圆锥曲线弦长公式
圆锥曲线的弦长公式及其推导过程
二.双曲线:
设直线与双曲线交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则
|P1P2|=|x1-x2| 或|P1P2|=|y1-y2| {K=(y2-y1)/(x2-x1)}
=
三.抛物线:
(1)核心弦:已知抛物线y²=2px,A(x1,y1),B(x2,y2),AB为抛物线的核心弦,则
同理 的核心弦长为
的核心弦长为 ,所以抛物线的核心弦长为
由以上三种情形可知应用直线竖直角求过核心的弦长,异常简略明白,应予以控制.
圆锥曲线的弦长公式
一.椭圆:
设直线与椭圆交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则
|P1P2|=|x1-x2| 或|P1P2|=|y1-y2| {K=(y2-y1)/(x2-x1)}
则 ,由余弦定理可得 , ,
整顿可得,
是以核心在x轴的核心弦长为
同理可得核心在y轴上的核心弦长公式
个中a为实半轴,b为虚半轴,c为半焦距, 为AB的竖直角.
三. 抛物线的核心弦长
若抛物线 与过核心 的直线 订交于两点 ,若 的竖直角为 ,求弦长|AB|.(图4)
解:过A.B两点分离向x轴作垂线AA1.BB1,A1.B1为垂足, ,则点A的横坐标为 ,点B横坐标为 ,由抛物线定
设双曲线 个中两核心坐标为 ,过F1的直线 的竖直角为 ,交双曲线于两点 求弦长|AB|.
解:(1)当 时,(如图2)
直线 与双曲线的两个交点A.B在统一支上,连 ,设 ,由双曲线界说可得 ,由余弦定理可得
整顿可得 , ,则可求得弦长
(2) ,如图3,
直线 与双曲线交点 在两支上,连F2A,F2B,设
|AB|=x1+x2+p或|AB|=2p/(sin² ){ 为弦AB的竖直角}
高中数学圆锥曲线弦长公式(一)
高中数学圆锥曲线弦长公式(一)高中数学圆锥曲线弦长公式1. 椭圆的弦长公式•椭圆是圆锥曲线中的一种•弦是椭圆内部的两点之间的线段•椭圆的弦长可由弦与椭圆的焦点坐标计算得到2. 椭圆弦长公式•假设椭圆的焦点为F1(0, c)和F2(0, -c),椭圆的长轴长度为2a,短轴长度为2b•弦的两个端点的坐标为(Ax, Ay)和(Bx, By)•椭圆的弦长公式为:d = 2a * √(1-(Ax-Bx)²/(4a²)) + 2b * √(1-(Ay-By)²/(4b²))举例说明•假设有一个椭圆的长轴长度为6,短轴长度为4,焦点坐标为F1(0, 2)和F2(0, -2)•弦的端点坐标为A(3, -2)和B(-3, 2)•根据椭圆弦长公式:d = 26 √(1-(3+3)²/(46²)) + 24 * √²/(4*4²))•化简得:d = 12 * √(1-36/144) + 8 * √(1-16/64)•继续化简得:d = 12 * √(1-1/4) + 8 * √(1-1/4)•最终结果为:d = 12 * √(3/4) + 8 * √(3/4)•进一步化简得:d = +•因此,该椭圆的弦长为约。
3. 抛物线的弦长公式•抛物线是圆锥曲线中的一种•弦是抛物线内部的两点之间的线段•抛物线的弦长公式可通过两点间的距离计算得到举例说明•假设有一个抛物线的焦点为F(0, p),准线方程为y = -p,焦距为2p•弦的两个端点的坐标为(Ax, Ay)和(Bx, By)•则抛物线的弦长公式为:d = √((Ax-Bx)²+(Ay-By)²)4. 双曲线的弦长公式•双曲线是圆锥曲线中的一种•弦是双曲线内部的两点之间的线段•双曲线的弦长公式可通过两点间的距离计算得到举例说明•假设有一个双曲线的焦点为F1(c, 0)和F2(-c, 0),双曲线的长轴长度为2a,短轴长度为2b•弦的两个端点的坐标为(Ax, Ay)和(Bx, By)•则双曲线的弦长公式为:d = √((Ax-Bx)²-(Ay-By)²)以上是高中数学中圆锥曲线弦长公式的相关介绍和举例说明。
椭圆、双曲线的弦长公式
大罕求圆锥曲线的弦长是学习解析几何过程中常见的问题.一般用弦长公式 |AB|=(√△/|a|)√(1+k^2).在运用上述公式之前,需要将直线方程代入到椭圆、双曲线的方程,加以化简.在整理的过程中,由于带有参数,故运算有些繁琐容易出错.作为参考材料,本文给出更具体的弦长公式.遇到选填题可直接套用,遇到解答题可供检验. 具体如下: 命题1:已知直线l:y=kx+m,椭圆C: x^2/a^2+y^2/b^2=1(a>b>0),记δ=b^2+(a·k)^2-m^2,若δ=0,则直线l与椭圆C相切若δ>0,则直线l与椭圆C相交于A,B两点,且|AB|=[2ab√δ·√(1+k^2)]/[b^2+(ak)^2].简要的推导过程是:把y=kx+m代入 x^2/a^2+y^2/b^2=1,整理得:[(ak)^2+b^2]x^2+2a^2kmx+a^2(m^2-b^2=0,∴=4a^4k^2m^2-4a^2(m^2-b^2)(a^2k^2+b^2)=4a^2b^2(b^2+a^2k^2-m^2).令δ=b^2+a^2k^2-m^2,∴当δ=0时,直线l与椭圆C相切;当δ>0时,直线l与椭圆C相交于A,B两点,且|AB|=[2ab√δ√(1+k^2)]/[b^2+(ak)^2].命题2:已知直线l:y=kx+m,双曲线C: x^2/a^2-y^2/b^2=1(a>0,b>0),记δ=b^2-(a·k)^2+m^2,若δ=0,则直线l与椭圆C相切若δ>0,则直线l与椭圆C相交于A,B两点,且|AB|=[2ab√δ·√(1+k^2)]/[b^2-(ak)^2].证明与命题1过程类似,这里从略.例1、若直线l:y=x+m与椭圆C:x^2/4+y^2/3=1相切,求m的值.解:a^2=4,b^2=3,k=1,∴δ=4a^2b^2(a^2k^2+b^2-m^2)=4+3-m^2=0,则m=±√7.例2、求直线l:y=x+1截椭圆C:x^2/4+y^2/3=1所得的弦长|AB|.解:a^2=4,b^2=3,k=1,m=1,∴δ=4a^2b^2(a^2k^2+b^2-m^2)=4+3-1=6,∴|AB|=(4√3)(√6)(√2)]/7=24/7.例3、直线l过点P(1,1),双曲线 :x^2-y^2/2=1相切,求直线l的方程. 解:设直线l:y=kx+1-k,a^2=1,b^2=2,m=1-k,令δ=b^2-(a·k)^2+m^2=2-k^2+(1-k)^2=0,解得k=3/2.。
圆锥曲线的弦长公式及其推导过程
弦长公式二、证明弦长= = 其中为直线斜率,( , ),( , )为直线与曲线的两交点证明方法如下:假设直线为:圆的方程为:,假设相交弦为AB,点A为( , )点B为( , )则有把,分别代入,则有:证明的方法也是一样的证明方法二这是两点间距离公式因为直线所以将其代入得到弦长公式二=2px,过焦点直线交抛物抛物线线于A(x1,y1)和B(x2,y2)两点,则AB弦长:d=p+x1+x2=-2px,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙x1+x2﹚=2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p+y1+y2=-2py,过焦点直线交抛物线于A﹙x1,y1﹚和B﹙x2,y2﹚两点,则AB弦长:d=p-﹙y1+y2﹚公式三编辑d = = = = ..........................................................1式关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。
d = ......................................................................................2式在知道圆和直线方程求弦长时,可利用方法二,将直线方程代入圆方程,消去一未知数,得到一个一元二次方程,其中△为一元二次方程中的b^2-4ac ,a为二次项系数。
补遗:公式2符合椭圆等圆锥曲线不光是圆。
2式可以由1推出,很简单,由韦达定理,x1+x2=-b/a ,x1x2=c/a 代入再通分即可。
圆锥曲线常用的二级结论
圆锥曲线常用的二级结论有:1.离心率定义式:$e = \frac{\sqrt{a^2 - b^2}}{a}$,其中$a$ 为长半轴,$b$ 为短半轴。
2.曲率公式:$\kappa = \frac{|\text{二阶导数}|}{(1 + y'^2)^{\frac{3}{2}}}$,其中$\kappa$ 为曲率,$y'$ 为导数。
3.两点之间的弦长公式:$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,其中$(x_1,y_1)$ 和$(x_2, y_2)$ 为两点的坐标。
4.圆锥曲线的极坐标方程:$r = \frac{p}{1 + e\cos\theta}$,其中$r$ 为点到焦点的距离,$\theta$ 为点的极角,$p$ 为直线到焦点的距离,$e$ 为离心率。
5.焦点公式:$F = \sqrt{a^2 - b^2}$,其中$a$ 为长半轴,$b$ 为短半轴,$F$ 为焦点到中心的距离。
6.弦的中点公式:$(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$,其中$(x_1, y_1)$ 和$(x_2, y_2)$ 为弦两个端点的坐标。
7.椭圆的标准方程:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其中$a$ 为长半轴,$b$ 为短半轴。
8.双曲线的标准方程:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,其中$a$ 为长半轴,$b$ 为短半轴。
9.抛物线的标准方程:$y = ax^2$,其中$a$ 为常数。
10.焦半径公式:$r_f = \frac{p}{e}$,其中$p$ 为直线到焦点的距离,$e$ 为离心率,$r_f$ 为以焦点为圆心,$p$ 为半径的圆的半径长度。
圆锥曲线常用的二级结论包括但不限于以下内容:1.设直线$l$ 与圆锥曲线$C$ 相交于两点$P,Q$,则$P,Q$ 间的线段垂直于轴线。
圆锥曲线弦长公式精编版
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯圆锥曲线弦长公式对于直线与圆锥曲线订交求弦长,通用方法是将直线代入曲线方程,化为对于 x 的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这类整体代换,设而不求的思想方法对于求直线与曲线订交弦长是十分有效的,但是对于过焦点的圆锥曲线弦长求解利用这类方法对比较而言有点繁琐,利用圆锥曲线定义及相关定理导出各样曲线的焦点弦长公式就更加简捷。
. 椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。
解:连接,设,由椭圆定义得,由余弦定理得,整理可得,同理可求得,则弦长同理可求得焦点在y 轴上的过焦点弦长为(a为长半轴, b 为短半轴, c 为半焦距)结论:椭圆过焦点弦长公式:二.双曲线的焦点弦长设双曲线,此中两焦点坐标为,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。
解:( 1)当时,(如图2)直线与双曲线的两个交点 A、B 在同一交点上,连,设,由双曲线定义可得,由余弦定理可得整理可得,同理,则可求得弦长( 2)当或时,如图3,直线l与双曲线交点A、B 在两支上,连,设,则,,由余弦定理可得,整理可得,则所以焦点在 x 轴的焦点弦长为同理可得焦点在y 轴上的焦点弦长公式三此中 a 为实半轴, b 为虚半轴, c 为半焦距,为 AB的倾斜角。
. 抛物线的焦点弦长若抛物线与过焦点的直线订交于A、B两点,若的倾斜角为,求弦长 |AB| ?(图 4)解:过 A、B两点分别向 x 轴作垂线为垂足,设,,则点 A 的横坐标为,点B横坐标为,由抛物线定义可得即则同理的焦点弦长为的焦点弦长为,所以抛物线的焦点弦长为由以上三种状况可知利用直线倾斜角求过焦点的弦长,特别简单明确,应予以掌握。
一。
专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用
16.过双曲线 的右焦点 作倾斜角为 的直线,交双曲线于 两点,则 的值为________.
17.过抛物线 的焦点 作倾角为 的直线,与抛物线分别交于 、 两点( 在 轴左侧),则 _______________________.
注意:夹角不是直线的倾斜角,而是直线与焦点所在轴的夹角,这样就不需要区的右焦点F作倾斜角为 的直线,交双曲线于 两点,求弦长 .
三、圆锥曲线坐标式焦点弦长公式
1.椭圆的坐标式焦点弦长公式
例9
9.已知椭圆 ,若过左焦点的直线交椭圆于 两点,求 .
【结论6】椭圆的坐标式焦点弦长公式:
我们有如下结论:
【结论6】双曲线的坐标式焦点弦长公式:
(1)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: ;
(2)双曲线 的焦点弦长公式:
同支弦 ;异支弦 ,统一为: .
3.抛物线的坐标式焦点弦长公式
由抛物线的定义易得
【结论7】抛物线的坐标式焦点弦长公式:
(1)抛物线 的焦点弦长公式: ;
(2)抛物线 的焦点弦长公式: ;
说明:特殊情形,当倾斜角为 时,即为椭圆的通径,通径长 .
2.双曲线的倾斜角式焦点弦长公式
例2
2.设双曲线 ,其中两焦点坐标为 ,过 的直线 的倾斜角为 ,交双曲线于 , 两点,求弦长 .
可得如下结论2:
【结论2】双曲线的倾斜角式焦点弦长公式:
(1) 为双曲线 的左、右焦点,过 倾斜角为 的直线 与双曲线 交于 两点,则 .
专题16 圆锥曲线焦点弦 微点3 圆锥曲线焦点弦长公式及其应用
专题16圆锥曲线焦点弦
圆锥曲线焦点弦长公式及其应用
一 一
一
一
_ .
CCOSOf-(./ (。∞sa+ f COS 口一 a
(1)(2)知 ,焦 点 在 z轴 _L的 双 附i线 的 焦 点 弦长 J AB;
焦点存 轴上的椭圆的焦点弦长:
。 一
2。
~
q
‘一 二l 'f 一11一Pz sin aj
‘
.。, . 角 为
/
.
\
中学 整蹲可僻, 一 . 0 2fc。s。.
I 1
生
,,
效 同理”一—一 ‘(— CO—Sd .
理 则 弦 K I AB I一 + ”一
丫匕 2
ab
『二
‘
土 一— __一
掌 (2)如图 2, A、B在舣 饼 曲线的 两支 时,连接 F A. \
。. , 、 、 皓 h , 声 、 I
: j, 求p 1 E长 ,{0A)B,11IJ.兀 甜
作垂解线:A如 3,过A、B分别向准线
A ,BB ·A 、B 为 垂 足-没 A,
A/
标为专+”zc。s ,B点的横坐标为等 /{ 【FAl n,l BI一 l,则 A 点的横 坐 .
圆 锥 曲线 焦 点 弦 长 公 式 及 其 应 用
■ 王 智 红
焦 点 弦 是 过 阋 锥 曲线 焦 点 的 一 类 特 殊 弦 ,利 用 圆 锥 曲线
的 定 义 和 余 弦 定 理 可 以推 导 出 圆 锥 曲线 统 一 焦 点 弦 长 公 式 .
整 理 如 下 ,并 说 明其 应 用 ,供 同学 们参 考.
一”rosa,南抛物线定义可僻
o F
x
高中数学圆锥曲线弦长公式
高中数学圆锥曲线弦长公式
摘要:
1.圆锥曲线的定义和重要性
2.圆锥曲线弦长公式的推导和应用
3.圆锥曲线弦长公式的简化方法
4.圆锥曲线弦长公式在实际问题中的应用
正文:
一、圆锥曲线的定义和重要性
圆锥曲线是一种重要的几何图形,它包括椭圆、双曲线、抛物线和它们的简化形式:圆和直线。
圆锥曲线可以通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到。
在数学和几何学中,圆锥曲线有着广泛的应用,它们是许多重要理论和问题的基础。
二、圆锥曲线弦长公式的推导和应用
圆锥曲线弦长公式是指直线与圆锥曲线相交所得弦长的公式。
求解圆锥曲线弦长公式的通用方法是将直线方程代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长。
这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的。
三、圆锥曲线弦长公式的简化方法
然而,对于过焦点的圆锥曲线弦长求解,利用上述方法相比较而言有点繁琐。
这时,可以利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式,以简化运算过程。
例如,椭圆弦长公式为d(1k)x1-x2,双曲线弦长公式为
d(1k2)/a2,抛物线弦长公式为d(1k2)/a。
四、圆锥曲线弦长公式在实际问题中的应用
掌握圆锥曲线弦长公式,可以帮助我们更好地解决实际问题。
例如,在研究某个卫星绕地球的运动轨迹时,我们可以通过圆锥曲线弦长公式来计算卫星与地球之间的距离,从而更准确地预测卫星的运行轨迹。
此外,在光学、力学、天文学等领域,圆锥曲线弦长公式也有着广泛的应用。
圆锥曲线中的应记的二级结论
(11)SABO
p2
2sin
,
yA
M
O •F
x
B
几何特征: (1)AN BN; (2)PF QF; (3)NF AB; (4) AN是PAF的平分线, BN同理; (5)AN是抛物线的切线, BN同理; (6)A,O,Q三点共线, B,O, P三点共线;
直线和圆锥曲线的位置关系中,应该求出坐标的点:
于准线于N , 直线AB的倾斜角为,A(x1, y1), B(x2, y2 ),
代数特征:
(7)x1x2, y1 y2及OA OB均为定值;
(8)
|
AB
|
x1
x2
p
2p
sin 2
;
(9) | AF | p ,| BF | p ;
1 cos
1 cos
(10) 1 1 2 ; | AF | | BF | p
1.两直线的交点; 2.曲线C与坐标轴的交点; 3.直线与圆锥曲线的特殊的交点
b2
BF1 a c cos
=
a2
2ab2 c2 cos2
(长减、短加; 为直线AB与焦点所在对称轴的夹角)
抛物线C:x2 2 py
焦半径 : AF p ,
1 cos
BF = p
1+ cos
焦点弦 :
AB
2p
1 cos2
2p
= sin2
四.和圆中三个垂直关 系对应椭圆中的类似 性质: (1)椭圆的“垂径” 定理:
B2 4AC A2
(1 k 2 ) =
A
(2)同理:椭x 圆m方y 程n
AB
(1 m2 ) A
三.焦半径和焦点弦:
简证 : AF1F2中, 设AF1 m
圆锥曲线的弦长公式及其推导过程
圆锥曲线的弦长公式及其推导过程关于直线与圆锥曲线相交求弦长,通用方法是将直线y kx b 代入曲线方程,化为关于x 的一元二次方程,设出交点坐标 A x i , y i ,B X 2, y ,利用韦达定理及弦长公式 ^/(1 k 2)[(x 1 x 2)2 4x 1x 2]求出弦长,这种整体代换、设而不求的思想方法对于求直线与 曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较 而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为 简捷.一、椭圆的焦点弦长2 2若椭圆方程为X2y2 1(a b 0),半焦距为c>0,焦点F i ( c,0), F 2(C ,0),设过F ia b的直线I 的倾斜角为,l 交椭圆于两点A x i , y i ,B X 2,y 2 ,求弦长AB .解:连结F 2A F 2B ,设|F i A| x,|F i B| y ,由椭圆定义得 旧円2a x’RB 2a y ,半轴,c 为半焦距)由余弦定理得x 2(2C )2 2X 2C cos(2a x)2,整理可得xb 2 ac cos ,同理可求b 2 b 2 ac cos,则 AB x ya c cosb 2 ac cos2ab 2~222~;a c cos 同理可求得焦点在y 轴上的过焦点弦长为AB2ab 22 2.2a c sin(a 为长半轴,b 为短结论:椭圆过焦点弦长公式:AB2ab 2 222a c cos2ab 2 22.2a c sin(焦点在x 轴上), (焦点在y 轴上).* V二、双曲线的焦点弦长2 2设双曲线冷二1 a 0,b 0,其中两焦点坐标为F, c,0), F2(C,0),过F i的直线I的a b倾斜角为,交双曲线于两点Ax i,y i ,B X2,y2,求弦长|AB|.b解: (1)当arctan —aarctan —时,(如图2)aX2(2C)22X 2C cos (X 2a)2, y2(2C)2 2y 2c cos( ) (y 2a)22ab22 2 2 a c cos直线I与双曲线的两个交点A、B在同一支上,连F Q A^B,设|FiA X,|F I B由双曲线定义可得F2A X 2a, F2B y 2a,由余弦定理可得整理可得xa c cosy ----------------- ,则可求得弦长a c cos时,如图3,b arctan —aarcta nb或a直线I与双曲线交点A X1,y1 ,B X2,y2在两支上,连F2AF2B,设F“A X, F“B y,a c cos c cos2则F 2A2a, F 2B y 2a ,由余弦定理可得x 2 (2c)2 2x 2c cos (x 2a)2, y 2 (2c)2 2y 2c cos (y 2a)2, 整理可得, b 2 b 2 ccos a,yc cos ABb 2 b 2 y xccos a c cos 2ab 2 2 2 . cos a 因此焦点在x 轴的焦点弦长为 2ab 2~2 2 2 a c cos 「2ab 222c cosa 2(0(arcta n —a arcta n—或a arcta nb ), a b arcta n — a).同理可得焦点在 y 轴上的焦点弦长公式 2ab 2 AB a2 . 2(0c sin 2ab 22 . 2 2 c sin a arcta n b或 a (arcta n — a b arcta n — a arcta n^).a),其中a 为实半轴,b 为虚半轴,c 为半焦距, 为AB 的倾斜角.三、抛物线的焦点弦长若抛物线y 2 2px(p0)与过焦点F 与0)的直线l 相交于两点AX/S 2」2,若l 的倾斜角为,求弦长|AB|. 解:过A 、B 两点分别向 x 轴作垂线AA 、BB , A 、B 为垂足,设I FA X ,|FB则点A 的横坐标为px cos ,点B 横坐标为f ycos ,由抛物线定x cosy cos p2 y,P 1 cosp 1 cosp 1 cos2p1 cos 1 cos 22p.2 sin同理y22px(p 0)的焦点弦长为AB fsinx22py(p 0)的焦点弦长为AB —挙,,所以抛物线的焦点弦长为cos2p (焦点在X轴上),|AB| si2焦点在y轴上).cos由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握圆锥曲线的弦长公式、椭圆:设直线与椭圆交于P i(x i,y i),P2(x2,y2),且P1P2斜率为K,贝U|P1P2|=|x1-x2| . (1 K2)或|P1P2|=|y1-y2| • (1 1/K2) {K=(y2-y1)/(x2-x1)} =(1 k2)[(X i X2)24x1X2]、双曲线:设直线与双曲线交于P1(X1,y1),P2(X2,y2),且P1P2斜率为K,贝U|P1P2|=|x1-x2| . (1 K2)或|P1P2|=|y1-y2| •. (1 1/K2) {K=(y2-y1)/(x2-x1)} =(1 k2)[(x1 X2)24x1X2]三、抛物线:(1)焦点弦:已知抛物线y2=2px,A(x1,y1),B(x2,y2),AB为抛物线的焦点弦,则|AB|=x1+x2+p 或|AB|=2p/(sin2 ) { 为弦AB 的倾斜角}或A B| 2P -k2(k为弦AB所在直线的斜率)1 k⑵设直线与抛物线交于P1(X1,y1),P2(x2,y2),且P1P2斜率为K,则|P1P2|=|X1-X2| (1 K2)或|P1 P2|=|y1-y2p. (1 1/K 2) {K=(y2-y1)/(x2-x1)}1 k2)[(x1 X2)24x1X2]。
弦长公式圆锥曲线
弦长公式圆锥曲线弦长公式圆锥曲线(Chord Length Formulae for Conic Sections)是一种非常有用的计算圆锥曲线的工具,主要用来确定圆锥曲线的弦长。
它可以解决以下诸多圆锥曲线问题:一、关于圆锥曲线的基本定义:1. 圆锥曲线是由一个定点(聚焦点)和一条半径线构成的曲线;2. 圆锥曲线可以分为凸锥曲线和凹锥曲线;3. 圆锥曲线按它所经过的面来分类,包括圆柱曲线、圆台曲线、双曲线及一般椭圆曲线;4. 圆锥曲线的弦长是一条经过圆锥曲线两端的线段的长度。
二、弦长公式圆锥曲线的应用:1. 设计制造机械零件:弦长公式圆锥曲线可以用来确定零件的凸度,为生产过程提供参数支持;2. 运用测量设备来精确测量圆锥曲线:弦长公式圆锥曲线可以用来测量凸度,以及凹锥曲线的半径;3. 用于勘测:弦长公式圆锥曲线可以用来准确测算地平线线的弯曲度、地表面形状,以此全面精确调查勘测活动;4. 用于分析航空飞船飞行状态:也可以用来模拟飞行轨迹,分析飞行状态,为航空制造过程提供数据支持。
三、弦长的计算公式:1. 圆柱曲线:弦长公式为L=2aθ;2. 圆台曲线:弦长公式为L=2a(θ+sinθ);3. 双曲线:弦长公式为L=2a(2K-θ+sinθ);4. 一般椭圆曲线:弦长公式为L=2a底位积K。
四、弦长公式圆锥曲线的优缺点:优点:1. 准确可靠:弦长公式圆锥曲线采用数值计算方式,能够精确计算出弦长;2. 简便易用:公式逻辑简单,计算繁琐的步骤少,使用方便;3. 广泛的应用场景:用于机械零件制造、测量设备精准测量圆锥曲线;缺点:1. 公式较复杂:有四种不同类型的弦长公式,需要根据具体应用场景灵活切换使用;2. 计算量较大:使用弦长公式圆锥曲线计算时,需要用较长时间来确定正确的弦长,在大量数据比较时耗时较大。
弦长公式是什么?分享数学知识讲解
弦长公式是什么?分享数学知识讲解最近有些朋友在网上看到了这个弦长公式,但是自己对于这方面知识完全没有印象,想知道这个弦长公式到底是什么来的?今天就让给大家详细的介绍一下弦长公式是什么。
什么是弦长公式弦长为连接圆上任意两点的线段的长度。
弦长公式,在这里指直线与圆锥曲线相交所得弦长的公式。
圆锥曲线,是数学、几何学中通过平切圆锥(严格为一个正圆锥面和一个平面完整相切)得到的一些曲线,如:椭圆,双曲线,抛物线等。
直线与圆锥曲线的位置关系是平面解析几何的重要内容之一,也是高考的热点,反复考查。
考查的主要内容包括:直线与圆锥曲线公共点的个数问题;弦的相关问题(弦长问题、中点弦问题、垂直问题、定比分点问题等);对称问题;最值问题、轨迹问题和圆锥曲线的标准方程问题等。
关于直线与圆锥曲线相交求弦长,通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长。
在三角形ABC中,它的外接圆半径为R,则正弦定理可表述为:a/sinA=b/si nB=c/sinC=2R,即a=2RsinA,b=2RsinB,c=2RsinC;(x-4) ^2+y 2=16被直线y= (根号3) x所截得弦长圆(x-4) ^2+y . 2=16与直线y= (根号3)x的一个交点恰为原点0(0,0),另一个交点记为A,则OA就是圆(x-4) ^2+y 2=16被直线y= (根号3) x 所截得的弦,若记圆与x轴的另一个交点为B,则三角形OAB就是一个直角三角形,其中∠A0B=60° ,∠0AB=90° ,0B=2R,所以0A=2Rcos∠A0B=2Rcos60° =R。
又圆的半径为4,所以圆(x-4) ^2+y 2=16被直线y= (根号3) x所截得的弦长为4。
什么是弦长公式?以上就是给大家带来了关于弦长公式的大概含义,还想知道更多有用知识的朋友,记得关注一下本网站。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线弦长公式
关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式
求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。
. 椭圆的焦点弦长若椭圆方程为
,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。
解:连结,设,由椭圆定义得,由余弦定理得
,整理可得,同理可求得,则弦长
同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b
为短半轴,c为半焦距)
结论:椭圆过焦点弦长公式:
二
. 双曲线的焦点弦长
设双曲线,其中两焦点坐标为,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。
解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得
整理可得,同理
,则可求得弦长
(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,
,由余弦定理可得,
整理可得,则
因此焦点在x轴的焦点弦长为
同理可得焦点在y轴上的焦点弦长公式
三
其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。
. 抛物线的焦点弦长
若抛物线与过焦点的直线相交于A、B两点,若的倾斜角为,求弦长|AB|?(图4)
解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得
即
则
同理的焦点弦长为
的焦点弦长为,所以抛物线的焦点弦长为
由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。
一。