第一章有理数中高难度题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴的认识及应用
1.如图,数轴上的A,B,C三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在()
A.点A的左边 B.点A与点B之间
C.点B与点C之间 D.点B与点C之间(靠近点C)或点C的右边
2.在数轴上,与表示数﹣5的点的距离是2的点表示的数是()
A.﹣3 B.﹣7 C.±3 D.﹣3或﹣7
3.如果a表示有理数,那么下列说法中正确的是()
A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等
C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等
4.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2015次后,数轴上数2015所对应的点是()
A.点C B.点D C.点A D.点B
5.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为()
A.﹣74 B.﹣77 C.﹣80 D.﹣83
6.如图,数轴上P、Q、S、T四点对应的整数分别是p、q、s、t,且有p+q+s+t=﹣2,那么,原点应是点()
A.P B.Q C.S D.T
7.点A、B分别是数﹣3,﹣1在数轴上对应的点.使线段AB沿数轴向右移动到A′B′,且线段A′B′的中点对应的数是3,则点A′对应的数是,点A移动的距离是.8.如图,数轴的单位长度为1,如果R表示的数是﹣1,则数轴上表示相反数的两点是.
9.如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿数轴匀速爬向B点的过程中,到达C点时用了9分钟,那么到达B点还需要分钟.
10.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为.
11.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:
(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是.
(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是.
(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是,A、B两点间的距离是.
12.操作探究:已知在纸面上有一数轴(如图所示),
操作一:
(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:
(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:
①5表示的点与数表示的点重合;
②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.
13.一只蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记为“+”,向负半轴运动记为“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4.
(1)若A点在数轴上表示的数为﹣2,则蜗牛停在数轴上何处,请通过计算加以说明.(2)若蜗牛的爬行速度为每秒cm,请问蜗牛一共爬行了多少秒?
14.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东500m处,商场在学校西300m处,医院在学校东600m处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.
(1)请画一条数轴并在数轴上表示出四家公共场所的位置;
(2)列式计算青少年宫与商场之间的距离;
(3)若小新家也位于这条马路旁,在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,试求小新家与学校的距离.
绝对值及其应用
1.已知a,b是有理数,|ab|=﹣ab(ab≠0),|a+b|=|a|﹣b.用数轴上的点来表示a,b 下列正确的是()
A. B.
C. D.
2.a,b在数轴上的位置如图,化简|a+b|的结果是()
A.﹣a﹣b B.a+b C.a﹣b D.b﹣a
3.数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()
A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|
4.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离
C.A、B两点到原点的距离之和D.A、C两点倒原点的距离之和
5.若|m|=﹣m,则|m﹣1|﹣|m﹣2|= .
6.有理数a、b在数轴上如图,
(1)在数轴上表示﹣a、﹣b;
(2)试把这a、b、0、﹣a、﹣b五个数按从小到大用“<”连接.
(3)用>、=或<填空:|a| a,|b| b.
7.绝对值大于2而小于6的所有整数的和是多少?(列式计算)
8.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a﹣b|.
根据以上知识解题:
(1)若数轴上两点A、B表示的数为x、﹣1,
①A、B之间的距离可用含x的式子表示为;
②若该两点之间的距离为2,那么x值为.
(2)|x+1|+|x﹣2|的最小值为,此时x的取值是;
(3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|)=15,求x﹣2y的最大值和最小值.9.已知有理数a,b在数轴上的位置如图所示.
(1)在数轴上标出﹣a,﹣b的位置,并比较a,b,﹣a,﹣b的大小:
(2)化简|a+b|+|a﹣b|.
10.阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a ﹣b|.
理解:
(1)数轴上表示2和﹣3的两点之间的距离是;
(2)数轴上表示x和﹣5的两点A和B之间的距离是;
(3)当代数式|x﹣1|+|x+3|取最小值时,相应的x的取值范围是;最小值是.应用:某环形道路上顺次排列有四家快递公司:A、B、C、D,它们顺次有快递车16辆,8辆,4辆,12辆,为使各快递公司的车辆数相同,允许一些快递公司向相邻公司调出,问共有多少种调配方案,使调动的车辆数最少?并求出调出的最少车辆