用微积分理论证明不等式的方法

合集下载

关于用微积分理论证明不等式的方法

关于用微积分理论证明不等式的方法

关于用微积分理论证明不等式的方法微积分是数学的一个分支,主要研究连续变化的概念和性质。

它提供了一种强大的工具,可以用来证明不等式。

在本文中,我们将介绍一些常用的微积分方法,用于证明不等式。

一、导数的应用导数是微积分中的重要概念,它表示函数在其中一点的变化率。

在证明不等式时,我们可以使用导数的性质来进行推导。

1.极值点的性质:如果函数在其中一点处取得极值,那么在这个点的导数等于零。

这个性质通常用于证明不等式的最优情况。

例如,我们要证明函数f(x)=x^3在[-1,1]上取得最大值为1、首先,计算函数的导数f'(x)=3x^2、然后,找出导数等于零的点:3x^2=0,解得x=0。

进一步,计算二阶导数f''(x)=6x,并代入x=0,可以得到f''(0)=0。

这意味着在x=0处,函数取得极值。

然后,我们可以用数学归纳法证明,在[-1,1]区间上,f(x)的取值范围在[-1,1]之间。

因此,函数的最大值为1,取到极值点(0,1)。

2.函数的单调性:如果函数的导数在一些区间内恒大于等于零(或恒小于等于零),那么函数在该区间上是单调递增(或递减)的。

例如,我们要证明函数f(x)=x^2在[-1,1]上是递增的。

首先,计算函数的导数f'(x)=2x。

然后,计算导数在[-1,1]上的值,可以得知f'(x)在这个区间上恒大于等于零。

根据函数单调性的定义,我们可以得出结论:函数f(x)=x^2在[-1,1]上是递增的。

二、积分的应用积分是微积分中另一个重要的概念,它是导数的逆运算。

在证明不等式时,我们可以使用积分的性质来进行推导。

1. 积分上限的比较:如果函数f(x)在一个区间上恒小于等于另一个函数g(x),那么在该区间上的函数积分f(x)dx也小于等于g(x)dx。

例如,我们要证明函数f(x)=x在[0,1]上的积分小于等于函数g(x)=x^2在[0,1]上的积分。

「用微积分理论证明不等式的方法02762」

「用微积分理论证明不等式的方法02762」

「用微积分理论证明不等式的方法02762」微积分作为数学的一个重要分支,广泛应用于各个领域。

在证明不等式时,微积分理论可以提供很多有用的方法和手段。

下面,将介绍一些常用的用微积分理论证明不等式的方法。

一、用函数的单调性函数的单调性是研究不等式的一个重要工具。

对于单调递增的函数,可以利用其性质来证明不等式。

设函数f(x)在区间(a,b)上单调递增,若有a≤x<y<b,则有f(a)≤f(x)<f(y)≤f(b)。

同时,根据单调递增函数的性质,对于任意的a<b,有f(x)<f(y),那么对应的不等式也成立。

例如,要证明在区间[0,1]上,f(x)=x(1-x)<1/4,可以利用函数f(x)在该区间上的单调递增性。

当x<1/2时,有f(x)<f(1/2)=1/4;当x>1/2时,有f(x)<f(1/2)=1/4,因此不等式f(x)<1/4在区间[0,1]上成立。

二、用导数或微分的性质导数和微分是微积分的基本概念,它们对研究不等式也起到很大的作用。

通过研究函数的导数或微分的性质,可以得到不等式的证明。

例如,要证明在区间(a,b)上f(x)≤g(x),可以研究函数h(x)=f(x)-g(x),若能证明h(x)≤0,则不等式成立。

对h(x)求导,然后研究导数的正负性即可。

又如,要证明不等式f(x)≥g(x),可以考虑函数h(x)=f(x)-g(x),若能证明h'(x)≥0,则不等式成立。

通过导数或微分的性质,可以简化不等式的证明过程。

三、用积分的性质积分是微积分的重要工具之一,它在证明不等式中也有广泛的应用。

常用的方法有利用积分的性质来证明不等式的区间逐点性、平均值和中值定理等。

例如,若要证明在区间[a,b]上的函数f(x)满足不等式f(x)≥0,可以考虑利用积分的区间逐点性。

即对于任意一个x∈[a,b],都有f(x)≥0成立。

又如,若要证明函数f(x)在[a,b]上的平均值大于等于左端点和右端点的函数值之间的平均值,即(∫[a,b]f(x)dx)/(b-a)≥(f(a)+f(b))/2,可以利用积分的性质,将该不等式转化为函数f(x)-(f(a)+f(b))/2的积分大于等于0,然后再进行证明。

微积分中的海森堡不等式

微积分中的海森堡不等式

微积分中的海森堡不等式一、微积分中的海森堡不等式微积分是现代数学的重要分支,它广泛应用于物理、工程、经济等领域。

微积分中的海森堡不等式是一条重要的不确定性原理。

它指出,在任何量子态下,粒子的位置和动量无法同时被精确测量,即存在不确定性。

这个原理对于粒子在微观世界中的运动和性质有着重要的意义。

二、不确定性原理的背景20世纪早期,量子力学的诞生为物理学家们带来了极大的惊喜和挑战。

量子力学与经典力学不同,强调量子态和量子力学中的测量和不确定性。

在经典力学中,我们可以通过精确的测量来得到物体的位置和速度,进而预测它的运动轨迹。

但在量子力学中,粒子的运动和性质需要用波函数来描述,并且存在测量不确定性。

为了证明不确定性原理,德国物理学家海森堡进行了严密的推导和思考。

他认为,任何量子态下,实验者无法同时精确测量粒子的位置和速度,这是一种不可避免的测量误差。

他将这个观点提出来并用严密的理论进行证明,最终得出了著名的海森堡不等式。

三、海森堡不等式的表述海森堡不等式是指,对于任意量子态,粒子的位置和速度的不确定性满足以下关系:$$ \Delta x \Delta p \ge \frac{\hbar}{2} $$其中,$\Delta x$表示粒子位置的不确定度,$\Delta p$表示粒子动量的不确定度,$\hbar$为普朗克常数,其数值为$6.63\times 10^{-34}\text{J}\cdot \text{s}$。

海森堡不等式表明,无论我们用什么精确度来测量粒子的位置和速度,它们的乘积都不可能小于$\hbar/2$。

如果我们提高了对粒子位置的测量精度,那么对粒子速度的测量精度就会降低,反之亦然。

也就是说,对于粒子的位置和速度,我们无法同时精确地测量它们的值。

四、不确定性原理的意义海森堡不等式所预示的不确定性原理,不仅仅是一个数学定理,也是量子力学中最为重要的原则之一。

它揭示了微观世界的本质规律和运动特性。

微分不等式

微分不等式

微分不等式微分不等式是微积分中比较基础却又十分重要的一类问题,主要包括单变量函数微分不等式、双变量函数微分不等式等。

在学习微分不等式时,我们不仅需掌握微分基本概念和微积分基础理论,还要善于利用不等式性质、求导法则和一些特殊的技巧。

本文将从这几个方面介绍微分不等式的相关知识。

一、单变量函数微分不等式单变量函数微分不等式通常是指含有单一未知数的函数不等式,其中最常见的是单调性和增减性问题。

单调性指函数值的增减情况,可以通过一阶导数和拐点等概念得出;而增减性则对应着导数值的正负情况,可以通过极值、零点等点的求解得到。

下面是一些常见的单变量函数微分不等式例子:例1:若 $f(x)$ 右导数大于左导数,则当 $x>a$ 时,$f(x)$ 单调递增。

例2:若 $f(x)$ 是可导函数,则当 $f'(x)>0$ 时,$f(x)$ 单调递增。

例3:若 $f(x),g(x)$ 可导,且 $f'(x)<g'(x)$,则当 $x>a$ 时,$f(x)<g(x)$。

二、双变量函数微分不等式双变量函数微分不等式是指含有两个未知数的函数不等式,最常见的是优化问题。

在求解双变量函数微分不等式时,需要用到一些数学工具,如拉格朗日乘子法、柯西-施瓦茨不等式等。

下面是一些常见的双变量函数微分不等式例子:例4:设 $a,b>0$,$a+b=2$,求 $\max \{ab^2,b^2a\}$。

解:设 $f(a,b)=ab^2$,则有 $\frac{\partial f}{\partial a}=b^2$,$\frac{\partial f}{\partial b}=2ab$,根据拉格朗日乘子法得到$\frac{a}{b}=2$,$a=\frac{4}{3},b=\frac{2}{3}$,故 $\max\{ab^2,b^2a\}=\frac{4}{27}$。

三、微分不等式的技巧在解决微分不等式问题时,有几个常用的技巧,可以帮助我们更快更准确地得出结论。

微分中值定理的证明及其应用

微分中值定理的证明及其应用

微分中值定理的证明及其应用[摘要摘要] ] ] 微分中值定理是微分学的基本理论微分中值定理是微分学的基本理论微分中值定理是微分学的基本理论,,也是微分学的理论基础。

数学分析中基础。

数学分析中,,介绍了罗尔定理、拉格朗日定理、柯西定理三个中值定理。

本文主要探讨微分中值定理的几何意义及证明过程中辅助函数的构造辅助函数的构造,,结合教学过程中出现的问题结合教学过程中出现的问题,,通过具体实例探讨微分中值定理在函数性态各方面的应用。

微分中值定理在函数性态各方面的应用。

[关键词关键词] ] ] 中值定理中值定理中值定理 辅助函数辅助函数 根的存在性根的存在性 待定系数法待定系数法 数学分析中数学分析中,,一般在证明罗尔定理的基础上一般在证明罗尔定理的基础上,,通过构造辅助函数通过构造辅助函数,,然后验证辅助函数满足罗尔定理的假设条件然后验证辅助函数满足罗尔定理的假设条件,,最后利用罗尔定理的结论得出拉格朗日定理的证明。

其关键是如何构造辅助函数结论得出拉格朗日定理的证明。

其关键是如何构造辅助函数,,一旦辅助函数构造出来辅助函数构造出来,,余下的问题便容易解决了。

余下的问题便容易解决了。

首先介绍微分中值定理的几何意义和辅助函数的构造及定理的证明。

证明。

一、微分中值定理证明中辅助函数的探讨一、微分中值定理证明中辅助函数的探讨若函数在闭区间上连续若函数在闭区间上连续,,其图形是一段连续的曲线弧。

当在区间两个端点的函数值相等两个端点的函数值相等((即)时,线段ab 平行于轴平行于轴,,其斜率为零。

若函数在内每一点都可导函数在内每一点都可导,,对应曲线弧上每一点都有切线对应曲线弧上每一点都有切线,,此时此时,,从图可以看出可以看出,,在曲线弧上在曲线弧上,,至少可以找到一点m,m,弧在此点的切线与线弧在此点的切线与线段ab 平行平行,,即切线的斜率为零。

若记m,m,则切线则切线mt 的斜率为的斜率为,,且。

且。

上述的几何直观进行归纳上述的几何直观进行归纳,,得到如下定理得到如下定理: :定理1:(1:(罗尔定理罗尔定理罗尔定理) )若函数满足下列三个条件若函数满足下列三个条件: :(1)(1)在闭区间上连续在闭区间上连续在闭区间上连续;(2);(2);(2)在开区间内可导在开区间内可导在开区间内可导;(3);(3);(3)。

积分不等式证明技巧解析

积分不等式证明技巧解析


2 f ( x ) dx ≤

0
b a
1
f(
1) 1 ( ) d x + f′ 3 3
(x ∫
0
1
2
-
1) 1 dx = f ( ) . 3 3
6 借助于参数表达式来证明积分不等式
引入参数 t , 构造辅助函数
[ f ( x) ∫
- tg ( x ) ] d x ≥ 0 , 得到关于 t 的二次多项式 , 利用判别
n- 1 n- 2
+ … + 6 cn- 3 x + …
例 4 求 ( x 4 - x3 + 2 x 2 - x + 1) co s x d x. 解 列竖式计算 :
x x
4 4 3

- x - x
+ 2x
2 2 2
- x - 6x + 5x
+1 - 20 + 21
3 2
12 x
3
- 10 x

第 12 卷第 6 期
杨和稳 : 积分不等式证明技巧解析
27
1 ( ξ ) < 0 , x ∈ [ 0 , 1 ] , 所以 , 其中ξ介于 与 x 之间 . 因为 f ″ 3
f ( x) < f (
1 0
1) 1 1) 1 1 1) 2 ( ) (x ( ) ( x2 + f′ , f ( x ) < f ( ) + f ′ , 3 3 3 3 3 3
a x
例 4 设 f ( x ) 在 [ a , b] 上有连续导数 , 且 f ( a) = f ( b) = 0 , 证明 : b 4 ( x) | ≥ max | f ′ | f ( x ) | d x. 2

微积分法证明不等式

微积分法证明不等式

微积分法证明不等式
微积分法是一种强大的工具,可以用来证明各种不等式,包括在数学中最常见的不等式。

下面我们将着重介绍微积分法证明不等式的步骤和方法。

首先,给出待证明的不等式,并按照其数学符号和形式写出来,例如:f(x)≥g(x)。

其次,使用微积分法证明不等式,可以使用下面这几种方法:
(1)定积分法:
定积分法是指定义一个函数的积分,根据不等式的给定条件来确定积分的范围,然后用定积分公式,即积分的上下限,把函数的积分计算出来,从而证明不等式。

例如,当下限是a,上限是b时,可以用定积分法证明不等式:f(x)≥g(x),可以把它写成∫a b f(x)dx
≥∫a b g(x)dx。

(2)不定积分法:
不定积分法是指不确定积分的范围,而是采用一些技巧来求解一个未给定的积分。

通常是不定积分,但也有一些情况可以使用定积分,从而证明不等式。

例如,当未给定积分的范围时,可以用不定积分法证明不等式:f(x)≥g(x),可以把它写成∫f(x)dx≥∫g(x)dx。

(3)柯西不等式:
柯西不等式是一种常用的证明不等式的方法,例如,可以使用柯西不等式来证明不等式:f(x)≥g(x),可以把它写成f(x)-g(x)≥0。

该不等式只要满足柯西不等式的条件,就可以证明f(x)≥g(x)。

最后,以上是微积分法证明不等式的步骤和方法。

只要使用此方法,就可以更准确地证明不等式,从而解决一些严苛的数学问题。

构造函数法证明泰勒展开不等式的八种方法

构造函数法证明泰勒展开不等式的八种方法

构造函数法证明泰勒展开不等式的八种方

泰勒展开定理是微积分中一个非常重要的定理,它可以将一个函数在某一点附近展开为无穷的多项式和。

在实际应用中,我们经常需要保留部分项,将函数近似表示,而泰勒展开就可以很好地满足我们的需求。

本文将介绍泰勒展开不等式的八种证明方法,其中均使用了构造函数的方法。

1. 利用 $(1+x)^n$ 的二项式展开式证明。

2. 利用 $e^x$ 的泰勒展开式证明。

3. 利用 $\ln (1+x)$ 的泰勒展开式证明。

4. 利用 $\int_0^x \cos t^2 dt$ 的收敛性证明。

5. 利用 $\int_0^x e^{-t^2} dt$ 的平方证明。

6. 利用 $\tan^{-1} x$ 和 $\tanh^{-1} x$ 的泰勒展开式证明。

7. 利用 $\sin x$ 和 $\cos x$ 的泰勒展开式证明。

8. 利用 $\int_0^1 x^p (1-x)^q dx$ 的收敛性证明。

这八种证明方法各有不同的特点和难度,涉及到的数学知识也
各有侧重。

但它们都使用了构造函数的方法,通过寻找适当的函数,将展开式转化为极限形式或积分形式,然后进一步证明不等式的成立。

总之,泰勒展开定理和泰勒展开不等式是数学中非常重要的工具,它们不仅有着重要的理论价值,在工程和自然科学中也有着广
泛的应用。

微积分在不等式中的应用论文

微积分在不等式中的应用论文

摘要微积分和不等式都是数学学科中极为重要的内容,其证明通常不太客易。

本文回顾了几种常用的证明不等式的初等方法,利用微分中值定理、函数的单调性、极值(最值)的判定法、函数凸凹性质、泰勒公式、定积分的性质等一些微积分知识探究了不等式的证明方法,本文探讨了如何巧妙利用徽积分中的知识和方法来解决一些不等式的问题。

用微积分证明不等式成立, 基本思路是构造一个辅助函数, 然后利用微积分求出该函数的性质来证明不等式.关键词微积分不等式中值定理函数性质泰勒公式定积分性质1AbstractCalculus mathematics and inequality are extremely important, the proof is not usually easily. This paper reviews several commonly used to prove inequality elementary methods, using the differential mean value theorem, monotone of function, extreme value ( maximum ) decision method, function, convex and concave nature of Taylor formula, the nature of definite integral and some knowledge of calculus of the inequality proof method, this paper discusses how clever use of emblem integral knowledge and the method to solve some of the problems of inequality.Using calculus to prove inequality is established, the basic idea is the construction of an auxiliary function, then make use of infinitesimal calculus to derive the properties of function to prove inequality.Key words calculus inequality theorem function Taylor formulaof definite integral character目录摘要 (I)1 Abstract (II)2 前言 (1)3 微积分 (2)2.1微积分的定义 (2)2.2微积分的发展历史 (3)2.3微积分学的创立的意义 (4)2.4微积分不断深化 (5)4 微积分在不等式中的应用 (6)5 利用微分中值定理证明不等式 (7)6 利用函数的单调性证明不等式 (8)7 利用函数的最值(极值)证明不等式 (9)8 利用函数的凹凸性质证明不等式 (10)9 利用泰勒公式证明不等式 (11)10 利用定积分的性质证明不等式 (12)结论 (13)参考文献 (16)附录 (17)致谢......................................................................................................... 错误!未定义书签。

微积分中不等式的证明方法

微积分中不等式的证明方法

微积分中不等式的证明方法微积分中的不等式证明方法有很多种,下面将介绍其中一些常见的方法。

1.代数证明法代数证明法是一种以代数运算为主要手段来证明不等式的方法。

在证明中,可以使用代数运算的性质,如加减乘除、平方、开方等。

例如,要证明一些不等式:a + b ≥ 2√(ab),可以通过代数推导来证明。

首先,将不等式两边平方,得到(a + b)² ≥ 4ab。

展开并化简之后,得到a² + 2ab + b² ≥ 4ab,再将其中的2ab移到左边,得到a² -2ab + b² ≥ 0,即(a - b)² ≥ 0。

由于平方的结果非负,所以不等式成立。

2.数列证明法数列证明法是一种通过构造适当的数列来证明不等式的方法。

在证明中,可以通过构造递推式或者利用数列的性质来得到结论。

例如,要证明一些不等式:n² ≥ n,可以通过构造递推数列来证明。

考虑数列an = n,其中n为正整数。

可以发现,数列an是单调递增的。

当n = 1时,显然有1² ≥ 1成立。

假设当n = k时,不等式成立,即k² ≥ k。

则当n = k + 1时,由于an是单调递增的,显然有(k + 1)²≥ k + 1、因此,根据数列证明法,不等式n² ≥ n成立。

3.函数证明法函数证明法是一种通过构造适当的函数来证明不等式的方法。

在证明中,可以通过研究函数的性质,如函数的单调性、极值等来得到结论。

例如,要证明一些不等式:(1+x)²≥1+2x,可以通过构造适当的函数来证明。

考虑函数f(x)=(1+x)²-1-2x,可以研究函数f(x)的性质。

首先计算函数f(x)的导数,得到f'(x)=2(1+x)-2=2x。

由于导数为正,说明函数f(x)单调递增。

此外,由于f(0)=0,所以函数f(x)在x=0处取得最小值。

因此,对于所有x≥0,有f(x)≥0,即(1+x)²≥1+2x。

数学(本科)毕业论文题目汇总

数学(本科)毕业论文题目汇总

数学毕业(学位)论文题目汇总一、数学理论1。

试论导函数、原函数的一些性质。

ﻫ2。

有界闭区域中连续函数的性质讨论及一些推广。

ﻫ3。

数学中一些有用的不等式及推广.4。

函数的概念及推广.ﻫ5。

构造函数证明问题的妙想。

6.对指数函数的认识。

ﻫ7。

泰勒公式及其在解题中的应用。

8。

导数的作用。

9。

Hilbert空间的一些性质。

ﻫ10。

Banach空间的一些性质。

ﻫ11。

线性空间上的距离的讨论及推广。

12。

凸集与不动点定理.ﻫ13。

Hilbert空间的同构.ﻫ14。

最佳逼近问题。

ﻫ15。

线性函数的概念及推广.ﻫ16.一类椭圆型方程的解.18.线性赋范空间上的模等价。

17。

泛函分析中的不变子空间。

ﻫ19.范数的概念及性质.20。

正交与正交基的概念。

22。

隐函数存在定理的再证明。

ﻫ23.线性空间的等距同构。

21。

压缩映像原理及其应用.ﻫ24。

列紧集的概念及相关推广。

25。

Lebesgue控制收敛定理及应用。

26。

Lebesgue积分与Riemann积分的关系。

27。

重积分与累次积分的关系.28。

可积函数与连续函数的关系。

29。

有界变差函数的概念及其相关概念。

ﻫ30。

绝对连续函数的性质。

31.Lebesgue测度的相关概念。

33。

可测函数的定义及其性质。

ﻫ34.分部积分公式的32。

可测函数与连续函数的关系。

ﻫ推广。

35。

Fatou引理的重要作用。

36.不定积分的微分的计算。

ﻫ37。

绝对连续函数与微积分基本定理的关系。

ﻫ38。

Schwartz 不等式及推广。

39。

阶梯函数的概念及其作用.40。

Fourier级数及推广。

ﻫ41.完全正交系的概念及其作用。

ﻫ42。

Banach空间与Hilbe rt空间的关系。

44。

数学分析中的构造法证题术,43。

函数的各种收敛性及它们之间的关系。

ﻫ45。

用微积分理论证明不等式的方法46.数学分析中的化归法47。

微积分与辩证法49。

在上有界闭域的D中连续函数的性质48. 积分学中一类公式的证明ﻫ51。

毕业论文:有关积分不等式证明的论文

毕业论文:有关积分不等式证明的论文
又因为 所以有 所以
,故命题成立.
例6设函数 在闭区间 上连续且单调递减,求证:当 时
证明:把闭区间 划分成两个区间 和 ,则有
从而有 由积分中值定理可得:存在 使得: ,由于 在闭区间 上单调递减 ,知 ,则
即 ,因此有
1.4利用拉格朗日中值定理来证明积分不等式
分析:设 在闭区间 上连续,在开区间 内可导,则存在 使得:
1.5利用分部积分法来证明不等式
分部积分法:若 与 可导,不定积分 存在,则 也存在,并且有:
利用分部积分法来证明不等式,实质上是利用分部积分法证明一个等式,然后在给出积分估计来实现证明的
例9:设 在 上具有连续导数, ,且 ,
求证:
证明: ,又因为
, ,故命题得证.
例10:设 在闭区间 上具有二阶导数并且导数连续, , 求证:
本科毕业论文(设计)

积分不等式是微积分学中的一类重要不等式,在数学分析中有着广泛的应用,且在考研试卷中会经常出现.积分不等式的证明方法灵活多样,而且技巧性和综合性也比较强.研究积分不等式的证明方法,不仅解决了一些积分不等式的证明,而且可以把初等数学的知识与高等数学的知识结合起来,拓宽我们的视野,提高我们的发散思维能力和创新能力.本文综述了证明积分不等式的若干方法,通过对例题的分析,总结了求积分不等式的一般方法.本文主要从以下几个方面去研究积分不等式的证明:利用定积分的定义,利用积分的性质,利用拉格朗日中值定理、利用积分中值定理、利用泰勒公式 、利用二重积分等多种方法来证积分不等式及研究了杨格 不等式的证明,推广及应用和柯西——施瓦兹 不等式的证明,改进及应用.
(1-3)
同理 (1-4)
(1-3ห้องสมุดไป่ตู้(1-4)相加整理得

高等数学中不等式的证明方法

高等数学中不等式的证明方法

高等数学中不等式的证明方法1.常用在多项式中"舍掉一些正(负)项'而使不等式各项之和变小(大),或"在分式中扩大或缩小分式的分子分母',或"在乘积式中用较大(较小)因式代替'等效法,而达到其证题目的。

所谓放缩的技巧:即欲证,欲寻找一个(或多个)中间变量C,使,由A到C叫做"放',由B到C叫做"缩'。

常用的放缩技巧还有:(1)假设(2)(3)假设则(4) (5)(6)或 (7)2.你必须铭记基本公式,均值不等式以及课后的一些重要推倒式.证实主要就是要将不等式的一边变形成为你所熟知的公式类型,也要铭记分析法,综合法等解题思路,一般不等式证实用分析法就好,思路比较简单,试于为灵活应用公式打下基础.2学习方法一比较法是证实不等式的最基本方法,具体有作差比较和作商比较两种。

基本思想是把难于比较的式子变成其差与0比较大小或其商与1比较大小。

当求证的不等式两端是分项式(或分式)时,常用作差比较,当求证的不等式两端是乘积形式(或幂指数式时常用作商比较)例1已知a+b0,求证:a3+b3a2b+ab2分析:由题目观察知用作差比较,然后提取公因式,结合a+b0来说明作差后的正或负,从而达到证实不等式的目的,步骤是10作差20变形整理30推断差式的正负。

∵(a3+b3)?(a2b+ab2)=a2(a-b)-b2(a-b)=(a-b)(a2-b2)证实: =(a-b)2(a+b)又∵(a-b)20a+b0(a-b)2(a+b)0即a3+b3a2b+ab2例2 设a、bR+,且ab,求证:aabbabba分析:由求证的不等式可知,a、b具有替换对称性,因此可在设ab0的前提下用作商比较法,作商后同1比较大小,从而达到证实目的,步骤是:10作商20商形整理30推断为与1的大小证实:由a、b的对称性,无妨解ab0则aabbabba=aa-b?bb-a=(ab)a-b∵a?b?0,ab?1,a-b?0(ab)a-b?(ab)0=1即aabbabba1,又abba0aabbabba 学习1 已知a、bR+,nN,求证(a+b)(an+bn)2(an+1+bn+1) 3学习方法二1. 解:设函数f(x)=e^x,g(x)=x+1.关于函数f(x)=e^x,为自然指数函数,定义域为全体实数,函数在定义域上为单调增函数,值域为:[0,+),图像示意图如下: 2. 关于函数g(x)=x+1,为一次函数,定义域和值域均为全体实数,在定义域范围内,函数为增函数,图像示意图如下3.从图像可,函数g(x)=x+1在函数f(x)=e^x的下方,二者有一个交点为(0,1),所以有:f(x)=g(x)即:e^x=x+1,成立。

微积分证明不等式方法

微积分证明不等式方法

微积分证明不等式方法1.极限证明法极限证明法是一种常用的证明不等式的方法。

首先,我们可以取两边的极限,然后通过极限的性质进行推导。

例如,假设我们要证明不等式:$\lim\limits_{x \to +\infty}(f(x)-g(x)) \geq 0$,那么我们可以取两边的极限,得到:$\lim\limits_{x \to +\infty}f(x) \geq\lim\limits_{x \to +\infty}g(x)$,然后通过极限的性质,将不等式推广到更一般的情况。

2.导数证明法导数证明法是一种常用的证明不等式的方法。

我们可以通过计算函数的导数来研究函数的变化趋势,然后判断函数的变化趋势是否与不等式的方向相符。

例如,假设我们要证明不等式:$f(x) \geq g(x)$,那么我们可以计算$f(x)$和$g(x)$的导数,然后通过导数的符号判断函数的变化趋势是否与不等式的方向相符。

3.反证法反证法是一种常用的证明不等式的方法。

假设我们要证明不等式:$f(x) > g(x)$,我们可以假设存在一个$x_0$使得$f(x_0) \leq g(x_0)$,然后通过对$f(x)$和$g(x)$进行一些操作,推导出一个矛盾的结论。

这样就证明了原来的假设是错误的,从而得到了不等式的证明。

4.积分证明法积分证明法是一种常用的证明不等式的方法。

我们可以通过计算函数的积分来研究函数的变化情况,然后判断函数的变化情况是否与不等式的方向相符。

例如,假设我们要证明不等式:$\int_{a}^{b} f(x) dx \geq \int_{a}^{b} g(x) dx$,我们首先通过求积分,得到$\int_{a}^{b}[f(x)-g(x)] dx \geq 0$,然后通过对$f(x)-g(x)$的性质进行分析,判断积分结果的符号是否为非负。

以上介绍的是微积分证明不等式的几种常用方法,每种方法都有其适用的范围和优缺点。

证明一类定积分不等式的有效方法

证明一类定积分不等式的有效方法

证明一类定积分不等式的有效方法证明一类定积分不等式的有效引言定积分是高等数学中重要的概念之一,它在数学理论和实际问题的求解中都起着重要作用。

在证明定积分的性质和定理时,我们常常需要使用一类定积分不等式。

本文将详细介绍多种有效的方法,来证明这类不等式。

方法一:函数性质法•步骤一:首先,我们需要分析被积函数的性质。

•步骤二:利用被积函数的单调性或凸凹性等特点,将定积分不等式转化为某个已知不等式的形式。

•步骤三:根据这个已知不等式的结论,推导出原定积分不等式的结论。

方法二:积分中值定理法•步骤一:使用积分中值定理,将被积函数表示为一个中值的形式。

•步骤二:根据中值的性质,将定积分不等式转化为某个已知不等式的形式。

•步骤三:根据这个已知不等式的结论,推导出原定积分不等式的结论。

方法三:换元法•步骤一:通过适当的换元变量,将定积分不等式的被积函数转化为一个更加简单的形式。

•步骤二:利用换元后的简单形式,推导出原定积分不等式的结论。

方法四:样本函数法•步骤一:我们可以构造一个样本函数,使得定积分不等式在这个样本函数上成立。

•步骤二:通过对样本函数进行适当的变换,将原定积分不等式推广到更一般的情况。

方法五:数学归纳法•步骤一:首先,我们需要证明定积分不等式在某个特殊情况下成立。

•步骤二:假设定积分不等式在某个特殊情况下成立。

•步骤三:通过数学归纳法,将定积分不等式推广到更一般的情况。

方法六:微积分定理法•步骤一:使用微积分中的主要定理,如泰勒展开定理、拉格朗日中值定理等。

•步骤二:利用这些定理,将定积分不等式转化为已知定理或性质的形式。

•步骤三:根据这些已知定理的结论,推导出原定积分不等式的结论。

方法七:数值方法•步骤一:通过数值近似计算,获取定积分不等式的近似结果。

•步骤二:通过不断改进数值计算方法,逐渐提高定积分不等式的精确度。

•步骤三:通过比较数值结果与理论结果的差距,验证定积分不等式的有效性。

以上是一些常用的方法,用于证明一类定积分不等式的有效性。

积分不等式的证明方法

积分不等式的证明方法

积分不等式的证明方法摘要在高等数学的学习中,积分不等式的证明一直是一个无论在难度还是技巧性方面都很复杂的内容.对积分不等式的证明方法进行研究不但能够系统的总结其证明方法,还可以更好的将初等数学的知识和高等数学的结合起来.并且可以拓宽我们的视野、发散我们的思维、提高我们的创新能力,因此可以提高我们解决问题的效率.本文主要通过查阅有关的文献和资料的方法,对其中的内容进行对比和分析,并加以推广和补充,提出自己的观点.本文首先介绍了两个重要的积分不等式并给出了证明,然后分类讨论了证明积分不等式的八种方法,即利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用积分的性质、利用泰勒公式、利用重积分、利用微分中值定理,最后对全文进行了总结.关键词:积分不等式,定积分,中值定理,柯西-施瓦兹不等式,单调性ABSTRACTWhen we study mathematics,the proof of integer inequality has always been seen as a complex content both in difficulty and skill.In this paper the proof methods of integral inequality are organized systematically to combine the knowledge of elementary mathematics and higher mathematics better. Also our horizons can be broadened,thinking can be divergencied and innovation ability can be improved,so as to improve our efficiency of problem solving.The paper is completed by referring to relevant literature,comparing and analysing related content, complementing and promoting related content.In this paper ,two important integral inequalities along with their proof methods are given first,and then eight approaches to proof integral inequalities are introduced,such as concavity and convexity of function,method of auxiliary function,important integral inequality,integral mean value theorem, integral property, Taylor formula,double integral and differential mean value theorem.Finally,the full paper is summarized.Key words: Integral Inequality, Definite Integral,Mean Value Theorem,Cauchy-Schwarz Inequality, Monotonicty1.引言不等式在数学中有着重要的作用,在数量关系上,尽管不等关系要比相等关系更加普遍的存在于人们的现实世界里,然而人们对于不等式的认识要比方程迟的多.直到17世纪之后,不等式的理论才逐渐的成长起来,成为数学基础理论的一个重要组成部分.众所周知,不等式理论在数学理论中有着重要的地位,它渗透到了数学的各个领域中,因而它是数学领域中的一个重要的内容.其中积分不等式更是高等数学中的一个重要的内容.实际上关于定积分的概念起源于求平面图形的面积和一些其他的实际问题.有关定积分的思想在古代就有了萌芽,比如在公元前240年左右的古希腊时期,阿基米德就曾经用求和的方法计算过抛物线弓形和其他图形的面积.在历史上,积分观念的形成要比微分早.然而直到17世纪后半期,较为完整的定积分理论还没有能够形成,一直到Newton-Leibniz公式建立之后,有关计算的问题得以解决后,定积分才迅速的建立并成长起来.本论文研究的积分不等式结合了定积分以及不等式.关于它的证明向来是高等数学中的一个重点及难点.对积分不等式的证明方法进行研究,并使其系统化,在很大程度上为不同的数学分支之间架起了桥梁.深刻的理解及掌握积分不等式的证明方法可以提升我们对其理论知识的理解,同时可以提高我们的创造思维和逻辑思维.在论文的第三部分中对积分不等式的证明方法进行了详细的阐述.分别从利用函数的凹凸性、辅助函数法、利用重要积分不等式、利用积分中值定理、利用泰勒公式、利用重积分、利用微分中值定理、利用定积分的性质这八个方面给出了例题及证明方法.这样通过几道常见的积分不等式的证明题,从不同的角度,用不同的方法研究、分析了积分不等式的特点,归纳总结出了其证明方法.同时论文中也对有的题目给出了多种证明方法,这启示我们对于同一道积分不等式而言它的证明方法往往不止一种,我们需要根据实际情况采用合适的方法去证明,从而达到将问题化繁为简的目的.2.几个重要的积分不等式在高等数学的学习中我们遇到过许多重要的积分不等式,如Cauchy-Schwarz 不等式,Young 不等式等.它们的形式及证明方法都有很多种,在这一小结中我们将给出这两种积分不等式的证明方法.2.1 Cauchy-Schwarz 不等式无论是在代数还是在几何中Cauchy-Schwarz 不等式的应用都很广泛,它是不同于均值不等式的另一个重要不等式.其形式有在实数域中的、微积分中的、概率空间()P F ,,Ω中的以及n 维欧氏空间中的4种形式.接下来在这一部分中我们将对其在微积分中的形式进行研究.定理2.1[1] 设()f x , ()g x 在[,]a b 上连续,则有[()()b af xg x dx ⎰]2≤{2[()]b af x dx ⎰}⋅ {2[()]bag x dx ⎰}.证明:要证明原不等式成立,我们只需要证()()()()2220bbbaaa fx dx g x dx f x g x dx ⎡⎤⋅-≥⎢⎥⎣⎦⎰⎰⎰ 成立. 设()()()()()222tttaa a F t f x dx g x dx f x g x dx ⎡⎤=⋅-⎢⎥⎣⎦⎰⎰⎰,则只要证()()F b F a ≥成立,由()F t 在[,]a b 上连续,在(),a b 内可导,得()()()()()()()()()22222t t taaaF t f t g x dx g t f x dx f t g t f x g x dx'=+-⎰⎰⎰()()()()()()()()22222ta f t g x f t g t f x g x g t f x dx ⎡⎤=-+⎣⎦⎰()()()()20ta f t g x g t f x dx =-≥⎡⎤⎣⎦⎰.(2.1)由(2.1)式可知()F t 在[,]a b 上递增,由b a >,知()()F b F a >,故原不等式成立. 证毕实际上关于Cauchy-Schwarz 不等式的证明方法有很多,这里我们采用的证明方法是较为普遍的辅助函数法,它将要证明的原积分不等式通过移项转变为了判断函数在两个端点处函数值大小的问题.通过观察我们可以进一步发现原Cauchy-Schwarz 不等式能够改写成以下行列式的形式()()()()()()()()0b baabbaaf x f x dxg x f x dx f x g x dxg x g x dx≥⎰⎰⎰⎰,由此我们可以联想到是否可以将它进行推广?答案是肯定的.下面我们将给出Cauchy Schwarz -不等式的推广形式.定理2.2[2] 设()f x ,()g x ,()h x 在[],a b 上可积,则()()()()()()()()()()()()()()()()()()0bbbaaabbbaaabbbaaaf x f x dxg x f x dxh x f x dxf xg x dx g x g x dxh x g x dx f x h x dxg x h x dxh x h x dx≥⎰⎰⎰⎰⎰⎰⎰⎰⎰.证明:对任意的实数1t ,2t ,3t ,有()()()()2123bat f x t g x t h x dx ++⎰()()()222222123bbbaaat f x dx t g x dx t h x dx=++⎰⎰⎰()()()()()()1213232220bbb aaat t f x g x dx t t f x h x dx t t g x h x dx +++≥⎰⎰⎰.注意到关于1t ,2t ,3t 的二次型实际上为半正定二次型, 从而其系数矩阵行列式为()()()()()()()()()()()()()()()2220bbbaaab bba aabbbaaaf x dxg x f x dxh x f x dxf xg x dxgx dxh x g x dx f x h x dx g x h x dxh x dx≥⎰⎰⎰⎰⎰⎰⎰⎰⎰. 证毕以上的推广是将Cauchy-Schwarz 不等式的行列式由二阶推广到了三阶的形式,事实上Cauchy-Schwarz 不等式是一个在很多方面都很重要的不等式,例如在证明不等式,求函数最值等方面.若能灵活的运用它则可以使一些较困难的问题得到解决.下面我们会在第三部分给出Cauchy-Schwarz 不等式及其推广形式在积分不等式证明中的应用.除了Cauchy-Schwarz 不等式之外还有很多重要的积分不等式,例如Young 不等式,相较于Cauchy-Schwarz 不等式我们对Young 不等式的了解比较少,实际上它也具有不同的形式且在现代分析数学中有着广泛的应用.接着我们将对Young 不等式进行一些研究.2.2 Young 不等式Young 不等式,以及和它相关的Minkowski 不等式,HÖlder 不等式,这些都是在现代分析数学中应用十分广泛的不等式,在调和函数、数学分析、泛函分析以及偏微分方程中这三个不等式的身影随处可见,是使用得最为普遍,最为平凡的知识工具.下面我们将给出积分形式的Young 不等式的证明.定理 2.3[3] 设()f x 在[0,]c (0c >)上连续且严格递增,若(0)0f =,[0,]a c ∈且[0,()]b f c ∈,则100()()abf x dx f x dx ab -+≥⎰⎰,其中1f -是f 的反函数,当且仅当()b f a =时等号成立.证明:引辅助函数0()()ag a ab f x dx =-⎰, (2.2)把0b >看作参变量,由于()()g a b f a '=-,且f 严格递增,于是当 10()a f b -<<时,()0g a '>;当 1()a f b -=时,()0g a '=;当 1()a f b ->时,()0g a '<. 因此 当1()a f b -=时,()g a 取到g 的最大值,即()()()()b f g x g a g 1m ax -=≤ (2.3)由分部积分得11()()11(())()()()f b f b g f b bf b f x dx xdf x ----=-=⎰⎰,作代换()y f x =,上面积分变为110(())()bg f b f y dy --=⎰, (2.4)将(2.2)式和(2.4)式代入(2.3)式得110()()()a bbab f x dx f y dy f x dx ---≤=⎰⎰⎰,即10()()a bf x dx f x dx ab -+≥⎰⎰. 证毕3.定积分不等式常见的证明方法关于积分不等式的证明方法较为繁多,难度及技巧性也较大,因此对其进行系统的归纳总结是很有必要的.在这一部分中我们将归纳出利用辅助函数、微分中值定理、重要积分不等式及积分中值定理等证明积分不等式的方法.3.1 利用函数的凹凸性在数学分析以及高等数学中,我们常常会遇到一类特殊的函数—凸函数.凸函数具有重要的理论研究价值和广泛的实际应用,在有些不等式的证明中,若能灵活地利用凸函数的性质往往能够简洁巧妙的解决问题.下面给出一个例子加以说明.定理3.1 若()t ϕ定义在间隔(),m M 内,且()0t ϕ''>,则()t ϕ必为下凸函数.定理3.2 设()f x 在[,]a b 上为可积分函数,而()m f x M ≤≤.又设()t ϕ在间隔m t M ≤≤内为连续的下凸函数,则有不等式()()()11b b a af x dx f x dx b a b aϕϕ⎛⎫≤⎪--⎝⎭⎰⎰.例3.1[4] 设()f x 在[],a b 上连续,且()0f x >,求证:()()()21bba a f x dx dxb a f x ≥-⎰⎰. 证明: 取()u u 1=ϕ, 因为()210u u ϕ'=-<,()320u uϕ''=>,()0>u 即在0u >时,()y u ϕ=为凸函数,故有()()()11b b a a f x dx f x dx b a b a ϕϕ⎛⎫≤ ⎪--⎝⎭⎰⎰, 即()()1babadxf x b ab a f x dx-≤-⎰⎰,故()()()21b b a a f x dx dx b a f x ≥-⎰⎰. 证毕 在上述的题目中我们可以发现在证明中常常先利用导数来判断函数的凹凸性,然后再利用凹(凸)函数的性质来证明不等式.然而对于实际给出的题目,我们往往需要先构造一个凹(凸)函数,然后才能利用其性质来证明我们所要证明的问题.3.2 辅助函数法辅助函数法是积分不等式证明中的一种非常重要的方法,往往我们会根据不等式的特点,构造与问题相关的辅助函数,考虑在相同的区间上函数所满足的条件,从而得出欲证明的结论.在第二部分中我们用辅助函数法对Cauchy-Schwarz 不等式进行了证明,下面将对用辅助函数法证明积分不等式进行进一步的探讨.[5]设函数()f x 在区间[]0,1上连续且单调递减,证明:对)1,0(∈∀a 时,有: ()10()af x dx a f x dx ≥⎰⎰.证明:令()01()xF x f t dt x =⎰ ()01x <≤,由()x f 连续,得()x F 可导 则()()()02xf x x f t dtF x x ⋅-'=⎰ ()()2f x x f x xξ⋅-⋅=()()f x f x ξ-=, (0)x ξ<<. 因为()f x 在[0,1]上单调减少,而0x ξ<<,有()()f x f ξ<,从而()0F t '<,()F x 在(0,1]上单调减少,则对任意(0,1)a ∈,有()(1)F a F ≥. 即()1001()af x dx f x dx a≥⎰⎰,两边同乘a ,即得()100()a f x dx a f x dx ≥⎰⎰. 证毕 本题根据积分不等式两边上下限的特点,在区间)1,0(上构造了一个辅助函数,进一步我们可以思考对于一般的情形,该题的结论是否依然成立呢?答案是肯定的.设函数()f x 在区间[]0,1上连续且单调递减非负,证明:对)1,0(,∈∀b a ,且10<≤<b a 时,有: ()0()aba a f x dx f x dx b≥⎰⎰. 证明:令()01()xF x f t dt x=⎰,()01x <≤,由()x f 连续,得()x F 可导, 则 ()()()02x f x x f t dtF x x⋅-'=⎰ ()()2f x x f xx ξ⋅-⋅=()()f x f xξ-=,(0)x ξ<<.因为()f x 在[0,1]上单调减少,而0x ξ<<,有()()f x f ξ<,从而()0F t '<,()F x 在(0,1]上单调减少,则对任意10<≤<b a ,有()()F a F b ≥,即()()0011a bf t dt f t dt a b≥⎰⎰. (3.1)由f 非负,可得()()dx x f dx x f bab ⎰⎰≥0. (3.2)结合(3.1)式和(3.2)式可得()()011a ba f x dx f x dx a b≥⎰⎰.即()()0aba a f x dx f x dx b≥⎰⎰. 证毕 [6] 函数()f x 在[,]a b 上连续,且()0>x f 试证:21()()()bbaaf x dx dx b a f x ≥-⎰⎰. 在例3.1中我们给出了本题利用函数的凹凸性证明的过程,在这里我们将给出其利用辅助函数法证明的过程.证明: 构造辅助函数()()()()2xxa adt x f t dt x a f t φ=--⎰⎰, 则 ()()()()()()12xx aa dt x f x f t dt x a f t f x φ'=+⋅--⎰⎰()()()()2xx x aa a f x f t dt dt dt f t f x =+-⎰⎰⎰()()()()20xaf x f t dt f t f x ⎡⎤=+-≥⎢⎥⎣⎦⎰, 所以()x φ是单调递增的,即()()0b a φφ≥=,故()()()21bbaaf x dx dx b a f x ≥-⎰⎰. 证毕 [7]设()x f 在[]b a ,上连续且单调增加,证明:()()⎰⎰+≥babadx x f b a dx x xf 2. 证明: 原不等式即为()()02≥+-⎰⎰baba dx x fb a dx x xf ,构造辅助函数()()()2t ta a a t F t xf x dx f x dx +=-⎰⎰ ,[],t ab ∈, 则()()()()122t a a t F t tf t f x dx f t +'=--⎰ ()()()12t a t a f t f x dx ⎡⎤=--⎢⎥⎣⎦⎰ ()()()()12t a f t f ζ=-- , (),a t ζ∈.因为a t ζ≤≤,()f x 单调增加,所以()0F t '≥.故()F t 在[],a b 上单调递增,且()0F a =, 所以对(,]x a b ∀∈,有()()0F x F a ≥=.当x b =时,()0F b ≥.即()()02bbaaa b xf x dx f x dx +-≥⎰⎰,故原不等式成立, 证毕通过以上几道题目的观察我们可以发现:1.当已知被积函数连续时,我们可以把积分的上限或者是下限作为变量,从而构造一个变限积分,然后利用辅助函数的单调性加以证明.2.辅助函数法实际上是一种将复杂的问题转化为容易解决的问题的方法.在解题时通常表现为不对问题本身求解而是对与问题相关的辅助函数进行求解,从而得出原不等式的结论.3.3 利用重要积分不等式在第2部分中我们给出了Cauchy-Schwarz 不等式以及它的推广形式的证明过程,实际上Cauchy-Schwarz 不等式的应用也很广泛,利用它可以解决一些复杂不等式的证明.在这一小节中我们将通过具体的例子来加以说明它在证明积分不等式中的应用.[8]函数()f x 在[]0,1上一阶可导,()()100f f ==,试证明:()()112214f x dx f x dx '≤⎰⎰.证明:由()()()00xf x f t dt f '=+⎰和()()()11x f x f t dt f '=-+⎰可得()()()()()21222201xx xfx f t dtdt f t dt x f x dx '''=≤≤⎰⎰⎰⎰, 1(0,)2x ⎡⎤∈⎢⎥⎣⎦,()()()()()21111222201(1)x x x fx f t dtdt f t dt x f x dx '''=≤≤-⎰⎰⎰⎰, 1(,1)2x ⎡⎤∈⎢⎥⎣⎦. 因此()()112220018f x dx f x dx '≤⎰⎰,(3.3)()()112210218f x dx f x dx '≤⎰⎰. (3.4) 将(3.3)式和(3.4)式相加即可以得到()()112214f x dx f x dx '≤⎰⎰. 证毕[2]设()f x ,()g x 在[],a b 上可积且满足:()0m f x M <≤≤,()0ba g x dx =⎰,则以下两个积分不等式()()()()()()()22222bb b baaaaf xg x dxf x dxg x dx m b a g x dx ≤--⎰⎰⎰⎰及()()()()()2222bbbaaaM m f x g x dxf x dxg x dx M m -⎛⎫≤ ⎪+⎝⎭⎰⎰⎰成立.证明:取()1h x =,由()0b ag x dx =⎰及定理2.2知()()()()()()()()2200bbbaaab baabaf x dxg x f x dxf x dxf xg x dxg x dx f x dxb a-⎰⎰⎰⎰⎰⎰()()()()()()()()()()222220bbbbbaa a a ab a fx dx g x dx f x dx g x dx b a f x g x dx=-⋅---≥⎰⎰⎰⎰⎰.因此()()()()()()()()222221bbbbbaaaaaf xg x dxfx dx g x dx f x dxg x dx b a≤--⎰⎰⎰⎰⎰. (3.5)由()m f x ≤可知()()()222baf x dxm b a ≥-⎰,因而()()()()()()()22222bbbbaaa a f x g x dxfx dx g x dx m b a g x dx ≤--⎰⎰⎰⎰.由于()0m f x M <≤≤,因此()2222M m M m f x +-⎛⎫⎛⎫-≤ ⎪ ⎪⎝⎭⎝⎭.化简得()()()2f x Mm M m f x +≤+,两边同时积分得 ()()()()2bbaaf x dx Mm b a M m f x dx +-≤+⎰⎰,由算数-几何平均值不等式可知 ()()()()222bbaaf x dx Mm b a f x dx Mm b a ⋅-≤+-⎰⎰,于是()()()()()2224babab a f x dxM m Mmf x dx-+≤⎰⎰.则()()()221bbaaf x dxg x dx b a -⎰⎰()()()()()()2222bbbabaa af x dxfx dx g x dxb a f x dx=-⎰⎰⎰⎰()()()2224bbaaMmf x dxg x dx M m ≥+⎰⎰.(3.6)由式(3.5)和式(3.6)可知()()()()()2222bbbaaaM m f x g x dxf x dxg x dx M m -⎛⎫≤ ⎪+⎝⎭⎰⎰⎰. 证毕以上两道题分别利用了Cauchy-Schwarz 不等式及其推广形式.我们在证明含有乘积及平方项的积分不等式时应用Cauchy-Schwarz 不等式颇为有用,但要注意选取适当的()x f 与()x g ,有时还需对积分进行适当的变形.3.4 利用积分中值定理积分中值定理展现了将积分转化为函数值,或者是将复杂函数积分转变为简单函数积分的方法.其在应用中最重要的作用就是将积分号去掉或者是将复杂的被积函数转化为相比较而言较为简单的被积函数,从而使得问题能够简化.因此合理的利用积分中值定理能够有效的简化问题.下面将通过两道例题来说明.定理 3.3(积分第一中值定理) 若()f x 在[,]a b 上可积且()m f x M ≤≤,则存在[,]u m M ∈使()()ba f x dx ub a =-⎰成立.特别地,当()f x 在[,]a b 上连续,则存在[,]c a b ∈,使()()()baf x dx f c b a =-⎰成立.定理 3.4(积分第一中值定理的推广) 若函数()x f ,()x g 在区间[]b a ,上可积,()x f 连续,()x g 在[]b a ,上不变号,则在积分区间[]b a ,上至少存在一个点ε,使得下式成立()()()()⎰⎰=babadx x g f dx x g x f ε.定理3.5(积分第二中值定理的推广) 若函数()x f ,()x g 在区间[]b a ,上可积,且()x f 为单调函数,则在积分区间[]b a ,上至少存在一个点ε,使得下式成立 ()()()()()()⎰⎰⎰+=εεabbadx x g b f dx x g a f dx x g x f .设函数()f x 在区间[]0,1上连续单调递减,证明:对)1,0(,∈∀b a ,且10<≤<b a 时,有()0()aba a f x dx f x dx b≥⎰⎰,其中()0≥x f . 用辅助函数法证明的过程,实际上这道题目还可以用积分第一中值定理来证明,下面我们将给出证明过程.证明:由积分中值定理知 ()()10af x dx f a ξ=⋅⎰, []10,a ξ∈; ()()()2baf x dx f b a ξ=⋅-⎰,[]2,a b ξ∈;因为12ξξ≤,且()f x 递减,所以有()()12f f ξξ≥,即 ()()()0111a b ba a f x dx f x dx f x dx ab a b ≥≥-⎰⎰⎰, 故 ()()0a baa f x dx f x dxb ≥⎰⎰. 证毕设()x f 在[]b a ,上连续且单调增加,证明:()()⎰⎰+≥babadx x f b a dx x xf 2. 同样地,在之前的证明中我们给出了此题利用辅助函数法证明的过程,仔细分析观察这道题目我们还可以发现它可以用积分第一、第二中值定理的推广形式来证明,接着我们将给出此题在这两种方法下的证明过程.证法一证明: ()2ba ab x f x dx +⎛⎫- ⎪⎝⎭⎰()()2222a bb a b a a b a b x f x dx x f x dx ++++⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰. 由定理3.4可知,分别存在1,2a b a ξ+⎛⎫∈ ⎪⎝⎭,2,2a b b ξ+⎛⎫∈⎪⎝⎭, 使得 ()()22122a ba baa ab a b x f x dx f x dx ξ++++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰,()()22222b b a b a b a b a b x f x dx f x dx ξ++++⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰, 因此()()()()()22128ba ab a b x f x dx f f ξξ-+⎛⎫-=- ⎪⎝⎭⎰,由于()x f 在[]1,0单调增加的,且1201ξξ<<<,所以有 ()()210f f ξξ-≥.从而()02ba ab x f x dx +⎛⎫-≥ ⎪⎝⎭⎰,故原不等式成立, 证毕 证法二证明:由定理3.5可知:存在(),a b ξ∈,使得 ()2ba ab x f x dx +⎛⎫- ⎪⎝⎭⎰()()22b a a b a b f a x dx f b x dx ξξ++⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭⎰⎰ ()()()()f a f b a b ξξ=---⎡⎤⎡⎤⎣⎦⎣⎦.由()x f 单调增加及(),a b ξ∈知()()0f a f b -<,0a ξ->,0b ξ-<.可得()02ba ab x f x dx +⎛⎫-≥ ⎪⎝⎭⎰,故原不等式成立, 证毕 通过上述两道题目我们可以了解到积分中值定理在实际应用中起到的重要作用就是能够使积分号去掉,或者是将复杂的被积函数转化为相对而言较简单的被积函数,从而使问题得到简化.因此,对于证明有关结论中包含有某个函数积分的不等式,或者是要证明的结论中含有定积分的,可以考虑采用积分中值定理,从而去掉积分号,或者化简被积函数.3.5 利用积分的性质关于积分的性质在高等数学的学习中我们已经学到了很多,我们可以利用它来证明许多问题.在这里我们主要利用定积分的比较定理和绝对值不等式等性质对问题进行分析处理.[9]设()f x 在[]0,1上导数连续,试证:[]0,1x ∀∈,有()()()10f x f x f x dx ⎡⎤'≤+⎣⎦⎰. 证明:由条件知()f x 在[]0,1上连续,则必有最小值,即存在[]00,1x ∈,()()0f x f x ≤,由()()()00xx f t dt f x f x '=-⎰⇔()()()00xx f x f x f t dt '=+⎰,()()()00x x f x f x f t dt '=+⎰≤()()00x x f x f t dt '+⎰≤()()100f x f t dt '+⎰()()11000f x dt f t dt '=+⎰⎰≤()()1100f t dt f t dt '+⎰⎰()()10f t f t dt ⎡⎤'=+⎣⎦⎰()()10f x f x dx ⎡⎤'=+⎣⎦⎰.故原不等式成立, 证毕3.6 利用泰勒公式在现代数学中泰勒公式有着重要的地位,它在不等式的证明、求极限以及求高阶导数在某些点的数值等方面有着重要的作用.关于泰勒公式的应用已经有很多专家学者对其进行了深入的研究,下面我们将举例说明利用泰勒公式也是证明积分不等式的一种重要方法.定理 3.6(带有拉格朗日型余项的Taylor 公式) 设函数()f x 在点0x 处的某邻域内具有1n +阶连续导数,则对该邻域内异于0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得:20000000()()()()()()()()()2!!n n n f x f x f x f x f x x x x x x x R x n '''=+-+-++-+ (1)其中(1)10()()()(1)!n n n f R x x x n ξ++=-+(ξ在x 与0x 之间)称为拉格朗日型余项,(1)式称为泰勒公式.[10] 设()f x 在[],a b 上有二阶连续导数,()()0f a f b ==,[](),max x a b M f x ∈''=,试证明:()()312bab a f x dx M -≤⎰.证明:对(),x a b ∀∈,由泰勒公式得()()()()()()212f a f x f x a x f a x ξ'''=+-+- , (),a x ξ∈,()()()()()()212f b f x f x b x f b x η'''=+-+-, (),x b η∈, 两式相加得 ()()()()()()22124a b f x f x x f a x f b x ξη+⎛⎫⎡⎤'''''=---+- ⎪⎣⎦⎝⎭, 两边积分得 ()()()()()()22124b bb aaa ab f x dx f x x dx f a x f b x dx ξη+⎛⎫⎡⎤'''''=---+- ⎪⎣⎦⎝⎭⎰⎰⎰, 其中 ()()()22b b b a a a a b a b f x x dx x df x f x dx ++⎛⎫⎛⎫'-=-=- ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰, 于是有 ()()()()()2218bb a a f x dx f a x f b x dx ξη⎡⎤''''=-+-⎣⎦⎰⎰, 故()()()()223812bb aa M M f x dx a xb x dx b a ⎡⎤≤-+-=-⎣⎦⎰⎰. 证毕 [6]设()f x 在[],a b 上有二阶导数,且()0f x ''>,求证 ()()2b aa b f x dx b a f +⎛⎫≥- ⎪⎝⎭⎰. 证明:将()f x 在02a bx +=处作泰勒展开得到()()2122222a b a b a b a b f x f f x f x ξ++++⎛⎫⎛⎫⎛⎫⎛⎫'''=+-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ,2a b x ξ+⎛⎫∈ ⎪⎝⎭.因为()0f x ''>,所以可以得到 ()222a b a b a b f x f f x +++⎛⎫⎛⎫⎛⎫'≥+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 对不等式两边同时积分得到 ()()222b b a a a b a b a b f x dx f b a f x dx +++⎛⎫⎛⎫⎛⎫'≥-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰⎰. 因为02b a a b x dx +⎛⎫-= ⎪⎝⎭⎰, 所以有()()2b a a b f x dx b a f +⎛⎫≥- ⎪⎝⎭⎰. 证毕通过这两道题目我们大致可以了解到当题目中出现被积函数在积分区间上有意义且有二阶及二阶以上连续导数时,是提示我们用泰勒公式证明的最明显的特征.一般情况下我们选定一个点o x ,并写出()x f 在这个点o x 处的展开公式,然后进行适当的放缩或与介值定理相结合来解决问题.3.7 利用重积分在一些积分不等式的证明中,由于被积函数的不确定,从而我们不能求出其具体的数值,这时我们可以将定积分转换为二重积分再利用其性质来求解.以下列举了3种利用重积分来证明积分不等式的方法,这种技巧在高等数学中虽然不常见,但却是很重要的,下面我们将通过3道例题来进一步说明.命题一[11]:若在区间[,]a b 上()()f x g x ≥,则()()bba a f x dx g x dx ≥⎰⎰.[11] 设()f x ,()g x 在[,]a b 上连续,且满足:()()xxaaf t dtg t dt ≥⎰⎰,[,]x a b ∈,()()b b a a f t dt g t dt =⎰⎰,证明:()()b ba axf x dx xg x dx ≤⎰⎰.证明:由题得()()x xaaf t dtg t dt ≥⎰⎰,从而可以得到()()b x b x aaaadx f t dt dx g t dt ≥⎰⎰⎰⎰,即[()()]0b xa adx f t g t dt -≥⎰⎰.左式[()()]b xaadx f t g t dt =-⎰⎰ [()()]Df tg t dxdt =-⎰⎰ (其中{(,)|,}D x t a x b a t x =≤≤≤≤)[()()]b b atdt f t g t dx =-⎰⎰ ()[()()]bab t f t g t dt =--⎰[()()][()()]b b b b aaaab f t dt g t dt tf t dt tg t dt =---⎰⎰⎰⎰[()()]0b baatf t dt tg t dt =--≥⎰⎰.则 ()()0b b aatf t dt tg t dt -≤⎰⎰ , 即()()b baaxf x dx xg x dx ≤⎰⎰. 证毕在本题中我们将一元积分不等式()()x xaaf x dxg x dx ≥⎰⎰的两边同时增加一个积分变量badx ⎰,使得一元积分不等式化为二元积分不等式,然后巧妙的运用转换积分变量顺序的方法达到证明一元积分不等式的方法.在利用重积分来证明积分不等式的时候,我们不但可以采用直接增元法,还可以采用转换法.关于转换法又分为将累次积分转换为重积分,以及将常数转换为重积分这两种形式.下面我们将依次来介绍这两种方法.1.将累次积分转为重积分命题二[11] 若()f x 在[,]a b 上可积,()g y 在[,]c d 上可积,则二元函数()()f x g y 在平面区域{(,)|,}D x y a x b c y d =≤≤≤≤上可积,且()()()()()()bd b dacacDf xg y dxdy f x dx g y dy f x dx g x dx ==⎰⎰⎰⎰⎰⎰.其中{(,)|,}D x y a x b c y d =≤≤≤≤[11] 设()p x ,()f x ,()g x 是[,]a b 上的连续函数,在[,]a b 上,()0p x >,()f x ,()g x 为单调递增函数,试证:()()()()()()()()bb b baaaap x f x dx p x g x dx p x dx p x f x g x dx ≤⎰⎰⎰⎰.证明:由()()()()()()()()b bbbaaaap x f x dx p x g x dx p x dx p x f x g x dx ≤⎰⎰⎰⎰可知:()()()()()()()()0bb b baaaap x dx p x f x g x dx p x f x dx p x g x dx -≥⎰⎰⎰⎰,令()()()()()()()()b bbbaaaaI p x dx p x f x g x dx p x f x dx p x g x dx =-⎰⎰⎰⎰,下证0I ≥;()()()()()()()()b b b baaaaI p x dx p x f x g x dx p x f x dx p x g x dx =-⎰⎰⎰⎰()()()()()()()()b b b baaaap x dx p y f y g y dy p x f x dx p y g y dy =-⎰⎰⎰⎰()()()()()()()()bbbba a aap x p y f y g y dxdy p x f x p y g y dxdy =-⎰⎰⎰⎰()()()[()()]bba ap x p y g y f y f x dxdy =-⎰⎰. (3.7)同理()()()()()()()()bbbbaaaaI p x dx p x f x g x dx p x f x dx p x g x dx =-⎰⎰⎰⎰()()()()()()()()b b b baaaap y dy p x f x g x dx p y f y dy p x g x dx =-⎰⎰⎰⎰()()()[()()]b baap y p x g x f x f y dxdy =-⎰⎰. (3.8)(3.7)+(3.8) 得2()()[()()][()()]bbaaI p x p y g y g x f y f x dxdy =--⎰⎰,因为()f x ,()g x 同为单调增函数,所以[()()][()()]0g y g x f y f x --≥ 又因为()0p x >,()0p y >,故2()()[()()][()()]0bbaaI p x p y g y g x f y f x dxdy =--≥⎰⎰,即0I ≥. 证毕2.将常数转换为重积分的形式在例中我们介绍了将累次积分转换为重积分,在下面的例中我们将对常数转换为重积分来进行说明.我们可以发现有这样一个命题,若在二重积分中被积函数(,)f x y k =,则可得到2()Dkd k b a σ=-⎰⎰,其中{(,)|,}D x y a x b a y b =≤≤≤≤.函数()f x 在[,]a b 上连续,且()0>x f 试证:21()()()b baaf x dx dx b a f x ≥-⎰⎰.本题与前面的例3.1以及例题目,在这里我们将利用重积分证明此题. 证明:原题即为 1()()bba aDf x dx dy d f y σ≥⎰⎰⎰⎰, 移项可得()(1)0()Df x d f y σ-≥⎰⎰,()()()2(1)(1)(1)0()()()DD Df x f x f y d d d f y f y f x σσσ-=-+-≥⎰⎰⎰⎰⎰⎰, 所以即为证()()(2)0()()Df x f y d f y f x σ+-≥⎰⎰,因为()0f x ≥,()0f y ≥,所以()()20()()f x f y f y f x +-≥. 故 ()()(2)0()()Df x f y d f y f x σ+-≥⎰⎰ 恒成立,即21()()()b b a a f x dx dx b a f x ≥-⎰⎰成立, 证毕通过以上三道例题我们可以大致了解到,在这一类定积分不等式的证明过程中我们一般先将所要证明的不等式转化为二次积分的形式,进一步再转换为二重积分,最后利用二重积分的性质或其计算方法得出结论.这种方法克服了数学解题过程中的高维数转化为低维数的思维定势,丰富了将二重积分与定积分之间互化的数学思想方法.3.8 利用微分中值定理微分中值定理是数学分析中的重要的一个基本定理,它是指罗尔中值定理、拉格朗日中值定理、柯西中值定理以及泰勒中值定理这四种定理.关于微分中值定理的应用也是很广泛的,证明不等式是微分中值定理最基本的应用之一.在这里我们将对利用柯西中值定理及拉格朗日中值定理证明积分不等式进行研究.下面将通过两个例子来具体说明这两个定理在证明积分不等式中的应用,以及不同的微分中值定理在证明不等式时的区别.[12] 设()0f a =,()f x 在区间[],a b 上的导数连续,证明:()()[]()2,11max 2bax a b f x dx f x b a ∈'≤-⎰. 证明:应用Lagrange 中值定理,(),a x ξ∃∈,其中a x b <<,使得 ()()()()f x f a f x a ξ'-=-, 因为()0f a =, 所以()f x M x a ≤-, [](),max x a b M f x ∈'=,从a 到b 积分得 ()bb aaf x dx M x a dx ≤-⎰⎰()()222bab M M x a dx x a =-=-⎰()()()221max 22M b a f x b a '=-=-.即()()[]()2,11max 2bax a b f x dx f x b a ∈'≤-⎰. 证毕 [13] 设函数()f x 在[]0,1上可微,且当()0,1x ∈时,()01f x '<<,()00f =试证:()()()21130f x dxf x dx >⎰⎰.证明:令()()()2xF x f t dt =⎰,()()30xG x f t dt =⎰,()(),F x G x 在[]0,1上满足柯西中值定理,则()()()()()()()()()211301010f x dxF F FG G G f x dxξξ'-=='-⎰⎰()()()()()003222f f t dt f t dt f f ξξξξξ==⎰⎰()01ξ<< ()()()()02220f t dt f t dtf fξξ-=-⎰⎰()()()22f f f ηηη='()11f η=>' , ()01ηξ<<<.所以()()()21120f x dxf x dx >⎰⎰. 证毕通过以上两道题目可以发现:1.在应用Lagrange 中值定理时先要找出符合条件的函数()f x ,并确定()x f 在使用该定理的区间[]b a ,,对()x f 在区间[]b a ,上使用该定理.若遇到不能用该定理直接证明的,则从结论出发,观察并分析其特征,构造符合条件的辅助函数之后再应用Lagrange 中值定理.2.在研究两个函数的变量关系时可以应用Cauchy 中值定理,在应用该定理证明不等式时关键是要对结果进行分析,找出满足Cauchy 中值定理的两个函数()x f ,()x g ,并确定它们应用柯西中值定理的区间[]b a ,,然后在对()x f ,()x g 在区间[]b a ,上运用Cauchy 中值定理.无论是Cauchy 中值定理还是Lagrange 中值定理在积分不等式的证明中都各具特色,都为解题提供了有力的工具.总之在证明不等式时需要对结论认真的观察有时还需要进行适当的变形,才能构造能够应用中值定理证明的辅助函数,进而利用微分中值定理证明不等式.4.总结我们通过查阅有关积分不等式的文献和资料,并对其中的相关内容进行对比和分析后,将有关的内容加以整理并扩充形成了本文.在论文中给出了两个重要的积分不等式的证明以及总结了八种积分不等式的证明方法.然而由于自己的参考资料面不够广,参考的大多数文献都是仅给出了例题及其证明方法,而并没有给出进一步的分析,同时自己的知识面较窄,能力有限,导致还有很多难度较大的问题尚未解决.例如,在实际的问题中,还有一些证明方法是我们所不知道的,并且还有一些不等式并不能用本文所给出的八种方法来证明,这就需要我们进一步的思考与研究.今后我们应该更多的参考其他资料,充分拓展思路,以便于提出新的观点.参考文献[1]王宇,代翠玲,江宜华.一个重要积分不等式的证明、推广及应用[J].荆州师范学院学报(自然科学版),2000,23(5):106[2] 张盈.Cauchy-Schwarz不等式的证明、推广及应用[J].高师理科学刊,2014,34(3):34-37[3] 黄群宾.积分不等式的证明[J].川北教育学院学报,1996,6(4):22-27[4] 李志飞.积分不等式的证明[J].高等数学研究,2014,17(6):50-51[5]郝涌,王娜,王霞,郭淑利.数学分析选讲[M].北京:国防工业出版社,2014[6]张瑞,蒋珍.定积分不等式证明方法的研究[J].河南教育学院学报(自然科学版),2011,20(2):18[7]林忠.一个积分不等式的几种证明方法[J].成都教育学院学报,2006,20(12):66[8]刘法贵.证明积分不等式的几种方法[J].高等数学研究,2008,11(1):122[9] 苏德矿,李铮,铁军.数学强化复习全书[M].北京:中国证法大学出版社,2015[10] 李小平,赵旭波.定积分不等式几种典型证法[J].高等数学研究,2009,12(6):13-17[11] 黄云美.重积分在积分不等式证明中的应用[J].杨凌职业技术学院学报,2014,13(3):27-33[12] 葛亚平.积分不等式证明的再认识[J].河南教育学院学报(自然科学版),2015,24(3):18-20[13] 王丽颖,张芳,吴树良.积分不等式的证法[J].白城师范学院学报,2007,21(3): 19-22。

[全]高等数学之微积分中不等式的证明方法总结[下载全]

[全]高等数学之微积分中不等式的证明方法总结[下载全]

高等数学之微积分中不等式的证明方法总结
不等式的证明题作为微分的应用经常出现在考研题中。

利用函数的单调性证明不等式是不等式证明的基本方法。

有时需要两次甚至三次连续使用该方法,其他方法可作为该方法的补充,辅助函数的构造仍是解决问题的关键。

证明方法总结:
(1)利用函数单调性证明不等式
若在(a,b)上总有f(x)的导数大于零,则函数f(x)在区间(a,b)上单调增加;若在(a,b)上总有f(x)的导数小于零,则函数f(x)在区间(a,b)上单调减少。

(2)利用拉格朗日中值定理证明不等式
对于不等式中含有f(b)-f(a)的因子,可考虑用拉格朗日中值定理先处理一下。

(3)利用函数的最值证明不等式
若函数f(x)在闭区间[a,b]上连续,则f(x)在区间[a,b]上存在最大值M和最小值m.
(4)利用泰勒公式证明不等式
如果要证明的不等式中,含有函数的二阶或二阶以上的导数,一般通过泰勒公式证明不等式。

不等式证明的难点也是辅助函数的构造,一般可以通过要证明的不等式分析得出要构造的辅助函数。

题型一:利用函数的单调性证明不等式
分析:对要证明的不等式进行如下化简:
解:
备注:构造适当的辅助函数是解决问题的基础,有时需要两次利用函数的单调性证明不等式,有时需要对区间(a,b)进行分割,分别在小区间上讨论。

题型二:利用拉格朗日中值定理证明不等式
例2:
分析:
解:
备注:对于不等式中含有f(b)-f(a)的因子,可以考虑使用拉格朗日公式先处理一下。

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式.一、用导数定义证明不等式法1.证明方法根据-导数定义导数定义:设函数)(x f y =在点0x 的某个邻域内有定义,若极限x y x x x x x x f x f ∆∆→∆→=--lim lim 000)()(0存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0x 的导数,记作)(0x f y '=.2.证明方法:(1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究.3.例 :设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数,n 为正整数,已知对于一切实数x ,有x x f s i n )(≤,试证:1221≤+++n na a a . 分析:可以看出:)0(221f na a a n '=+++ .于是问题可以转化为证明1)0(≤'f . 证明:因nxna x a x a x f n cos 2cos 2cos )(21+++=' 则nna a a f +++=' 212)0(利用导数的定义得:x x f x x f x f x f f x x x )()(lim 0)0()()0(lim lim 000→→→==--='.由于x x f sin )(≤. 所以1sin )0(lim 0=≤'→x x f x .即1221≤+++n na a a . 4.适用范围用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的.二.用可导函数的单调性证明不等式法1.证明方法根据-可导函数的一阶导数符号与函数单调性关系定理定理一:若函数)(x f 在),(b a 可导,则)(x f 在),(b a 内递增(递减)的充要条件是: ),(),0)((0)(b a x x f x f ∈≤'≥'.定理二:设函数)(x f 在],[b a 连续,在),(b a 内可导,如果在),(b a 内0)(>'x f (或0)(<'x f ),那么)(x f 在],[b a 上严格单调增大(或严格单调减小). 定理三:设函数)(x f 在),(b a 内可导,若0)(>'x f (或0)(<'x f ),则)(x f 在),(b a 内严格递增(或严格递减).2.证明方法(1)构造辅助函数)(x f ,取定闭区间],[b a ;(2)研究)(x f 在],[b a 上的单调性,从而证明不等式.3.例 :证明不等式:)0(1)1ln(122>+>+++x x x x x . 分析:利用差式构造函数),0[,1)1ln(1)(22+∞∈+-+++=x x x x x x f ,则将要证明的结论转化为要证)0(,0)(>>x x f ,而0)0(=f ,因而只要证明)0(),0()(>>x f x f .证明:令),0[,1)1ln(1)(22+∞∈+-+++=x x x x x x f ,易知)(x f 在),0[+∞上连续,且有),0(,0)1ln()(2+∞∈>++='x x x x f ,由定理二可知)(x f 在),0[+∞上严格单调增加,所以由单调性定义可知)0(,0)0()(>=>x f x f ,即01)1l n (122>+-+++x x x x .因此)0(1)1ln(122>+>+++x x x x x .4.适用范围利用函数单调性证明不等式,不等式两边的函数必须可导;对所构造的辅助函数)(x f 应在某闭区间上连续,开区间内可导,且在闭区间的某端点处)(x f 的值为0,然后通过在开区间内)(x f '的符号来判断)(x f 在闭区间上的单调性.三、用拉格朗日中值定理证明不等式法1.证明方法根据-拉格朗日中值定理拉格朗日中值定理:若函数)(x f 满足下列条件:(I ))(x f 在闭区间],[b a 上连续;)(x f 在开区间),(b a 内可导,则在),(b a 内至少存在一点ξ,使得a b a f b f f --=')()()(ξ.拉格朗日中值定理反映了函数或函数增量和可导函数的一阶导数符号之间的关系.2.证明方法①辅助函数)(x f ,并确定)(x f 施用拉格朗日中值定理的区间],[b a ;②对)(x f 在],[b a 上施用拉格朗日中值定理;③利用ξ与b a ,的关系,对拉格朗日公式进行加强不等式.3.例 证明:当x x xx x <+<+>)1ln(1,0. 分析:所证不等式中的函数)1ln(x +的导数为x+11 ,即所证不等式中含有函数及其导数,因而可用拉格朗日中值定理试之.由于01ln =,因此可构造函数的改变量1ln )1ln(-+x ,则相应自变量的改变量为x ,原不等式等价于:11)1(11)1ln(11<-+-+<+x n x x ,由不等式中间部分的形式可知,可利用拉格朗日中值定理去证明.证明:构造函数t t f ln )(=,因)(t f 在)0](1,1[>+x x 上连续,在)1,1(x +上可导,)(t f 在)0](1,1[>+x x 上满足拉格朗日条件,于是存在)1,1(x +∈ξ,使 ξξ1)(1)1()1()1(='=-+-+f x f x f ,因 1111),1ln(1ln )1ln()1()1(<<++=-+=-+ξx x x f x f ,所以1)1l n (11<+<+x x x . 即)0(,)1ln(1><+<+x x x xx . 4.适用范围当所证的不等式中含有函数值与一阶导数,或函数增量与一阶导数时,可用拉格朗日中值定理来证明.四、用柯西中值定理证明不等式法1.证明方法根据-柯西中值定理柯西中值定理:若函数)(x f 与)(x g 都在闭区间],[b a 上连续,)(x f 与)(x g 都在开区间),(b a 内可导;)(x f '与)(x g '在),(b a 内不同时为0;且)()(b g a g ≠, 则在),(b a 内至少存在一点ξ,使得)()()()()()(a g b g a f b f g f --=''ξξ .柯西中值定理反映了两个函数或两个函数增量与它们一阶导数之间的关系.2.证明方法①构造两个辅助函数)(x f 和)(x g ,并确定它们施用柯西中值定理的区间],[b a ; ②对)(x f 与)(x g 在],[b a 上施用柯西中值定理;3.例:设20,π<<<>y x e a ,证明a a y x a a x x y ln )cos (cos ->-. 分析:原不等式可等价于a a xy a a x xy ln cos cos -<--.可看出不等式左边可看成是函数t a t f =)(与t t g cos )(=在区间],[y x 上的改变量的商,故可用柯西中值定理证明之.证明:原不等式等价于a a xy a a x xy ln cos cos -<--,可构造函数t a t f =)(,t t g cos )(=,因),(t f )(t g 均在],[y x 上连续,在),(y x 上可导,且0ln )(≠='a a t f t ,由于20π<<<y x ,则y y g x x g t t g cos )(cos )(,0sin )(=≠=≠-=',所以),(t f )(t g 在],[y x 上满足柯西中值条件,于是存在),(y x ∈ξ,使得ξξξξs i nln cos cos )()()()()()(-=--=--=''a a x y a a x g y g x f y f g f x y ,又因),,(,y x e a ∈>ξ,20π<<<y x 有1ln ,1sin 1,>><a a a x ξξ,得到ξξξξsin ln ln ,sin ln ln a a a a a a a a x x ->-< ,因此a a xy a a x xy ln cos cos -<--,即a a y x a a x x y ln )cos (cos ->-.4.适用范围当不等式含有两个函数的函数值及其一阶导数,或两个函数的函数增量及其一阶导数时,可用柯西中值定理证明.五、用函数的凹凸性证明不等式1. 函数的凹凸性定理反映了二阶可导函数的二阶导数符号与凹凸函数之间的关系.定理如下:设f(x)在[a,b]上连续,在(a,b)内二阶可导,若f ″(x)>0或(f ″(x)<0),则曲线y=f(x)在[a,b]上为凹(或凸)。

拉格朗日中值定理不等式证明

拉格朗日中值定理不等式证明

拉格朗日中值定理不等式证明拉格朗日中值定理是微积分学中的一个基本理论,经常被用于不等式的证明。

本文将阐述拉格朗日中值定理的基本概念和性质,并详细阐述如何利用该定理证明不等式。

1.拉格朗日中值定理的基本概念和性质拉格朗日中值定理是微积分学中的一个基本理论,该定理描述了函数在某个区间上的平均变化率与函数导数在该区间的某个值之间的关系。

其基本表述如下:若函数f(x)在区间[a,b]上连续,并且在(a,b)内可微,则存在一个c∈(a,b),使得f(b)-f(a)=f'(c)(b-a)其中,c被称为区间[a,b]上的一个介于a和b之间的拉格朗日中值,f(b)-f(a)被称为函数f(x)在区间[a,b]上的变化量,f'(c)(b-a)被称为函数f(x)在区间[a,b]上的平均变化率。

当我们面对求证某个不等式的时候,可以考虑将待证不等式转化为一个函数,并根据拉格朗日中值定理的性质来求证。

接下来,我们以一个例子来说明如何利用拉格朗日中值定理证明不等式。

例子:证明当x∈(0,π/2)时,sinx<x<tanx的不等式成立。

解题思路:首先,我们将待证不等式转化为一个函数,即f(x)=tanx-sinx,且x∈(0,π/2)。

因为我们求证的是f(x)>0,所以可以考虑证明f'(x)>0。

根据拉格朗日中值定理的定义,存在一个介于x和π/4之间的c,使得f(x)-f(π/4)=f'(c)(x-π/4)。

因为c介于x和π/4之间,所以有tanx>tan(π/4)=1sinx<sin(π/4)=√2/2因此,f(π/4)=tan(π/4)-sin(π/4)=1-√2/2>0.对f(x)求导,得到f'(x)=sec^2x-cosx>0,因为cosx<1,所以sec^2x>1,即f'(x)>0。

通过以上的例子,我们可以看到,拉格朗日中值定理在证明不等式中起到了重要作用,通过构造函数并利用其性质来转化不等式,证明比较简洁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用微积分理论证明不等式的方法高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似.微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式.一、用导数定义证明不等式法1.证明方法根据-导数定义导数定义:设函数)(x f y =在点。

0x 的某个邻域内有定义,若极限xy x x x x x x f x f ∆∆→∆→=--lim lim 000)()(0存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0x 的导数,记作)(0x f y '=.2.证明方法:(1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究.3.例例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数,n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a .证明:因nx na x a x a x f n cos 2cos 2cos )(21+++=' .则n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x )()(lim 0)0()()0(lim lim 000→→→==--='.由于x x f sin )(≤. 所以1sin )0(lim 0=≤'→x x f x .即1221≤+++n na a a . 4.适用范围用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的.二.用可导函数的单调性证明不等式法1.证明方法根据-可导函数的一阶导数符号与函数单调性关系定理定理一:若函数)(x f 在),(b a 可导,则)(x f 在),(b a 内递增(递减)的充要条件是: ),(),0)((0)(b a x x f x f ∈≤'≥'.定理二:设函数)(x f 在],[b a 连续,在),(b a 内可导,如果在),(b a 内0)(>'x f (或0)(<'x f ),那么)(x f 在],[b a 上严格单调增加(或严格单调减少). 定理三:设函数)(x f 在),(b a 内可导,若0)(>'x f (或0)(<'x f ),则)(x f 在),(b a 内严格递增(或严格递减).上述定理反映了可导函数的一阶导数符号与函数单调性的关系,因此可用一阶导数研究函数在所讨论区间上的单调性.2.证明方法(1)构造辅助函数)(x f ,取定闭区间],[b a ;△如何构造辅助函数?①利用不等式两边之差构造辅助函数;②利用不等式两边相同“形式”的特征构造辅助函数;③若所证的不等式涉及到幂指数函数,则可通过适当的变形(若取对数)将其化为易于证明的形式,再如前面所讲那样,根据不等式的特点,构造辅助函数.(2)研究)(x f 在],[b a 上的单调性,从而证明不等式.3.例例2:证明不等式:)0(1)1ln(122>+>+++x x x x x . 证明:令),0[,1)1ln(1)(22+∞∈+-+++=x x x x x x f ,易知)(x f 在),0[+∞上连续,且有),0(,0)1ln()(2+∞∈>++='x x x x f ,由定理二可知)(x f 在),0[+∞上严格单调增加,所以由单调性定义可知)0(,0)0()(>=>x f x f ,即01)1ln(122>+-+++x x x x .因此)0(1)1ln(122>+>+++x x x x x .例3:求证:b ba ab a ba +++≤+++111.证明:设辅助函数)0(,1)(≥+=x xx x f .易知)(x f 在),0[+∞上连续,且有,0)1(1)(2>+='x x f )0(>x .则由定理二可知)(x f 在),0[+∞上严格单调增加.由b a b a +≤+≤0,有)()(b a f b a f +≤+, 得到b ba ab a bb a ab a ba b a ba +++≤+++++=+++≤+++111111,所以原不等式成立.4.适用范围利用函数单调性证明不等式,不等式两边的函数必须可导;对所构造的辅助函数)(x f 应在某闭区间上连续,开区间内可导,且在闭区间的某端点处)(x f 的值为0,然后通过在开区间内)(x f '的符号来判断)(x f 在闭区间上的单调性.三、函数的极值与最大、最小值证明不等式法1.证明方法根据-极值的充分条件定理定理四(极值的第一充分条件) 设)(x f 在0x 连续,在),(00δx ⋃内可导,(i )若当),(00x x x δ-∈时,0)(≥'x f ,当),(00δ+∈x x x 时,0)(≤'x f ,则)(x f 在0x 取得极大值;(ii) 若当),(00x x x δ-∈时,0)(≤'x f ,当),(00δ+∈x x x 时,0)(≥'x f ,则)(x f 在0x 取得极小值.定理五(极值的第二充分条件) 设)(x f 在的某领域),(0δx ⋃内一阶可导,在0x x =处二阶可导,且0)(0='x f ,0)(0≠''x f ,(i)若0)(0<''x f ,则)(x f 在0x 取得极大值;(ii)若0)(0>''x f ,则)(x f 在0x 取得极小值.极值和最值是两个不同的概念.极值仅是在某点的邻域内考虑,而最值是在某个区间上考虑.若函数在一个区间的内部取得最值,则此最值也是极值.极值的充分条件定理反映了可导函数的一阶导数符号或二阶导数在可疑点上的导数符号与函数极值的关系.2.证明方法(1)构造辅助函数)(x f ,并取定区间.△如何构造辅助函数?①当不等式两边均含有未知数时,可利用不等式两边之差构造辅助函数;②当不等式两边含有相同的“形式”时,可利用此形式构造辅助函数;③当不等式形如a x g ≥)((或a x g ≤)()(a 为常数)时,可设)(x g 为辅助函数.(2)求出)(x f 在所设区间上的极值与最大、最小值.△极值与最大、最小值的求法①极值求法:(1)求出可疑点,即稳定点与不可导的连续点;(2)按极值充分条件判定可疑点是否为极值点.②最大、最小值的求法:(1)闭区间],[b a 上连续函数的最大、最小值的求法:先求出可疑点,再将可疑点处的函数值与端点b a ,处的函数值比较,最大者为最大值,最小者为最小值.(2)开区间),(b a 内可导函数的最大值、最小值的求法:若)(x f 在),(b a 内可导,且有唯一的极值点,则此极值点即为最大值点或最小值点.3.例例4:证明:当0>x 时有455+≥x x .证明:构造辅助函数)0(,45)(5>--=x x x x f ,则有 ),1)(1)(1(5)1)(1(555)(2224-++=-+=-='x x x x x x x f 令0)(='x f ,解得1±=x ,其中只有1=x 在区间),0(+∞内,由)1(45lim )(lim 511f x x x f x x =--=→→,有)(x f 在1=x 点连续.因当10<<x 时,0)(<'x f ,则)(x f 在)1,0(上为减函数;当1>x 时,0)(>'x f ,则)(x f 在),1(+∞上为增函数;由定理四可知,)(x f 在1=x 处取得极小值,即0)1(=f 为区间),0(+∞上的最小值,所以当0>x 时,有0)1()(=≥f x f .故),0(0455>≥--x x x 即)0(455>+≥x x x .4.适用范围利用函数单调性证明不等式,不等式两边的函数必须可导;对所构造的辅助函数)(x f 应在某闭区间上连续,开区间内可导,且在闭区间的某端点处)(x f 的值为0,然后通过在开区间内)(x f '的符号来判断)(x f 在闭区间上的单调性.三、函数的极值与最大、最小值证明不等式法1.证明方法根据-极值的充分条件定理定理四(极值的第一充分条件) 设)(x f 在0x 连续,在),(00δx ⋃内可导,(i )若当),(00x x x δ-∈时,0)(≥'x f ,当),(00δ+∈x x x 时,0)(≤'x f ,则)(x f 在0x 取得极大值;(ii) 若当),(00x x x δ-∈时,0)(≤'x f ,当),(00δ+∈x x x 时,0)(≥'x f ,则)(x f 在0x 取得极小值.定理五(极值的第二充分条件) 设)(x f 在的某领域),(0δx ⋃内一阶可导,在0x x =处二阶可导,且0)(0='x f ,0)(0≠''x f ,(i)若0)(0<''x f ,则)(x f 在0x 取得极大值;(ii)若0)(0>''x f ,则)(x f 在0x 取得极小值.极值和最值是两个不同的概念.极值仅是在某点的邻域内考虑,而最值是在某个区间上考虑.若函数在一个区间的内部取得最值,则此最值也是极值.极值的充分条件定理反映了可导函数的一阶导数符号或二阶导数在可疑点上的导数符号与函数极值的关系.2.证明方法(1)构造辅助函数)(x f ,并取定区间.△如何构造辅助函数?①当不等式两边均含有未知数时,可利用不等式两边之差构造辅助函数;②当不等式两边含有相同的“形式”时,可利用此形式构造辅助函数;③当不等式形如a x g ≥)((或a x g ≤)()(a 为常数)时,可设)(x g 为辅助函数.(2)求出)(x f 在所设区间上的极值与最大、最小值.△极值与最大、最小值的求法①极值求法:(1)求出可疑点,即稳定点与不可导的连续点;(2)按极值充分条件判定可疑点是否为极值点.②最大、最小值的求法:(1)闭区间],[b a 上连续函数的最大、最小值的求法:先求出可疑点,再将可疑点处的函数值与端点b a ,处的函数值比较,最大者为最大值,最小者为最小值.(2)开区间),(b a 内可导函数的最大值、最小值的求法:若)(x f 在),(b a 内可导,且有唯一的极值点,则此极值点即为最大值点或最小值点.3.例例5:证明:当0>x 时有455+≥x x .证明:构造辅助函数)0(,45)(5>--=x x x x f ,则有 ),1)(1)(1(5)1)(1(555)(2224-++=-+=-='x x x x x x x f 令0)(='x f ,解得1±=x ,其中只有1=x 在区间),0(+∞内,由)1(45lim )(lim 511f x x x f x x =--=→→,有)(x f 在1=x 点连续.因当10<<x 时,0)(<'x f ,则)(x f 在)1,0(上为减函数;当1>x 时,0)(>'x f ,则)(x f 在),1(+∞上为增函数;由定理四可知,)(x f 在1=x 处取得极小值,即0)1(=f 为区间),0(+∞上的最小值,所以当0>x 时,有0)1()(=≥f x f .故),0(0455>≥--x x x 即)0(455>+≥x x x .4.适用范围(1)所设函数)(x f 在某闭区间上连续,开区间内可导,但在所讨论的区间上不是单调函数时;(2)只能证不严格的不等式而不能证出严格的不等式.四、用拉格朗日中值定理证明不等式法1.证明方法根据-拉格朗日中值定理拉格朗日中值定理:若函数)(x f 满足下列条件:(I ))(x f 在闭区间],[b a 上连续;(ⅱ))(x f 在开区间),(b a 内可导,则在),(b a 内至少存在一点ξ,使得a b a f b f f --=')()()(ξ. 拉格朗日中值定理反映了函数或函数增量和可导函数的一阶导数符号之间的关系.2.证明方法①辅助函数)(x f ,并确定)(x f 施用拉格朗日中值定理的区间],[b a ;②对)(x f 在],[b a 上施用拉格朗日中值定理;③利用ξ与b a ,的关系,对拉格朗日公式进行加强不等式.3.例例6:证明:当x x x x x <+<+>)1ln(1,0. 证明:构造函数t t f ln )(=,因)(t f 在)0](1,1[>+x x 上连续,在)1,1(x +上可导,)(t f 在)0](1,1[>+x x 上满足拉格朗日条件,于是存在)1,1(x +∈ξ,使 ξξ1)(1)1()1()1(='=-+-+f x f x f ,因 1111),1ln(1ln )1ln()1()1(<<++=-+=-+ξx x x f x f ,1)1ln(11<+<+xx x .即)0(,)1ln(1><+<+x x x xx . 4.适用范围当所证的不等式中含有函数值与一阶导数,或函数增量与一阶导数时,可用拉格朗日中值定理来证明.五、用柯西中值定理证明不等式法1.证明方法根据-柯西中值定理柯西中值定理:若⑴函数)(x f 与)(x g 都在闭区间],[b a 上连续;⑵)(x f 与)(x g 都在开区间),(b a 内可导;⑶)(x f '与)(x g '在),(b a 内不同时为0;⑷)()(b g a g ≠. 则在),(b a 内至少存在一点ξ,使得)()()()()()(a g b g a f b f g f --=''ξξ . 柯西中值定理反映了两个函数或两个函数增量与它们一阶导数之间的关系.2.证明方法①构造两个辅助函数)(x f 和)(x g ,并确定它们施用柯西中值定理的区间],[b a ; ②对)(x f 与)(x g 在],[b a 上施用柯西中值定理;③利用ξ与b a ,的关系,对柯西公式进行加强不等式.3.例例7:设20,π<<<>y x e a ,证明a a y x a a xx y ln )cos (cos ->-.. 证明:原不等式等价于a a xy a a x xy ln cos cos -<--,可构造函数t a t f =)(,t t g cos )(=,因),(t f )(t g均在],[y x 上连续,在),(y x 上可导,且0ln )(≠='a a t f t ,由于20π<<<y x ,则y y g x x g t t g cos )(cos )(,0sin )(=≠=≠-=',所以),(t f )(t g 在],[y x 上满足柯西中值条件,于是存在),(y x ∈ξ,使得ξξξξsin ln cos cos )()()()()()(-=--=--=''a a x y a a x g y g x f y f g f x y ,又因),,(,y x e a ∈>ξ,20π<<<y x 有1ln ,1sin 1,>><a a a x ξξ,得:ξξξξsin ln ln ,sin ln ln a a a a a a a a x x ->-< ,因此a a xy a a x xy ln cos cos -<--,即a a y x a a x x y ln )cos (cos ->-. 4.适用范围当不等式含有两个函数的函数值及其一阶导数,或两个函数的函数增量及其一阶导数时,可用柯西中值定理证明.六、上述二、三、四、五种方法小结前面二、三、四、五种方法中,均可利用差式构造函数,但有时应用导数研究函数单调性证明不等式,有时应用导数研究函数极值证明不等式,而有时应用拉格朗日中值定理或柯西中值定理证明不等式.三者有何区别:⑴若所证不等式含有函数值及其导数,宜用中值定理;若所证不等式),(),()(b a x x g x f ∈<,其两端函数)(),(x g x f 均可导,且)()()(a g a f a F -=或)()()(b g b f b F -=有一为0时,宜用函数的单调性.⑵若所证不等式的两端函数有不可导时,不能用函数单调性证明,宜用中值定理. ⑶若所证不等式),(),()(b a x x g x f ∈<,两端函数)(),(x g x f 均可导,但)()()(x g x f x F -=不是单调的函数时,宜用函数的极值来证明.七、用函数的凹凸性证明不等式1.证明方法根据-凹凸函数定义及其定理和詹森不等式定义:设)(x f 为定义在区间I 上的函数,若对于I 上任意两点21,x x 和实数)1,0(∈λ,总有)()1()())1((2121x f x f x x f λλλλ-+≤-+,则称)(x f 为I 上的凸函数,若总有 )()1()())1((2121x f x f x x f λλλλ-+≥-+,则称)(x f 为I 上的凹函数.定理六:设)(x f 为I 上的二阶可导函数,则)(x f 为I 上的凸函数(或凹函数)的充要条件是在I 上)0)((0)(≤''≥''x f x f 或 .命题(詹森不等式) 若)(x f 在],[b a 上为凸函数,对任意的)2,1(0],,[n i b a x i i =>∈λ且11=∑=n i i λ,则≤∑=)(1n i i i x f λ)(1i n i i x f ∑=λ.该命题可用数学归纳法证明.函数的凹凸性定理反映了二阶可导函数的二阶导数符号与凹凸函数之间的关系.2.证明方法:①定义证明法:将不等式写成定义的形式,构造辅助函数)(x f ,并讨论)(x f 在所给区间上的凹凸性.②詹森不等式法:对一些函数值的不等式,构造凸函数,应用詹森不等式能快速证此类不等式.3.例例8:证明:当0,0>>y x 时,2ln )(ln ln y x y x y y x x ++>+.. 证明(定义证明法):设)0(ln )(>=t t t t f .有)0(01)(,1ln )(>>=''+='t t t f t t f .则)(t f 在),0(+∞为凸函数.对任意)(0,0y x y x ≠>>,有)2(2)()(y x f y f x f +>+(取21=λ).(要使)(x f 与)(x g 的系数相同,当且仅当λλ-=1时成立,即21=λ).因此2ln )(ln ln y x y x y y x x ++>+. 4.适用范围当不等式可写成凹凸函数定义的形式或对一些函数值和且能够构造凸函数的不等式.八、用泰勒公式证明不等式法1.证明方法根据-泰勒定理泰勒定理:若函数)(x f 满足如下条件:⑴在闭区间],[b a 上函数)(x f 存在直到n 阶连续导数;⑵在开区间),(b a 内存在)(x f 的1+n 阶导数,则对任何),(b a x ∈,至少存在一点),(b a ∈ξ,使得:1)1()(2)()!1()()(!)()(!2)())(()()(++-++-++-''+-'+=n n n n a x n a f a x n a f a x a f a x a f a f x f . 泰勒公式揭示了多项式与函数之间的关系.2.证明方法①根据已知条件,围绕证明目标,选取恰当的点将函数在这些点展成泰勒展式;②根据已知条件,向着有利于证明目标不等式的方向对上面的展式作适当的处理,直到可以结合已知条件证出不等式为止.(注意具体的题目应用此方法时要灵活运用,有些题目在进行①前,要先对已知条件或证明目标进行适当的转化,以更有利于证明的进行,使②不会过于繁琐.)3.例例9:设函数)(x f 在]1,0[上二阶可导,)1()0(f f =,且2)(≤''x f ,试证明:1)(≤'x f . 证明:取10≤≤x ,有:,0,)0)((21)0)(()()0(121x x f x x f x f f <<-''+-'+=ξξ 10,)1)((21)1)(()()1(222<<-''+-'+=ξξx f x x f x f f .由于)1()0(f f =则],)1)(()([21)(2221x f x f x f -''-''='ξξ])1()()([21)(2221x f x f x f -''+''≤'ξξ )0)1(2(,1)1(21)1(])1(22[212222≥-≤--=-+=-+≤x x x x x x x x .因此原不等式成立.4.适用范围当遇到含有函数或高阶导数,或函数增量与高阶导数,或要证的是导数(一阶或二阶)不等式时,可利用泰勒公式来证明有关的不等式.九、用幂级数展开式证明不等式法1.证明方法根据-几个重要的初等函数的幂级数展开式几个重要的初等函数的幂级数展开式如下:),(,!1!2112+∞-∞∈+++++=x x n x x e n x ; ),(,)!12(1)1(!31sin 1213+∞-∞∈+--++-=--x x n x x x n n ; ),(,)!2(1)1(!41!211cos 242+∞-∞∈+-++-=x x n x x x n n ; )1,0(,1112∈+++++=-x x x x xn ; ]1,1(,)1(3121)1ln(132-∈+-+++-=+-x n x x x x x n n .初等函数是中学数学教学重点,某些初等函数可展开成幂级数,在展开式中添加或删去某些幂级数时,可很快证明出某些含幂级数的不等式.2.证明方法先把初等函数展开成幂级数,然后在展开式中添加或删去某些幂级数即可快速证明此不等式.3.例例10:当)1,0(∈x ,证明x e x x 211>-+. 证明:因x e x2,11-分别可写成幂级数展开式,有:=++++++=-+)1)(1(112 n x x x x xx )1,0(,22212∈+++++x x x x n .),(,!2!2221222+∞-∞∈+++++=x x n x x e n n x . 则左边的一般项为n x 2,右边的一般项为!2n x n n ,因此当!22,3n n n>≥,所以)1,0(,112∈>-+x e xx x . 4.适用范围当不等式中含有上面几个重要初等函数之一时,可用幂级数展开式法来证明此不等式.十、用定积分理论来证明不等式法1.证明方法根据-定积分的性质和变上限辅助函数理论定积分性质之一:设)(x f 与)(x g 为定义],[b a 在上的两个可积函数,若],[),()(b a x x g x f ∈≤则dx x g dx x f b a b a ⎰⎰≤)()(.微积分学基本定理:若函数)(x f 在],[b a 上连续,则由变动上限积分],[,)()(b a x dt t f x xa ∈=Φ⎰, 定义的函数Φ在],[b a 上可导,而且)()(x f x =Φ'.也就是说,函数Φ是被积函数)(x f 在],[b a 上的一个原函数.微积分学基本定理沟通了导数和定积分这两个从表面看去似不相干的概念之间的内在联系.2.证明方法①利用定积分的性质证明不等式法:对可积函数)(x f ,)(x g ,先证出)()(x g x f ≤,然后由定积分的性质可证dx x g dx x f ba ba ⎰⎰≤)()((见例14); ②构造变上限辅助函数证明不等式法:对于含有定积分的不等式,可把常数变为变数构造辅助函数,利用变上限积分⎰x a dt t f )(及函数的单调性解决此类不等式(见例15). 3.例例11:证明:⎰⎰≤2121ln ln xdx x xdx x . 证明(利用定积分性质):当]2,1[∈x 时,0ln ,>≤x x x ,则x x x x ln ln ≤.因x x ln ,x x ln 在]2,1[上均为连续函数.则x x x x ln ,ln 在]2,1[均可导.由定积分性质可知:⎰⎰≤2121ln ln xdx x xdx x . 4.适用范围当不等式含有定积分(或被积函数)()(x g x f ≤时),可用定积分的性质来证明或构造上限辅助函数来证明.十一、引入参数证明不等式法1.证明方法根据-将对数值不等式的证明转化为对函数不等式的证明,用微积分理论研究函数的性质,从而证明不等式.2证明方法引入参数t ,构造辅助函数0])()([2≥-⎰dx x tg x f b a ,得到关于t 的二次多项式,利用判别式0≤∆来证明不等式.3.例例12:设)(),(x g x f 在区间],[b a 上连续,证明:dx x g dx x f dx x g x f ba b a b a⎰⎰⎰≤)()())()((222(柯西-许瓦茨不等式). 分析:欲证不等式是函数)(),(22x g x f ,以及)()(x g x f 的积分不等式,引入参数t ,考虑辅助函数 2)]()([x tg x f -在区间],[b a 上的积分.证明:利用定积分的性质易知0])()([2≥-⎰dx x tg x f ba ,即0)()()(2)(222≥+-⎰⎰⎰ba b a ba dx x f dx x g x f t dx x g t .这是关于t 的二次多项式不等式,因此,判别式:0)()(4))()((4222≤-=∆⎰⎰⎰ba b a b a dx x g dx x f dx x g x f ,即: dx x g dx x f dx x g x f ba b a b a ⎰⎰⎰≤)()())()((222. 4.适用范围当积分式含有平方项)(2x f ,或)(2x f '的情形.。

相关文档
最新文档