当点M在C2上运动时,求的取值范围.【答案】(1)k1+k2=4.(2)(﹣∞,﹣4]∪[4,+∞).【解答】解:(1)因为x0=1,所以y0=﹣1.设过点M并与C1相切的直线方程为y=k(x﹣1)﹣1.联立方程组整理得x2﹣kx+k+1=0,则Δ=(﹣k)2﹣4(k+1)=k2﹣4k﹣4=0.由题可知,k1,k2即方程k2﹣4k﹣4=0的两根,故k1+k2=4.(2)因为,所以可设过点M并与C1相切的直线的方程为.联立方程组整理得,则.由题可知,k1+k2=4x0,.又,所以.当x0>0时,,所以,当且仅当时,等号成立.当x0<0时,,所以,当且仅当时,等号成立.故的取值范围为(﹣∞,﹣4]∪[4,+∞).21.(2021秋•武汉期末)已知双曲线的左、右焦点分别为,动点M满足|MF2|﹣|MF1|=2.(1)求动点M的轨迹方程;(2)若动点M在双曲线C上,设双曲线C的左支上有两个不同的点P,Q,点N(4,0),且∠ONP=∠ONQ,直线NQ与双曲线C交于另一点B.证明:动直线PB经过定点.【答案】(1)x2﹣=1(x≤﹣1);(2)证明过程见详解,定点(,0).【解答】解:(1)动点M满足|MF2|﹣|MF1|=2<|F1F2|,所以动点M的轨迹为双曲线的左支,且2a=2,c=,所以可得a=1,b2=c2﹣a2=10﹣1=9,所以双曲线的方程为:x2﹣=1(x≤﹣1);(2)证明:由题意可得P,Q关于x轴对称,设直线PB的方程为:y=kx+t,设P(x1,y1),B(x2,y2),则Q(x1,﹣y1),联立,整理可得:(9﹣k2)x2﹣2ktx﹣t2﹣9=0,则x1+x2=,x1x2=,则直线BQ的方程为:y=(x﹣x2)+y2,因为直线过N(4,0)点,所以0=(4﹣x2)+y2,整理可得:(x2﹣4)(y2+y1)=y2(x2﹣x1),即2kx1x2+(t﹣4k)(x1+x2)﹣8t=0,所以+﹣8t=0,整理可得:﹣2kt2﹣18k+2kt2﹣8k2t﹣72t+8tk2=0,即k=﹣4t,所以直线PB的方程为:y=﹣4tx+t=﹣4t(x﹣),可证得:直线PB恒过定点(,0)22.(2021秋•菏泽期末)已知Rt△ABC中,A(﹣1,0),B(1,0),∠CAB=90°,,曲线E过C点,动点P在E上运动,且保持|PA|+|PB|的值不变.(1)求曲线E的方程;(2)过点(1,0)的直线l与曲线E交于M,N两点,则在x轴上是否存在定点Q.使得的值为定值?若存在,求出点Q的坐标和该定值;若不存在,请说明理由.【答案】(1).(2)存在点.【解答】解:(1)由题意,可得,而,所以点P的轨迹为以A,B为焦点,长轴长为的椭圆,由,故,所以曲线E的方程为.(2)当直线l的斜率为不为0时,设直线l的方程为x=my+1,设定点Q(t,0),联立方程组消x可得(m2+2)y2+2my﹣1=0,设M(x1,y1),N(x2,y2),可得,所以=(my1+1﹣t)(my2+1﹣t)+y1y2==,要使上式为定值,则,解得,此时,当直线l的斜率为0时,,此时,也符合;所以,存在点,使得为定值.23.(2021秋•南京月考)已知双曲线E:﹣=1(a>0,b>0)过点D(3,1),且该双曲线的虚轴端点与两顶点A1,A2的张角为120°.(1)求双曲线E的方程;(2)过点B(0,4)的直线l与双曲线E左支相交于点M,N,直线DM,DN与y轴相交于P,Q两点,求|BP|+|BQ|的取值范围.【答案】(1).;(2)|BP|+|BQ|的取值范围是(,18﹣6).【解答】解:(1)由已知可得,结合a2+b2=c2,解得,故双曲线E的方程;.(2)设直线方程y=kx+4,M(x1,y1),N(x2,y2),直线DM的方程为y﹣1=(x﹣3),可得P(0,1﹣),直线DN的方程为y﹣1=(x﹣3),可得Q(0,1﹣),联立,消去y,整理可得(1﹣3k2)x2﹣24kx﹣54=0,则,可得,|BP|+||BQ|=4﹣y M+4﹣y N=6+=6+3×=6+3×=6+3×===8﹣,又,∴3k+5∴|BP|+|BQ|的取值范围是(,18﹣6).24.(2018秋•福田区校级期末)已知椭圆C的中心是坐标原点O,它的短轴长2,焦点F(c,0),点A(﹣c,0),且=2.(1)求椭圆C的标准方程;(2)是否存在过点A的直线与椭圆C相交于P、Q两点,且以线段PQ为直径的圆过坐标原点O,若存在,求出直线PQ的方程;不存在,说明理由.【答案】见试题解答内容【解答】解:(1)由题意知,b=,F(c,0),A(﹣c,0),则,,由=2,得c=,解得:c=2.∴a2=b2+c2=6,∴椭圆的方程为,离心率为;(2)A(3,0),设直线PQ的方程为y=k(x﹣3),联立,得(1+3k2)x2﹣18k2x+27k2﹣6=0,设P(x1,y1),Q(x2,y2),则,.∴=k2()=.由已知得OP⊥OQ,得x1x2+y1y2=0,即,解得:k=,符合Δ>0,∴直线PQ的方程为y=.25.(2021•辽宁模拟)已知抛物线C1:y2=2px(p>0),椭圆C2:=1(a>b>0),抛物线与椭圆有共同的焦点F(4,0),且椭圆C2的离心率e=.(Ⅰ)求椭圆与抛物线的方程;(Ⅱ)直线l1的方程为x=﹣4,若不经过点P(4,8)的直线l2与抛物线交于A,B(A,B分别在x轴两侧),与直线l1交于点M,与椭圆交于点C,D,设PA,PM,PB的斜率分别为k1,k2,k3,若k1+k3=2k2.(ⅰ)证明:直线l2恒过定点;(ⅱ)点D关于x轴的对称点为D′,试问△CFD′的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【答案】(Ⅰ)椭圆C2的方程为,抛物线C1的方程为y2=16x;(Ⅱ)(i)证明见解析;(ii)△CFD'的面积存在最大值,最大值为.【解答】(Ⅰ)解:设椭圆的半焦距为c,因为抛物线与椭圆有共同的焦点F(4,0),则y2=16x且c=4,因为椭圆C2的离心率为e=,解得a=5,所以b2=a2﹣c2=9,故椭圆C2的方程为,抛物线C1的方程为y2=16x;(Ⅱ)(i)证明:当直线l2的斜率k=0时,不符合题意;当直线l2的存在且不为0时,设直线l2:y=kx+b,令x=﹣4,可得y=﹣4k+b,则点M(﹣4,﹣4k+b),设A(x1,y1),B(x2,y2),联立,可得ky2﹣16y+16b=0,则Δ>0,所以,直线PA的斜率,同理可得直线PB的斜率为,直线PM的斜率为,因为k1+k3=2k2,所以,即,整理可得,,所以b=4k或b=﹣4k,当b=4k时,y1y2=64,与A,B在x轴两侧矛盾;当b=﹣4k时,直线l2的方程为y=kx﹣4k,即直线l2恒过定点(4,0);(ii)解:设C(x3,y3),D(x4,y4),D'(x4,﹣y4),设直线CD的方程为x=ty+4(t≠0),代入椭圆C2的方程可得,(9t2+25)y2+72ty﹣81=0,。
高考数学 解析几何 专题练习及答案解析版
高考数学解析几何专题练习解析版82页【1】1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A.19422=+y x B.14922=+y x C.113422=+y x D.141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( )A .54B .45 C .254D .425 9. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B.13222=+y x C.12222=+y xD.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .3 12.已知)0(12222>>=+b a b y a x ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =,且0PM AM ⋅=则||PM 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B 2 (C 3(D )2 18.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( ) (A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π)C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23 B .32C .32-D .23- 22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP ⋅的取值范围为( ) A .()21,1-B .()21,2-C .()1,2D .()2,+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61B .⎪⎭⎫ ⎝⎛-61,21C .⎪⎭⎫ ⎝⎛61,21.D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4B. 3C. 2D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( )A.B.C.D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r =。
大学解析几何考试题及答案
大学解析几何考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是解析几何的研究对象?A. 平面曲线B. 空间曲线C. 空间曲面D. 质点运动答案:D2. 在平面直角坐标系中,点P(x, y)关于原点的对称点的坐标是:A. (-x, -y)B. (x, -y)C. (-x, y)D. (y, x)答案:A3. 如果直线l的方程为2x - 3y + 6 = 0,那么它的斜率k等于:A. 2/3B. -2/3C. 3/2D. -3/2答案:B4. 椭圆的标准方程是:A. (x/a)^2 + (y/b)^2 = 1B. (x/a)^2 - (y/b)^2 = 1C. (x/a)^2 + (y/b)^2 = 0D. (x/a)^2 - (y/b)^2 = 0答案:A5. 一个圆的圆心在原点,半径为1,那么它的方程是:A. x^2 + y^2 = 1B. x^2 + y^2 = 0C. x^2 + y^2 = 2D. x^2 + y^2 = -1答案:A6. 如果两条直线的方程分别为y = mx + b1和y = mx + b2,那么这两条直线:A. 相交B. 平行C. 重合D. 垂直答案:B7. 抛物线y^2 = 4ax的准线方程是:A. x = -aB. x = aC. y = -aD. y = a答案:A8. 双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程是:A. y = ±(b/a)xB. y = ±(a/b)xC. y = ±(a/b)xD. y = ±(b/a)x答案:D9. 点A(3, 4)关于直线y = x的对称点B的坐标是:A. (4, 3)B. (2, 3)C. (3, 2)D. (4, 5)答案:A10. 直线x = 2y + 3与圆x^2 + y^2 = 25相交于两点,这两点的距离是:A. 2√5B. 4√5C. 5√2D. 10答案:C二、填空题(每题4分,共20分)11. 在平面直角坐标系中,点P(2, -1)到原点的距离是_________。
解析几何专题练习(带答案)
解析几何专题练习一、选择题 1.已知直线l 1:(k -3)x +(4-k)y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是A .1或3B .1或5C .3或5D .1或2 2.过点(2,4)作直线与抛物线y 2=8x 只有一个公共点,这样的直线有 A .1条 B .2条 C .3条 D .4条3.双曲线x 26-y 23=1的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r =A. 3 B .2 C .3 D .6 4.“b a =”是“直线2+=x y 与圆()()222=-+-b x a x 相切”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件5.椭圆31222yx+=1的一个焦点为F 1,点P 在椭圆上.如果线段PF 1的中点M在y 轴上,那么点M 的纵坐标是A .±43B .±23C .±22D .±43二、填空题 6.经过圆0222=++yx x 的圆心C ,且与直线x+y=0垂直的直线方程是___ .7.由直线2+=x y 上的点向圆()()22421x y -++= 引切线,则切线长的最小值为___. 8.若双曲线221x ky +=的离心率是2,则实数k 的值是______.9.已知圆C的参数方程为cos ,(1sin .x y ααα=⎧⎨=+⎩为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 1ρθ=,则直线l 与圆C的交点的直角坐标为 .10.在平面直角坐标系中,如果x 与y 都是整数,就称点(,)x y 为整点,下列命题中正确的是__________(写出所有正确命题的编号).①存在这样的直线,既不与坐标轴平行又不经过任何整点=+不经过任何整点②如果k与b都是无理数,则直线y kx b③直线l经过无穷多个整点,当且仅当l经过两个不同的整点=+经过无穷多个整点的充分必要条件是:k与b都是有理数④直线y kx b⑤存在恰经过一个整点的直线三、解答题11.在△ABC中,已知点A(5,-2)、B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上.(1)求点C的坐标;(2)求直线MN的方程.12.求过两点A(1,4)、B(3,2),且圆心在直线y=0上的圆的标准方程.并判断点M1(2,3),M2(2,4)与圆的位置关系.13.已知圆x2+y2-4ax+2ay+20(a-1)=0.(1)求证对任意实数a,该圆恒过一定点;(2)若该圆与圆x2+y2=4相切,求a的值.14.已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线方程;(2)过M作MN⊥FA,垂足为N,求点N的坐标.15.已知双曲线的中心在原点,焦点F1、F2在坐标轴上,离心率为2,且过点(4,-10). (1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:MF 1⊥MF 2; (3)求△F 1MF 2的面积.16.已知直线l 过点P (1,1), 并与直线l 1:x -y+3=0和l 2:2x+y -6=0分别交于点A 、B ,若线段AB 被点P 平分,求: (1)直线l 的方程;(2)以O 为圆心且被l 截得的弦长为558的圆的方程.17.已知点A 的坐标为)4,4(-,直线l 的方程为3x +y -2=0,求: (1)点A 关于直线l 的对称点A ′的坐标;… (2)直线l 关于点A 的对称直线l '的方程.18.已知圆221:(4)1Cx y -+=,圆222:(2)1C x y +-=,动点P到圆1C ,2C 上点的距离的最小值相等.】 (1)求点P 的轨迹方程;(2)点P 的轨迹上是否存在点Q ,使得点Q 到点(22,0)A -的距离减去点Q 到点(22,0)B 的距离的差为4,如果存在求出Q 点坐标,如果不存在说明理由.19.已知椭圆1C 、抛物线2C 的焦点均在x 轴上,1C 的中心和2C 的顶点均为原点O ,从每条曲线上取两个点,将其坐标记录于下表中:x3-2 42y32--422(1)求12C C 、的标准方程;(2)请问是否存在直线l 满足条件:①过2C 的焦点F ;②与1C 交不同两点,M N 、且满足OM ON ⊥?若存在,求出直线l 的方程;若不存在,说明理由.20.已知椭圆()22220y xC a b a b:+=1>>的离心率为63,过右顶点A 的直线l 与椭圆C 相交于A 、B 两点,且(13)B --,.(1)求椭圆C 和直线l 的方程;(2)记曲线C 在直线l 下方的部分与线段AB 所围成的平面区域(含边界)为D .若曲线2222440xmx y y m -+++-=与D 有公共点,试求实数m 的最小值.参考答案一、选择题 1—5 CBAAA 二、填空题 6.x-y+1=0 7. 318.13-9. (1,1),(1,1)- 10. ①,③,⑤三、解答题11.解:(1)设点C(x ,y),由题意得5+x 2=0,3+y2=0,得x =-5,y =-3.故所求点C 的坐标是(-5,-3).(2)点M 的坐标是⎝⎛⎭⎪⎫0,-52,点N 的坐标是(1,0),直线MN 的方程是y -0-52-0=x -10-1, 即5x -2y -5=0.12. 解:根据圆的标准方程,只要求得圆心坐标和圆的半径即可.因为圆过A 、B 两点,所以圆心在线段AB 的垂直平分线上.由k AB =4-21-3=-1,AB 的中点为(2,3),故AB 的垂直平分线的方程为y -3=x -2, 即x -y +1=0.又圆心在直线y =0上, 因此圆心坐标是方程组 ⎩⎪⎨⎪⎧x -y +1=0y =0的解,即圆心坐标为(-1,0). 半径r =-1-12+0-42=20, 所以得所求圆的标准方程为(x +1)2+y 2=20.因为M 1到圆心C(-1,0)的距离为2+12+3-02=18,|M 1C|<r ,所以M 1在圆C 内;而点M 2到圆心C 的距离|M 2C|=2+12+4-02=25>20,所以M 2在圆C 外.13. 解:(1)将圆的方程整理为(x 2+y 2-20)+a(-4x +2y +20)=0,令⎩⎪⎨⎪⎧x 2+y 2-20=0,-4x +2y +20=0可得⎩⎪⎨⎪⎧x =4,y =-2,所以该圆恒过定点(4,-2).(2)圆的方程可化为(x -2a)2+(y +a)2=5a 2-20a +20=5(a -2)2,所以圆心为(2a ,a),半径为5|a -2|.若两圆外切,则2a -02+a -02=2+5|a -2|,即5|a|=2+5|a -2|,由此解得a =1+55.若两圆内切,则2a 2+a 2=|2-5|a -2||,即5|a|=|2-5|a -2||,由此解得a =1-55或a =1+55(舍去).综上所述,两圆相切时,a =1-55或a =1+55.14. 解:(1)抛物线y 2=2px 的准线x =-p 2,于是,4+p2=5,∴p =2.∴抛物线方程为y 2=4x.(2)∵点A 的坐标是(4,4),由题意得B(0,4),M(0,2).又∵F(1,0),∴k FA =43.又MN ⊥FA ,∴k MN =-34,则FA 的方程为y =43(x -1),MN 的方程为y -2=-34x ,解方程组),1(34),432(-=-=-x y x y 得.54),58(==y x ∴N )54,58(. 15. 解:(1)由e =2⇒ca=2⇒c 2=2a 2⇒a 2=b 2.设双曲线方程为x 2-y 2=λ, 将点(4,-10)代入得:λ=6, 故所求双曲线方程为x 2-y 2=6.(2)∵c 2=12,∴焦点坐标为(±23,0) 将M(3,m)代入x 2-y 2=6得:m 2=3.当m =3时,MF 1→=(-23-3,-3), MF2→=(23-3,-3)∴MF1→·MF 2→=(-3)2-(23)2+(-3)2=0, ∴MF 1⊥MF 2,当m =-3时,同理可证MF 1⊥MF 2.(3)S △F 1MF 2=12·|2c|·|m|=12·43·3=6.16. 解:(1)依题意可设A )n ,m (、)n 2,m 2(B --,则 ⎩⎨⎧=--+-=+-06)n 2()m 2(203n m , ⎩⎨⎧=+-=-023n m n m ,解得1m -=,2n =. 即)2,1(A -,又l 过点P )1,1(,易得AB 方程为03y 2x =-+.(2)设圆的半径为R ,则222)554(d R +=,其中d 为弦心距,53d=,可得5R 2=,故所求圆的方程为5yx22=+.17.解:(1)设点A ′的坐标为(x ′,y ′)。
(完整版)解析几何题库
解析几何题库一、选择题1.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 A.22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C.22(1)(1)2x y -+-= D. 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B 2.直线1y x =+与圆221x y +=的位置关系为( )A .相切B .相交但直线不过圆心C .直线过圆心D .相离【解析】圆心(0,0)为到直线1y x =+,即10x y -+=的距离2d ==,而012<<,选B 。
【答案】B 3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( )A .22(2)1xy +-=B .22(2)1xy ++=C .22(1)(3)1x y -+-=D .22(3)1xy +-=解法1(直接法):设圆心坐标为(0,)b1=,解得2b =,故圆的方程为22(2)1x y +-=。
解法2(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为22(2)1x y +-=解法3(验证法):将点(1,2)代入四个选择支,排除B ,D ,又由于圆心在y 轴上,排除C 。
【答案】A4.点P (4,-2)与圆224x y +=上任一点连续的中点轨迹方程是( )A.22(2)(1)1x y -++= B.22(2)(1)4x y -++=C.22(4)(2)4x y ++-=D.22(2)(1)1x y ++-=【解析】设圆上任一点为Q (s ,t ),PQ 的中点为A (x ,y ),解得:⎩⎨⎧+=-=2242y t x s ,代入圆方程,得(2x -4)2+(2y+2)2=4,整理,得:22(2)(1)1x y -++=【答案】A 5.已知直线12:(3)(4)10,:2(3)230,l kx k y l k x y -+-+=--+=与平行,则k 得值是( )A. 1或3B.1或5C.3或5D.1或2【解析】当k =3时,两直线平行,当k ≠3k -3,解得:k =5,故选C 。
解析几何初中试题及答案
解析几何初中试题及答案1. 已知点A(2,3)和点B(-1,-2),求线段AB的中点坐标。
答案:线段AB的中点坐标为(\(\frac{2+(-1)}{2}, \frac{3+(-2)}{2}\)),即(\(\frac{1}{2}, \frac{1}{2}\))。
2. 已知直线l的方程为y=2x+3,求直线l与x轴的交点坐标。
答案:当直线l与x轴相交时,y=0,代入方程得2x+3=0,解得x=-\(\frac{3}{2}\)。
因此,交点坐标为(-\(\frac{3}{2}\), 0)。
3. 已知圆C的方程为(x-1)^2 + (y+2)^2 = 9,求圆C的半径和圆心坐标。
答案:圆C的半径为3,圆心坐标为(1, -2)。
4. 已知直线l1: y=x+1与直线l2: y=-2x+4相交,求两直线的交点坐标。
答案:将两个方程联立,得到x+1=-2x+4,解得x=1。
将x=1代入任一方程得y=2。
因此,两直线的交点坐标为(1, 2)。
5. 已知抛物线y^2=4px(p>0)的焦点坐标为(2,0),求抛物线的方程。
答案:由焦点坐标(2,0)可得p=2,因此抛物线的方程为y^2=8x。
6. 已知椭圆的长轴为10,短轴为6,求椭圆的方程。
答案:设椭圆的方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a为长轴的一半,b为短轴的一半。
由题意得a=5,b=3,因此椭圆的方程为\(\frac{x^2}{25} + \frac{y^2}{9} = 1\)。
7. 已知双曲线的实轴长为8,虚轴长为6,求双曲线的方程。
答案:设双曲线的方程为\(\frac{x^2}{a^2} - \frac{y^2}{b^2} =1\),其中a为实轴的一半,b为虚轴的一半。
由题意得a=4,b=3,因此双曲线的方程为\(\frac{x^2}{16} - \frac{y^2}{9} = 1\)。
高二数学解析几何试题答案及解析
高二数学解析几何试题答案及解析1.双曲线的虚轴长等于( )A.B.C.D.4【答案】C【解析】双曲线方程化为因为是双曲线方程,所以则标准方程为所以虚轴长故选C2.若直线的参数方程为,则直线的斜率为().A.B.C.D.【答案】D.【解析】消去参数,得直线的普通方程为,则直线的斜率为.【考点】直线的参数方程;2.直线的斜率.3.圆与的圆心距与曲线的长度的大小关系是().A.B.C.D.无法比较【答案】A.【解析】两圆的圆心分别为,则圆心距,曲线表示半径为2的圆心角为的圆弧,弧长为.;则【考点】圆的参数方程;2.弧长公式.4.已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.(Ⅰ)求椭圆的标准方程;(Ⅱ)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)此问是待定系数法求椭圆的标准方程第一步先设椭圆的标准方程是,根据已知条件列3个关于的方程,求解;(Ⅱ)此题考查直线与椭圆相交的综合问题,总体思路是第一步,先将直线与椭圆联立,利用韦达定理得到和,,第二步,利用,表示点的坐标,第三步,将点的坐标代入椭圆方程,得到,第四步,根据直线与圆相切,得到与的关系,消参后求的范围.试题解析:解:(Ⅰ)设椭圆的标准方程为由已知得:解得所以椭圆的标准方程为:(Ⅱ)因为直线:与圆相切所以,把代入并整理得:设,则有因为,,所以,又因为点在椭圆上,所以,因为,所以所以,所以的取值范围为【考点】1.椭圆的标准方程;2.直线与椭圆相交的综合问题.5.如图,是圆的切线,切点为交圆于两点,,则()A.B.C.D.【答案】B【解析】连接,∵是圆的切线,切点为交圆于两点,,∴,∴,解得,∴,∴,故选B.【考点】1.与圆有关的比例线段的应用;2.计算.6.(本小题满分12分)已知椭圆经过点A(0,4),离心率为;(1)求椭圆C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.【答案】(1)(2)【解析】(1)待定系数法求椭圆方程;(20先求出直线方程代入椭圆方程,然后由韦达定理求出两根之和,再求出中点横坐标,最后代入直线方程求出中点纵坐标即得结果.试题解析:(1)因为椭圆经过点A,所以b=4.又因离心率为,所以所以椭圆方程为:依题意可得,直线方程为,并将其代入椭圆方程,得.(2)设直线与椭圆的两个交点坐标为,则由韦达定理得,,所以中点横坐标为,并将其代入直线方程得,故所求中点坐标为.【考点】求椭圆方程、直线与椭圆相交求弦的中点坐标.7.(本小题满分12分)已知一条光线从点射出,经过轴反射后,反射光线与圆相切,求反射光线所在直线的方程.【答案】或【解析】根据对称性先求出点A关于x轴的对称点,然后设出反射光线所在的直线方程,利用直线与圆相切求出反射光线所在的直线的斜率,从而求出反射光线所在的直线方程.试题解析:A关于x轴的对称点.反射光线相当于是从点射出的光线.因为反射光线的斜率存在,所以反射光线所在的直线可设为即因为该直线与圆相切,所以…10分所以反射光线所在直线方程为或.【考点】求直线方程.8.已知是椭圆的左右焦点,P是椭圆上任意一点,过作的外角平分线的垂线,垂足为Q,则点Q的轨迹为()A.直线B.圆C.椭圆D.四条线段【答案】B【解析】连接并延长交于M点,是外角的角平分线,所以是等腰三角形,所以,Q为中点,连接OQ,则OQ===,所以M表示以O为圆心为半径的圆,故选B【考点】椭圆定义及动点轨迹方程【方法点睛】求动点的轨迹方程的一般步骤:建立合适的坐标系,设出所求点及相关点坐标,代入动点满足的关系式并将其坐标化,整理化简并检验是否有不满足要求的点;本题中要充分结合等腰三角形的性质及椭圆定义得到动点到定点的距离为定值,结合三角形中位线的性质得到点到原点的距离为定值,因此得到其轨迹为圆9.(本题满分10分)已知椭圆,经过点,且两焦点与短轴的一个端点构成等腰直角三角形.(1)求椭圆方程;(2)过椭圆右顶点的两条斜率乘积为的直线分别交椭圆于,两点,试问:直线是否过定点?若过定点,请求出此定点,若不过,请说明理由.【答案】(1);(2)详见解析.【解析】(1)根据椭圆经过点以及两焦点与短轴的一个端点构成等腰直角三角形可列得方程组,从而求解;(2)若直线斜率存在时,可设,再利用韦达定理以及条件斜率乘积为,可得到,满足的关系式,即可得证,再验证当斜率不存在也符合即可.试题解析:(1)根据题意;(2)当的斜率存在时,设,,∴,∴或(舍)∴过定点,当斜率不存在时也符合,即直线恒过定点.【考点】1.椭圆的标准方程;2.椭圆中定点问题.【思路点睛】定点问题的常见解法(1)假设定点坐标,根据题意选择参数,建立一个直线系或曲线系方程,而该方程与参数无关,故得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即所求定点;(2)从特殊位置入手,找出定点,再证明该点适合题意.10.已知直线与直线平行,则的值是()A.B.C.-D.或0【答案】A【解析】由题意,解得,经检验时,两直线重合,时,两直线平行,故选A.【考点】11.过点的椭圆()的离心率为,椭圆与轴交于两点、,过点的直线与椭圆交于另一点,并与轴交于点,直线与直线交于点.(1)当直线过椭圆右焦点时,求线段的长;(2)当点异于点时,求证:为定值.【答案】(1);(2)见解析.【解析】(1)将点代入椭圆方程可求得,再由离心率求得,从而得到椭圆的方程,再将直线的方程供稿椭圆,求得交点坐标即可求得线段的长;(2)设直线的方程为(且),代入椭圆方程,求得点坐标,再联立直线的方程求得点坐标,然后结合点坐标,利用向量的数量积公式即可得出结论.试题解析:(1)由已知得,,解得,所以椭圆方程为.椭圆的右焦点为,此时直线的方程为,代入椭圆方程得,解得,,代入直线的方程得,,所以,故.(2)当直线与轴垂直时与题意不符.设直线的方程为(且).代入椭圆方程得.解得,,代入直线的方程得,,所以点的坐标为.又直线的方程为,又直线的方程为,联立得.因此,又.所以.故为定值.【考点】1、椭圆的几何性质;2、直线与椭圆的位置关系;3、平面向量的数量积.12.以椭圆的焦点为顶点、顶点为焦点的的双曲线方程是()A.B.C.D.【答案】C【解析】椭圆的焦点为、双曲线顶点为,因此双曲线焦点为,双曲线方程是,选C.【考点】椭圆与双曲线方程【名师】用待定系数法求双曲线标准方程的四个步骤(1)作判断:根据条件判断双曲线的焦点在x轴上,还是在y轴上,还是两个坐标轴都有可能.(2)设方程:根据上述判断设出方程.(3)找关系:根据已知条件,建立关于a,b,c的方程组.(4)得方程:解方程组,将解代入所设方程,即为所求.13.如图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降2米后,水面宽________米.【答案】.【解析】如下图所示,建立直角坐标系,设抛物线的方程为,将代入可得,,所以抛物线的方程为,于是将可得,,所以水面宽为,故应填.【考点】1、抛物线的实际应用.【思路点睛】本题主要考查了抛物线的应用,考查了学生利用抛物线的解决实际问题的能力,属中档题.其解题的一般思路为:首先根据已知条件建立适当的直角坐标系,并写出点的坐标,然后设出所求的抛物线的方程,将点的坐标代入抛物线的方程可求得,得到抛物线的方程,最后把代入抛物线的方程即可得出点的坐标,进而得出所求的答案.14.已知命题:点不在圆的内部,命题:“曲线表示焦点在轴上的椭圆”,命题“曲线表示双曲线”.(1)若“且”是真命题,求的取值范围;(2)若是的必要不充分条件,求的取值范围.【答案】(1)或;(2)或.【解析】(1)“且”是真命题,所以,得不等式组;(2)是的必要不充分条件得:或,从而求解.试题解析:(1)若为真:,解得或若为真:则,解得或,若“且”是真命题,则,解得或(2)若为真,则,即,由是的必要不充分条件,则可得或即或,解得或.【考点】1、复合命题的真假;2、充分条件、必要条件;3、不等式组.15.设是椭圆的左右焦点,为直线上一点,是底角为的等腰三角形,则椭圆的离心率为()A.B.C.D.【答案】C【解析】因为是底角为的等腰三角形,所以,因为P在直线上一点,所以,所以椭圆的离心率为,故选C.【考点】椭圆简单的几何性质.16.直线的倾斜角为( )A.B.C.D.【答案】D【解析】设直线的倾斜角为,由直线方程可知直线的斜率,即,,.故D正确.【考点】直线的斜率,倾斜角.17.如图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽米.【答案】【解析】建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式,其中a可通过代入A点坐标(-2,0),到抛物线解析式得出:a=-0.5,所以抛物线解析式为,当水面下降1米,通过抛物线在图上的观察可转化为:当y=-1时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1代入抛物线解析式得出:,解得:,所以水面宽度增加到米,【考点】二次函数的应用18.已知椭圆:的右焦点,过的直线交椭圆于两点,且是线段的中点.(1)求椭圆的离心率;(2)已知是椭圆的左焦点,求的面积.【答案】(1);(2).【解析】(1)设,,代入椭圆方程并作差,由中点坐标公式与直线的斜率得到的关系,从而求得椭圆的离心率;(2)联立直线与椭圆的方程,消去,利用韦达定理求得,从而求得求的面积.试题解析:(1)设,,则,,两式相减,得.∵线段的中点坐标为,∴.∵直线的斜率为,∴.∴,∴.(2)由(1)可知直线:,由,得,.又,所以.【考点】1、椭圆的方程及几何性质;2、直线与椭圆的位置关系.19.抛物线的准线方程为()A.B.C.D.【答案】B【解析】把抛物线转化为标准式方程为所以抛物线焦点在轴上,且即其准线方程为故选B.【考点】1、抛物线的简单性质;2、抛物线的标准式方程.20.已知抛物线上的任意一点P,记点P到轴的距离为,对于给定点,则的最小值为.【答案】【解析】过P作PB垂直于直线x=-1,垂足为B∵抛物线方程为y2=4x,∴2p=4,得可得焦点F(1,0),且直线x=-1是抛物线的准线,因此,|PA|+d+1=|PA|+|PB|=|PA|+|PF|,∵|PA|+|PF|≥|AF|∴当且仅当P、A、F三点共线时,|PA|+|PF|达到最小值,因此,|PA|+d+1的最小值为|AF|=,所以|PA|+d的最小值为.故答案为:.【考点】抛物线的几何性质和两点之间的距离公式等知识.【易错点睛】过P作PB垂直于直线x=-1,垂足为B,根据抛物线的定义得:|PA|+d+1=|PA|+|PB|=|PA|+|PF|.利用三角形两边之和大于第三边,可得当且仅当P、A、F三点共线时,|PA|+d+1达到最小值,因此可用两点的距离公式求出|PA|+d+1的最小值.本题给出定点A和抛物线上动点P,求P到A点与P到抛物线准线距离之和的最小值,学生易在P到轴的距离为,当成P到准线的距离为,忘记减1,造成失误.21.如图,直线与抛物线交于A、B两点,线段AB的垂直平分线与直线交于Q点.(1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含A、B)的动点时,求面积的最大值.【答案】(1);(2).【解析】(1)把直线方程抛物线方程联立求得焦点的坐标,则中点的坐标可得,利用的斜率推断出垂直平分线的斜率,进而求得垂直平分线的方程,把代入求得的坐标.(2)设出的坐标,利用到直线的距离求得三角形的高,利用两点间的距离公式求得的长,最后利用三角形面积公式表示出三角形,利用的范围和二次函数的单调性求得三角形面积的最大值.试题解析:(1)解方程组得或即,从而AB的中点为.由,直线AB的垂直平分线方程令,得(2)直线OQ的方程为,设.∵点P到直线OQ的距离=,,∴==∵P为抛物线上位于线段AB下方的点,且P不在直线OQ上,∴或.∵函数在区间上单调递增,∴当时,的面积取到最大值.【考点】抛物线的应用;直线与圆锥曲线的综合问题.【方法点晴】本题主要考查了抛物线的标准方程及其应用及直线与圆锥曲线的综合应用和点直线的距离公式,着重考查了解析几何基础知识的灵活运用.本题解答中,设出的坐标,利用到直线的距离求得三角形的高,利用两点间的距离公式求得的长,最后利用三角形面积公式表示出三角形,利用的范围和二次函数的单调性求得三角形面积的最大值.22.已知圆经过椭圆的一个顶点和一个焦点,则此椭圆的离心率.【答案】【解析】由可知过点【考点】圆与椭圆的方程及性质23.已知:,不等式恒成立,:椭圆的焦点在轴上.若命题p∧q为真命题,求实数m的取值范围.【答案】【解析】首先由不等式恒成立和椭圆性质分别得到两命题中m的取值范围,由复合命题p∧q为真命题可知两命题都是真命题,由此求交集可得到m的取值范围试题解析:∵p:∀x∈R,不等式恒成立,即解得:;-q:椭圆的焦点在x轴上,∴m﹣1>3﹣m>0,解得:2<m<3,由p∧q为真可知,p,q都为真,解得.【考点】1.不等式,椭圆的性质;2.复合命题24.如图,抛物线和圆,其中,直线经过的焦点,依次交于四点,则的值为()A.B.C.D.【答案】B【解析】设,由题意知抛物线的焦点,则设直线的方程为:,联立,消去,得:,根据抛物线的定义,得:,故选B.【考点】圆与圆锥曲线的综合.25.已知焦点在x轴上的椭圆过点A(﹣3,0),且离心率e=,则椭圆的标准方程是()A.=1B.=1C.=1D.=1【答案】D【解析】设椭圆的方程为+=1(a>b>0),由题意可得a=3,由离心率公式和a,b,c的关系,可得b,进而得到椭圆方程.解:设椭圆的方程为+=1(a>b>0),由题意可得a=3,e==,可得c=,b===2,则椭圆方程为+=1.故选:D.【考点】椭圆的简单性质.26.(2012•赤坎区校级模拟)抛物线的顶点在原点,对称轴是坐标轴,且焦点在直线x﹣y+2=0上,则此抛物线方程为.【答案】y2=﹣8x或x2=8y【解析】求出已知直线与坐标轴的交点A和B,在焦点分别为A和B的情况下设出抛物线标准方程,对照抛物线焦点坐标的公式求待定系数,即可得到相应抛物线的方程.解:直线x﹣y+2=0交x轴于点A(﹣2,0),与y轴交于点B(2,0)①当抛物线的焦点在A点时,设方程为y2=﹣2px,(p>0),可得=2,所以2p=8,∴抛物线方程为y2=﹣8x②当抛物线的焦点在B点时,设方程为x2=2p'y,(p'>0),可得=2,所以2p'=8,∴抛物线方程为x2=8y综上所述,得此抛物线方程为y2=﹣8x或x2=8y故答案为:y2=﹣8x或x2=8y【考点】抛物线的简单性质;抛物线的标准方程.27.设A(x1,y1).B(x2,y2)两点在抛物线y=2x2上,l是AB的垂直平分线.(1)当且仅当x1+x2取何值时,直线l经过抛物线的焦点F?证明你的结论;(2)当直线l的斜率为2时,求l在y轴上截距的取值范围.【答案】(1)见解析;(2)(,+∞).【解析】(1)先把抛物线方程整理成标准方程,进而求得抛物线的焦点坐标.先看直线l的斜率不存在时,显然x1+x2=0;看直线斜率存在时设斜率为k,截距为b,进而用A,B的坐标表示出线段AB的中点代入设的直线方程,及用A,B的坐标表示出直线的斜率,联立方程可分别求得x 1+x2和x21+x22的表达式进而求得b的范围,判断即l的斜率存在时,不可能经过焦点F.最后综合可得结论.(2)设直线l的方程为:y=2x+b,进而可得过直线AB的方程,代入抛物线方程,根据判别式大于0求得m的范围,进而根据AB的中点的坐标及b和m的关系求得b的范围.解:(1)∵抛物线y=2x2,即x2=,∴p=,∴焦点为F(0,)①直线l的斜率不存在时,显然有x1+x2=0②直线l的斜率存在时,设为k,截距为b 即直线l:y=kx+b由已知得:⇒⇒⇒x12+x22=﹣+b≥0⇒b≥.即l的斜率存在时,不可能经过焦点F(0,)所以当且仅当x1+x2=0时,直线l经过抛物线的焦点F(2)解:设直线l的方程为:y=2x+b′,故有过AB的直线的方程为y=﹣x+m,代入抛物线方程有2x2+x﹣m=0,得x1+x2=﹣.由A、B是抛物线上不同的两点,于是上述方程的判别式△=+8m>0,也就是:m>﹣.由直线AB的中点为(,)=(﹣,+m),则+m=﹣+b′,于是:b′=+m>﹣=.即得l在y轴上的截距的取值范围是(,+∞).【考点】抛物线的应用;直线的斜率;恒过定点的直线.28.已知双曲线的左、右焦点分别为,过的直线与双曲线的右支相交于两点,若,且,则双曲线的离心率()A.B.C.D.【答案】D【解析】设,则,因此,从而选D.【考点】双曲线定义,双曲线离心率29.已知双曲线的左、右焦点分别为,,过的直线与双曲线的右支相交于两点,若,且,则双曲线的离心率()A.B.C.D.【答案】A【解析】由题意,由余弦定理,可得【考点】双曲线方程及性质30.焦点在y轴的椭圆x2+ky2=1的长轴长是短轴长的2倍,那么k等于()A.-4B.C.4D.【答案】D【解析】椭圆方程变形为【考点】椭圆方程及性质31.若直线被圆所截的的弦长为,则实数的值()A.-2或6B.0或4C.-1 或D.-1或3【答案】D【解析】由圆的方程可知圆心为,半径为2.圆心到直线的距离.由题意可得,解得或.故D正确.【考点】圆的弦长问题.32.已知双曲线C1:(a>0,b>0)的左、右焦点分别为F1、F2,抛物线C2的顶点在原点,它的准线过双曲线C1的焦点,若双曲线C1与抛物线C2的交点P满足PF2⊥F1F2,则双曲线C1的离心率为.【答案】+1【解析】先设出抛物线方程,进而根据题意可得p与a和c的关系,把抛物线方程与双曲线方程联立,把x=c,y2=4cx,代入整理可得答案.解:设抛物线方程为y2=2px,依题意可知=c,∴p=2c,抛物线方程与双曲线方程联立得﹣=1,把x=c,代入整理得e4﹣6e2+1=0解得e=+1,故答案为:+1.【考点】双曲线的简单性质.33.如图,在圆x2+y2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足.当点P在圆上运动时,线段PD的中点M的轨迹是椭圆,那么这个椭圆的离心率是()A.B.C.D.【答案】D【解析】利用已知条件求出椭圆的方程,然后利用椭圆的离心率即可.解:设M(x,y),则P(x,2y),代入圆的方程并化简得:,解得a=2,b=1,c=.椭圆的离心率为:.故选:D.【考点】椭圆的简单性质;轨迹方程.34.椭圆上一点P到它的一个焦点的距离等于3,那么点P到另一个焦点的距离等于 .【答案】5【解析】由椭圆的方程可知,.由椭圆的定义可得点到另一个焦点的距离等于.【考点】椭圆的定义.35.若直线与直线平行,则的值为A.B.C.D.【答案】C【解析】由两直线平行可知系数满足【考点】两直线平行的判定36.已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点,若点到该抛物线的焦点距离为3,则()A.B.C.3D. 4【答案】C【解析】根据题意,可设抛物线的标准方程为,由于点到该抛物线的焦点距离为3,故,解得,抛物线标准方程为,将点代入抛物线方程可得,因此;【考点】抛物线的焦半径;37.已知抛物线与直线相交于两点.(1)求证:;(2)当的面积等于时,求的值.【答案】(1)证明见解析;(2);【解析】(1)要证,即证,联立直线与抛物线方程消去,得ky2+y-k=0,利用韦达定理可以证得;(2)设直线l与x轴的交点为N,求出点N的坐标为(-1,0),则,把(1)中的韦达定理代入可得的值;试题解析:(1)证明:联立,消去,得ky2+y-k=0.设A(x1,y1),B(x2,y2),则,,.因为,所以,所以,所以,即,所以.(2)设直线l与x轴的交点为N,则N的坐标为(-1,0),所以,解得,所以【考点】直线与抛物线位置关系;38.直线与抛物线交于A、B两点,过A、B两点向抛物线的准线作垂线,垂足分别为P、Q,则梯形APQB的面积为()A. B. C. D.【答案】A【解析】由题如图所示:,代入得:,解得:。
17--专题17解析几何的综合题——浙江温州金浩
专题17 解析几何的综合题1、(2018湖北荆州.24.12分) 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=)【分析】(1)先利用对称轴公式得出b=4a,进而利用待定系数法即可得出结论;(2)先利用根与系数的关系得出,x1+x2=4(k﹣1),x1x2=﹣16,转化已知条件,代入即可得出结论;(3)先判断出OB=2PQ,进而判断出点C是OB中点,再求出AB解析式,判断出PC∥AB,即可得出PC解析式,和抛物线解析式联立解方程组即可得出结论.【解答】解:(1)根据题意得,,∴,∴抛物线解析式为y=x2+x;(2)∵直线y =kx +4与抛物线两交点的横坐标分别为x 1,x 2,∴x 2+x =kx +4,∴x 2﹣4(k ﹣1)x ﹣16=0,根据根与系数的关系得,x 1+x 2=4(k ﹣1),x 1x 2=﹣16,∵,∴2(x 1﹣x 2)=x 1x 2,∴4(x 1﹣x 2)2=(x 1x 2)2,∴4[(x 1+x 2)2﹣4x 1x 2]=(x 1x 2)2,∴4[16(k ﹣1)2+64]=162,∴k =1;(3)如图,取OB 的中点C ,∴BC =OB ,∵B (4,8),∴C (2,4),∵PQ ∥OB ,∴点O 到PQ 的距离等于点O 到OB 的距离,∵S △POQ :S △BOQ =1:2,∴OB =2PQ ,∴PQ =BC ,∵PQ ∥OB ,∴四边形BCPQ 是平行四边形,∴PC ∥AB ,∵抛物线的解析式为y =x 2+x ②,令y =0,∴x 2+x =0,∴x =0或x =﹣4,∴A(﹣4,0),∵B(4,8),∴直线AB解析式为y=x+4,设直线PC的解析式为y=x+m,∵C(2,4),∴直线PC的解析式为y=x+2②,联立①②解得,(舍)或,∴P(﹣2,﹣2+2).【点评】此题是二次函数综合题,主要考查了待定系数法,一元二次方程的根与系数的关系,平行四边形的判定和性质,等高的两三角形面积的比等于底的比,判断出OB=2PQ是解本题的关键.2、(2018北京.28.7分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离”,记作d(M,N).已知点A(2-,6),B(2-,2-),C(6,2-).(1)求d(点O,ABC△);(2)记函数y kx△)=(11k≠)的图象为图形G,若d(G,ABC-≤≤,0x=,直接写出k的取值范围;1(3)T的圆心为T(,0),半径为1.若d(T,ABC△)1=,直接写出的取值范围.【解析】(1)如下图所示:∵B (2-,2-),C (6,2-)∴D (0,2-)∴d (O ,ABC △)2OD ==(2)10k -<≤或01k <≤(3)4t =-或04t -≤≤或4t =+.【考点】点到直线的距离,圆的切线3、(2018福建a卷.25.14分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:P A平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2,再代入(﹣,0)即可找出2a﹣b+2=0(a≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;②由①的结论可得出点M的坐标为(x1,﹣x12+2)、点N的坐标为(x2,﹣x12+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出P A平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,∴x1﹣x2=﹣,∴x1x2=﹣2,即x2=﹣,∴点N的坐标为(﹣,﹣+2).设点N关于y轴的对称点为点N′,则点N′的坐标为(,﹣+2).∵点P是点O关于点A的对称点,∴OP=2OA=4,∴点P的坐标为(0,4).设直线PM的解析式为y=k2x+4,∵点M的坐标为(x,﹣+2),∴﹣+2=k2x1+4,∴k2=﹣,∴直线PM的解析式为y=﹣+4.∵﹣•+4==﹣+2,∴点N′在直线PM上,∴P A平分∠MPN.【点评】本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质、等边三角形的性质以及一次(二次)函数图象上点的坐标特征,解题的关键是:(1)利用二次函数图象上点的坐标特征求出a、b满足的关系式;(2)①利用等边三角形的性质找出点C的坐标;②利用一次函数图象上点的坐标特征找出点N′在直线PM上.4、(2018甘肃白银市.28.12分) 如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.(1)求二次函数y=ax2+2x+c的表达式;(2)连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C 为菱形,请求出此时点P的坐标;(3)当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.【解答】解:(1)将点B和点C的坐标代入函数解析式,得,解得,二次函数的解析是为y=﹣x2+2x+3;(2)若四边形POP′C为菱形,则点P在线段CO的垂直平分线上,如图1,连接PP′,则PE⊥CO,垂足为E,∵C(0,3),∴E(0,),∴点P的纵坐标,当y=时,即﹣x2+2x+3=,解得x1=,x2=(不合题意,舍),∴点P的坐标为(,);(3)如图2,P在抛物线上,设P(m,﹣m2+2m+3),设直线BC的解析式为y=kx+b,将点B和点C的坐标代入函数解析式,得,解得.直线BC的解析为y=﹣x+3,设点Q的坐标为(m,﹣m+3),PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,OA=1,AB=3﹣(﹣1)=4,S四边形ABPC=S△ABC+S△PCQ+S△PBQ=AB•OC+PQ•OF+PQ•FB=×4×3+(﹣m2+3m)×3=﹣(m﹣)2+,当m=时,四边形ABPC的面积最大.当m=时,﹣m2+2m+3=,即P点的坐标为(,).当点P的坐标为(,)时,四边形ACPB的最大面积值为.5、(2018广东深圳.23.15分) 已知顶点为抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【答案】(1)解:把点代入,解得:a=1,∴抛物线的解析式为:或.(2)解:设直线AB解析式为:y=kx+b,代入点A、B的坐标得:,解得:,∴直线AB的解析式为:y=-2x-1,∴E(0,-1),F(0,- ),M(- ,0),∴OE=1,FE= ,∵∠OPM=∠MAF,∴当OP∥AF时,△OPE∽△F AE,∴∴OP= F A= ,设点P(t,-2t-1),∴OP= ,化简得:(15t+2)(3t+2)=0,解得,,∴S△OPE= ·OE·,当t=- 时,S△OPE= ×1× = ,当t=- 时,S△OPE= ×1× = ,综上,△POE的面积为或.(3)Q(- ,).【考点】二次函数的应用,翻折变换(折叠问题),相似三角形的判定与性质【解析】【解答】(3)解:由(2)知直线AB的解析式为:y=-2x-1,E(0,-1),设Q(m,-2m-1),N1(n,0),∴N(m,-1),∵△QEN沿QE翻折得到△QEN1∴NN1中点坐标为(,),EN=EN1,∴NN1中点一定在直线AB上,即=-2× -1,∴n=- -m,∴N1(- -m,0),∵EN2=EN12,∴m2=(- -m)2+1,解得:m=- ,∴Q(- ,).【分析】(1)用待定系数法将点B点坐标代入二次函数解析式即可得出a值.(2)设直线AB解析式为:y=kx+b,代入点A、B的坐标得一个关于k和b的二元一次方程组,解之即可得直线AB解析式,根据题意得E(0,-1),F(0,- ),M(- ,0),根据相似三角形的判定和性质得OP= F A= ,设点P(t,-2t-1),根据两点间的距离公式即可求得t值,再由三角形面积公式△POE的面积.(3)由(2)知直线AB的解析式为:y=-2x-1,E(0,-1),设Q(m,-2m-1),N1(n,0),从而得N(m,-1),根据翻折的性质知NN1中点坐标为(,)且在直线AB上,将此中点坐标代入直线AB解析式可得n=- -m,即N1(- -m,0),再根据翻折的性质和两点间的距离公式得m2=(- -m)2+1,解之即可得Q点坐标.6、(2018广西玉林.26.12分) 如图,直线y=﹣3x+3与x轴、y轴分别交于A,B 两点,抛物线y=﹣x2+bx+c与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.【分析】(1)代入y=c可求出点C、P的坐标,利用一次函数图象上点的坐标特征可求出点A、B的坐标,再由△PCB≌△BOA即可得出b、c的值,进而可得出点P的坐标及抛物线的解析式;(2)利用二次函数图象上点的坐标特征求出点F的坐标,过点M作ME∥y轴,交直线AB于点E,由点M的横坐标可得出点M、E的坐标,进而可得出ME的长度,再利用三角形的面积公式可找出S=﹣(m﹣3)2+5,由m的取值范围结合二次函数的性质即可求出S的最大值及最小值;(3)分两种情况考虑:①当点M在线段OP上方时,由CP∥x轴利用平行线的性质可得出:当点C、M重合时,∠MPO=∠POA,由此可找出点M的坐标;②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA,设点D的坐标为(n,0),则DO=n,DP=,由DO=DP可求出n的值,进而可得出点D的坐标,由点P、D的坐标利用待定系数法即可求出直线PD的解析式,再联立直线PD及抛物线的解析式成方程组,通过解方程组求出点M的坐标.综上此题得解.【解答】解:(1)当y=c时,有c=﹣x2+bx+c,解得:x1=0,x2=b,∴点C的坐标为(0,c),点P的坐标为(b,c).∵直线y=﹣3x+3与x轴、y轴分别交于A、B两点,∴点A的坐标为(1,0),点B的坐标为(0,3),∴OB=3,OA=1,BC=c﹣3,CP=b.∵△PCB≌△BOA,∴BC=OA,CP=OB,∴b=3,c=4,∴点P的坐标为(3,4),抛物线的解析式为y=﹣x2+3x+4.(2)当y=0时,有﹣x2+3x+4=0,解得:x1=﹣1,x2=4,∴点F的坐标为(4,0).过点M作ME∥y轴,交直线AB于点E,如图1所示.∵点M的横坐标为m(0≤m≤4),∴点M的坐标为(m,﹣m2+3m+4),点E的坐标为(m,﹣3m+3),∴ME=﹣m2+3m+4﹣(﹣3m+3)=﹣m2+6m+1,∴S=OA•ME=﹣m2+3m+=﹣(m﹣3)2+5.∵﹣<0,0≤m≤4,∴当m=0时,S取最小值,最小值为;当m=3时,S取最大值,最大值为5.(3)①当点M在线段OP上方时,∵CP∥x轴,∴当点C、M重合时,∠MPO=∠POA,∴点M的坐标为(0,4);②当点M在线段OP下方时,在x正半轴取点D,连接DP,使得DO=DP,此时∠DPO=∠POA.设点D的坐标为(n,0),则DO=n,DP=,∴n2=(n﹣3)2+16,解得:n=,∴点D的坐标为(,0).设直线PD的解析式为y=kx+a(k≠0),将P(3,4)、D(,0)代入y=kx+a,,解得:,∴直线PD的解析式为y=﹣x+.联立直线PD及抛物线的解析式成方程组,得:,解得:,.∴点M的坐标为(,).综上所述:满足∠MPO=∠POA的点M的坐标为(0,4)或(,).【点评】本题考查了待定系数法求一次函数解析式、一次(二次)函数图象上点的坐标特征、全等三角形的性质、二次函数的性质、三角形的面积以及等腰三角形的性质,解题的关键是:(1)利用全等三角形的性质求出b、c的值;(2)利用三角形的面积公式找出S=﹣(m﹣3)2+5;(3)分点M在线段OP上方和点M在线段OP下方两种情况求出点M的坐标.7、(2018贵州安顺.26.14分) 如图,已知抛物线y=ax2+bx+C(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物成的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.【分析】(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(﹣1,t),又因为B(﹣3,0),C(0,3),所以可得BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.【解答】解:(1)依题意得:,解之得:,∴抛物线解析式为y=﹣x2﹣2x+3∵对称轴为x=﹣1,且抛物线经过A(1,0),∴把B(﹣3,0)、C(0,3)分别代入直线y=mx+n,得,解之得:,∴直线y=mx+n的解析式为y=x+3;(2)设直线BC与对称轴x=﹣1的交点为M,则此时MA+MC的值最小.把x=﹣1代入直线y=x+3得,y=2,∴M(﹣1,2),即当点M到点A的距离与到点C的距离之和最小时M的坐标为(﹣1,2);(3)设P(﹣1,t),又∵B(﹣3,0),C(0,3),∴BC2=18,PB2=(﹣1+3)2+t2=4+t2,PC2=(﹣1)2+(t﹣3)2=t2﹣6t+10,①若点B为直角顶点,则BC2+PB2=PC2即:18+4+t2=t2﹣6t+10解之得:t=﹣2;②若点C为直角顶点,则BC2+PC2=PB2即:18+t2﹣6t+10=4+t2解之得:t=4,③若点P为直角顶点,则PB2+PC2=BC2即:4+t2+t2﹣6t+10=18解之得:t1=,t2=;综上所述P的坐标为(﹣1,﹣2)或(﹣1,4)或(﹣1,)或(﹣1,).【点评】本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.8、(2018贵州铜仁.25.14分) 如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P 的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF 是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x﹣2,则Q(m,﹣m2+m+2)、M(m,m﹣2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ 得==,再证△MBQ∽△BPQ得=,即=,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标.【解答】解:(1)由抛物线过点A(﹣1,0)、B(4,0)可设解析式为y=a(x+1)(x﹣4),将点C(0,2)代入,得:﹣4a=2,解得:a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)由题意知点D坐标为(0,﹣2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,﹣2)代入,得:,解得:,∴直线BD解析式为y=x﹣2,∵QM⊥x轴,P(m,0),∴Q(m,﹣m2+m+2)、M(m,m﹣2),则QM=﹣m2+m+2﹣(m﹣2)=﹣m2+m+4,∵F(0,)、D(0,﹣2),∴DF=,∵QM∥DF,∴当﹣m2+m+4=时,四边形DMQF是平行四边形,解得:m=﹣1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则===,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴=,即=,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=﹣1,点Q的坐标为(﹣1,0);综上,点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.9、(2018贵州遵义.27.14分) 在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【分析】(1)把C与D坐标代入二次函数解析式求出a与c的值,确定出二次函数解析式,与一次函数解析式联立求出E坐标即可;(2)过M作MH垂直于x轴,与直线CE交于点H,四边形COEM面积最大即为三角形CME面积最大,构造出二次函数求出最大值,并求出此时M坐标即可;(3)令y=0,求出x的值,得出A与B坐标,由圆周角定理及相似的性质得到三角形AOC与三角形BOF相似,由相似得比例求出OF的长,即可确定出F坐标.【解答】解:(1)把C(0,2),D(4,﹣2)代入二次函数解析式得:,解得:,即二次函数解析式为y=﹣x2+x+2,联立一次函数解析式得:,消去y得:﹣x+2=﹣x2+x+2,解得:x=0或x=3,则E(3,1);(2)如图①,过M作MH∥y轴,交CE于点H,设M(m,﹣m2+m+2),则H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四边形COEM=S△OCE+S△CME=×2×3+MH•3=﹣m2+3m+3,当m=﹣=时,S=,此时M坐标为(,3);最大(3)连接BF,如图②所示,当﹣x2+x+20=0时,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴=,即=,解得:OF=,则F坐标为(0,﹣).【点评】此题属于二次函数综合题,涉及的知识有:待定系数法求二次函数解析式,相似三角形的判定与性质,三角形的面积,二次函数图象与性质,以及图形与坐标性质,熟练掌握各自的性质是解本题的关键.10、(2018河北.24.10分)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k 的值.【分析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC﹣S△BOC的值;(3)分三种情况:当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.【解答】解:(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC ﹣S△BOC=×10×4﹣×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.【点评】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.11、(2018河南.23.11分) 如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y 轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P 点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P 点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入得﹣+b=﹣,解得b=﹣,∴直线EM1的解析式为y=﹣x﹣,解方程组得,则M1(,﹣);作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),∵3=,∴x=,∴M2(,﹣),综上所述,点M的坐标为(,﹣)或(,﹣).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.12、(2018湖北恩施州.24.12分)如图,已知抛物线交x轴于A、B两点,交y 轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC 的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.【分析】(1)由OC与OB的长,确定出B与C的坐标,再由A坐标,利用待定系数法确定出抛物线解析式即可;(2)分三种情况讨论:当四边形CBPD是平行四边形;当四边形BCPD是平行四边形;四边形BDCP是平行四边形时,利用平移规律确定出P坐标即可;(3)由B与C坐标确定出直线BC解析式,求出与直线BC平行且与抛物线只有一个交点时交点坐标,确定出交点与直线BC解析式,进而确定出另一条与直线BC平行且与BC距离相等的直线解析式,确定出所求M坐标,且求出定值S 的值即可.【解答】解:(1)由OC=2,OB=3,得到B(3,0),C(0,2),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,2)代入得:2=﹣3a,即a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+2;(2)抛物线y=﹣(x+1)(x﹣3)=﹣x2+x+2=﹣(x﹣1)2+,∴D(1,),当四边形CBPD是平行四边形时,由B(3,0),C(0,2),得到P(4,);当四边形CDBP是平行四边形时,由B(3,0),C(0,2),得到P(2,﹣);当四边形BCPD是平行四边形时,由B(3,0),C(0,2),得到P(﹣2,);(3)设直线BC解析式为y=kx+b,把B(3,0),C(0,2)代入得:,解得:,∴y=﹣x+2,设与直线BC平行的解析式为y=﹣x+b,联立得:,消去y得:2x2﹣6x+3b﹣6=0,当直线与抛物线只有一个公共点时,△=36﹣8(3b﹣6)=0,解得:b=,即y=﹣x+,此时交点M1坐标为(,);可得出两平行线间的距离为,同理可得另一条与BC平行且平行线间的距离为的直线方程为y=﹣x+,联立解得:M2(,﹣),M3(,﹣﹣),此时S=1.【点评】此题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,一次函数的性质,利用了分类讨论的思想,熟练掌握待定系数法是解本题的关键.13、(2018湖北江汉油田.25.12分) 抛物线y=﹣x2+x﹣1与x轴交于点A,B (点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t (t<)上方的部分沿直线l向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)利用二次函数图象上点的坐标特征可求出点A、B的坐标,再利用配方法即可找出抛物线的顶点D的坐标;(2)由点D的坐标结合对称找出点E的坐标,根据点B、C的坐标利用待定系数法可求出直线BC的解析式,再利用一次函数图象上点的坐标特征即可得出关于t的一元一次不等式组,解之即可得出t的取值范围;(3)假设存在,设点P的坐标为(m,0),则点Q的横坐标为m,分m<或m>3及≤m≤3两种情况,利用勾股定理找出关于m的一元二次方程,解之即可得出m的值,进而可找出点P的坐标,此题得解.【解答】解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).【点评】本题考查了一次(二次)函数图象上点的坐标特征、待定系数法求一次函数解析式、勾股定理以及解一元二次方程,解题的关键是:(1)利用二次函数图象上点的坐标特征求出点A、B的坐标;(2)利用一次函数图象上点的坐标特征结合点E在△ABC内,找出关于t的一元一次不等式组;(3)分m<或m>3及≤m≤3两种情况,找出关于m的一元二次方程.14、(2018湖北随州.24.12分)如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x 轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x 轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.【分析】(1)由点A的坐标及OC=3OA得点C坐标,将A、C坐标代入解析式求解可得;(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D ⊥x轴于点D,设BD′=m,由等边三角形性质知点B′的坐标为(m+1,0),点G′的坐标为(1,m),代入所设解析式求解可得;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根据PQ=OA=1且∠AOQ、∠PQN均为钝角知△AOQ≌△PQN,延长PQ交直线y=﹣1于点H,证△OQM≌△QNH,根据对应边相等建立关于x的方程,解之求得x的值从而进一步求解.【解答】解:(1)∵点A的坐标为(﹣1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2﹣2ax+c,得:,解得:,∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,所以点G的坐标为(1,4).(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴G′D=B′D=m,则点B′的坐标为(m+1,0),点G′的坐标为(1,m),将点B′、G′的坐标代入y=﹣(x﹣1)2+4﹣k,得:,解得:(舍),,∴k=1;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),∴PQ=OA=1,∵∠AOQ、∠PQN均为钝角,∴△AOQ≌△PQN,如图2,延长PQ交直线y=﹣1于点H,则∠QHN=∠OMQ=90°,又∵△AOQ≌△PQN,∴OQ=QN,∠AOQ=∠PQN,∴∠MOQ=∠HQN,∴△OQM≌△QNH(AAS),∴OM=QH,即x=﹣x2+2x+2+1,解得:x=(负值舍去),当x=时,HN=QM=﹣x2+2x+2=,点M(,0),∴点N坐标为(+,﹣1),即(,﹣1);或(﹣,﹣1),即(1,﹣1);如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);综上点M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、等边三角形的性质、全等三角形的判定与性质等知识点.15、(2018湖北武汉.24.12分) 抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)求解可得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN =S△BNG﹣S△BMG=BG•x N﹣BG•x M=1得出x N﹣x M=1,联立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何综合题1.12F F 、是椭圆2214x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ⋅的最大值是 .1答案:4简解: 12||||PF PF ⋅≤2212||||()42PF PF a +==2.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为____________;以(m ,n )为点P的坐标,过点P 的一条直线与椭圆72x +32y =1的公共点有____________个. 2答案:0<m 2+n 2<3 ; 2简解:将直线mx +ny -3=0变形代入圆方程x 2+y 2=3,消去x ,得 (m 2+n 2)y 2-6ny +9-3m 2=0. 令Δ<0得m 2+n 2<3. 又m 、n 不同时为零, ∴0<m 2+n 2<3.由0<m 2+n 2<3,可知|n |<3,|m |<3,再由椭圆方程a =7,b =3可知公共点有2个.3.P 是抛物线y 2=x 上的动点,Q 是圆(x-3)2+y 2=1的动点,则|PQ |的最小值为 . 3.答案:211-1 简解:将问题转化为圆心到抛物线一上的动点的最小值 4.若圆012222=-+-+a ax y x与抛物线x y 212=有两个公共点。
则实数a 为 . 4.答案:817=a 或11<<-a简解:将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22≥=-+--x a x a x要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根。
⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a 或⎩⎨⎧<->∆.0102a 解之 5.若曲线y =与直线(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围是 .5.答案:314k -<≤ 简解:将曲线y =224x y -=时考虑纵坐标的范围;另外没有看清过点(2,-3)且与渐近线y x =平行的直线与双曲线的位置关系。
6.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4)、B (0,-2),则圆C 的方程为____________. 6.答案:(x -2)2+(y+3)2=5 5.简解:∵圆C 与y 轴交于A (0,-4),B (0,-2),∴由垂径定理得圆心在y=-3这条直线上. 又已知圆心在直线2x -y -7=0上,y=-3,2x -y -7=0.∴联立解得x =2,∴圆心为(2,-3), 半径r=|AC|=22)]4(3[2---+=5.∴所求圆C 的方程为(x -2)2+(y+3)2=5.7.经过两圆(x+3)2+y 2=13和x 2+(y+3)2=37的交点,且圆心在直线x -y -4=0上的圆的方程为____________.. 7.答案:(x +21)2+(y +27)2= 289简解:因为所求的圆经过两圆(x+3)2+y 2=13和x+2(y+3)2=37的交点, 所以设所求圆的方程为(x+3)2+y 2-13+λ[x 2+(y+3)2-37]=0.展开、配方、整理,得(x+λ+13)2+(y+λλ+13)2=λλ++1284+22)1()1(9λλ++.圆心为(-λ+13,-λλ+13),代入方程x -y -4=0,得λ=-7.故所求圆的方程为(x+21)2+(y+27)2= 289.8.双曲线x2-y2=1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是___________.8.答案:(-∞,0)∪(1,+∞)简解:解析:数形结合法,与渐近线斜率比较.9.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是___________.9.答案:.y 2-482x =1(y ≤-1)简解:由题意|AC |=13,|BC |=15,|AB |=14,又|AF |+|AC |=|BF |+|BC |, ∴|AF |-|BF |=|BC |-|AC |=2.故F 点的轨迹是以A 、B 为焦点,实轴长为2的双曲线下支.又c=7,a=1,b 2=48,所以轨迹方程为y 2-482x =1(y ≤-1).10.设P 1(2,2)、P 2(-2,-2),M 是双曲线y =x1上位于第一象限的点,对于命题①|MP 2|-|MP 1|=22;②以线段MP 1为直径的圆与圆x 2+y 2=2相切;③存在常数b ,使得M 到直线y =-x +b 的距离等于22|MP 1|.其中所有正确命题的序号是____________. 10答案:①②③简解:由双曲线定义可知①正确,②画图由题意可知正确,③由距离公式及|MP 1|可知正确. 11.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( ) A.椭圆 B.AB 所在直线C.线段ABD.无轨迹 11.答案:C简解:数形结合易知动点的轨迹是线段AB :y =34x ,其中0≤x ≤3. 12.若点(x ,y )在椭圆4x 2+y 2=4上,则2-x y的最小值为( )A.1 B.-1C.-323 D.以上都不对 12.答案:C简解:2-x y的几何意义是椭圆上的点与定点(2,0)连线的斜率.显然直线与椭圆相切时取得最值,设直线y =k (x -2)代入椭圆方程(4+k 2)x 2-4k 2x +4k 2-4=0. 令Δ=0,k =±323.∴k min =-323.13..已知F 1(-3,0)、F 2(3,0)是椭圆m x 2+n y 2=1的两个焦点,P 是椭圆上的点,当∠F 1PF 2=3π2时,△F 1PF 2的面积最大,则有( )A.m =12,n =3B.m =24,n =6C.m =6,n =23D.m =12,n =6 13.答案:A简解:由条件求出椭圆方程即得m =12,n =3.14.P 为双曲线C 上一点,F 1、F 2是双曲线C 的两个焦点,过双曲线C 的一个焦点F 1作∠F 1PF 2的平分线的垂线,设垂足为Q ,则Q 点的轨迹是( ) 12.A.直线B.圆C.椭圆D.双曲线 14.答案:B简解:延长F 1Q 与PF 2相交点R ,根据双曲线的定义,R 在以F 2为圆心的圆上,利用代入法得15.(满分10分)如下图,过抛物线y 2=2px (p >0)上一定点P (x 0,y 0)(y 0>0),作两条直线分别交抛物线于A (x 1,y 1)、B (x 2,y 2).(1)求该抛物线上纵坐标为2p的点到其焦点F 的距离;(2)当P A 与PB 的斜率存在且倾斜角互补时,求21y y y +的值,并证明直线AB 的斜率是非零常数. 解:(1)当y =2p 时,x =8p. 又抛物线y 2=2px 的准线方程为x =-2p, 由抛物线定义得 所求距离为8p -(-2p )=85p .(2)设直线P A 的斜率为k P A ,直线PB 的斜率为k PB . 由y 12=2px 1,y 02=2px 0,相减得(y 1-y 0)(y 1+y 0)=2p (x 1-x 0), 故k P A =0101x x y y --=012y y p+(x 1≠x 0).同理可得k PB =22y y p+(x 2≠x 0).由P A 、PB 倾斜角互补知k P A =-k PB , 即12y y p +=-022y y p+,所以y 1+y 2=-2y 0,故21y y y +=-2. 设直线AB 的斜率为k AB . 由y 22=2px 2,y 12=2px 1,相减得(y 2-y 1)(y 2+y 1)=2p (x 2-x 1), 所以k AB =1212x x y y --=212y y p+(x 1≠x 2).将y 1+y 2=-2y 0(y 0>0)代入得k AB =212y y p +=-0y p,所以k AB 是非零常数.16.(满分10分)如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b (a >0,b ≠0),且交抛物线y 2=2px (p >0)于M (x 1,y 1),N (x 2,y 2)两点.(1)证明:11y +21y =b1; (2)当a =2p 时,求∠MON 的大小.16证明:(1)直线l 的截距式方程为a x +by=1.①,由①及y 2=2px 消去x 可得by 2+2pay -2pab =0. ②解: 点M 、N 的纵坐标y 1、y 2为②的两个根,故y 1+y 2=b pa2-,y 1y 2=-2pa . 所以11y +21y =2121y y y y +=pa b pa22--=b1. (2)解:设直线OM 、ON 的斜率分别为k 1、k 2, 则k 1=11x y ,k 2=22x y .当a =2p 时,由(2)知,y 1y 2=-2pa =-4p 2, 由y 12=2px 1,y 22=2px 2,相乘得(y 1y 2)2=4p 2x 1x 2, x 1x 2=22214)(p y y =2224)4(pp =4p 2,因此k 1k 2=2121x x y y =2244pp -=-1.所以OM ⊥ON ,即∠MON =90°.17.(满分10分) 已知椭圆C 的方程为22a x +22b y =1(a >b >0),双曲线22a x -22by =1的两条渐近线为l 1、l 2,过椭圆C 的右焦点F 作直线l ,使l ⊥l 1,又l 与l 2交于P 点,设l 与椭圆C 的两个交点由上至下依次为A 、B .(如下图)(1)当l 1与l 2夹角为60°,双曲线的焦距为4时,求椭圆C 的方程;(2)当=λ时,求λ的最大值.17解:(1)∵双曲线的渐近线为y =±abx ,两渐近线夹角为60°, 又ab<1, ∴∠POx =30°,即ab=tan30°=33.∴a =3b .又a 2+b 2=4, ∴a 2=3,b 2=1.故椭圆C 的方程为32x +y 2=1.(2)由已知l :y =b a (x -c ),与y =a b x 解得P (c a 2,cab),由=λ得A (λλ+⋅+12c a c ,λλ+⋅1c ab ). 将A 点坐标代入椭圆方程得 (c 2+λa 2)2+λ2a 4=(1+λ)2a 2c 2. ∴(e 2+λ)2+λ2=e 2(1+λ)2. (令ace=)∴λ2=2224--e e e =-[(2-e 2)+222e -]+3≤3-22. ∴λ的最大值为2-1.18.(满分10分)在平面直角坐标系xOy 中,抛物线2y x =上异于坐标原点O的两不同动点A、B满足AO BO ⊥(如图4所示).(Ⅰ)求AOB ∆得重心G(即三角形三条中线的交点)的轨迹方程;(Ⅱ)AOB ∆的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.18解:(I )设△AOB 的重心为G(x,y),A(x 1,y 1),B(x 2,y 2),则⎪⎪⎩⎪⎪⎨⎧+=+=332121y y y x x x (1)∵OA ⊥OB ∴1-=⋅OB OAk k ,即12121-=+y y x x , (2)又点A ,B 在抛物线上,有222211,x y x y ==,代入(2)化简得121-=x x ∴32332)3(31]2)[(31)(3132221221222121+=+⨯=-+=+=+=x x x x x x x x y y y 所以重心为G 的轨迹方程为3232+=x y (II )22212122222122212222212121))((21||||21y y y x y x x x y x y x OB OA S AOB+++=++==∆由(I )得12212)1(2212221221662616261=⨯=+-=+⋅≥++=∆x x x x S AOB 当且仅当6261x x =即121-=-=x x 时,等号成立。