高电压技术课后习题答案详解
高电压技术第三版课后习题答案_
第一章作⏹1-1解释下列术语(1)气体中的自持放电;(2)电负性气体;(3)放电时延;(4)50%冲击放电电压;(5)爬电比距。
答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV。
1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。
所逸出的电子能否接替起始电子的作用是自持放电的判据。
流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。
汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。
1-3在一极间距离为1cm的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1。
今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。
解:到达阳极的电子崩中的电子数目为n a? e?d? e11?1?59874答:到达阳极的电子崩中的电子数目为59874个。
1-5近似估算标准大气条件下半径分别为1cm和1mm的光滑导线的电晕起始场强。
解:对半径为1cm的导线对半径为1mm的导线答:半径1cm导线起晕场强为39kV/cm,半径1mm导线起晕场强为58.5kV/cm1-10 简述绝缘污闪的发展机理和防止对策。
高电压技术第三版本课后习题包括答案.docx
精品文档第一章作业1-1 解释下列术语(1)气体中的自持放电;( 2)电负性气体;(3)放电时延;( 4) 50% 冲击放电电压;( 5)爬电比距。
答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50% 冲击放电电压:使间隙击穿概率为 50% 的冲击电压,也称为50% 冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV 。
.精品文档1-2 汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。
所逸出的电子能否接替起始电子的作用是自持放电的判据。
流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。
汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。
1-3 在一极间距离为1cm 的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1 。
今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。
解:到达阳极的电子崩中的电子数目为n a e d e11 159874答:到达阳极的电子崩中的电子数目为59874 个。
.精品文档1-5 近似估算标准大气条件下半径分别为1cm 和 1mm 的光滑导线的电晕起始场强。
(完整版)《高电压技术》习题解答
1《高电压技术》习题解答第一章1—1 气体中带电质点是通过游离过程产生的。
游离是中性原子获得足够的能量气体中带电质点是通过游离过程产生的。
游离是中性原子获得足够的能量气体中带电质点是通过游离过程产生的。
游离是中性原子获得足够的能量((称游离能称游离能))后成为正、负带电粒子的过程。
根据游离能形式的不同,气体中带电质点的产生有四种不同方式:1.1.碰撞游离方式碰撞游离方式碰撞游离方式 在这种方式下,游离能为与中性原子在这种方式下,游离能为与中性原子在这种方式下,游离能为与中性原子((分子分子))碰撞瞬时带电粒子所具有的动能。
虽然正、负带电粒子都有可能与中性原子正、负带电粒子都有可能与中性原子((分子分子))发生碰撞,但引起气体发生碰撞游离而产生正、负带电质点的主要是自由电子而不是正、负离子。
2.光游离方式光游离方式 在这种方式下,游离能为光能。
由于游离能需达到一定的数值,因此引起光游离的光在这种方式下,游离能为光能。
由于游离能需达到一定的数值,因此引起光游离的光主要是各种高能射线而非可见光。
3.热游离方式热游离方式 在这种方式下,游离能为气体分子的内能。
由于内能与绝对温度成正比,因此只有温在这种方式下,游离能为气体分子的内能。
由于内能与绝对温度成正比,因此只有温度足够高时才能引起热游离。
4.金属表面游离方式金属表面游离方式 严格地讲,应称为金属电极表面逸出电子,因这种游离的结果在气体中只得到严格地讲,应称为金属电极表面逸出电子,因这种游离的结果在气体中只得到带负电的自由电子。
使电子从金属电极表面逸出的能量可以是各种形式的能。
气体中带电质点消失的方式有三种:1.扩散 带电质点从浓度大的区域向浓度小的区域运动而造成原区域中带电质点的消失,扩散是一种自然规律。
2.复合 复合是正、负带电质点相互结合后成为中性原子复合是正、负带电质点相互结合后成为中性原子((分子分子))的过程。
复合是游离的逆过程,因此在复合过程中要释放能量,一般为光能。
高电压技术课后答案(吴广宁)
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载高电压技术课后答案(吴广宁)地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容1 气体的绝缘特性与介质的电气强度1-1气体放电过程中产生带电质点最重要的方式是什么,为什么?1-2简要论述汤逊放电理论。
1-3为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高?1-4雷电冲击电压的标准波形的波前和波长时间是如何确定的?1-5操作冲击放电电压的特点是什么?1-6影响套管沿面闪络电压的主要因素有哪些?1-7具有强垂直分量时的沿面放电和具有弱垂直分量时的沿面放电,哪个对于绝缘的危害比较大,为什么?1-8某距离4m的棒-极间隙。
在夏季某日干球温度=30℃,湿球温度=25℃,气压=99.8kPa的大气条件下,问其正极性50%操作冲击击穿电压为多少kV?(空气相对密度=0.95)1-9某母线支柱绝缘子拟用于海拔4500m的高原地区的35kV变电站,问平原地区的制造厂在标准参考大气条件下进行1min工频耐受电压试验时,其试验电压应为多少kV?1-1气体放电过程中产生带电质点最重要的方式是什么,为什么?答: 碰撞电离是气体放电过程中产生带电质点最重要的方式。
这是因为电子体积小,其自由行程(两次碰撞间质点经过的距离)比离子大得多,所以在电场中获得的动能比离子大得多。
其次.由于电子的质量远小于原子或分子,因此当电子的动能不足以使中性质点电离时,电子会遭到弹射而几乎不损失其动能;而离子因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减小,影响其动能的积累。
1-2简要论述汤逊放电理论。
答: 设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于过程,电子总数增至个。
高电压技术课后习题及答案.docx
第一章作业■ 解释下列术语(1)气体屮的自持放电;(2)电负性气体;(3)放电时延;(4) 50%冲击放电电压;(5)爬电比距。
答:(1)气体中的自持放电:当外加电场足够强时,即使除左•外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电了崩并最终导致间隙击穿的电了称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿而最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV°J■1-2汤逊理论与流注理论对气体放电过程和口持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论认为电了碰撞电离是气体放电的主要原因,二次电子来源于正离了撞击阴极使阴极表面逸出电子,逸岀电了是维持气休放电的必雯条件。
所逸出的电子能否接替起始电子的作川是自持放电的判据。
流汴理论认为形成流注的必要条件是电了崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。
汤逊理论的适川范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。
在一极间距离为1cm的均匀电场电场气隙屮,电子碰撞电离系数a =11cm-1o 今有一初始电子从阴极表而出发,求到达阳极的电子崩中的电子数冃。
解:到达阳极的电子崩屮的电子数忖为n(l— e(xd =e}M =59874答:到达阳极的电子崩屮的电子数冃为59874个。
1・5近似估算标准大气条件卜•半径分别为1cm和1mm的光滑导线的电晕起始场强。
解:对半径为1cm的导线(03、£ =30/7^ l + -y= =30xlxlx I 后丿对半径为1mm的导线( 03 'E =30xlxlx 1+• ‘ •=5&5(kV/cm)答:半径1cm导线起晕场强为39kV/cm,半径1mm Y线起晕场强为58.5kV/cm1-10简述绝缘污闪的发展机理和防止对策。
高电压技术课后习题集答案解析
第一章作业1-1解释下列术语(1)气体中的自持放电;(2)电负性气体;(3)放电时延;(4)50%冲击放电电压;(5)爬电比距。
答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV。
1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。
所逸出的电子能否接替起始电子的作用是自持放电的判据。
流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。
汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。
1-3在一极间距离为1cm的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1。
今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。
解:到达阳极的电子崩中的电子数目为n a e d e11159874答:到达阳极的电子崩中的电子数目为59874个。
1-5近似估算标准大气条件下半径分别为1cm 和1mm 的光滑导线的电晕起始场强。
解:对半径为1cm 的导线)()(cm m c /kV 39113.011130)r δ0.3δ(130E =⨯+⨯⨯⨯=+=对半径为1mm 的导线)/(5.58)11.03.01(1130E cm kV c =⨯+⨯⨯⨯=答:半径1cm 导线起晕场强为39kV/cm ,半径1mm 导线起晕场强为cm1-10 简述绝缘污闪的发展机理和防止对策。
高电压技术课后习题答案
高电压技术课后习题答案【篇一:高电压技术课后复习思考题答案】ss=txt>仅供参考第一章1.1、气体放电的汤逊理论与流注理论的主要区别在哪里?他们各自的适用范围如何?答:区别:①汤逊理论没有考虑到正离子对空间电场的畸变作用和光游离的影响②放电时间不同③阴极材料的性质在放电过程中所起的作用不同④放电形式不同范围:1.3、在不均匀电场中气体间隙放电的极性效应是什么?答:带电体为正极性时,电晕放电形成的电场削弱了带电体附近的电场,而增强了带电体远处的电场使击穿电压减小而电晕电压增大;带电体为负极性时,与正极性的相反,正负极性的带电体不同叫极性效应。
1.4、什么是电晕放电?它有何效应?试例举工程上所采用的各种防晕措施答:(1)在极不均匀场中,随着间隙上所加电压的升高,在高场强电极附近很小范围的电场足以使空气发生游离,而间隙中大部分曲域电场仍然很小。
在高场强电极附近很薄的一层空气中将具有自持放电条件,而放电仅局限在高场强电极周围很小范围内,整个间隙尚未被击穿。
这种放电现象称为电晕放电。
(2)引起能量损耗电磁干扰,产生臭氧、氮氧化物对气体中的固体介质及金属电极造成损伤或腐蚀(3)加大导线直径、使用分裂导线、光洁导线表面1.9、什么是气隙的伏秒特性?它是如何制作的?答:伏秒特性:工程上用气隙上出现的电压最大值与放电时间的关系来表征气隙在冲击电压下的击穿特性,称为气隙的伏秒特性。
制作方法:实验求得以间隙上曾经出现的电压峰值为纵坐标,以击穿时间为横坐标得伏秒特性上一点,升高电压击穿时间较少,电压甚高可以在波头击穿,此时又可记一点,当每级电压下只有一个击穿时间时,可绘出伏秒特性的一条曲线,但击穿时间具有分散性,所以得到的伏秒特性是以上下包络线为界的一个带状区域。
1.13、试小结各种提高气隙击穿电压的方法,并提出适用于何种条件?答:(1)改进电极形状,增大电极曲率半径,以改善电场分布,如变压器套管端部加球型屏蔽罩等;(2)空间电荷对原电场的畸变作用,可以利用放电本身所产生的空间电荷来调整和改善空间的电场分布;(3)极不均匀场中屏障的作用,在极不均匀的气隙中放入薄片固体绝缘材料;(4)提高气体压力可以大大减小电子的自由行程长度,从而削弱和抑制游离过程;(5)采用高真空可以减弱气隙中的碰撞游离过程;(6)高电气强度气体sf6的采用。
高电压技术(周泽存)课后作业与解答
高电压技术课堂作业第一章P11,1-1 解答: 电介质极化种类及比较极化种类 产生场合 所需时间 能量损耗 产生原因 电子式极化任何电介质 10-15s 无 束缚电子运动轨道偏移 离子式极化离子式电介质 10-13s 几乎没有 离子的相对偏移 转向极化极性电介质 10-10s ~10-2s 有 偶极子的定向排列 空间电荷极化 多层介质交界面 10-2s ~数分钟有 自由电荷的移动 在外电场的作用下,介质原子中的电子运动轨道将相对于原子核发生弹性位移,此为电子式极化或电子位移极化。
离子式结构化合物,出现外电场后,正负离子将发生方向相反的偏移,使平均偶极距不再为零,电介质对外呈现出极性,这种由离子的位移造成的极化称为离子式极化。
极性化合物的每个极性分子都是一个偶极子,在电场作用下,原先排列杂乱的偶极子将沿电场方向转动,整个电介质的偶极矩不再为零,对外呈现出极性,这种由偶极子转向造成的极化称为偶极子式极化。
在电场作用下,带电质点在电介质中移动时,可能被晶格缺陷捕获或在两层介质的界面上堆积,造成电荷在介质空间中新的分布,从而产生电矩,这就是空间电荷极化。
1-6解答:由于介质夹层极化,通常电气设备含多层介质,直流充电时由于空间电荷极化作用,电荷在介质夹层界面上堆积,初始状态时电容电荷与最终状态时不一致;接地放电时由于设备电容较大且设备的绝缘电阻也较大则放电时间常数较大(电容较大导致不同介质所带电荷量差别大,绝缘电阻大导致流过的电流小,界面上电荷的释放靠电流完成),放电速度较慢故放电时间要长达5~10min 。
补充:1、画出电介质的等效电路(非简化的)及其向量图,说明电路中各元件的含义,指出介质损失角。
图1-4-2中,lk R 为泄漏电阻;lk I 为泄漏电流;g C 为介质真空和无损极化所形成的电容;g I 为流过g C 的电流;p C 为有损极化所引起的电容;p R 为有损极化所形成的等效电阻;p I 为流过p p C R -支路的电流,可以分为有功分量pr I 和无功分量pc I 。
高电压技术课后题答案详解
第一章电介质的极化、电导和损耗第二章气体放电理论1)流注理论未考虑的现象。
表面游离2)先导通道的形成是以的出现为特征。
C- C.热游离3)电晕放电是一种。
A--A.自持放电4)气体内的各种粒子因高温而动能增加,发生相互碰撞而产生游离的形式称为C--C.热游离5)以下哪个不是发生污闪最危险的气象条件?D-D.大雨6)以下哪种材料具有憎水性?A--A.硅橡胶20)极性液体和极性固体电介质的相对介电常数与温度和电压频率的关系如何?为什么?极化液体相对介电常数在温度不变时,随电压频率的增大而减小,然后就见趋近于某一个值,当频率很低时,偶极分子来来得及跟随电场交变转向,介电常数较大,当频率接近于某一值时,极性分子的转向已经跟不上电场的变化,介电常数就开始减小。
在电压频率不变时,随温度的升高先增大后减小,因为分子间粘附力减小,转向极化对介电常数的贡献就较大,另一方面,温度升高时分子的热运动加强,对极性分子的定向排列的干扰也随之增强,阻碍转向极化的完成。
极性固体介质的相对介电常数与温度和频率的关系类似与极性液体所呈现的规律。
21)电介质电导与金属电导的本质区别为何?1)带电质点不同:电介质为带电离子(固有离子,杂质离子);金属为自由电子。
2)数量级不同:电介质的γ小,泄漏电流小;金属电导的电流很大。
3)电导电流的受影响因素不同:电介质中由离子数目决定,对所含杂质、温度很敏感;金属中主要由外加电压决定,杂质、温度不是主要因素。
22)简要论述汤逊放电理论。
设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于α过程,电子总数增至eαd 个。
假设每次电离撞出一个正离子,故电极空间共有(eαd -1)个正离子。
这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数γ的定义,此(eαd -1)个正离子在到达阴极表面时可撞出γ(eαd -1)个新电子,则( eαd -1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的αd电子,则放电达到自持放电。
高电压技术第四版答案
高电压技术第四版答案【篇一:高电压技术(周泽存)课后作业与解答】t>p11,1-1 解答:电介质极化种类及比较在外电场的作用下,介质原子中的电子运动轨道将相对于原子核发生弹性位移,此为电子式极化或电子位移极化。
离子式结构化合物,出现外电场后,正负离子将发生方向相反的偏移,使平均偶极距不再为零,此为离子位移极化。
极性化合物的每个极性分子都是一个偶极子,在电场作用下,原先排列杂乱的偶极子将沿电场方向转动,显示出极性,这称为偶极子极化。
在电场作用下,带电质点在电介质中移动时,可能被晶格缺陷捕获或在两层介质的界面上堆积,造成电荷在介质空间中新的分布,从而产生电矩,这就是空间电荷极化。
1-6解答:由于介质夹层极化,通常电气设备含多层介质,直流充电时由于空间电荷极化作用,电荷在介质夹层界面上堆积,初始状态时电容电荷与最终状态时不一致;接地放电时由于设备电容较大且设备的绝缘电阻也较大则放电时间常数较大(电容较大导致不同介质所带电荷量差别大,绝缘电阻大导致流过的电流小,界面上电荷的释放靠电流完成),放电速度较慢故放电时间要长达5~10min。
补充:1、画出电介质的等效电路(非简化的)及其向量图,说明电路中各元件的含义,指出介质损失角。
图1-4-2中,rlk为泄漏电阻;ilk为泄漏电流;cg为介质真空和无损极化所形成的电容;ig为流过cg的电流;cp为无损极化所引起的电容;rp为无损极化所形成的等效电阻;ip为流过rp-cp支路的电流,可以分为有功分量ipr和无功分量ipc。
jg为真空和无损极化所引起的电流密度,为纯容性的;jlk为漏导引起的电流密度,为纯阻性的;jp为有损极化所引起的电流密。
度,它由无功部分jpc和有功部分jpr组成。
容性电流jc与总电容电流密度向量j之间的夹角为?,称为介质损耗角。
介质损耗角简称介损角?,为电介质电流的相角领先电压相角的余角,功率因素角?的余角,其正切tg?称为介质损耗因素,常用%表示,为总的有功电流密度与总无功电流密度之比。
高电压技术1到8章课后习题答案0.doc
1 气体的绝缘特性与介质的电气强度1-1气体放电过程中产生带电质点最重要的方式是什么,为什么?答: 碰撞电离是气体放电过程中产生带电质点最重要的方式。
这是因为电子体积小,其自由行程(两次碰撞间质点经过的距离)比离子大得多,所以在电场中获得的动能比离子大得多。
其次.由于电子的质量远小于原子或分子,因此当电子的动能不足以使中性质点电离时,电子会遭到弹射而几乎不损失其动能;而离子因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减小,影响其动能的。
1-5操作冲击放电电压的特点是什么?答:操作冲击放电电压的特点:(1)U 形曲线(2)极性效应(3)饱和现象;(4)分散性大;(5)邻近效应。
1-9某母线支柱绝缘子拟用于海拔4500m 的高原地区的35kV 变电站,问平原地区的制造厂在标准参考大气条件下进行1min 工频耐受电压试验时,其试验电压应为多少kV ?解:查GB311.1-1997的规定可知,35kV 母线支柱绝缘子的1min 干工频耐受电压应为100kV ,则可算出制造厂在平原地区进行出厂1min 干工频耐受电压试验时,其耐受电压U 应为0044100154k V 1.110 1.1450010a U U K U H --====-⨯-⨯第二章 液体的绝缘特性与介质的电气强度2-3非极性和极性液体电介质中主要极化形式有什么区别?2-9如何提高液体电介质的击穿2-3非极性和极性液体电介质中主要极化形式有什么区别?答:非极性液体和弱极性液体电介质极化中起主要作用的是电子位移极化,偶极子极化对极化的贡献甚微;极性液体介质包括中极性和强极性液体介质,这类介质在电场作用下,除了电子位移极化外,还有偶极子极化,对于强极性液体介质,偶极子的转向极化往往起主要作用。
2-9如何提高液体电介质的击穿电压?答:工程应用上经常对液体介质进行过滤、吸附等处理,除去粗大的杂质粒子,以提高液体介质的击穿电压第三章第三章,固体的绝缘特性与介质的电气强度3-1什么叫电介质的极化?极化强度是怎么定义的?3-4固体介质的击穿主要有那几种形式?它们各有什么特征?3-5局部放电引起电介质劣化、损伤的主要原因有那些?3-1什么叫电介质的极化?极化强度是怎么定义的?答:电介质的极化是电介质在电场作用下,其束缚电荷相应于电场方向产生弹性位移现象和偶极子的取向现象。
高电压技术第三版课后习题答案
高电压技术第三版课后习题答案Last revision date: 13 December 2020.第一章作1-1解释下列术语(1)气体中的自持放电;(2)电负性气体;(3)放电时延;(4)50%冲击放电电压;(5)爬电比距。
答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV。
1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同这两种理论各适用于何种场合答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。
所逸出的电子能否接替起始电子的作用是自持放电的判据。
流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。
汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。
1-3在一极间距离为1cm的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1。
今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。
解:到达阳极的电子崩中的电子数目为n a e d e11159874答:到达阳极的电子崩中的电子数目为59874个。
1-5近似估算标准大气条件下半径分别为1cm和1mm的光滑导线的电晕起始场强。
高电压技术第三版课后习题答案完整版
高电压技术第三版课后习题答案HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】第一章作⏹1-1解释下列术语(1)气体中的自持放电;(2)电负性气体;(3)放电时延;(4)50%冲击放电电压;(5)爬电比距。
答:(1)气体中的自持放电:当外加电场足够强时,即使除去外界电离因子,气体中的放电仍然能够维持的现象;(2)电负性气体:电子与某些气体分子碰撞时易于产生负离子,这样的气体分子组成的气体称为电负性气体;(3)放电时延:能引起电子崩并最终导致间隙击穿的电子称为有效电子,从电压上升到静态击穿电压开始到出现第一个有效电子所需的时间称为统计时延,出现有效电子到间隙击穿所需的时间称为放电形成时延,二者之和称为放电时延;(4)50%冲击放电电压:使间隙击穿概率为50%的冲击电压,也称为50%冲击击穿电压;(5)爬电比距:爬电距离指两电极间的沿面最短距离,其与所加电压的比值称为爬电比距,表示外绝缘的绝缘水平,单位cm/kV。
1-2汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同这两种理论各适用于何种场合答:汤逊理论认为电子碰撞电离是气体放电的主要原因,二次电子来源于正离子撞击阴极使阴极表面逸出电子,逸出电子是维持气体放电的必要条件。
所逸出的电子能否接替起始电子的作用是自持放电的判据。
流注理论认为形成流注的必要条件是电子崩发展到足够的程度后,电子崩中的空间电荷足以使原电场明显畸,流注理论认为二次电子的主要来源是空间的光电离。
汤逊理论的适用范围是短间隙、低气压气隙的放电;流注理论适用于高气压、长间隙电场气隙放电。
1-3在一极间距离为1cm的均匀电场电场气隙中,电子碰撞电离系数α=11cm-1。
今有一初始电子从阴极表面出发,求到达阳极的电子崩中的电子数目。
解:到达阳极的电子崩中的电子数目为n a e d e11159874答:到达阳极的电子崩中的电子数目为59874个。
高电压技术课后答案
高电压技术课后答案第一章电力系统绝缘配合1、解释电气设备的绝缘配合和绝缘水平的定义答:电气设备的绝缘配合是指综合考虑系统中可能出现的各种作用过电压、保护装置特性及设备的绝缘特性,最终确定电气设备的绝缘水平。
电气设备的绝缘水平是指电气设备能承受的各种试验电压值,如短时工频试验电压,长时工频试验电压,雷电冲击试验电压及各种操作冲击电压2、电力系统绝缘配合的原则是什么答:电力系统绝缘配合的原则是根据电气设备在系统应该承受的各种电压,并考虑过电压的限压措施和设备的绝缘性能后,确定电气设备的绝缘水平。
3、输电线路绝缘子串中绝缘子片数是如何确定的答:根据机械负荷确定绝缘子的型式后绝缘子片数的确定应满足:在工作电压下不发生雾闪;在操作电压下不发生湿闪;具有一定的雷电冲击耐受强度,保证一定的耐雷水平。
具体做法:按工作电压下所需的泄露距离初步确定绝缘子串的片数,然后按照操作过电压和耐雷水平进行验算和调整。
4、变电站内电气设备的绝缘水平是否应该与输电线路的绝缘水平相配合为什么答:输电线路绝缘与变电站中电气设备之间不存在绝缘水平相配合问题。
通常,线路绝缘水平远高于变电站内电气设备的绝缘水平,以保证线路的安全运行。
从输电线路传入变电站的过电压由变电站母线上的避雷器限制,而电气设备的绝缘水平是以避雷器的保护水平为基础确定的。
第二章内部过电压1、有哪几种形式的工频过电压答:主要有空载长线路的电感-电容效应引起的工频过电压,单相接地致使健全相电压升高引起的工频过电压以及发电机突然甩负荷引起的工频过电压等。
2、电源的等值电抗对空长线路的电容效应有什么影响答:电源的等值电抗X S 可以加剧电容效应,相当于把线路拉长。
电源容量愈小,电源的等值电抗X S 愈大,空载线路末端电压升高也愈大。
3、线路末端加装并联电抗器对空长线路的电容效应有什么影响答:在超高压电网中,常用并联电抗器限制工频过电压,并联电抗器接于线路末端,使末端电压下降。
高电压技术课后习题答案详解
⾼电压技术课后习题答案详解1-1⽓体放电过程中产⽣带电质点最重要的⽅式是什么,为什么?答: 碰撞电离是⽓体放电过程中产⽣带电质点最重要的⽅式。
这是因为电⼦体积⼩,其⾃由⾏程(两次碰撞间质点经过的距离)⽐离⼦⼤得多,所以在电场中获得的动能⽐离⼦⼤得多。
其次.由于电⼦的质量远⼩于原⼦或分⼦,因此当电⼦的动能不⾜以使中性质点电离时,电⼦会遭到弹射⽽⼏乎不损失其动能;⽽离⼦因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减⼩,影响其动能的积累。
1-2简要论述汤逊放电理论。
答: 设外界光电离因素在阴极表⾯产⽣了⼀个⾃由电⼦,此电⼦到达阳极表⾯时由于过程,电⼦总数增⾄deα个。
假设每次电离撞出⼀个正离⼦,故电极空间共有(deα-1)个正离⼦。
这些正离⼦在电场作⽤下向阴极运动,并撞击阴极.按照系数γ的定义,此(deα-1)eα-1)个正离⼦在到达阴极表⾯时可撞出γ(d个新电⼦,则(deα-1)个正离⼦撞击阴极表⾯时,⾄少能从阴极表⾯释放出⼀个有效电⼦,以弥补原来那个产⽣电⼦崩并进⼊阳极的电⼦,则放电达到⾃持放电。
即汤逊理论的⾃持放电条件可表达为r(deα=1。
eα-1)=1或γd1-3为什么棒-板间隙中棒为正极性时电晕起始电压⽐负极性时略⾼?答:(1)当棒具有正极性时,间隙中出现的电⼦向棒运动,进⼊强电场区,开始引起电离现象⽽形成电⼦崩。
随着电压的逐渐上升,到放电达到⾃持、爆发电晕之前,在间隙中形成相当多的电⼦崩。
当电⼦崩达到棒极后,其中的电⼦就进⼊棒极,⽽正离⼦仍留在空间,相对来说缓慢地向板极移动。
于是在棒极附近,积聚起正空间电荷,从⽽减少了紧贴棒极附近的电场,⽽略为加强了外部空间的电场。
这样,棒极附近的电场被削弱,难以造成流柱,这就使得⾃持放电也即电晕放电难以形成。
(2)当棒具有负极性时,阴极表⾯形成的电⼦⽴即进⼊强电场区,造成电⼦崩。
当电⼦崩中的电⼦离开强电场区后,电⼦就不再能引起电离,⽽以越来越慢的速度向阳极运动。
高电压技术第二版习题答案(部分)
第一章 气体放电的基本物理过程(1)在气体放电过程中,碰撞电离为什么主要是由电子产生的?答:气体中的带电粒子主要有电子和离子,它们在电场力的作用下向各自的极板运动,带正电荷的粒子向负极板运动,带负电荷的粒子向正极板运动。
电子与离子相比,它的质量更小,半径更小,自由行程更大,迁移率更大,因此在电场力的作用下,它更容易被加速,因此电子的运动速度远大于离子的运动速度。
更容易累积到足够多的动能,因此电子碰撞中性分子并使之电离的概率要比离子大得多。
所以,在气体放电过程中,碰撞电离主要是由电子产生的.(2)带电粒子是由哪些物理过程产生的,为什么带电粒子产生需要能量 ?答:带电粒子主要是由电离产生的,根据电离发生的位置,分为空间电离和表面电离。
根据电离获得能量的形式不同,空间电离又分为光电离、热电离和碰撞电离,表面电离分为正离子碰撞阴极表面电离、光电子发射、热电子发射和强场发射。
原子或分子呈中性状态,要使原子核外的电子摆脱原子核的约束而成为自由电子,必须施加一定的外加能量,使基态的原子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能. (3)为什么SF6气体的电气强度高?答:主要因为SF6气体具有很强的电负性,容易俘获自由电子而形成负离子,气体中自由电子的数目变少了,而电子又是碰撞电离的主要因素,因此气体中碰撞电离的能力变得很弱,因而削弱了放电发展过程。
1-2 汤逊理论与流注理论对气体放电过程和自持放电条件的观点有何不同?这两种理论各适用于何种场合?答:汤逊理论的基本观点:电子碰撞电离是气体电离的主要原因;正离子碰撞阴极表面使阴极表面逸出电子是维持气体放电的必要条件;阴极逸出电子能否接替起始电子的作用是自持放电的判据。
它只适用于低气压、短气隙的情况。
气体放电流注理论以实验为基础,它考虑了高气压、长气隙情况下空间电荷对原有电场的影响和空间光电离的作用.在初始阶段,气体放电以碰撞电离和电子崩的形式出现,但当电子崩发展到一定程度之后,某一初始电子的头部集聚到足够数量的空间电荷,就会引起新的强烈电离和二次电子崩,这种强烈的电离和二次电子崩是由于空间电荷使局部电场大大增强以及发生空间光电离的结果,这时放电即转入新的流注阶段.1-3 在一极间距离为1cm 的均匀电场气隙中,电子碰撞电离系数α=11cm-1。
赵智大高电压技术课后答案 共41页
2-3在线路设计时已确定某线路的相邻导线间气隙应能耐受峰值为 ±1800kV的雷电冲击电压,试利用经验公式近似估计线间距离至少 应为若干?P36 解:导线间的气隙可以用棒-棒气隙近似表示 对正极性雷电冲击:
U 5 % 0 7 5 . 5 6 d d ( 1 8 7 ) / 5 0 . 5 6 3 0 ( c 0 )m 8
1-11 试运用所学的气体放电理论,解释下列物理现象: (1)大气的湿度增大时,空气间隙的击穿电压增高,而绝缘子表 面的闪络电压下降; (2)压缩气体的电气强度远较常压下的气体为高; (3)沿面闪络电压显著地低于纯气隙的击穿电压。 答:(1)大气湿度增大时,大气中的水分子增多,自由电子易于 被水分子俘获形成负离子,从而使放电过程受到抑制,所以击穿 电压增高;而大气湿度增大时,绝缘子表面容易形成水膜,使绝 缘子表面积污层受潮,泄漏电流增大,容易造成湿闪或污闪,绝 缘子表面闪络电压下降;
58.5kV/cm
1-10 简述绝缘污闪的发展机理和防止对策。 答:户外绝缘子在污秽状态下发生的沿面闪络称为绝缘子的污闪。 绝缘子的污闪是一个受到电、热、化学、气候等多方面因素影响 的复杂过程,通常可分为积污、受潮、干区形成、局部电弧的出 现和发展等四个阶段。防止绝缘子发生污闪的措施主要有:(1) 调整爬距(增大泄露距离)(2)定期或不定期清扫;(3)涂料; (4)半导体釉绝缘子;(5)新型合成绝缘子。
第二章作业
2-1试用经验公式估算极间距离d=2cm的均匀电场气隙在标准大气 条件下的平均击穿场强Eb。P32 解:d=2cm的均匀电场气隙平均击穿场强为
E b 2 .5 4 5 6 .66 /d 2 .5 4 1 5 6 .61 6 /2 2 .2 9 ( k 6V )
高电压技术》课程习题及参考答案
高电压技术》课程习题及参考答案《高电压技术》课程习题及参考答案绪论1.现代电力系统的特点是什么?答:机组容量大;输电容量大,距离长;电网电压达到750KV的特高压;高压绝缘和系统过电压的问题愈显突出。
2.高电压技术研究的内容是什么?答:(1)高压绝缘及高压试验方法(2)系统过电压的产生及防护第1章高电压绝缘1.电介质的电气性能有哪些?答:电介质的电气性能包括极化,电导,损耗,击穿。
2.固体介质击穿有哪些类型?各有什么特点?答:固体介质击穿类型有:电击穿,热击穿,电化学击穿电击穿:击穿电压很高,过程快,与设备的温度无关;热击穿:击穿过程较长,击穿电压不高,与环境温度和介质自身品质有关;电化学击穿:设备运行时间很长,在电、热、化学的作用下,绝缘性能已经较差,可能在不高的电压下击穿。
3.什么是绝缘子的污闪?防止污闪的措施有哪些?答:污秽的绝缘子在毛毛雨或大雾时发生的闪络,称为污闪。
防止污闪的措施有:定期清扫绝缘子;在绝缘子表面上涂一层憎水性的防尘材料;增加绝缘子片数或使用防污绝缘子。
第2章高电压下的绝缘评估及试验方法1.表征绝缘劣化程度的特征量有哪些?答:耐电强度,机械强度,绝缘电阻,介质损失角正切,泄漏电流等2.绝缘缺陷分哪两类?答:绝缘缺陷分为:集中性和分布性两大类。
3.绝缘的预防性试验分哪两类?答:非破坏性(绝缘特性)试验和破坏性试验两类。
4.电介质的等值电路中,各个支路分别代表的物理意义是什么?答:纯电容支路代表无损极化,电容支路代表有损极化,纯电阻支路代表电导支路。
5.测量绝缘电阻的注意事项有哪些?答:1)被试品的电源及对外连接线应折除,并作好安全措施2)对被试品充分放电3)兆欧表的转速保持120转/ 分4)指针稳定后读数5)对于大电容量试品,应先取连接线,后停表。
6)测试后对被试品放电7)记录当时的温度和湿度。
6.试比较几种基本试验方法对不同设备以及不同的绝缘缺陷的有效性和灵敏性。
答:测量绝缘电阻能反映集中性和分布性的缺陷,适用任何设备;测量泄漏电流能更灵敏地反应测绝缘电阻所发现的缺陷;测量介质损失角正切能发现绝缘整体普遍劣化及大面积受潮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-1气体放电过程中产生带电质点最重要的方式是什么,为什么答: 碰撞电离是气体放电过程中产生带电质点最重要的方式。
这是因为电子体积小,其自由行程(两次碰撞间质点经过的距离)比离子大得多,所以在电场中获得的动能比离子大得多。
其次.由于电子的质量远小于原子或分子,因此当电子的动能不足以使中性质点电离时,电子会遭到弹射而几乎不损失其动能;而离子因其质量与被碰撞的中性质点相近,每次碰撞都会使其速度减小,影响其动能的积累。
1-2简要论述汤逊放电理论。
答: 设外界光电离因素在阴极表面产生了一个自由电子,此电子到达阳极表面时由于α过程,电子总数增至d eα个。
假设每次电离撞出一个正离子,故电极空间共有(deα-1)个正离子。
这些正离子在电场作用下向阴极运动,并撞击阴极.按照系数γ的定义,此(deαeα-1)个正离子在到达阴极表面时可撞出γ(d -1)个新电子,则(deα-1)个正离子撞击阴极表面时,至少能从阴极表面释放出一个有效电子,以弥补原来那个产生电子崩并进入阳极的电子,则放电达到自持放电。
即汤逊理论的自持放电条件可表达为r(deα-1)=1或γd eα=1。
1-3为什么棒-板间隙中棒为正极性时电晕起始电压比负极性时略高答:(1)当棒具有正极性时,间隙中出现的电子向棒运动,进入强电场区,开始引起电离现象而形成电子崩。
随着电压的逐渐上升,到放电达到自持、爆发电晕之前,在间隙中形成相当多的电子崩。
当电子崩达到棒极后,其中的电子就进入棒极,而正离子仍留在空间,相对来说缓慢地向板极移动。
于是在棒极附近,积聚起正空间电荷,从而减少了紧贴棒极附近的电场,而略为加强了外部空间的电场。
这样,棒极附近的电场被削弱,难以造成流柱,这就使得自持放电也即电晕放电难以形成。
(2)当棒具有负极性时,阴极表面形成的电子立即进入强电场区,造成电子崩。
当电子崩中的电子离开强电场区后,电子就不再能引起电离,而以越来越慢的速度向阳极运动。
一部份电子直接消失于阳极,其余的可为氧原子所吸附形成负离子。
电子崩中的正离子逐渐向棒极运动而消失于棒极,但由于其运动速度较慢,所以在棒极附近总是存在着正空间电荷。
结果在棒极附近出现了比较集中的正空间电荷,而在其后则是非常分散的负空间电荷。
负空间电荷由于浓度小,对外电场的影响不大,而正空间电荷将使电场畸变。
棒极附近的电场得到增强,因而自持放电条件易于得到满足、易于转入流柱而形成电晕放电。
1-4雷电冲击电压的标准波形的波前和波长时间是如何确定的答:图1-13表示雷电冲击电压的标准波形和确定其波前和波长时间的方法(波长指冲击波衰减至半峰值的时间)。
图中O 为原点,P 点为波峰。
国际上都用图示的方法求得名义零点1O 。
图中虚线所示,连接P 点与倍峰值点作虚线交横轴于1O 点,这样波前时间1T 、和波长2T 都从1O 算起。
目前国际上大多数国家对于标准雷电波的波形规定是:%302.11±=s T μ, %20502±=s T μ图1-13 标准雷电冲击电压波形1T -波前时间 2T -半峰值时间 max U 冲击电压峰值1-5操作冲击放电电压的特点是什么答:操作冲击放电电压的特点:(1)U 形曲线,其击穿电压与波前时间有关而与波尾时间无关;(2)极性效应,正极性操作冲击的50%击穿电压都比负极性的低;(3)饱和现象;(4)分散性大;(5)邻近效应,接地物体靠近放电间隙会显着降低正极性击穿电压。
1-6影响套管沿面闪络电压的主要因素有哪些答:影响套管沿面闪络电压的主要因素有(1)电场分布情况和作用电压波形的影响(2)电介质材料的影响(3)气体条件的影响(4)雨水的影响1-7具有强垂直分量时的沿面放电和具有弱垂直分量时的沿面放电,哪个对绝缘的危害比较大,为什么答:具有强垂直分量时的沿面放电对绝缘的危害比较大。
电场具有弱垂直分量的情况下,电极形状和布置已使电场很不均匀,因而介质表面积聚电荷使电压重新分布所造成的电场畸变,不会显着降低沿面放电电压。
另外这种情况下电场垂直分量较小.沿表面也没有较大的电容电流流过,放电过程中不会出现热电离现象,故没有明显的滑闪放电,因而垂直于放电发展方向的介质厚度对放电电压实际上没有影响。
其沿面闪络电压与空气击穿电压的差别相比强垂直分量时要小得多。
1-8某距离4m 的棒-极间隙。
在夏季某日干球温度=30℃,湿球温度=25℃,气压=的大气条件下,问其正极性50%操作冲击击穿电压为多少kV (空气相对密度=)答:距离为4m 的棒-极间隙,其标准参考大气条件下的正极性50%操作冲击击穿电压50U 标准=1300kV 。
查《高电压技术》可得空气绝对湿度320g/m h =。
从而/21,h δ=再由图3-1求得参数 1.1K =。
求得参数1500b U g L K δ=•=1300/(500×4××)=,于是由图3-3得指数0.34m W ==。
空气密度校正因数0.340.950.9827m d K δ=== 湿度校正因数0.341.1 1.033w h K K ===所以在这种大气条件下,距离为4m 的棒-极间隙的正极性50%操作冲击击穿电压为12505013000.9827 1.0331320kV U U K K =••=⨯⨯=夏标准。
1-9某母线支柱绝缘子拟用于海拔4500m 的高原地区的35kV 变电站,问平原地区的制造厂在标准参考大气条件下进行1min 工频耐受电压试验时,其试验电压应为多少kV解:查的规定可知,35kV 母线支柱绝缘子的1min 干工频耐受电压应为100kV ,则可算出制造厂在平原地区进行出厂1min 干工频耐受电压试验时,其耐受电压U 应为 0044100154kV 1.110 1.1450010a U U K U H --====-⨯-⨯2-1电介质极化的基本形式有哪几种,各有什么特点答:电介质极化的基本形式有(1)电子位移极化图(1) 电子式极化(2)偶极子极化图(2) 偶极子极化(a )无外电场时 (b )有外电场时1—电极 2—电介质(极性分子)2-2如何用电介质极化的微观参数去表征宏观现象答:克劳休斯方程表明,要由电介质的微观参数(N 、)求得宏观参数—介电常数r ε,必须先求得电介质的有效电场i E 。
(1)对于非极性和弱极性液体介质,有效电场强度0233r i P E E E εε+=+= 式中,P 为极化强度(0(1)r P E εε=-)。
上式称为莫索缔(Mosotti )有效电场强度,将其代入克劳休斯方程[式(2-11)],得到非极性与弱极性液体介质的极化方程为123r r N εαεε-=+ (2)对于极性液体介质,由于极性液体分子具有固有偶极矩,它们之间的距离近,相互作用强,造成强的附加电场,洛伦兹球内分子作用的电场2E ≠0,莫索缔有效电场不适用。
2-3非极性和极性液体电介质中主要极化形式有什么区别答:非极性液体和弱极性液体电介质极化中起主要作用的是电子位移极化,偶极子极化对极化的贡献甚微;极性液体介质包括中极性和强极性液体介质,这类介质在电场作用下,除了电子位移极化外,还有偶极子极化,对于强极性液体介质,偶极子的转向极化往往起主要作用。
2-4极性液体的介电常数与温度、电压、频率有什么样的关系答:(1)温度对极性液体电介质的r ε值的影响如图2-2所示,当温度很低时,由于分子间的联系紧密,液体电介质黏度很大,偶极子转动困难,所以r ε很小;随着温度的升高,液体电介质黏度减小,偶极子转动幅度变大,r ε随之变大;温度继续升高,分子热运动加剧,阻碍极性分子沿电场取向,使极化减弱,r ε又开始减小。
(2)频率对极性液体电介质的r ε值的影响如图2-1所示,频率太高时偶极子来不及转动,因而r ε值变小。
其中0r ε相当于直流电场下的介电常数,f>f 1以后偶极子越来越跟不上电场的交变,r ε值不断下降;当频率f=f2时,偶极子已经完全跟不上电场转动了,这时只存在电子式极化,r ε减小到r ε∞,常温下,极性液体电介质的r ε≈3~6。
2-5液体电介质的电导是如何形成的电场强度对其有何影响答:液体电介质电导的形成:(1)离子电导——分为本征离子电导和杂质离子电导。
设离子为正离子,它们处于图2-5中A 、B 、C 等势能最低的位置上作振动,其振动频率为υ,当离子的热振动能超过邻近分子对它的束缚势垒0u 时,离子即能离开其稳定位置而迁移。
(2)电泳电导——在工程中,为了改善液体介质的某些理化性能,往往在液体介质中加入一定量的树脂,这些树脂在液体介质中部分呈溶解状态,部分可能呈胶粒状悬浮在液体介质中,形成胶体溶液,此外,水分进入某些液体介质也可能造成乳化状态的胶体溶液。
这些胶粒均带有一定的电荷,当胶粒的介电常数大于液体的介电常数时,胶粒带正电;反之,胶粒带负电。
胶粒相对于液体的电位0U 一般是恒定的,在电场作用下定向的迁移构成“电泳电导”。
电场强度的影响(1)弱电场区:在通常条件下,当外加电场强度远小于击穿场强时,液体介质的离子电导率γ是与电场强度无关的常数,其导电规律遵从欧姆定律。
(2)强电场区:在E ≥107V/m 的强电场区,电流随电场强度呈指数关系增长,除极纯净的液体介质外,一般不存在明显的饱和电流区。
液体电介质在强电场下的电导具有电子碰撞电离的特点。
2-6目前液体电介质的击穿理论主要有哪些答:液体介质的击穿理论主要有三类:(1)高度纯净去气液体电介质的电击穿理论(2)含气纯净液体电介质的气泡击穿理论(3)工程纯液体电介质的杂质击穿理论2-7液体电介质中气体对其电击穿有何影响答:气泡击穿观点认为,不论由于何种原因使液体中存在气泡时,由于交变电压下两串联介质中电场强度与介质介电常数成反比,气泡中的电场强度比液体介质高,而气体的击穿场强又比液体介质低得多,所以总是气泡先发生电离,这又使气泡温度升高,体积膨胀,电离将进一步发展;而气泡电离产生的高能电子又碰撞液体分子,使液体分子电离生成更多的气体,扩大气体通道,当气泡在两极间形成“气桥”时,液体介质就能在此通道中发生击穿。
热化气击穿观点认为,当液体中平均场强达到107~108V/m时,阴极表面微尖端处的场强就可能达到108V/m以上。
由于场致发射,大量电子由阴极表面的微尖端注入到液体中,估计电流密度可达105A/m2以上。
按这样的电流密度来估算发热,单位体积、单位时间中的发热量约为1013J/(s·3m),这些热量用来加热附近的液体,足以使液体气化。
当液体得到的能量等于电极附近液体气化所需的热量时,便产生气泡,液体击穿。
电离化气击穿观点认为,当液体介质中电场很强时,高能电子出现,使液体分子C—H键(C—C键)断裂,液体放气。