第一章有理数中高难度题
人教版七年级上《第1章有理数》拔高题及易错题精选附答案
8-4GF E D C BA 人教版七年级上《第1章有理数》拔高题及易错题精选附答案(全卷总分150分) 姓名 得分一、选择题(每小题3分,共30分)1. 如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是( )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a 2. 假如b a ,互为相反数,那么下面结论中不一定正确的是( )A. 0=+b aB. 1-=b aC. 2a ab -=D. b a =3. 若│a│=│b│,则a 、b 的关系是( )A. a=bB. a=-bC. a+b=0或a -b=0D. a=0且b=04. 已知数轴上两点A 、B 到原点的距离是2和7,则A ,B 两点间的距离是 A. 5 B. 9 C. 5或9 D. 75. 若a<0,则下列各式不正确的是( )A. 22)(a a -=B. 22a a =C. 33)(a a -=D. )(33a a --= 6. -52表示( )A. 2个-5的积B. -5与2的积C. 2个-5的和D. 52的相反数 7. -42+ (-4) 2的值是( )A. –16B. 0C. –32D. 32 8. 已知a 为有理数时,1122++a a =( )A. 1B. -1C. 1±D. 不能确定9. 设n 是自然数, 则n n 1(1)(1)2+-+-的值为( )A. 0B. 1C. -1D. 1或-110. 已知|x|=5,|y|=3,且x>y ,则x +y 的值为( )A . 8B . 2C . -8或-2D . 8或211. 我国西部地区面积约为640万平方公里,640万用科学记数法表示为( )A. 464010⨯B. 56410⨯C. 66410⨯.D. 6410⨯7.12. 京九铁路的全长用四舍五入法得到近似数为2.5×106m ,则它精确到( ) A. 万位 B. 十万位 C. 百万位 D. 千位二、填空题(每小题3分,共48分) 1. 已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= .2. 数轴上点A 表示的数为-2,若点B 到点A 的距离为3个单位,则点B 表示的数为.3. 如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8.(1)点B 表示的有理数是 ;表示原点的是点 .(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则如此的点M 表示的有理数是 .4.-⎪⎪⎪⎪⎪⎪-23的相反数是 .5. 假如x 2=9,那么x 3= .6. 假如2-=-x ,则x = .7. 化简:|π-4|+|3-π|= .8. 绝对值小于2.5的所有非负整数的和为 ,积为 .9. 使25++-x x 值最小的所有符合条件的整数x 有 . 10. 若 a 、b 互为相反数,c 、d 互为倒数,则 (a +b )10 -(cd ) 10 = . 11. 若a 、b 互为相反数,c 、d 互为倒数,3=x ,则式子2(a +b )-(-cd )2021+x 的值为 .12. 已知()0422=-++y x ,求x y 的值为 .13. 近似数2.40×104精确到 位,它的有效数字是 .14. 观看下列算式发觉规律:71=7,72=49,73=343,74=2401,75=16807,76=117649,……,用你所发觉的规律写出:72021的个位数字是 .15. 观看等式:1+3=4=22,1+3+5=9=32 ,1+3+5+7=16=42 ,1+3+5+7+9=25=52 ,……猜想:(1)1+3+5+7…+99 = ;(2) 1+3+5+7+…+(2n -1)= .(结果用含n 的式子表示,其中n =1,2,3,……).16. 一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位. 三、解答题(共82分)1. (12分)运算:(1))49()2115()375()25.4(37153)371012(+---+--++-(2)10.12512(16)(2)2-⨯⨯-⨯-(3)51)716(5)31112(5)31137(51)7111(⨯++÷++÷-+⨯-(4)+-+-+-31412131121 (999)110001-2. (5分)运算1-3+5-7+9-11+…+97-99.3. (5分)已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2,那么所有满足条件的点B 对应的数有哪些?4. (6分)“*”代表一种新运算,已知a ba b ab+*=,求x y *的值.其中x 和y 满足21()|13|02x y ++-=.5. (6分)已知()0212=-++b a ,求(a +b)2021+a 2021.0b ac6. (6分)已知a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5.试求下式的值:201720162)()()(cd b a cd b a x -+++++-.7. (6分)已知│a│=4,│b│=3,且a>b ,求a 、b 的值.8. (6分)已知│a│=2,│b│=5,且ab<0,求a +b 的值.9. (6分)探究规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 … …(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x ,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。
人教版七年级数学上册第1章有理数拔高题及易错题精选(Word版附答案)
人教版七年级数学 第1章 有理数 拔咼及易错题精选(全卷总分150分)姓名 得分 A.万位 B.十万位 C.百万位 D.千位二、填空题(每小题3分,共48分)1.已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= 一、选择题(每小题3分,共30分)1.如图,数轴上 的两个点A 、B 所表示的数分别是a 、b ,那么a , b , — a, — b 的大2.数轴上点A 表示的数为一2,若点B 到点A 的距离为3个单位,则点B 表示的数为 小关系是( A. b<—a<— b<a B. b<—b<— a<a C. b<— a<a<— b D. — a<—b<b<a 2.如果a , b 互为相反数,那么下面结论中不一定正确的是(B. a = -1 | bb 则a 、b 的关系是( A. a b =0 C. ab - -a 2 3.如图所示,数轴上标出了 7个点,相邻两点之间的距 离都相等,已知点 A 表示一4,点G 表示8.(1)点B 表示的有 理数是 ________ ;表示原点的是点_(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理 3.若丨a | = | 数是 _________________B. a=— bC. a+b=0 或 a — b=0 4. 已知数轴上两点A 、B 到原点的距离是 A. 5B. 9C. 5 或 9 5. 若a<0,贝U 下列各式不正确的是( A. a=b 2和7,D. 7 D. a=0 且 b=0 则A , B 两点间的距离是 A. a 2 =(-a)2 B. a 2 =a 2 C. a 3 十a)3 D. a 3 =-(-a 3)24. — | —刍的相反数是 ______ .5. 女口果 x 2=9,那么 x 3= _____ .6. 女口果一 x = - 2,贝U x = ____ .7. 化简:| 一 4|+ |3— n 丰 ______ .8. 绝对值小于2.5的所有非负整数的和为 ________ ,积为 ________6. — 5表示( A. 2个一5的积7. — 42+ (— 4) 2 的值是 A. -6 B. — 5与2的积 ) B. 0 C. 2个一5的和 D. 52的相反数 C. —2D. 329. 使x-5+|x + 2值最小的所有符合条件的整数 x 有 _________________________________ .10. 若a 、b 互为相反数,c 、d 互为倒数,则(a + b )10 — (cd ) 10 = ____________ . 11. 若a 、b 互为相反数,c 、d 互为倒数,x=3,则式子2(a + b ) — (— cd )2016 + x 的值为8.已知a 为有理数时,A. 1B. — 1 a 2 1 a 2 1C. -1D.不能确定 9.设n 是自然数,则凹匕匚的值为 B. 1 C. — 1 D. 1 或一1 A. 0 10. 已知凶=5, |y| = 3,且x>y ,则x + y 的值为 A. 8 11. 我国西部地区面积约为640万平方公里,640万用科学记数法表示为( )B. 2C. — 8 或一2 )D. 8 或 2 A. 640 1045B. 64 10C. 6.4 106D. 6.4 10712.京九铁路的全长用四舍五入法得到近似数为2.5 X 106m ,贝尼精确到(12. 已知 x+2+(y —4)2 = 0 ,求 x y 的值为 ____________ .13. 近似数2.40X 04精确到 ________ 位,它的有效数字是 _____________ .14. 观察下列算式发现规律:71=7, 72=49, 73=343,74=2401,75=16807,76=117649,……, 用你所发现的规律写出:72017的个位数字是 —15. 观察等式:1 + 3 = 4 = 2 , 1 + 3+ 5= 9= 3 , 1 + 3+ 5+ 7= 16 = 4 , 1 + 3+ 5+ 72+ 9= 25= 5 , ...........猜想:(1) 1 + 3+ 5+ 7…+ 99 = _________ ;(2) 1 + 3+ 5+ 7+…+(2n — 1 )= ____________ .(结果用含n 的式子表示,其中n二1, 2, 3, ........ )•16. 一跳蚤在一直线上从 O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离0点的距离是______________ 个单位.三、解答题(共82分)1. (12分)计算:/ 八10 15 5 1 9、(1)(-12 ) 3 (-4.25)-()_(_15亍-(;)37 37 37 2 41(2)-0.125 12 (-16)(-2 —)21 1 1 1 1 1(3)(-11 )(-137-)“5 ( 112-)“5 ( 6 )-7 5 3 3 7 51 11000 一999 10. (6分)已知有理数a,b,c在数轴上的对应点如图所示,化简:a-b b-c - c-a .12. (6分)如果有理数a、b满足ab-2 • (1-b)1 2= 0 ,13. (3分)已知~ X求詈+詈+詈的值.14. (6分)已知a、b、c均为非零的有理数,a b c abc人教版七年级数学第1章有理数拔高及易错题精选2. (5 分)计算1-3+ 5-7+ 9- 11+…+ 97 - 99.3. (5分)已知数轴上有A和B两点,它们之间的距离为1,点A和原点的距离为2, 那么所有满足条件的点B对应的数有哪些?勺+ b4. (6分)“””代表一种新运算,已知a“b= -------- ,求x” y的值.ab其中X和y 满足(X -)2 |1 -3y |= 0 .25. (6分)已知a+1 +(b —2 2 =0 ,求(a+ b)2016+ a2017.6. (6分)已知a,b互为相反数,c、d互为倒数,x的绝对值为5.试求下式的值:x2_(a b cd)(a b)2016(~cd)2°仃.1十字框中的五个数的和与中间的数16有什么关系?2设中间的数为x,用代数式表示十字框中的五个数的和;6. 女口果一x = —2,贝U x= i2 . 32343638401 , 1 1 1 1—1++2 3 2 4 31试求■ab1(a 1)(b 1)1(a 2)(b 2)- 的值.D. —a<—b<b<a吗?如能,写出这五位数,如不能,说明理由参考答案一、选择题(每小题3分,共30分)1. 如图,数轴上的两个点A、B所表示的数分别是a、b,那么a,b,—a,—b的大小关系是( C )A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—b2. 如果a, b互为相反数,那么下面结论中不一定正确的是(B )A. a b=0B. — = -1C. ab=-a2D. a二b b3. 若丨a | = | b, |则a、b的关系是(C )A. a=bB. a=- bC. a+b=0 或a—b=0D. a=0 且b=04. 已知数轴上两点A、B到原点的距离是2和7,则A , B两点间的距离是A. 5B. 9C. 5 或9D. 75. 若a<0,则下列各式不正确的是( D )A. a2 = (-a)2B2a = 2a C. a4 = (-a)3 D. a3 = -(-a3)6. —52表示(D )A. 2个一5的积B.—5与2的积C. 2个一5的和D. 52的相反数7. —42+ (—4) 2的值是( B )A. -6B.0C. £2D. 324若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于20101 或—5 .3. 如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A表示一4,点G表示8.(1)点B表示的有理数是 -2 ;表示原点的是点C(2)图中的数轴上另有点M到点A,点G距离之和为13,则这样的点M表示的有理数是—4.5或8.5 .a +18. 已知a为有理数时,一=(A )a' +1A. 1B. - 1C. _1D.不能确定9. 设n是自然数,则凹匕亡的值为(A )2A. 0B. 1C. —1D. 1 或一110. 已知|x|= 5, |y| = 3,且x>y,则x + y 的值为( D )A. 8B. 2C. —8 或—2D. 8 或211. 我国西部地区面积约为640万平方公里,640万用科学记数法表示为(C )4 5 6 7A. 640 10B. 64 10C. 6.4 10D. 6.4 105 6 * 712. 京九铁路的全长用四舍五入法得到近似数为 2.5 X 108 9m,贝尼精确到(B )A.万位B.十万位C.百万位D.千位二、填空题(每小题3分,共48分)1. 已知a是绝对值最小的负整数,b是最小正整数,c是绝对值最小的有理数,则c+a+b=0 .2. 数轴上点A表示的数为一2,若点B到点A的距离为3个单位,则点B表示的数为11. 若a、b互为相反数,c、d互为倒数,x=3,则式子2(a+ b) —(—cd)2016+ x的值为2或一412. 已知x+2 +(y—4)2 = 0 ,求x y的值为16 .13. 近似数2.40X104精确到百位,它的有效数字是2, 4, 0 .14. 观察下列算式发现规律:71=7, 72=49, 73=343,74=2401,75=16807,76=117649,……, 用你所发现的规律写出:72017的个位数字是.15. 观察等式:1 + 3 = 4 = 22, 1 + 3 + 5 = 9 = 32, 1 + 3 + 5 + 7= 16 = 42, 1 + 3 + 5 + 72+ 9= 25= 5 , ...........猜想:(1) 1 + 3+ 5+ 7…+ 99 = 502;5——2的相反数是—3_.6 如果x2=9,那么x3= ±.7 化简:| - 4|+ |3—n 丰_.8 绝对值小于2.5的所有非负整数的和为0 ,积为0 .9 使x -5 +|x +2值最小的所有符合条件的整数x有—2, —1, 0, 1, 2, 3, 4, 5,(2) 1 + 3+ 5+ 7+-+ (2n—1) = n2 .(结果用含n的式子表示,其中n =1, 2, 3,……).16. 一跳蚤在一直线上从O点开始,第1次向右跳1个单位,紧接着第2次向左跳2 个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O点的距离是50个单位.三、解答题(共82分)1. (12分)计算:/ 八10 15 5 1 9、(1) (一12 ) 3 (-4.25)-()-(-15;)-()37 37 37 2 4解:原式=(—仁弓)+ (3茫)+ (-4三)+ (-舟)+ (15£) + (--)37 37 4 37 2 4“10 5 o15 ,1 9 』=[(- 12)+ ()+ (3)】 + [ (- 4)+ ()+ (15)】37 37 37 4 4 2=—9 + 91(2)-0.125 12 (-16) (-2?)5解:原式=[—0.125X (—16) ]X[ 12X ( )]2=2 X (—30)=—60(3)(弋)1(一137新5(112『5(6* ?1 1 1 1解:原式=[(- 11一)X - + 6- X -7 5 7 5+ [ (- 137」)-5+ (112- ) -5:3 3=11 1 11 1=:(-11 一 + 6-)x - ] + [ ( 一137- + 112- ) S : 7 7 5 3 31=:(-5) X ] + [ (- 25)罚5=-1+ (-5) =-6=999 =10002. (5 分)计算 1-3+ 5-7+ 9- 11+…+ 97 - 99. 解:原式=(1-3) + ( 5- 7) + ( 9- 11)+…+( 97— 99)50=-2 X —(提示:1〜100其中奇数和偶数各50个,50个奇数分成25组) 2 =-2X 25 =-50.3. (5分)已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2, 那么所有满足条件的点B 对应的数有哪些?解:•••点A 和原点的距离为2,•••点A 对应的数是±当点A 对应的数是2时,则点B 对应的数是2+1=3或2-仁1;当点A 对应的数是一2时,则点B 对应的数是一2+仁一1或一2-仁一3. 4. (6分)“””代表一种新运算,已知a “b = ―b ,求x“ y 的值.ab其中x 和y 满足(x 丄)2 • |1 -3y |= 0 .21解:•••(x • —)2 • |1 -3y| = 02 1--x + 3 =0, 1 — 3y=01 1•-X ,y = 3解:t a , b 互为相反数,c 、d 互为倒数,x 的绝对值为5• a + b=0, cd=1, x=±5• x 2- (a + b + cd ) + (a + b ) 2016+ (-cd ) 2017「 2 ,2016 , 2017 =(d5) —(0+ 1) + 0 +(— 1) =25 - 1+ 0+ (- 1)=237. (6 分)已知 | a | =4 | b | =3 且 a>b ,求 a 、b 的值. 解:••• |a|=4, |b|=3• a=±4, b=±3 I a > b• a=4, b=±3. 8. (6 分)已知 | a | =| b | 5,且 ab<0,求 a + b 的值.解: t |a|=2, |b|=5• a=±2, b=±5 t ab<0• a=2, b= — 5 或 a=— 2, b=5.• a + b =2 + (— 5) =— 3 或 a + b =( — 2)+ 5=3. 9. (6分):2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 ■ 36 38 40(1) 十字框中的五个数的和与中间的数 16有什么关系?(2) 设中间的数为x ,用代数式表示十字框中的五个数的和;-11 1 1000 一 999解:••• |a + 1 +(b -2)2 = 0解: 1 + ••• + 19991 1000=1— --a+仁0,b — 2=0•- a = — 1, b=2201620172016“ 2017--(a+b )+ a =( - 1+2) +(-1) =1+( —1)=0 .6. (6分)已知a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5.试求下式的值:1000 x 2 - (a b cd) (a b)2016 ( — cd)2017. xy5. (6 分)已知 a+1+(b_2)2 = 0,求(a + b)2016 + 孑017.(3) 若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于2010=1吗?如能,写出这五位数,如不能,说明理由 解:(1)十字框中的五个数的和为 6+14+16+18+26=80=1涿5,即是16的5倍;(2)设中间的数为x ,则十字框中的五个数的和为:(x-10)+(x+10)+(x-2)+(x+2)+x=5x ,所以五个数的和为 5 x ; (3)假设能够框出满足条件的五个数,设中间的数为 x ,由(2)得5x =2010,所 以x=402,但402位于第41行的第一个数,在这个数的左边没有数,所以不能框 住五个数,使它们的和等于 2010. 10. (6分)已知有理数a, b ,c 在数轴上的对应点如图所示,化简: a-b+|b-c — c-a ②当a , b , c 中只有一个为正数,则有:詈I 耆,中有一个为1,其余两个都为一1, 可得回+甲+©=—1.综上可得,回+兰+©的值为3或一1.a b c a b c 14. (6分)已知a 、b 、c 均为非零的有理数,a b c abc解:由回+学1+此-1,可得a , b , c 中有一个为正数两个为负数,则 凹=-1. ab c abc解:由图示知:c v 0v b v a ,--a —b >0, b —c >0, c —a v 0,••• |a — b|=a — b , |b — c|=b — c ,|c — a|=— (c — a )=,••• |a — b|+|b — c|— |c — a|=a — b+b — c — (a — c ) =a — b+b — c — a+c= 0. 12. (6分)如果有理数a 、b 满足ab-2 • (1-b)10 =0,11 1试求— - -... ....... 1 ----------- 的值.ab (a+1)(b+1) (a+2)(b+2)(a +2017]b+2017)解:••• ab_2 (1_b)2 =0--ab — 2=0, 1 — b=0• a=2, b=11 1 1- + -------------- + -------------ab (a 1)(b 1) (a 2)(b 2) 1 2018 2019“ 11111 1 1=1 — + — 一 一 + — ------ + …+ -------- ----- 13・(6分)已知儀「1,求a +懊早的值.解:由|0bc r 1,可得a , b , c 三个都为正数或a , b , c 中只有一个为正数. ①当a , b , c 三个都为正数,则有:囿,慎人三个都为1 ,可得:回+巴+山匚3;a b c a b c10. 若a 、b 互为相反数,c 、d 互为倒数,则(a + b )10 — (cd ) 10 = — 1.10 2 3 3 4 2018 20191a 2017b 2017=1 —12019 =2018 =2019。
第一章 有理数奥数题
第一章有理数奥数题(1)1.2002*20032003-203*20022002=2.已知a-2的绝对值+2b+1的绝对值=0,求a-2b+1的值3.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0B.B.a,b之一是0C.C.a,b互为相反数D.D.a,b互为倒数4.一乳制品加工场销售员小王给超市送来10箱奶粉,每箱20袋,每袋400g,当他要返回厂里时,突然接到厂部打来电话,说这10箱奶粉中有一箱因装罐机出现了故障,每袋少装了20g,要求他立即把缺量的一箱带回去更换.但超市里正忙,小王只能称一次,就要将那缺量的奶粉找出来.请你帮他想个办法,能办到吗?5.将一张长方形的纸对折,可得到一条折痕,继续对折,对折时每次折痕与上次折痕保持平行,继续对折三次后,可以得7条折痕,如果对这n次,可以得到多少条折痕?6.23个不同的正整数的和是4825,问;这23个数的最大公约数可能达到的最大值是多少?写出你的结论,并说明理由。
7.当x=3分之2,y=-4分之3,z=-2又2分之1,分别求下列代数式值(1)+(-x)-(-y)-(-z)(2) -(+x)+( -y) -(-z)有理数奥数题(2)一、填空题:(每小题5分,共50分) 1、计算: (1)125×888=___________; (2) =___________。
2、把用“<”连接起来:________________。
3、下面有两串按某种规律排列的数,请按规律填上空缺的数。
(1) ( ); (2)15,20,10,( ),5,30,( ),35。
4、有甲、乙、丙三个数,已知甲、乙;乙、丙;丙、甲两数的平均数分别为40、46、43,那么甲、乙、丙三个数的平均数是___________。
5、下边的加法竖式的申、办、奥、运四个汉字,分别代表四个不同的数字,请问:申办奥运分别为何数字时算式成立。
申=______;办=______;奥=______;运=______。
人教版七年级数学上册 第1章 有理数 拔高题及易错题精选(Word版附答案)
人教版七年级数学上册第1章有理数拔高题及易错题精选(Word版附答案)已知a,b是有理数,且a>b,则下列数中最小的是().A。
a-b B。
b-a C。
ab D。
-a-b5.已知数轴上点A表示的数为-2,点B表示的数为3,则下列各式中正确的是().A。
AB=5 B。
AB=-1 C。
AB=1 D。
AB=-56.若a,b是相反数,则a-b的值为().A。
a+b B。
a-b C。
-a-b D。
-a+b7.已知a,b是有理数,且a>b,则下列数中最大的是().A。
a+b B。
b-a C。
ab D。
-a-b8.已知数轴上点A表示的数为-2,点B表示的数为3,则点C表示的数为().A。
-5 B。
5 C。
-1 D。
19.数轴上点A表示的数为-3,点B表示的数为2,则下列各式中正确的是().A。
AB=5 B。
AB=-1 C。
AB=1 D。
AB=-510.已知a,b是有理数,且a>b,则下列数中最小的是().A。
a+b B。
b-a C。
ab D。
-a-b1.在数轴上,点A表示的数为a,点B表示的数为b,则a,b,-a,-b的大小关系为b<-a<-b<a。
2.若a,b互为相反数,则下面结论中不一定正确的是ab=-a2.3.若│a│=│b│,则a、b的关系是a=b或a=-b。
4.已知数轴上两点A、B到原点的距离是2和7,则A,B 两点间的距离是5.5.若a<0,则下列各式不正确的是a3=-(-a3)。
6.-52表示2个-5的积。
7.-42+(-4)2的值是0.8.已知a为有理数时,a2+1/a2+1=1或-1.9.设n是自然数,则(-1)n+(-1)n+1=0.10.已知|x|=5,|y|=3,且x>y,则x+y的值为8.11.我国西部地区面积约为640万平方公里,640万用科学记数法表示为6.4×107.12.京九铁路的全长用四舍五入法得到近似数为2.5×106m,则它精确到百万位。
第一章《有理数》全章 练习题 (含答案)
第一章《有理数》全章 练习题 (含答案)一、选择题1. 2024的倒数是( )A .2024B .2024−C .12024−D .120242. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为( )A .84410⨯B .84.410⨯C .94.410⨯D .104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是( )A .0a >B .0ab >C .0a b −>D .0a b +<4.下列几种说法中,不正确的有( )个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A .4B .3C .2D .15. 若|m ﹣2|+(n +3)2=0,则m ﹣n 的值为( )A .﹣5B .﹣1C .1D .56. 如图是嘉淇同学的练习题,他最后得分是( )A .20分B .15分C .10分D .5分6. 如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b −>;④||||0a b −<,⑤220a b −<.其中正确的有( )A .1个B .2个C .3个D .4个8.如图是一个数值转换机, 若输入x 的值是1−, 则输出的结果y 为( )A .7B .8C .10D .129. 观察1211−=,2213−=,3217−=,42115−=,52131−=,⋯,归纳各计算结果中的个位数字的规律,猜测202221−的个位数字是( )A .1B .3C .7D .510. 计算 1111111111131422363524⎡⎤⎛⎫⎛⎫−+÷÷−⨯+−÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为( ) A .2514 B .2514− C .114 D .114− 二、填空题(本大题共6小题)11. -56____ -67(填>,<,=) 12. 如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13. 数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14. 若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+−+= ⎪⎝⎭ . 15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16. 已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 18 .若x 是不等于1的实数,我们把11x−称为x 的差倒数, 如2的差倒数是1112=−−,-1的差倒数为()11112=−−, 现已知113x =−,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x = .三、解答题19. 把下列各数填在相应的括号里:﹣8,0.275,227 ,0,﹣1.04,﹣(﹣3),﹣13,|﹣2| 正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.20 画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5−,0,-2,-(-4),-3.5,321. (1)(-534)+(+237)+(-114)-(-47) (2)()155********⎛⎫−+−⨯− ⎪⎝⎭ (3)-14+14×[2×(-6)-(-4)2] (4)(-2)3×(-34)+30÷(-5)-│-3│22. 已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值. .23. 已知x 是最小正整数,y ,z 是有理数,且有| y ﹣2|+|z+3|=0,计算:(1)求x ,y ,z 的值.(2)求3x ﹢y ﹣z 的值.24. 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负, 行车依先后次序记录如下:(单位:km )+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为 ; (2)如果点P 到点M 、点N 的距离相等,那么x 的值是: ; (3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参 考 解 答:一、选择题1.D . 2 .C 3.D 4.C 5.D 6.B 7.D 8.A . 9 .B . 10..C二、填空题11. > 12 .-3分 13.1或-7 14.0 15.-2或2 16 .m <﹣n <n <﹣m 17.9900 18 .4三、解答题19. 解:正数集合{ 0.275,227,()3−−,2− …};负整数集合{8−…};分数集合{ 0.275, 227, 1.04−,13− …};负数集合{8−, 1.04−,13− …}.20 解:()2.5 2.5,44,−=−−=在数轴上表示各数如下:∴ 3.5−<2−<0< 2.5−<3<()4−−21. 解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫−+−++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 734=−+=−(2)()155********⎛⎫−+−⨯− ⎪⎝⎭ ()()()()15573636363629612=⨯−−⨯−+⨯−−⨯− 182030217=−+−+=−(3)-14+14×[2×(-6)-(-4)2] ()1112164=−+⨯−− ()178=−+−=−(4)(-2)3×(-34)+30÷(-5)-│-3│ ()38634⎛⎫=−⨯−+−− ⎪⎝⎭6633=−−=−22. 解:a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯−−+⨯=++=或 原式=()()2201314130⨯−−−+⨯=−++=.23. 解:(1)∵x 是最小正整数∴x=1∵|y ﹣2|≥0,|z+3|≥0,且|y ﹣2|+|z+3|=0∴|y ﹣2|=0,|z+3|=0∴y ﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x ﹢y ﹣z=3×1+2-(-3)=3+2+3=8.24. 解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+−⨯=(元), 答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。
浙教版七年级第一章有理数重难点题型归纳(举一反三)(含解析版)
专题1.1 有理数章末重难点题型汇编【举一反三】【浙教版】【考点1 相反意义的量】【方法点拨】解决此类问题关键是明确正负数在题目中的实际意义从而进一步求解.【例1】(2019秋•阳东区期中)小红的妈妈买了4筐白菜,以每筐25千克为标准,超过的千克数记为正 数,不足的千克数记为负数,称重后的记录分别为0.25+,1-,0.5+,0.75-,小红快速准确地算出了4 筐白菜的总质量为( ) A .1-千克B .1千克C .99千克D .101千克【变式1-1】(2019秋•任城区校级期中)某种药品的说明书上标明保存温度是(302)C ︒±,则该药品在()范围内保存才合适. A .28C 30C ︒︒-B .30C 32C ︒︒-C .28C 31C ︒︒-D .28C 32C ︒︒-【变式1-2】(2019秋•顺义区期中)面粉厂规定某种面粉每袋的标准质量为500.2kg ±,现随机选取10袋 面粉进行质量检测,结果如下表所示:序号 1 2 3 4 5 6 7 8 9 10 质量()kg5050.149.950.149.750.1505049.949.95则不符合要求的有( ) A .1袋B .2袋C .3袋D .4袋【变式1-3】(2019秋•慈溪市期中)213路公交车从起点开始经过A ,B ,C ,D 四站到达终点,各站上 下车人数如下(上车为正,下车为负)例如(7,4)-表示该站上车7人,下车4人.现在起点站有15人,A(4,8)-,(6,5)B-,(7,3)C-,(1,4)D-.车上乘客最多时有()名.A.13B.14C.15D.16【考点2 有理数的分类】【方法点拨】正整数、0、负整数统称整数。
正分数、负分数统称分数。
整数和分数统称为有理数。
【例2】(2019秋•兴庆区校级期中)把下列各数按要求分类.2-,5,122-,0, 3.4-,21-,π,83,3.7,15%;正数集合:{}⋯,负整数集合:{}⋯,分数集合:{}⋯非正数集合:{}⋯【变式2-1】(2019秋•沂水县期中)把下列各数按要求分类:4-,10%,112-,101 ,43, 1.3-,0 ,0.6负整数集合:{}正分数集合:{}负分数集合:{}整数集合:{}负有理数集合:{}.【变式2-2】(2018秋•准格尔旗期中)把下列各数分别填入相应集合内:10-,6,173-,0,134, 2.25-,0.3,67,27-,10%,18-,π正整数:{}⋯负整数:{}⋯正分数:{}⋯负分数:{}⋯整数:{}⋯正数:{}⋯【变式2-3】(2018秋•江岸区校级期中)把下列各数填入它所属的集合内:5.2,0,2π,227,(4)+-,324-,(3-- ),0.25555⋯,0.030030003-⋯ (1)分数集合:{ }⋯ (2)非负整数集合:{ }⋯ (3)有理数集合:{ }⋯. 【考点3 有理数相关概念】【方法点拨】解决此类问题需理解并熟记有理数相关概念,如①整数和分数统称为有理数;②正有理数、0和负有理数亦可称为有理数;③只有符号不同的两个数叫做互为相反数;④在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数;⑤数轴上表示数a 的点与原点的距离叫做数a 的绝对值;⑥一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 【例3】(2019春•松江区期中)下列叙述中,不正确的是( ) A .任何一个有理数都可以用数轴上的一个点表示 B .在数轴上,表示互为相反数的两个点与原点距离相等 C .在数轴上,到原点距离越远的点所表示的数一定越大 D .在数轴上,右边的点所表示的数比左边的点所表示的数大 【变式3-1】(2019春•南岗区校级期中)下列说法错误的有( ) ①最大的负整数是1-; ②绝对值是本身的数是正数; ③有理数分为正有理数和负有理数; ④数轴上表示a -的点一定在原点的左边; ⑤在数轴上7与9之间的有理数是8. A .1个B .2个C .3个D .4个【变式3-2】(2019春•浦东新区期中)下列说法中,正确的是( ) A .一个有理数的绝对值不小于它自身B .若两个有理数的绝对值相等,则这两个数相等C .若两个有理数的绝对值相等,则这两个数互为相反数D .a -的绝对值等于a【变式3-3】(2018秋•埇桥区校级期中)下列说法中正确的有( ) ①最小的整数是0; ②有理数中没有最大的数;③如果两个数的绝对值相等,那么这两个数相等;④互为相反数的两个数的绝对值相等.A.0个B.1个C.2个D.3个【考点4 数轴上的点与有理数的对应关系】【方法点拨】解决此类问题关键是掌握数轴上点的表示方法,明确数轴的特点能根据题目中的信息,判断各个数在数轴上对应哪一个点.【例4】(2019秋•杭州期中)一个数a在数轴上表示的点是A,当点A在数轴上向左平移了3个单位长度后到点B,点A与点B表示的数恰好互为相反数,则数a是()A.3-C.1.5D.3-B. 1.5【变式4-1】(2018秋•南京期中)如图,将一刻度尺放在数轴上(数轴的单位长度是1)cm,刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“4.6cm”对应数轴上的数为()A. 1.6-B.4.6C.2.6D. 2.6-【变式4-2】(2019秋•洪山区期中)小惠在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示3-的点重合,若数轴上A、B两点之间的距离为2018(A在B的左侧),且A、B两点经上述折叠后重合,则A点表示的数为()A.1010-C.1008-B.1009-D.1008【变式4-3】(2018秋•曲阜市期中)如图,M,N,P,Q,R分别是数轴上五个整数所对应的点,其中有一点是原点,并且1====.数a对应的点在N与P之间,数b对应的点在Q与R之MN NP PQ QR间,若||||3a b+=,则原点可能是()A.M或Q B.P或R C.N或R D.P或Q【考点5 数轴上点的移动规律】【例5】(2019秋•资中县期中)数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长2017厘米的线段AB,则线段AB盖住的整点共有()个.A.2018或2019B.2017或2018C.2016或2017D.2015或2016【变式5-1】(2018秋•三门县期中)如图所示,圆的周长为4个单位长度,在圆周的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动、那么数轴上的2019-所对应的点与圆周上字母( )所对应的点重合.A .DB .CC .BD .A【变式5-2】(2018秋•下陆区期中)等边ABC ∆在数轴上的位置如图所示,点A 、C 对应的数分别为0和1-, 若ABC ∆绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2012次 后,点(B )A .不对应任何数B .对应的数是2010C .对应的数是2011D .对应的数是2012【变式5-3】(2019秋•长沙期中)在数轴上,一只蚂蚁从原点出发,它第一次向右爬行了1个单位长度,第二次接着向左爬行了2个单位长度,第三次接着向右爬行了3个单位长度,第四次接着向左爬行了4个单位长度,如此进行了2016次,问蚂蚁最后在数轴上什么位置?( ) A .1007-B .1008-C .1006-D .1007【考点6 有理数的大小比较】【方法点拨】(1)有理数大小比较注意两点:(1)两个负数比较大小,绝对值大的数反而小;(2)在 数轴上右边点表示的数总比左边点表示的数大.【例6】(2019秋•蓟州区期中)如图,下列关于a ,a -,1的大小关系表示正确的是( )A .1a a <<-B .a a I -<<C .1a a <-<D .1a a <-<【变式6-1】(2018秋•杞县期中)已知0a >,0b <,且||||b a >,则a ,a -,b ,b -按从小到大的顺序排列( ) A .b a a b -<<-<B .b a a b <-<<-C .a a b b <-<-<D .a a b b -<<<-【变式6-2】(2017春•高密市期中)若01m <<,m 、2m 、1m的大小关系是( ) A .21m m m<<B .21m m m<<C .21m m m<< D .21m m m<< 【变式6-3】(2019春•泉港区期中)定义:对于任意数a ,符号[]a 表示不大于a 的最大整数,例如:[5.8]5=,[10]10=,[]4π-=-.若[]6a =-,则a 的取值范围是( )A .a ≥﹣6B .﹣6≤a <﹣5C .﹣6<a <﹣5D .﹣7<a ≤﹣6【考点7 相反数的性质】【方法点拨】在数轴上原点的两旁,离开原点距离相等的两个点所表示的数,叫做互为相反数。
难点详解人教版七年级数学上册第一章 有理数重点解析试卷(含答案解析)
人教版七年级数学上册第一章 有理数重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、43-的倒数是( )A .43- B .34- C .43 D .342、计算2019202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( ) A .23 B .32 C .23- D .32- 3、如果某商场盈利3万元,记作3+万元,那么亏损1.8万元,应记作( )A . 1.8-B . 1.8-万元C . 1.8+万元D . 1.8+4、a 与﹣2互为倒数,那么a 等于( )A .﹣2B .2C .﹣12D .12 5、小红解题时,将式子()()()8384-+-++-先变成()()()8834-++-+-⎡⎤⎡⎤⎣⎦⎣⎦再计算结果,则小红运用了( ).A .加法的交换律和结合律B .加法的交换律C .加法的结合律D .无法判断6、地球绕太阳公转的速度约为110000km/h ,数字110000用科学记数法表示应为( )A .61.110⨯B .41110⨯C .51.110⨯D .60.1110⨯7、如图,数轴上点A 对应的数是32,将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数是( )A .12- B .2- C .72 D .12 8、下列各数中,比2-小的数是( )A .0B .3-C .1-D .0.6-9、观察算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,….通过观察,用你所发现的规律确定32021的个位数字是( )A .3B .9C .7D .110、计算35--+结果正确的是( )A .4B .2C .2-D .4-第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、点A 和点B 是数轴上的两点,点A B 表示的数为1,那么A 、B 两点间的距离为_____.2、A 为数轴上表示﹣1的点,将点A 沿数轴向右平移3个单位到点B ,则点B 所表示的数为______.3、写出一个数,使这个数的绝对值等于它的相反数:__________.4、如图,小明写作业时不慎将墨水滴在数轴上,墨迹盖住部分对应的整数共有_____个.5、写出一个负数,使这个数的绝对值小于3__________.三、解答题(5小题,每小题10分,共计50分)1、计算下列各题:(1)1182004822⎛⎫⨯÷- ⎪⎝⎭;(2)535(5)16-÷-.2、计算下列各题:(1)112136⎛⎫÷- ⎪⎝⎭;(2)151124364⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭;(3)1152(10)3236⎛⎫-÷-⨯÷- ⎪⎝⎭.3、下列由四舍五入法得到的近似数,各精确到哪一位?(1)7.93; (2)0.0405;(3)25.9万; (4)57.710⨯.4、小明做了这样一道题,他的方法如下:1110101010111111133313333333⎛⎫⎛⎫⎛⎫⨯=⨯⨯=⨯⨯=⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.请你用他的方法解下面题目.设201420151(2013)2013M⎛⎫=-⨯⎪⎝⎭,1010111(5)(6)200830N⎛⎫=-⨯-⨯--⎪⎝⎭,求2019()M N+的值.5、计算.(1)66 2341.232328.77181111 -+---.(2)1121322332⎛⎫⎛⎫--++-⎪ ⎪⎝⎭⎝⎭.-参考答案-一、单选题1、B【解析】【分析】根据倒数的定义解答.【详解】解:43-的倒数是34-,故选:B.【考点】此题考查倒数的定义,熟记定义是解题的关键.2、D【解析】【分析】根据乘方的意义进行简便运算,再根据有理数乘法计算即可.【详解】 解:2019202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭, =201920202 1.513⎛⎫-⨯⨯ ⎪⎝⎭ =2020201922 1.5 1.533-⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯个个, =2019221.5 1.51.533-⨯⋅⋅⋅⨯⨯⨯个, =32-, 故选:D .【考点】本题考查了有理数的混合运算,解题关键是熟练依据乘方的意义进行简便运算,准确进行计算.3、B【解析】【分析】盈利、亏损表示两个具有相反意义量,把盈利记作“+”,则亏损记作“-”,进而得出答案.【详解】 解:盈利、亏损表示两个具有相反意义量,∴亏损1.8万元,应记作 1.8-万.故选:B .【考点】本题主要考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.4、C【解析】【分析】乘积是1的两数互为倒数.据此判断即可.【详解】解:a 与﹣2互为倒数,那么a 等于﹣12.故选:C .【考点】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解题关键是掌握倒数的定义.5、A【解析】【分析】根据有理数加法运算性质分析,即可得到答案.【详解】将式子()()()8384-+-++-先变成()()()8834-++-+-⎡⎤⎡⎤⎣⎦⎣⎦再计算结果,则小红运用了:加法的交换律和结合律故选:A .【考点】本题考查了有理数加法运算的知识;解题的关键是熟练掌握有理数加法运算性质,从而完成求解.6、C【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时, n 是正数,当原数的绝对值<1时,n 是负数.【详解】将110000用科学记数法表示为:51.110⨯,故选:C .【考点】本题考查科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数,表示时关键要正确确定a 的值以及n 的值.7、A【解析】【分析】数轴上向左平移2个单位,相当于原数减2,据此解答.【详解】解:∵将点A 沿数轴向左移动2个单位至点B ,则点B 对应的数为:32-2=12-, 故选A.【考点】本题考查了数轴,利用了数轴上的点右移加,左移减,在学习中要注意培养数形结合的数学思想.8、B【分析】根据有理数的大小比较法则比较即可.【详解】 解:.0.606-=,∵32100.6-<-<-<<,∴比2-小的数是3-,故选:B .【考点】本题考查了有理数的比较大小,注意绝对值越大的负数的值越小是解题的关键.9、A【解析】【分析】从运算的结果可以看出尾数以3、9、7、1四个数字一循环,用2019除以4,余数是几就和第几个数字相同,由此解决问题即可.【详解】解:已知31=3,末位数字为3,32=9,末位数字为9,33=27,末位数字为7,34=81,末位数字为1,35=243,末位数字为3,36=729,末位数字为9,37=2187,末位数字为7,38=6561,末位数字为1,…由此得到:3的1,2,3,4,5,6,7,8,…次幂的末位数字以3、9、7、1四个数字为一循环,又2021÷4=505…1,所以32019的末位数字与33的末位数字相同是3.故选:A.【考点】此题考查尾数特征及规律型:数字的变化类,通过观察得出3的乘方的末位数字以3、9、7、1四个数字为一循环是解决问题的关键.10、B【解析】【分析】直接根据绝对值的代数意义及有理数的加法运算法则计算得出答案.【详解】解:﹣|﹣3|+5=﹣3+5=2.故选:B.【考点】此题主要考查了绝对值的代数意义及有理数的加法运算法则,正确掌握相关运算法则是解题关键.二、填空题11【解析】【分析】数轴上两点之间的距离,用在数轴右边的点所对应的数减左边的点所对应的数或加绝对值符号即可.【详解】=,解:本题主要考查数轴上两点间的距离,点A和点B111.【考点】本题考查了数轴上两点之间的距离,解题的关键是理解距离是非负数.2、2.【解析】【详解】解:∵A为数轴上表示﹣1的点,将点A沿数轴向右平移3个单位到点B,∴﹣1+3=2,即点B所表示的数是2,故答案为2.点睛:本题考查了数轴和有理数的应用,关键是能根据题意得出算式.3、1-(答案不唯一)【解析】【详解】分析:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等.又根据绝对值的定义,可以得到答案.详解:设|a|=-a,|a|≥0,所以-a≥0,所以a≤0,即a为非正数.故答案为:-1(答案不唯一).点睛:本题综合考查绝对值和相反数的应用和定义.4、7【解析】【分析】根据图中的信息可知,墨迹盖住的有两个部分:(1)-5到0之间(不包括-5和0);(2)0到4之间(不包括0和4),由此即可得到被墨迹盖住的整数,从而得到答案.【详解】根据图中信息可知:墨迹盖住的有两个部分:(1)-5到0之间(不包括-5和0);(2)0到4之间(不包括0和4),∵在-5到0之间(不包括-5和0)的整数有:-4、-3、-2、-1;在0到4之间(不包括0和4)的整数有:1、2、3,∴被墨迹盖住的整数共有7个.故答案为:7.【考点】本题考查了数轴,熟知“在数轴上:-5到0之间(不包括-5和0)有哪些整数和0到4之间(不包括0和4)有哪些整数”是解答本题的关键.5、-1【解析】【分析】根据绝对值的定义及有理数的大小比较方法求解即可.【详解】解:∵|-1|=1,1<3,∴这个负数可以是-1.故答案为:-1(答案不唯一).【考点】一个正数的绝对值等于它的本身,零的绝对值还是零,一个负数的绝对值等于它的相反数.三、解答题1、(1)2004-;(2)1716. 【解析】【分析】【详解】(1)原式1717200422⎛⎫=⨯÷- ⎪⎝⎭ 17220042172004=-⨯⨯=- (2)原式535516=÷ 513516517161716⎛⎫=+⨯ ⎪⎝⎭=+= 2、(1)2-;(2)89;(3)1-.【解析】【分析】【详解】(1)原式7736⎛⎫=÷- ⎪⎝⎭76372⎛⎫=⨯- ⎪⎝⎭=-(2)原式41717364⎛⎫=+⨯÷ ⎪⎝⎭ 4174361789=⨯⨯= (3)原式5110621035⎛⎫=-⨯⨯⨯ ⎪⎝⎭1=-.3、(1)精确到百分位;(2)精确到万分位;(3)精确到千位;(4)精确到万位.【解析】【分析】根据近似数的定义一个数最后一位所在的数位就是这个数的精确度,即可得出答案.【详解】解:(1)7.93,精确到百分位;(2)0.0405,精确到万分位;(3)25.9万,精确到千位;(4)57.710⨯,精确到万位.【考点】此题考查了近似数,用到的知识点是近似数,一个数最后一位所在的数位就是这个数的精确度.4、-1【解析】【分析】先根据小明的方法求出M,N的值,然后代入代数式去接即可;【详解】∵20142014201511(2013)201320132013 20132013M⎛⎫⎛⎫=-⨯=-⨯⨯=⎪ ⎪⎝⎭⎝⎭,1010111(5)(6)200830N⎛⎫=-⨯-⨯--=⎪⎝⎭101(5)(6)(6)200830⎡⎤⎛⎫-⨯-⨯-⨯--=⎪⎢⎥⎝⎭⎣⎦620082014--=-.∴20192019()(20132014)1M N+=-=-.【考点】本题主要考查了有理数的乘方,准确计算是解题的关键.5、 (1)-24(2)6【解析】(1)解:原式=(23-2)+(-41.23-8.77)+(23611-18611)=21-50+5 =-24 (2)解:原式=312+13+223-12=(312-12)+(13+223)=3+3=6【考点】本题考查有理数加减混合,熟练掌握运用加法换律与结合合律简便运算是解题的关键.。
人教版初中七年级数学上册第一章《有理数》经典题(含答案解析)
1.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b D 解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.3.某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得: ()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.4.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④D解析:D【分析】 数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D .【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.5.已知︱x ︱=4,︱y ︱=5且x >y ,则2x-y 的值为( )A .-13B .+13C .-3或+13D .+3或-1C 解析:C【分析】 由4x =,5y =可得x=±4,y=±5,由x >y 可知y=-5,分别代入2x-y 即可得答案.【详解】 ∵4x =,5y =,∴x=±4,y=±5,∵x >y ,∴y=-5,当x=4,y=-5时,2x-y=2×4-(-5)=13,当x=-4,y=-5时,2x-y=2×(-4)-(-5)=-3,∴2x-y 的值为-3或13,故选:C .【点睛】本题主要考查了绝对值的性质,能够根据已知条件正确地判断出x ,y 的值是解答此题的关键.6.计算4(8)(4)(1)+-÷---的结果是( )A .2B .3C .7D .43C 解析:C【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【详解】=++解:原式421=,7故选:C.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.7.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.8.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.9.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.10A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.10.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.11.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为()A.312⎛⎫⎪⎝⎭米B.512⎛⎫⎪⎝⎭米C.612⎛⎫⎪⎝⎭米D.1212⎛⎫⎪⎝⎭米C解析:C 【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米. 故选C .【点睛】 此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.12.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.13.下列分数不能化成有限小数的是( )A .625B .324C .412D .116C 解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A 、625的分母中只含有质因数5,所以625能化成有限小数; B 、31248=,18的分母中只含有质因数2,所以324能化成有限小数; C 、41123=,13的分母中含有质因数3,所以412不能化成有限小数; D 、116的分母中只含有质因数2,所以116能化成有限小数.故选:C .【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.14.某市11月4日至7日天气预报的最高气温与最低气温如表:其中温差最大的一天是( )A .11月4日B .11月5日C .11月6日D .11月7日C解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C .【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.15.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元C 解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.1.在有理数3.14,3,﹣12,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于__.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.2.在整数5-,3-,1-,6中任取三个数相乘,所得的积的最大值为______.90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解详解:所得乘积最大为:(-5)×(-3)×6=5×3×6=90故答案为90点睛:本题考查了有理数的乘法以及有理数的大小比较熟解析:90【解析】分析:根据有理数的乘法以及有理数的大小比较列式进行计算即可得解.详解:所得乘积最大为:(-5)×(-3)×6,=5×3×6,=90.故答案为90.点睛:本题考查了有理数的乘法以及有理数的大小比较,熟记运算法则并准确列出算式是解题的关键.3.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.4.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.5.若两个不相等的数互为相反数,则两数之商为____.-1【分析】设其中一个数为a (a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.6.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.7.截至2020年7月2日,全球新冠肺炎确诊病例已超过1051万例,其中数据1051万用科学记数法表示为_____.051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10nn为整数位数减1【详解】解:1051万=10510000=1051×107故答案为:1051×107【点睛】本题考查了科学解析:051×107【分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【详解】解:1051万=10510000=1.051×107.故答案为:1.051×107.【点睛】本题考查了科学记数法-表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,8.在-1,2,-3,0,5这五个数中,任取两个数相除,其中商最小是________.-5【分析】所给的五个数中最大的数是5绝对值最小的负数是-1所以取两个相除其中商最小的是:5÷(-1)=-5【详解】∵-3<-1<0<2<5所给的五个数中最大的数是5绝对值最小的负数是-1∴任取两个解析:-5【分析】所给的五个数中,最大的数是5,绝对值最小的负数是-1,所以取两个相除,其中商最小的是:5÷(-1)=-5.【详解】∵-3<-1<0<2<5,所给的五个数中,最大的数是5,绝对值最小的负数是-1,∴任取两个相除,其中商最小的是:5÷(-1)=-5,故答案为:-5.【点睛】本题主要考查有理数的大小比较和有理数除法,解决本题的关键是要熟练掌握有理数大小比较和有理数除法法则.9.已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.5×108【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数 解析:5×108【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.10.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b =- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.11.绝对值小于4.5的所有负整数的积为______.24【分析】找出绝对值小于45的所有负整数求出之积即可【详解】解:绝对值小于45的所有负整数为:-4-3-2-1∴积为:故答案为:24【点睛】此题考查了有理数的乘法以及绝对值熟练掌握运算法则是解本题解析:24【分析】找出绝对值小于4.5的所有负整数,求出之积即可.【详解】解:绝对值小于4.5的所有负整数为:-4,-3,-2,-1,∴积为:4(3)(2)(1)24-⨯-⨯-⨯-=,故答案为:24.【点睛】此题考查了有理数的乘法,以及绝对值,熟练掌握运算法则是解本题的关键.1.计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 解析:(1)113-;(2)-19 【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3-+-+÷-⨯=114324()33-++⨯-⨯ =8433-+- =113- (2)71113()2461224-+-⨯ =7111324242461224-⨯+⨯-⨯ =-28+22-13=-19【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 2.计算(1) ()375244128⎛⎫---⨯- ⎪⎝⎭ (2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭=18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.3.计算(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦解析:(1)-6;(2)52-【分析】(1)根据加法运算律计算即可;(2)先算括号里面,再算括号外面的即可;【详解】(1)1140336177⎛⎫⎛⎫-+-+-- ⎪ ⎪⎝⎭⎝⎭, ()1140363177⎛⎫=-++-+ ⎪⎝⎭, 42=--,=-6;(2)()()341110.5123⎡⎤---⨯⨯--⎣⎦, 111923=--⨯⨯, 312=--, 52=-. 【点睛】本题主要考查了有理数的混合运算,准确应用加法运算律解题的关键.4.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】 原式311222⎛⎫=-++-=- ⎪⎝⎭.【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键.。
(必考题)初中七年级数学上册第一章《有理数》经典测试题(含答案解析)
一、选择题1.(0分)下列各组运算中,其值最小的是( )A .2(32)---B .(3)(2)-⨯-C .22(3)(2)-+-D .2(3)(2)-⨯- A解析:A【分析】根据有理数乘除和乘方的运算法则计算出结果,再比较大小即可.【详解】A ,()23225---=-;B ,()()326-⨯-=;C ,223(3)(2)941=++=--D ,2(3)(2)9(2)18-⨯-=⨯-=-最小的数是-25故选:A .【点睛】本题考查了有理数的混合运算和有理数大小的比较,熟练掌握相关的法则是解题的关键. 2.(0分)如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( ) A .-12 B .112 C .12 D .-112A 解析:A 【分析】 逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.3.(0分)下列说法正确的是( )A .近似数5千和5000的精确度是相同的B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C .2.46万精确到百分位D .近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A .近似数5千精确度到千位,近似数5000精确到个位,所以A 选项错误;B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B 选项正确;C .2.46万精确到百位,所以C 选项错误;D .近似数8.4和0.7的精确度是一样的,所以D 选项错误.故选B .【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.4.(0分)已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.5.(0分)若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】【分析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.6.(0分)将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是( )A .(-3.4)3<(-3.4)4<(-3.4)5B .(-3.4)5<(-3.4)4<(-3.4)3C .(-3.4)5<(-3.4)3<(-3.4)4D .(-3.4)3<(-3.4)5<(-3.4)4C解析:C【解析】(-3.4)3、 (-3.4)5的积为负数,且(-3.4)3的绝对值小于 (-3.4)5的绝对值,所以(-3.4)3>(-3.4)5 ;(-3.4)4的积为正数,根据正数大于负数,即可得(-3.4)5<(-3.4)3<(-3.4)4,故选C.7.(0分)下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误; B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误;D、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确;故选:D.【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.8.(0分)如果a,b,c为非零有理数且a + b + c = 0,那么a b c abca b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 2A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.9.(0分)下列说法中错误的有()个①绝对值相等的两数相等.②若a,b互为相反数,则ab=﹣1.③如果a大于b,那么a的倒数小于b的倒数.④任意有理数都可以用数轴上的点来表示.⑤x2﹣2x﹣33x3+25是五次四项.⑥两个负数比较大小,绝对值大的反而小.⑦一个数的相反数一定小于或等于这个数.⑧正数的任何次幂都是正数,负数的任何次幂都是负数.A.4个B.5个C.6个D.7个C解析:C【分析】分别根据有理数、绝对值、相反数的定义及数轴的特点对各小题进行逐一判断.【详解】解:①绝对值相等的两数相等或互为相反数,故本小题错误;②若a ,b 互为相反数,则a b=-1在a 、b 均为0的时候不成立,故本小题错误; ③∵如果a=2,b=0,a >b ,但是b 没有倒数,∴a 的倒数小于b 的倒数不正确,∴本小题错误;④任意有理数都可以用数轴上的点来表示,故本小题正确;⑤x 2-2x-33x 3+25是三次四项,故本小题错误;⑥两个负数比较大小,绝对值大的反而小,故本小题正确;⑦负数的相反数是正数,大于负数,故本小题错误;⑧负数的偶次方是正数,故本小题错误,所以④⑥正确,其余6个均错误.故选C.【点睛】 本题考查的是有理数、绝对值、相反数的定义及数轴的特点,熟知以上知识是解答此题的关键.10.(0分)已知有理数a ,b 满足0ab ≠,则||||a b a b +的值为( ) A .2±B .±1C .2±或0D .±1或0C解析:C【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果.【详解】∵0ab ≠,∴当0a >,0b <时,原式110=-=;当0a >,0b >时,原式112=+=;当0a <,0b <时,原式112=--=-;当0a <,0b >时,原式110=-+=.故选:C .【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键. 二、填空题11.(0分)若230x y ++-= ,则x y -的值为________.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性 解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.12.(0分)若有理数a ,b 满足()26150a b -+-=,则ab =__________.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab 的值再把ab 的值代入ab 中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a ,b 的值,再把a 、b 的值代入ab 中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0. 13.(0分)计算1-2×(32+12)的结果是 _____.-18【分析】先算乘方再算括号然后算乘法最后算加减即可【详解】解:1-2×(3+)=1-2×(9+)=1-2×=1-19=-18故答案为-18【点睛】本题考查了含乘方的有理数四则混合运算掌握相关运算 解析:-18【分析】先算乘方、再算括号、然后算乘法、最后算加减即可.【详解】解:1-2×(32+12) =1-2×(9+12)=1-2×192=1-19=-18.故答案为-18.【点睛】本题考查了含乘方的有理数四则混合运算,掌握相关运算法则是解答本题的关键. 14.(0分)填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.15.(0分)下列说法正确的是________.(填序号)①若||a b =,则一定有a b =±;②若a ,b 互为相反数,则1b a=-;③几个有理数相乘,若负因数有偶数个,那么他们的积为正数;④两数相加,其和小于每一个加数,那么这两个加数必是两个负数;⑤0除以任何数都为0.④【分析】利用绝对值的代数意义有理数的加法倒数的定义及有理数的乘法法则判断即可【详解】①若则故或当b<0时无解故①错误;②时ab 互为相反数但是对于等式不成立故②不正确;③几个有理数相乘如果负因数有偶解析:④【分析】利用绝对值的代数意义,有理数的加法,倒数的定义及有理数的乘法法则判断即可.【详解】①若||a b =,则0b ,故a b =或=-a b ,当b<0时,无解,故①错误;②0a b 时,a ,b 互为相反数,但是对于等式1b a=-不成立,故②不正确; ③几个有理数相乘,如果负因数有偶数个,但其中有因数0,那么它们的积为0,故③不正确;④两个正数相加,此时和大于每一个加数;一正数一负数相加,此时和大于负数;一个数和0相加,等于这个数;只有两个负数相加,其和小于每一个加数,故④正确; ⑤0除以0没有意义,故⑤不正确.综上,正确的有④.故答案为:④.【点睛】本题考查了绝对值、相反数、有理数的加法、有理数的除法等基础知识点,这都是必须掌握的基础知识点.16.(0分)某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】根据题意,得他九月份工资为4000300(1320010000)5%4460++-⨯=(元). 故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.17.(0分)把点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P所表示的数是______.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,所以点P所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.18.(0分)气温由﹣20℃下降50℃后是__℃.-70【分析】先将-20-50转化为-20+(-50)再由有理数的加法运算法则进行计算【详解】解:零上的温度用正数来表示零下的温度用负数来表示再根据有理数的减法的运算法则(减去一个数等于加上这个数的解析:-70【分析】先将-20-50转化为-20+(-50),再由有理数的加法运算法则进行计算.【详解】解:零上的温度用正数来表示,零下的温度用负数来表示,再根据有理数的减法的运算法则(减去一个数等于加上这个数的相反数),将有理数的减法化为有理数的加法来进行计算.∵-20-50=-20+(-50)=-70∴答案为:-70.【点睛】本题考查了有理数的减法的运算法则(减去一个数等于加上这个数的相反数),有理数的加法运算法则之一:(同号两数相加,和的正负号取任何一个加数的正负号,和的绝对值取两个加数的绝对值的和),熟记并灵活运用这两个运算法则是解本题的关键.19.(0分)已知太阳与地球之间的平均距离约为150000000千米,用科学记数法表示为______千米.5×108【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数 解析:5×108【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】150 000 000将小数点向左移8位得到1.5,所以150 000 000用科学记数法表示为:1.5×108,故答案为1.5×108.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.20.(0分)若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 三、解答题21.(0分)高速公路养护小组,乘车沿东西方向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,-9,+7,-15,-3,+11,-6,-8,+5,+16(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.2升/千米,则这次养护共耗油多少升?解析:(1)最后到达的地方在出发点的东边,距出发点15千米;(2)这次养护共耗油19.4升.【分析】(1)求出这一组数的和,结果是正数则在出发点的东边,是负数则在出发点的西侧;(2)所走的路程是这组数据的绝对值的和,然后乘以0.2,即可求得耗油量.【详解】解:(1)17﹣9+7﹣15﹣3+11﹣6﹣8+5+16,=17+7+11+5+16-(9+15+3+6+8),=15.答:最后到达的地方在出发点的东边,距出发点15千米;++-+++-+-+++-+-++++⨯,(2)(17971531168516)0.2=97×02,=19.4(升).答:这次养护共耗油19.4升.【点睛】本题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.也考查了有理数的加减运算.22.(0分)点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D,且A、D两点间的距离是3,求m的值.解析:(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5,∴BC=|2﹣5|=3.(2)当点D在点A的右侧时,点D所表示的数为﹣3+3=0,所以点B移动到点D的距离为m=|2﹣0|=2,当点D在点A的左侧时,点D所表示的数为﹣3﹣3=﹣6,所以点B移动到点D的距离为m=|2﹣(﹣6)|=8,答:m的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD的距离分类讨论点D的位置是解题关键.23.(0分)计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.(0分)定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上);①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式) 试一试:将下列除方运算直接写成幂的形式:65=_______;91()2-=________; (4)计算:3341()(2)2(8)24-÷--+-⨯-.解析:(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④; (3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯- =16×(-18)-8+(-8)×2 =-2-8-16=−26.【点睛】 本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 25.(0分)设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.26.(0分)计算(1) ()375244128⎛⎫---⨯- ⎪⎝⎭(2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭ =18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.27.(0分)如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数; (3)在数轴上找出点E ,使点E 到点A 的距离等于点E 到点B 的距离的2倍,写出点E 表示的数.解析:(1)1- (2)0.5 (3)3-或7-【分析】(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D 是线段AC 的中点;(3)在点B 左侧找一点E ,点E 到点A 的距离是到点B 的距离的2倍,依此即可求解.【详解】解:(1)点B 表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D 表示的数为(-1+2)÷2=1÷2=0.5;(3)点E 在点B 的左侧时,根据题意可知点B 是AE 的中点,AB=|-1+4|=3则点E 表示的数是-4-3=-7.点E 在点B 的右侧时,即点E 在AB 上,则点E 表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.28.(0分)计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷=9 12 -+=72.【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.。
人教版初中七年级数学上册第一章《有理数》经典习题(含答案解析)
1.若12a =,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± D 解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】 本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( )A .2个B .3个C .4个D .5个A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a 不一定是负数,若a 为负数,则-a 就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A .【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.3.丁丁做了4道计算题:① 2018(1)2018-=;② 0(1)1--=-;③ 1111326-+-=;④11()122÷-=-请你帮他检查一下,他一共做对了( )道 A .1道B .2道C .3道D .4道A 解析:A【分析】根据乘方的意义以及有理数的减法、乘法、除法法则,有理数加减混合运算法则即可判断.【详解】①2018(1)1-=,故本小题错误;②0(1)1--=,故本小题错误; ③1113267-+-=-,故本小题错误; ④11()122÷-=-,正确; 所以,他一共做对了1题.故选A .【点睛】本题考查了有理数的乘方、加法以及除法法则,熟练掌握运算法则是解题关键. 4.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.5.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( )A .6B .12C .8D .24B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B .【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.6.已知a 、b 在数轴上的位置如图所示,将a 、b 、-a 、-b 从小到排列正确的一组是( )A .-a <-b <a <bB .-b <-a <a <bC .-b <a <b <-aD .a <-b <b <-a D 解析:D【解析】【分析】根据数轴表示数的方法得到a <0<b ,且|a|>b ,则-a >b ,-b >a ,然后把a ,b ,-a ,-b 从大到小排列.【详解】∵a <0<b ,且|a|>b ,∴a <-b <b <-a ,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.7.若21(3)0a b -++=,则b a -=( )A .-412B .-212C .-4D .1C解析:C【解析】根据非负数的性质可得a-1=0,b+3=0,求出a 、b 后代入式子进行计算即可得.【详解】由题意得:a-1=0,b+3=0,解得:a=1,b=-3,所以b-a=-3-1=-4,故选C.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.8.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键.9.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.10.下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A 解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.下列运算正确的是( )A .()22-2-21÷=B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D 解析:D【分析】 根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D .【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D .【点睛】 本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 12.已知实数m 、n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >0C解析:C【解析】从数轴可知m 小于0,n 大于0,从而很容易判断四个选项的正误.解:由已知可得n 大于m ,并从数轴知m 小于0,n 大于0,所以mn 小于0,则A ,B ,D 均错误.故选C .13.一个数大于6,另一个数比10的相反数大2,则这两个数的和不可能是( ) A .18B .1-C .18-D .2C 解析:C【分析】本题可先通过比10的相反数大2确定其中一个数,继而按照题目要求利用排除法求解.【详解】∵一个数比10的相反数大2,∴这个数为1028-+=-.A 选项:18(8)26--=,因为26大于6,故符合题意;B 选项:1(8)7---=,因为7大于6,故符合题意;C 选项:18(8)10---=-,因为10-小于6,不符合题意,故选该选项;D 选项:2(8)10--=,因为10大于6,故符合题意;故选:C .【点睛】本题考查有理数的运算,此类型题理清题意最为重要,当涉及不确定性问题时,注意具体情况具体分析,其次注意计算仔细.14.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018C 解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.15.下列计算结果正确的是()A.-3-7=-3+7=4B.4.5-6.8=6.8-4.5=2.3C.-2-13⎛⎫-⎪⎝⎭=-2+13=-213D.-3-12⎛⎫-⎪⎝⎭=-3+12=-212D解析:D【分析】本题利用有理数的加减运算法则求解各选项,即可判断正误.【详解】A选项:3710--=-,故错误;B选项:4.5 6.8 4.5( 6.8) 2.3-=+-=-,故错误;C选项:1122()21333---=-+=-,故错误;D选项运算正确.故选:D.【点睛】本题考查有理数的加减运算,按照对应法则仔细计算即可.1.若a、b、c、d、e都是大于1、且是不全相等的五个整数,它们的乘积2000abcde=,则它们的和a b c d e++++的最小值为__.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a,b,c,d,e都大于1,得到使a+b+c+d+e尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.2.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a、b、c、d的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.3.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.4.在数轴上,若点A与表示3-的点相距6个单位,则点A表示的数是__________.−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时当点在表示-3的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-3的点的左边时数为-3−6=−9;②当点在表示-3的点的解析:−9或3【分析】根据题意得出两种情况:当点在表示-3的点的左边时,当点在表示-3的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-3的点的左边时,数为-3−6=−9;②当点在表示-3的点的右边时,数为-3+6=3;故答案为:−9或3.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况,不要漏数.5.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.6.绝对值小于2018的所有整数之和为________.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.7.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-. 【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.8.填空:166-18-1800【分析】由有理数的乘法和除法运算法则进行计算即可得到答案【详解】解:根据题意则;;;;故答案为:1;1;6;6;18;18;0;0【点睛】本题考查了有理数的乘法和除法的运算法则解析:1 6 6 -18 -18 0 0【分析】由有理数的乘法和除法运算法则进行计算,即可得到答案.【详解】解:根据题意,则331÷=,1313⨯=; (12)(2)6-÷-=,1(12)()62-⨯-=; 1(9)182-÷=-,(9)218-⨯=-; 0( 2.3)0÷-=,100()023⨯-=; 故答案为:1;1;6;6;-18;-18;0;0.【点睛】本题考查了有理数的乘法和除法的运算法则,解题的关键是熟练掌握有理数乘法和除法的运算法则进行解题.9.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可.【详解】(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125(乘法交换律)=-(4×2.5)×(8×125)(乘法结合律)=-10×1000=-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000.【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.++-+++-++++-=_____.【分析】第1 10.计算:(1)(2)(3)(4)(2019)(2020)个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.11.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出0【分析】根据图表运算程序把输入的值-1-2分别代入进行计算即可得解【详解】当输入时输出的结果为;当输入时输出的结果为故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算是基础题读懂图表理解运解析:0【分析】根据图表运算程序,把输入的值-1,-2分别代入进行计算即可得解.【详解】当输入1-时,输出的结果为14(3)514351-+---=-++-=;当输入2-时,输出的结果为24(3)524350-+---=-++-=.故答案为:①1;②0【点睛】本题考查了有理数的加减混合运算,是基础题,读懂图表理解运算程序是解题的关键. 1.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =154()68-÷⨯- =5468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.2.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值; (2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).解析:(1)14a =-,12b =-,6c =,8d =;(2)点C 的运动速度为每秒2个单位;(3)4t =或20;(4)23-,223-,10-. 【分析】(1)根据平方数和绝对值的非负性计算即可;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==,即可得解; (3)根据题意分别表示出AC ,BD ,在进行分类讨论计算即可;(4)根据点A ,C 相遇的时间不同进行分类讨论并计算即可;【详解】 (1)∵()()22141268+++=----a b c d ,∴()()221412+6+80+++--=a b c d , ∴14a =-,12b =-,6c =,8d =;(2)设点C 运动速度为x ,由题意得:101042033x AC +⨯==, 解得:2x =,∴点C 的运动速度为每秒2个单位;(3)t 秒时,点A 数为144t -+,点B 数为-12,点C 数为62t +,点D 数为8t +,∴()62144202AC t t t =+--+=-,()81220BD t t =+--=+,∵2BD AC =, ∴①2020t -≥时,()2022202t t +=-,解得:4t =; ②20-2t <0时,即t >10,()202220t t +=-,解得:20t =; ∴4t =或20.(4)C 点运动到A 点所需时间为()614102s --=,所以A ,C 相遇时间10t ≤,由(2)得103t =时,A ,C 相遇点为102144-33-+⨯=,A 到C 再从C 返回到A ,用时()()()6146147.548s ----+=;①第一次从点C 出发时,若与C 相遇,根据题意得()852t t ⨯-=,203t =<10,此时相遇数为20226233-⨯=-;②第二次与C 点相遇,得()()87.52614t t ⨯-+=--,解得8t =<10,此时相遇点为68210-⨯=-; ∴A ,C 相遇时对应的数为:23-,223-,10-. 【点睛】本题主要考查了数轴的动点问题,准确分析计算是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.计算:(1)13 |38|44⎛⎫--+- ⎪⎝⎭(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦解析:(1)4;(2)13;(3)14-;(4)26.【分析】(1)先把绝对值化简,再进一步计算可得答案;(2)先计算乘方、除法转化为乘法,再进一步计算即可;(4)先算括号里面的,再把除法化为乘法,进一步计算即可;(4)利用乘法分配律展开,再进一步计算即可.【详解】(1)13 |38|44⎛⎫--+- ⎪⎝⎭=13 544 --=5-1 =4;(2)2202111 (1)236⎛⎫-+⨯-÷⎪⎝⎭=1 1269-+⨯⨯=-1+4 3=13;(3)221 10.51 339⎛⎫⨯-÷⎪⎝⎭=211 1()1 369⨯-÷=519() 3610⨯-⨯=14 -;(4)157 (48)2812⎡⎤⎛⎫-⨯--+⎪⎢⎥⎝⎭⎣⎦=157 (48)()(48)(48)2812 -⨯---⨯+-⨯=24+30-28=26.【点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.。
北京燕化前进中学七年级数学上册第一章《有理数》提高卷(含答案)
北京燕化前进中学七年级数学上册第一章《有理数》提高卷(含答案)一、选择题1.(0分)下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2(1)1-=,故选项D 不符合题意,故选:A .【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 2.(0分)下列有理数大小关系判断正确的是( )A .11910⎛⎫-->-⎪⎝⎭ B .010>- C .33-<+D .10.01->- A解析:A【分析】先化简各式,然后根据有理数大小比较的方法判断即可.【详解】 ∵1199⎛⎫--= ⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->-- ⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=, ∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>,∴10.01-<-,故选项D 不正确.故选:A .【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3.(0分)在数轴上距原点4个单位长度的点所表示的数是().A.4 B.-4 C.4或-4 D.2或-2C解析:C【解析】解:距离原点4个单位长度的点在原点的左边和右边各有一个,分别是4和-4,故选C.4.(0分)正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是()A.点C B.点D C.点A D.点B B解析:B【分析】由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点.【详解】当正方形在转动第一周的过程中,1对应的点是A,2所对应的点是B,3对应的点是C,4对应的点是D,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D,故答案选B.【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.5.(0分)下列各组数中,不相等的一组是()A.-(+7),-|-7| B.-(+7),-|+7|C.+(-7),-(+7)D.+(+7),-|-7|D解析:D【详解】A.-(+7)=-7,-|-7|=-7,故不符合题意;B.-(+7)=-7,-|+7|=-7,故不符合题意;C.+(-7)=-7,-(+7)=-7,故不符合题意;D.+(+7)=7,−(−7)=−7,故符合题意,故选D.6.(0分)在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,3A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.7.(0分)下列结论错误的是( )A.若a,b异号,则a·b<0,ab<0B.若a,b同号,则a·b>0,ab>0C.ab-=ab-=-abD.ab--=-abD解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.8.(0分)某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为()A.8个B.16个C.32个D.64个D解析:D【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【详解】26=2×2×2×2×2×2=64.故选D.【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.9.(0分)如果向右走5步记为+5,那么向左走3步记为( )A.+3 B.-3 C.+13D.-13B解析:B【解析】试题用正负数来表示具有意义相反的两种量:向右记为正,则向左就记为负,由此得:如果向右走5步记为+5,那么向左走3步记为﹣3.故选B.10.(0分)2020年5月7日,世卫组织公布中国以外新冠确诊病例约为3504000例,把“3504000”用科学记数法表示正确的是()A.3504×103B.3.504×106C.3.5×106D.3.504×107B解析:B【分析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【详解】3504000=3.504×106,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题11.(0分)把67.758精确到0.01位得到的近似数是__.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.12.(0分)在有理数3.14,3,﹣12,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x,正整数的个数为y,则x+y的值等于__.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】负分数为:﹣12,﹣313,共2个;正整数为: 3, 6005共2个,则x+y=2+2=4,故答案为4.【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键.13.(0分)数轴上,如果点 A所表示的数是3 ,已知到点A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.14.(0分)已知|a|=3,|b|=2,且ab<0,则a﹣b=_____.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.15.(0分)观察下面一列数:—1,2,—3,4,—5,6,—7,…,将这列数排成下列形式.按照上述规律排下去,那么第10行从左边数第9个数是______;数—201是第______行从左边数第______个数90155【分析】根据数的排列每一行的最后一个数的绝对值等于行数的平方并且奇数都是负数偶数都是正数求出第9行的最后一个数的绝对值然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为19解析:90, 15, 5.【分析】根据数的排列,每一行的最后一个数的绝对值等于行数的平方,并且奇数都是负数,偶数都是正数,求出第9行的最后一个数的绝对值,然后加上9即为第10行从左边数第9个数;求出与201最接近平方数为196,即可得解.【详解】∵第9行的最后一个数的绝对值为92=81,∴第10行从左边数第9个数的绝对值是81+9=90,∵90是偶数,∴第10行从左边数第9个数是正数,为90,∵142=196,201-196=5,∴数-201是第15行从左边数起第5个数.故答案为90,15,5.【点睛】本题是对数字变化规律的考查,观察出每一行的最后一个数的绝对值等于行数的平方是解题的关键.16.(0分)某电视塔高468 m,某段地铁高-15 m,则电视塔比此段地铁高_____m.483【分析】根据有理数减法进行计算即可【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483m故答案为:483【点睛】本题考查了有理数减法根据题意列出式子是解题的关键解析:483【分析】根据有理数减法进行计算即可.【详解】解∶依题意得:电视塔比此段地铁高468-(-15)=483 m.故答案为:483.【点睛】本题考查了有理数减法,根据题意列出式子是解题的关键.17.(0分)运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算.18.(0分)某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】++-⨯=(元).根据题意,得他九月份工资为4000300(1320010000)5%4460故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.19.(0分)如果数轴上原点右边 8 厘米处的点表示的有理数是 32,那么数轴上原点左边 12 厘米处的点表示的有理数是__________.﹣48【分析】数轴上原点右边8厘米处的点表示的有理数是32即单位长度是cm即1cm表示4个单位长度数轴左边12厘米处的点表示的数一定是负数再根据1cm表示4个单位长度即可求得这个数的绝对值【详解】数解析:﹣48【分析】数轴上原点右边 8厘米处的点表示的有理数是 32,即单位长度是14cm,即 1cm表示 4个单位长度,数轴左边12厘米处的点表示的数一定是负数,再根据 1cm表示 4个单位长度,即可求得这个数的绝对值.【详解】数轴左边 12 厘米处的点表示的有理数是﹣48.故答案为﹣48.【点睛】本题主要考查了在数轴上表示数.借助数轴用几何方法化简含有绝对值的式子,比较有关数的大小既直观又简捷.20.(0分)(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.三、解答题21.(0分)阅读下列材料:(0)0(0)(0)x xx xx x>⎧⎪==⎨⎪-<⎩,即当0x<时,1xx xx==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c +++++的值. 解析:(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b+的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=- 即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.22.(0分)计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】(1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.23.(0分)计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】 本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.24.(0分)(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭;(2)431(2)2(3)----⨯- 解析:(1)-29;(2)13.【分析】(1)利用乘法分配律进行简便运算,即可得出结果;(2)先计算有理数的乘方与乘法,再进行加减运算即可.【详解】解:(1)371(24)812⎛⎫-+⨯- ⎪⎝⎭ 37(1242424)812=-⨯-⨯+⨯ (24914)=--+29=-;(2)431(2)2(3)----⨯-1(8)(6)=-----186=-++13=.【点睛】本题考查了有理数的混合运算,熟练掌握有理数混合运算的运算顺序、运算法则及乘法运算律是解题的关键.25.(0分)定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n 个(0)a a ≠相除记作n a ,读作“a 的下n 次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上);①21a =(0)a ≠;②对于任何正整数n ,11n =;③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数.(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式) 试一试:将下列除方运算直接写成幂的形式: 65=_______;91()2-=________; (4)计算:3341()(2)2(8)24-÷--+-⨯-.解析:(1)12;(2)①②④;(3)41()5,7(2)-;(4)26-. 【分析】(1)根据a n 表示“a 的下n 次方”的意义进行计算即可;(2)根据a n 表示“a 的下n 次方”的意义计算判断即可;(3)根据a n 表示“a 的下n 次方”的意义,表示出56,91()2-=7(2)-,进而得出答案; (4)按照有理数的运算法则进行计算即可.【详解】(1)23=2÷2÷2=2×12×12=12, 故答案为:12; (2)当a≠0时,a 2=a÷a =1,因此①正确;对于任何正整数n ,1n =1÷1÷1÷…÷1=1,因此②正确;因为34=3÷3÷3÷3=19,而43=4÷4÷4=14,因此③不正确; 根据有理数除法的法则可得,④正确;故答案为:①②④; (3)56=5÷5÷5÷5÷5÷5=5×15×15×15×15×15=(15)4, 同理可得,91()2-==(−2)7, 故答案为:(15)4,(−2)7; (4)3341()(2)2(8)24-÷--+-⨯- =16×(-18)-8+(-8)×2 =-2-8-16【点睛】本题考查有理数的混合运算,理解“a n ,表示a 的下n 次方”的意义是正确计算的前提. 26.(0分)计算:(1)[]2(2)18(3)24-+--⨯÷ (2)()()243513224⎡⎤----⨯÷-⎢⎥⎣⎦ 解析:(1)10;(2)-15【分析】(1)先算乘方,再算乘法,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】(1)解:原式=4+[18-(-6)]÷4=4+24÷4=4+6=10;(2)解:原式=-1-[9-10÷(-2)]=-1-[9-(-5)]=-1-14=-15.【点睛】本题考查了有理数的混合运算,解题的关键是明确有理数混合运算的计算方法. 27.(0分)出租车司机张师傅11月1日这一天上午的营运全在一条东西向的街道上进行,如果规定向东为正,那么他这天上午载了五位乘客所行车的里程如下(单位:km ):8+,6-,3+,7-,1+.(1)将最后一名乘客送到目的地时,张师傅距出车地点的位置如何?(2)若汽车耗油为0.08L/km ,则这天上午汽车共耗油多少升?解析:(1)在出车地点西边1千米处;(2)2升【分析】(1)计算张师傅行驶的路程的和即可;(2)计算出每段路程的绝对值的和后乘以0.08,即为这天上午汽车共耗油数.【详解】解:(1)规定向东为正,则向西为负,(+8)+(-6)+(+3)+(-7)+(+1)=8-6+3-7+1=-1千米.答:将最后一名乘客送到目的地,张师傅在出车地点西边1千米处.(2)(8+6+3+7+1)×0.08=2升.答:这天午共耗油2升.本题考查了有理数的混合运算,注意要针对不同情况用不同的计算方法.28.(0分)(1)在图所示的数轴上标出以下各数:52- ,-5.5,-2,+5, 132 (2)比较以上各数的大小,用“<”号连接起来;(3) 若点A 对应 5.5-,点B 对应132,请计算点A 与点B 之间的距离.解析:(1)画图见解析;(2) 5.5-<52-<2-<132<+5;(3)9. 【分析】(1)先画数轴,根据数轴上原点左边的为负数,原点右边的为正数,在数轴上描出对应各数的点即可得到答案;(2)根据数轴上的数,右边的数大于左边的数,直接用“<”连接即可得到答案;(3)数轴上点A 与点B 对应的数分别为,a b ,则AB a b =-或b a -,根据以上结论代入数据直接计算即可得到答案.【详解】解:(1)如图,在数轴上表示各数如下:(2)因为数轴上的数,右边的数总大于左边的数:所以按从小到大排列各数为:5.5-<52-<2-<132<+5 (3)因为:A 表示 5.5-,B 表示132, 所以:点A 与点B 之间的距离为:()13 5.5 3.5 5.599.2AB =--=+== 【点睛】本题考查的是利用数轴上的点表示有理数,利用数轴比较有理数的大小,数轴上两点之间的距离,绝对值的含义,掌握以上知识是解题的关键.。
第一章有理数中高难度题
数轴的认识及应用1.如图,数轴上的A,B,C三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在()A.点A的左边 B.点A与点B之间C.点B与点C之间 D.点B与点C之间(靠近点C)或点C的右边2.在数轴上,与表示数﹣5的点的距离是2的点表示的数是()A.﹣3 B.﹣7 C.±3 D.﹣3或﹣73.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等4.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2015次后,数轴上数2015所对应的点是()A.点C B.点D C.点A D.点B5.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为()A.﹣74 B.﹣77 C.﹣80 D.﹣836.如图,数轴上P、Q、S、T四点对应的整数分别是p、q、s、t,且有p+q+s+t=﹣2,那么,原点应是点()A.P B.Q C.S D.T7.点A、B分别是数﹣3,﹣1在数轴上对应的点.使线段AB沿数轴向右移动到A′B′,且线段A′B′的中点对应的数是3,则点A′对应的数是,点A移动的距离是.8.如图,数轴的单位长度为1,如果R表示的数是﹣1,则数轴上表示相反数的两点是.9.如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿数轴匀速爬向B点的过程中,到达C点时用了9分钟,那么到达B点还需要分钟.10.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为.11.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是,A、B两点间的距离是.12.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.13.一只蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记为“+”,向负半轴运动记为“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4.(1)若A点在数轴上表示的数为﹣2,则蜗牛停在数轴上何处,请通过计算加以说明.(2)若蜗牛的爬行速度为每秒cm,请问蜗牛一共爬行了多少秒?14.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东500m处,商场在学校西300m处,医院在学校东600m处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)请画一条数轴并在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离;(3)若小新家也位于这条马路旁,在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,试求小新家与学校的距离.绝对值及其应用1.已知a,b是有理数,|ab|=﹣ab(ab≠0),|a+b|=|a|﹣b.用数轴上的点来表示a,b 下列正确的是()A. B.C. D.2.a,b在数轴上的位置如图,化简|a+b|的结果是()A.﹣a﹣b B.a+b C.a﹣b D.b﹣a3.数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|4.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点倒原点的距离之和5.若|m|=﹣m,则|m﹣1|﹣|m﹣2|= .6.有理数a、b在数轴上如图,(1)在数轴上表示﹣a、﹣b;(2)试把这a、b、0、﹣a、﹣b五个数按从小到大用“<”连接.(3)用>、=或<填空:|a| a,|b| b.7.绝对值大于2而小于6的所有整数的和是多少?(列式计算)8.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a﹣b|.根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为;②若该两点之间的距离为2,那么x值为.(2)|x+1|+|x﹣2|的最小值为,此时x的取值是;(3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|)=15,求x﹣2y的最大值和最小值.9.已知有理数a,b在数轴上的位置如图所示.(1)在数轴上标出﹣a,﹣b的位置,并比较a,b,﹣a,﹣b的大小:(2)化简|a+b|+|a﹣b|.10.阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a ﹣b|.理解:(1)数轴上表示2和﹣3的两点之间的距离是;(2)数轴上表示x和﹣5的两点A和B之间的距离是;(3)当代数式|x﹣1|+|x+3|取最小值时,相应的x的取值范围是;最小值是.应用:某环形道路上顺次排列有四家快递公司:A、B、C、D,它们顺次有快递车16辆,8辆,4辆,12辆,为使各快递公司的车辆数相同,允许一些快递公司向相邻公司调出,问共有多少种调配方案,使调动的车辆数最少?并求出调出的最少车辆有理数的加法1.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个2.两数相加,其和小于每一个加数,那么()A.这两个加数必有一个是0B.这两个加数必是两个负数C.这两个加数一正一负,且负数的绝对值较大D.这两个加数的符号不能确定3.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.104.在进行异号的两个有理数加法运算时,用到下面的一些操作:①将绝对值较大的有理数的符号作为结果的符号并记住②将记住的符号和绝对值的差一起作为最终的计算结果③用较大的绝对值减去较小的绝对值④求两个有理数的绝对值⑤比较两个绝对值的大小其中操作顺序正确的步骤是()A.①②③④⑤B.④⑤③②①C.①⑤③④②D.④⑤①③②5.已知a与1的和是一个负数,则|a|=()A.a B.﹣a C.a或﹣a D.无法确定6.若两个非零有理数a,b,满足|a|=a,|b|=﹣b,a+b<0,则a,b的取值符合题意的是()A.a=2,b=﹣1 B.a=﹣2,b=1 C.a=1,b=﹣2 D.a=﹣1,b=﹣27.在下表从左到右的每隔小格子中都填入一个有理数,使得其中任意四个相邻格子中所填的有理数之和都为﹣5,则第2015个格子中应填入的有理数是()a ﹣7b ﹣4cdef 2 …A.﹣7 B.﹣4 C.4 D.28.已知|x|=2,|y|=5,且x>y,则x+y= .9.一个数为﹣5,另一个数比它的相反数大4,这两数的和为.10.一组数:1,﹣2,3,﹣4,5,﹣6,…,99,﹣100,这100个数的和等于.11.观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1= .12.计算题(1)5.6+4.4+(﹣8.1)(2)(﹣7)+(﹣4)+(+9)+(﹣5)(3)+(﹣)+(4)5(5)(﹣9)+15(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)13.阅读下面文字:对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(一5)+(﹣9)+17+(一3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(﹣1)+(﹣2000)+4000+(﹣1999)有理数的加减混合运算1.将6﹣(+3)﹣(﹣7)+(﹣2)写成省略加号的和的形式为()A.﹣6﹣3+7﹣2 B.6﹣3﹣7﹣2 C.6﹣3+7﹣2 D.6+3﹣7﹣22.1﹣2+3﹣4+5﹣6+…+2005﹣2006的结果是()A.0 B.100 C.﹣1003 D.10033.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2 B.﹣2 C.2或﹣2 D.以上都不对4.下列交换加数位置的变形中,正确的是()A.1﹣4+5﹣4=1﹣4+4﹣5 B.1﹣2+3﹣4=2﹣1+4﹣3C.4﹣7﹣5+8=4﹣5+8﹣7 D.﹣3+4﹣1﹣2=2+4﹣3﹣15.大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计一种新的加减计数法.比如:9写成1,1=10﹣1;198写成20,20=200﹣2;7683写成13,13=10000﹣2320+3总之,数字上画一杠表示减去它,按这个方法请计算53﹣31=()A.1990 B.2068 C.2134 D.30246.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A﹣C表示观测点A相对观测点C的高度)根据这次测量的数据,可得观测点A相对观测点B的高度是()米.A﹣C C﹣D E﹣D F﹣E G﹣F B﹣G90米 80米﹣60米50米﹣70米40米A.210 B.130 C.390 D.﹣2107.50个连续正奇数的和l+3+5+7+…+99与50个连续正偶数的和:2+4+6+8+…+100,它们的差是()A.0 B.50 C.﹣50 D.50508.将一根12cm长的木棒和一根9cm长的木棒捆在一起,长度为17cm,则两根木棒的捆绑长度(重叠部分的长度)为cm.9.计算:= .10.规定图形表示运算x+z﹣y﹣w.则= .11.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=(2)若x△7=2003,则x= .12.)解答下列各题:(1)(﹣3.6)+(+2.5)(2)﹣(﹣3)﹣2(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(4)﹣5﹣(﹣11)﹣(﹣)(5)3﹣(﹣)+(﹣)(6)﹣|﹣1|﹣()﹣(﹣2.75)(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)(8)(﹣4)﹣(+5)﹣(﹣4)13.兴业银行中山街储蓄所上午在一段时间内办理了5件储蓄业务:存入1080元;取出902元;存入990元;存入1000元;取出1100元,这时银行现款增加了多少元?14.张华记录了今年雨季钱塘江一周内水位变化的情况如下表(正号表示比前一天高,负号表示比前一天低):星期一二三四五六日水位变化(m)+0.2+0.80 ﹣0.40 +0.03 +0.28 ﹣0.36 ﹣0.045(1)本周星期水位最高,星期水位最低.(2)与上周末相比,本周日的水位是上升了还是下降了?(写出计算过程)15.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出依次行走停点E、F、M、N的位置.16.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?有理数乘法1.以下各数中,填入□中能使(﹣)×□=﹣2成立的是()A.﹣1 B.2 C.4 D.﹣42.若四个有理数相乘,积为负数,则负因数的个数是()A.1 B.2 C.3 D.1或33.从﹣3,﹣1,1,5,6五个数中任取两个数相乘,若所得积中的最大值为a,最小值为b,则的值为()A.﹣ B.﹣2 C.﹣ D.﹣104.算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.5.两个有理数的积是负数,和也是负数,那么这两个数()A.都是负数B.互为相反数C.其中绝对值大的数是正数,另一个是负数D.其中绝对值大的数是负数,另一个是正数6.若a+b<0且ab<0,那么()A.a<0,b>0 B.a<0,b<0C.a>0,b<0 D.a,b异号,且负数绝对值较大7.若|a|=3,|b|=5,且a、b异号,则a•b= .8.若a<b<0,则(a+b)(a﹣b)0.9.若定义新运算:a△b=(﹣2)×a×3×b,请利用此定义计算:(1△2)△(﹣3)= .10.如果4个不等的偶数m,n,p,q满足(3﹣m)(3﹣n)(3﹣p)(3﹣q)=9,那么m+n+p+q 等于.11.用简便方法计算:(1)﹣13×﹣0.34×+×(﹣13)﹣×0.34(2)(﹣﹣+﹣)×(﹣60)12.用简便方法计算(1)99×(﹣9)(2)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)有理数的除法1.下列说法不正确的是()A.一个数(不为0)与它的倒数之积是1B.一个数与它的相反数之和为0C.两个数的商为﹣1,这两个数互为相反数D.两个数的积为1,这两个数互为相反数2.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是()A.相等 B.互为相反数C.互为倒数 D.相等或互为相反数3.已知非零实数a,b,c,满足,则等于()A.±1 B.﹣1 C.0 D.14.下列等式中不成立的是()A.﹣ B.=C.÷1.2÷ D.5.要使为整数,a只需为()A.奇数 B.偶数 C.5的倍数D.个位是5的数6.已知有10包相同数量的饼干,如果将其中1包饼干平分给23名学生,最少剩3片.如果将此10包饼干平分给23名学生,那么最少剩下的饼干的片数是()A.0 B.3 C.7 D.107.若=2,=6,则= .8.若a,b互为倒数,则a2b﹣(a﹣2017)值为.9.已知a﹣1的倒数是﹣,那么a+1的相反数是.10.(1)(﹣)×(﹣3)÷(﹣1)÷3(2)[(+)﹣(﹣)﹣(+)]÷(﹣)11.计算(1)(﹣3)×(﹣9)﹣8×(﹣5)(2)﹣63÷7+45÷(﹣9)(3)(﹣)×1÷(﹣1)(4)(1﹣+)×(﹣48).12.阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.有理数的乘方1.计算(﹣1)2017的结果是()A.﹣1 B.1 C.﹣2017 D.20172.a2=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣33.下列说法中,正确的是()A.若a≠b,则a2≠b2 B.若a>|b|,则a>bC.若|a|=|b|,则a=b D.若|a|>|b|,则a>b4.若x、y为有理数,下列各式成立的是()A.(﹣x)3=x3B.(﹣x)4=﹣x4C.x4=﹣x4D.﹣x3=(﹣x)35.下列各组数中,结果相等的是()A.﹣12与(﹣1)2B.C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣33 6.若a2=25,|b|=3,且ab>0,则a+b的值为()A.8 B.﹣8 C.8或﹣8 D.8或﹣27.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是()A.2 B.4 C.6 D.88.我国古代典籍《庄子•天下篇》中曾说过一句话:“一尺之棰,日取其半,万世不竭”,现有一根长为1尺的木杆,第1次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,如此反复,则第99次截取后,此木杆剩下的长度为()A.尺B.尺C.尺D.尺9.已知:2+=22×,3+=32×,4+=42×…,若14+=142×(a、b均为正整数),则a+b= .10.用“☆”、“★”定义新运算:对于任意有理数a、b,都有a☆b=a b和a★b=b a,那么(﹣3☆2)★1= .11.已知:|a|=3,|b|=2,且a<b,求(a+b)2的值.12.若(2a﹣1)2+|2a+b|=0,且|c﹣1|=2,求c•(a3﹣b)的值.13.阅读下列计算公式:2n+1﹣2n=2n(2﹣1)=2n.请你根据以上规律,计算:220﹣219﹣218﹣…﹣23﹣22+2.14.阅读材料,求值:1+2+22+23+24+ (22015)解:设S=1+2+22+23+24+…+22015,将等式两边同时乘以2得:2S=2+22+23+24+…+22015+22016将下式减去上式得2S﹣S=22016﹣1即S=1+2+22+23+24+…+22015=22016﹣1请你仿照此法计算:(1)1+2+22+23+…+210(2)1+3+32+33+34+…+3n(其中n为正整数)15.如果有理数a、b满足|ab﹣2|+(1﹣b)2=0,试求:++…+的值.有理数的乘方参考答案与试题解析一.选择题(共10小题)1.A.2.C.3.B.4.C.5.D.6.D.7.C.8.B.9.C.10.B二.填空题(共5小题)11.﹣;212.>.13.209.14.1.15.22017﹣1三.解答题(共5小题)16.解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵a<b,∴a=﹣3,b=±2,∴(a+b)2=(﹣3+2)2=1,或(a+b)2=(﹣3﹣2)2=25,综上所述,(a+b)2的值为1或25.17.解:∵(2a﹣1)2+|2a+b|=0∵(2a﹣1)2≥0,|2a+b|≥0,∴2a﹣1=0,2a+b=0∴a=,b=﹣1∵|c﹣1|=2∴c﹣1=±2∴c=3或﹣1当a=,b=﹣1,c=3时,c(a3﹣b)=3×[()3﹣(﹣1)]=,当a=,b=﹣1,c=﹣1时,c(a3﹣b)=(﹣1)×[()3﹣(﹣1)]=﹣.18.解:∵2n+1﹣2n=2n(2﹣1)=2n∴220﹣219﹣218﹣…﹣23﹣22+2=219﹣218﹣…﹣23﹣22+2=218﹣…﹣23﹣22+2=22+2=619.解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2,得2S=2+22+23+24+…+211将下式减去上式,得2S﹣S=211﹣1即S=1+2+22+23+24+…+210=211﹣1;(2)设S=1+3+32+33+34+…+3n,将等式两边同时乘以3,得3S=3+32+33+34+…+3n+1,将下式减去上式,得3S﹣S=3n+1﹣1即2S=3n+1﹣1得S=1+3+32+33+34+…+3n=.20.解:由题意得,ab﹣2=0,1﹣b=0,解得a=2,b=1,所以,+++…+,=+++…+,=1﹣+﹣+﹣+…+﹣,=1﹣,=.有理数的除法参考答案与试题解析一.选择题(共10小题)1.A.2.B.3.D.4.D.5.D.6.D.7.B.8.C.9.A.10.C.二.填空题(共5小题)11..12.12.13.2017.14.1.15.26.5万.三.解答题(共5小题)16.解:(1)原式=﹣×××=﹣;(2)原式=(+﹣)×(﹣105)=﹣15﹣35+21=﹣29.17.解:(1)(﹣3)×(﹣9)﹣8×(﹣5)=27+40=67(2)﹣63÷7+45÷(﹣9)=﹣9+(﹣5)=﹣14(3)==(4)==﹣48+8﹣36=﹣76.18.解:(1)根据分析,可得第1处是第二步,错误原因是运算顺序错误.第2处是第三步,错误原因是符号错误.(2)(﹣15)÷()×6=(﹣15)÷(﹣)×6==故答案为:二、运算顺序错误;三、符号错误.19.解:根据题意得:[8﹣(﹣1)]×(1000÷6)=1500(m),则热气球的高度为1500m.20.解:根据题意得:[﹣++(﹣)2×(﹣6)]÷(﹣)=[﹣++×(﹣6)]×(﹣42)=﹣21+14﹣30+112=75,则原式=.有理数乘法参考答案与试题解析一.选择题(共10小题)1.D.2.C.3.D.4.C.5.A.6.D.7.D.8.D.9.B.10.A.二.填空题(共5小题)11.﹣5.12.﹣15.13.>.14.﹣216.15.12.三.解答题(共5小题)16.解:(1)﹣13×﹣0.34×+×(﹣13)﹣×0.34 =﹣13×﹣×13﹣×0.34﹣0.34×=﹣13×(+)﹣(+)×0.34=﹣13×1﹣1×0.34=﹣13﹣0.34=﹣13.34(2)(﹣﹣+﹣)×(﹣60)=(﹣)×(﹣60)﹣×(﹣60)+×(﹣60)﹣×(﹣60)=20+15﹣12+28=5117.解:(1)根据题意得:3﹣(﹣5)=3+5=8;(2)﹣==﹣2.18.解:(1)原式=(100﹣)×(﹣9)=﹣900+=﹣899.(2)原式=(﹣5﹣7+12)×(﹣3)=0×(﹣3)=0.19.解:(1)(﹣+﹣)×(﹣12)=﹣×(﹣12)+×(﹣12)+(﹣)×(﹣12)=6﹣10+7=3;(2)7×(﹣)﹣×(﹣4)﹣0.75×11=(﹣7+4﹣11)×=.20.解:(1)原式=﹣(10×0.1×)=﹣;(2)原式=3×=;(3)原式=0.有理数的加减混合运算参考答案与试题解析一.选择题(共10小题)1.C.2.:C.4.A.5.C.6.B.7.B.8.C.9.A.10.C.二.选择题(共5小题)11.﹣5+10﹣9﹣2.12.4.13.﹣1.5.14.﹣2.15.11;2000.三.解答题(共5小题)16.解:(1)(﹣3.6)+(+2.5)=﹣3.6+2.5=﹣1.1(2)﹣(﹣3)﹣2=(﹣2)+(3)=﹣3+4=1(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)=(﹣49﹣91﹣9)+5=﹣149+5=﹣144(4)﹣5﹣(﹣11)﹣(﹣)=﹣5+11+=6+3=9(5)3﹣(﹣)+(﹣)=(3﹣)+()=3+3=6(6)﹣|﹣1|﹣()﹣(﹣2.75)=﹣1﹣2+2.75=0.4+2.75﹣(1+2)=3.15﹣3.75=﹣0.6(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)=﹣7+11﹣9﹣2=11﹣(7+9+2)=11﹣18=﹣7(8)(﹣4)﹣(+5)﹣(﹣4)=(﹣4)+4﹣5=0﹣5=﹣517.解:存入记为正,则取出记为负.1080+(﹣902)+990+1000+(﹣1100)=(1080+990+1000)+[(﹣902)+(﹣1100)] =3070+(﹣2002)=1068(元).即这时银行现款增加了1068元.18.解:(1)设上周日的水位是a,星期一:a+0.25;星期二:a+0.80+0.25=a+1.05;星期三:a+1.05+(﹣0.40)=a+0.65;星期四:a+0.65+(+0.03)=a+0.68;星期五:a+0.68+(+0.28)=a+0.96;星期六:a+0.96+(﹣0.36)=a+0.60;星期日:a+0.60+(﹣0.04)=a+0.56;∴星期二水位最高;星期一水位最低,故答案为:二,一.解:(2)上周日的水位是a,则这周末的水位是a+0.56,∴(a+0.56)﹣a=0.56>0,即本周日的水位是上升了.19.解:(1)由向上向右走为正,向下向左走为负可得A→C(+3,+4),B→D(+3,﹣2);故答案为:+3,+4,+3,﹣2.(2)甲虫走过的路程为:1+4+2+1+2=10,(3)如图,甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),在图中标出依次行走停点E、F、M、N的位置.20.解:(1)∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2;(2)2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.有理数的加法参考答案与试题解析一.选择题(共10小题)1.C.2.C.3.B.4.A.5.B.6.D.7.B.8.C.9.C.10.C.二.填空题(共5小题)11.﹣3或﹣7.12.4.13.﹣50.14.﹣0.9,﹣2.1,﹣,.15.10000.三.解答题(共5小题)16.解:原式=[31+(﹣31)]+[(﹣102)+(+102)]+39 =0+0+39=39.17.解:(1)5.6+4.4+(﹣8.1)=10﹣8.1=1.9;(2)(﹣7)+(﹣4)+(+9)+(﹣5)=﹣7﹣4+9﹣5=﹣16+9=﹣7;(3)+(﹣)+=(﹣)+(﹣﹣)+=0﹣1+=﹣;(4)5=(5+4)+(﹣5﹣)=10﹣6=4;(5)(﹣9)+15=(﹣9﹣15)+[(15﹣3)﹣22.5]=﹣25+[12.5﹣22.5]=﹣25﹣10=﹣35;(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)=(﹣18+18)+(+53﹣53.6)+(﹣100)=0+0﹣100=﹣100.18.解:(1)+(﹣)++(﹣)+(﹣)=+(﹣)+(﹣)+(﹣)+=0﹣1+=﹣;(2)解:原式=[(﹣)+(﹣5)]+(3+2)=﹣6+6=0;(3)解:原式=[(﹣6.9)+(﹣3.1)]+[(﹣8.7)+7]=﹣10+(﹣1.7)=﹣11.7;(4)解:原式===2.19.解:乙数=﹣2015﹣(20)=﹣2015+20=﹣1995.20.解:(﹣1)+(﹣2000)+4000+(﹣1999)=﹣1+(﹣)+(﹣2000)+(﹣)+4000++(﹣1999)+(﹣),=﹣1+(﹣2000)+4000+(﹣1999)+(﹣)+(﹣)++(﹣),=(﹣2)+,=﹣.绝对值及其应用参考答案与试题解析1.B.2.C.3.C.4.C.5.A.6.D.7.D.8.B.9.B.10.A.11.﹣0.3.12.﹣2.13.﹣2.14.>15.﹣1.16.>,=.17.绝对值大于2而小于6的所有整数的和是0.18.|x+1|;﹣3或1;3,﹣1≤x≤2;6,﹣7.19.解:(1)如图所示:,b<﹣a<a<﹣b.(2)∵a>0>b,而且|a|<|b|,∴a+b<0,a﹣b>0,∴|a+b|+|a﹣b|=﹣(a+b)+(a﹣b)=﹣a﹣b+a﹣b=﹣2b20.解:(1)2和﹣3的两点之间的距离是|2﹣(﹣3)|=5,故答案为:5.(2)A和B之间的距离是|x﹣(﹣5)|=|x+5|,故答案为:|x+5|.(3)代数式|x﹣1|+|x+3|表示在数轴上到1和﹣3两点的距离的和,当x在﹣3和1之间时,代数式取得最小值,最小值是﹣3和1之间的距离|1﹣(﹣3)|=4.故当﹣3≤x≤1时,代数式取得最小值,最小值是4.故答案为:﹣3≤x≤1,4.应用:根据题意,共有5种调配方案,如下图所示:由上可知,调出的最小车辆数为:4+2+6=12辆.数.数轴的认识及应用参考答案与试题解析一.选择题(共10小题)1.A.2.D.3.D.4.D.5.D.6.D.7.B.8.A.9.B.10.C.二.选择题(共5小题)11.2、5.12.3.13.P,Q.14.6.15..三.解答题(共5小题)16.解:(1)由图可知,点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是|﹣3﹣4|=7;故答案为:4,7;(2)如果点A表示数3,将点A向左移动7个单位长度,则点A表示3﹣7=﹣4,再向右移动5个单位长度,那么终点B表示的数是﹣4+5=1,A、B两点间的距离是|3﹣1|=2;故答案为:1,2;(3)点A表示数为a,将点A向右移动b个单位长度,则点A表示a+b,再向左移动c个单位长度,那么终点B表示的数是a+b﹣c,A、B两点间的距离是|a+b﹣c﹣a|=|b﹣c|.故答案为:a+b﹣c,|b﹣c|.17.解:(1)∵1与﹣1重合,∴折痕点为原点,∴﹣3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示﹣1的点与表示3的点重合,∴可确定对称点是表示1的点,∴5表示的点与数﹣3表示的点重合.故答案为:﹣3.②由题意可得,A、B两点距离对称点的距离为11÷2=5.5,∵对称点是表示1的点,∴A、B两点表示的数分别是﹣4.5,6.5.18.解:如图所示;19.解:(1)﹣2+7+(﹣5)+(﹣10)+(﹣8)+9+(﹣6)+12+4=1,所以蜗牛停在数轴上表示1的位置;(2)|7|+|﹣5|+|﹣10|+|﹣8|+|9|+|﹣6|+|12|+|4|=61.61÷=122秒.20.解:(1)如图,(2)青少年宫与商场之间的距离|500﹣(﹣300)|=800m,(3)①∵小新家在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,∴小新家到医院的距离为800m,设小新家在数轴上为xm,则600﹣x=800,解得x=﹣200m,∴小新家与学校的距离为200m.②当小新家在商场的西边时,设小新家在数轴上为xm,则﹣300﹣x+500﹣x=600﹣x,解得x=﹣400m∴小新家与学校的距离为400m.。
重难点解析人教版七年级数学上册第一章 有理数难点解析试题(含答案详解版)
人教版七年级数学上册第一章有理数难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、数轴上,把表示2的点向左平移3个单位长度得到的点所表示的数是().A.-5 B.-1 C.1 D.52、3的相反数为()A.﹣3 B.﹣13C.13D.33、如果13,5,244a b c==-=-,那么||||a b c+-等于().A.2-B.172C.2 D.172-4、在5-,3-,0,1.7这4个数中绝对值最大的数是()A.5-B.3-C.0 D.1.7 5、若有理数a,b满足2022|3-|+(+2)a b=0,则a+b的值为()A.1 B.﹣1 C.5 D.﹣5 6、下列各组数中,互为相反数是()A .||a 与a -B .||a 与aC .12-与12- D .12与12 7、如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --8、若a 、b 互为相反数,c 、d 互为倒数,m +1的绝对值为5,则式子|m |﹣cd a bm++的值为( ) A .3B .3或5C .3或﹣5D .49、在计算|(-5)+□|的□中填上一个数,使结果等于11,这个数是( ) A .16B .6C .16或6D .16或-610、下列各式,计算正确的是( ) A .|3||2|1--+-=B .311252⎛⎫--÷-= ⎪⎝⎭C .43443433⎛⎫-÷-⨯= ⎪⎝⎭D .23112(2)(2)424⎛⎫---+-÷-= ⎪⎝⎭第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把8.5046用四舍五入法精确到0.01后所得到的近似数是______.2、如图,边长为1的正方形ABCD ,沿数轴顺时针连续滚动.起点A 和2-重合,则滚动2026次后,点C 在数轴上对应的数是______.3、点A 和点B 是数轴上的两点,点A B 表示的数为1,那么A 、B 两点间的距离为_____.4、中国古代的算筹计数法可追溯到公元前5世纪.摆法有纵式和横式两种(如图所示),以算筹计数的方法是摆个位为纵,十位为横,百位为纵,千位为横……这样纵横依次交替,宋代以后出现了笔算,在个位数划上斜线以表示负数,如 表示752-,表示2369,则表示________.5、求-2017的相反数与12的倒数的和是_________ 三、解答题(5小题,每小题10分,共计50分)1、已知a 与b 的差为223,b 与c 互为倒数,c 与d 的和为145,若2d =,求a 、b 、c 的值.2、计算:(1)21571|835|()()26126--+-÷-;(2)5231(1)(35)[1(3)]7-⨯--⨯--.3、计算: (1)计算:117313()(48)126424-+-⨯- (2)11(370)0.2524.5(25%)542⎛⎫⎛⎫-⨯-+⨯+-⨯- ⎪ ⎪⎝⎭⎝⎭(3)15(3)3(811)236⎛⎫-÷-÷---⨯ ⎪⎝⎭(4)(-9)÷(-4)÷(-2)(5)111111(1)(1)(1)(1)(1)(1)234520032004----⋯-- (6)2004×20032003-2003×20042004 4、计算:(1)(6)(13)-+- (2)4354⎛⎫-+ ⎪⎝⎭5、把下列各数填在相应的集合中: 15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,π,1.6 正数集合{ …}; 负分数集合{ …}; 非负整数集合{ …}; 有理数集合{ …}.-参考答案-一、单选题 1、B 【解析】 【分析】根据数轴上点的坐标特点及平移的性质解答即可. 【详解】解:根据题意:数轴上2所对应的点为A ,将A 点左移3个单位长度,得到点的坐标为2-3=-1, 故选:B .【考点】本题考查了数轴上的点与实数对应关系及图形平移的性质等有关知识. 2、A 【解析】 【分析】根据相反数的定义:只有符号不同的两个数互为相反数计算即可. 【详解】解:3的相反数是﹣3. 故选:A . 【考点】此题考查求一个数的相反数,解题关键在于掌握相反数的概念. 3、C 【解析】 【分析】根据有理数的加法,先计算绝对值,再进行混合运算即可. 【详解】13,5,244a b c ==-=-∴||||a b c +-135244=---3342244=-= 故选C . 【考点】本题考查了代数式求值,有理数的加减运算,求一个数的绝对值,正确的计算是解题的关键.4、A 【解析】计算绝对值要根据绝对值的定义分别求出这四个数的绝对值,再进行比较即可. 【详解】解:|- 5|=5, |- 3|=3, |0|=0,|1.7|=1.7, ∵5>3>1.7>0,∴绝对值最大的数为-5, 故选: A. 【考点】本题考查的是绝对值的规律,一个 正数的绝对值是它本身,一个负数的绝对值是它的相反数, 0的绝对值是0. 5、A 【解析】 【分析】根据绝对值和偶次方的非负性求出a ,b 的值,即可得到a +b 的值. 【详解】解:∵|3-|0a ≥,2022(2)0b +≥ ∴3-a =0,b +2=0 ∴a =3,b =-2 ∴a +b =1 故选:A . 【考点】本题考查绝对值和偶次方的非负性,有理数的加法,解题的关键是掌握几个非负数的和为0,则这几个非负数都为0. 6、C 【解析】 【分析】根据相反数的定义:只有符号不同的两个数互为相反数,进行逐一判断即可. 【详解】解:A 、||a 与a -,当a 小于0时,||=a a -,则||a 与a -不一定是相反数,此说法不符合题意; B 、||a 与a ,当a 大于0时,||=a a ,则||a 与a 不一定是相反数,此说法不符合题意; C 、11=22-,由12和12-互为相反数可知12-与12-互为相反数,此说法符合题意;D 、11=22-,可知12-与12不是相反数,此说法不符合题意;故选C . 【考点】本题主要考查了相反数的定义,解题的关键在于能够熟练掌握相反数的定义. 7、C 【解析】 【分析】根据数轴上两点的位置,判断,a b 的正负性,进而即可求解. 【详解】解:∵数轴上,A B 两点表示的数分别是,a b , ∴a <0,b >0,∴()b a b a a b -=--=+,【考点】本题考查了数轴,绝对值,掌握求绝对值的法则是解题的关键.8、B【解析】【分析】【详解】【分析】利用相反数、倒数的性质,以及绝对值的代数意义求出各自的值,代入原式计算即可求出值.∵a,b互为相反数,c,d互为倒数,m+1的绝对值为5,∴a+b=0,cd=1,|m+1|=5,∴m=﹣6或4,则原式=6﹣1+0=5或4﹣1+0=3.故选:B.9、D【解析】【分析】根据绝对值的性质和有理数的加法法则即可求得.【详解】解:|(-5)+□|=11,即(-5)+□=11或-11,∴□=16或-6,故选D.本题考查了绝对值以及有理数的加法,关键是得到(-5)+口=-11或11.10、D【解析】【分析】根据绝对值,有理数的乘方和有理数的四则混合运算计算法则求解即可.【详解】解:A.原式321=-+=-,故本选项错误;B.原式12(2)143=--⨯-=-+=,故本选项错误;C.原式4446433327=⨯⨯=,故本选项错误;D.原式11114(8)4842244⎛⎫⎛⎫=---+-⨯-=-++=⎪ ⎪⎝⎭⎝⎭,故本选项正确.故选D.【考点】本题主要考查了有理数的乘除法,含乘方的有理数计算,绝对值,解题的关键在于能够熟练掌握相关知识进行求解.二、填空题1、8.50【解析】【分析】把千分位上数字4进行四舍五入即可.【详解】解:8.5046≈8.50(精确到0.01).故答案为8.50.【考点】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.2、2024【解析】【分析】滚动2次点C第一次落在数轴上,再滚动(2026-2)次,得出点C第506次落在数轴上,进而求出相应的数即可.【详解】解:将起点A和-2重合的正方形,沿着数轴顺时针滚动2次,点C第1次落在数轴上的原点.以后每4次,点C会落在数轴上的某一点,这样滚动2026次,点C第(2026-2)÷4=506次落在数轴上,因此点C所表示的数为2024,故答案为:2024.【考点】本题是利用规律求解问题.解题的关键是要找到规律“正方形ABCD沿着数轴顺时针每滚动一周,B、C、D、A依次循环一次”,同时要注意起点是-2,起始循环的字母为点A.31【解析】【分析】数轴上两点之间的距离,用在数轴右边的点所对应的数减左边的点所对应的数或加绝对值符号即可.【详解】=,解:本题主要考查数轴上两点间的距离,点A和点B111.【考点】本题考查了数轴上两点之间的距离,解题的关键是理解距离是非负数.4、7416-【解析】【分析】根据算筹记数的规定可知,“”表示一个4位负数,再查图找出对应关系即可得表示的数.【详解】解:由已知可得:“”表示的是4位负整数,是7416-.故答案为:7416-.【考点】本题考查了应用类问题,解题关键是通过阅读材料理解和掌握我国古代用算筹记数的规定.5、2019【解析】【分析】根据“只有符号不同的两个数互为相反数”和“乘积是1的两个数互为倒数”解答即可.【详解】-2017的相反数是2017,12的倒数是2,故-2017的相反数与12的倒数的和是2019.故答案为:2019 【考点】本题考查的是相反数及倒数,掌握相反数及倒数的定义是关键.三、解答题1、4333,511,115 【解析】【分析】 根据题意可知,223a b -=,1bc =,145c d +=,然后代入计算即可. 【详解】 解:1114225551c =-==,511b =, 5242311333a =+=. 【考点】本题解题的关键是明确倒数的意义.2、(1)0;(2)-8【解析】【分析】根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)21571|835|()()26126--+-÷- 15727()362612=-+-⨯ 27183021=--+0=;(2)5231(1)(35)[1(3)]7-⨯--⨯-- 21(1)(2)(127)7=-⨯--⨯+ 114287=-⨯-⨯ 44=--8=-.【考点】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.3、(1)2;(2)100;(3)35;(4)98-;(5)12004-;(6)0 【解析】【分析】(1)根据乘法分配律进行简便计算;(2)将原式中的小数和百分数统一成分数,然后利用乘法分配律进行简便计算;(3)先算乘除,再算加减,有小括号先算小括号里面的;(4)根据有理数除法运算法则进行计算;(5)先算小括号里面的,然后根据数字变化规律进行符号确定和约分计算;(6)将原式中数据进行拆分,然后再计算.【详解】解:(1)原式117313(48)(48)(48)(48)126424=⨯--⨯-+⨯--⨯- 44563626=-+-+=2;(2)原式1111137024544224=⨯+⨯+⨯ 111370245224⎛⎫=++⨯ ⎪⎝⎭ 14004=⨯ =100;(3)原式=6-33+3(3)25⨯⨯--⨯ =18965-++ =35; (4)原式=-9÷4÷2 =11942-⨯⨯ =98-; (5)原式=123420022003()()()234520032004⨯-⨯⨯-⨯⋯⨯-⨯ =-123420022003234520032004⨯⨯⨯⨯⋯⨯⨯ =-12004; (6)原式= 2004×2003×10001-2003×2004×10001=0.【考点】此题主要考查了有理数的混合运算,注意明确有理数混合运算顺序(先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算)是解题关键.4、(1)-19;(2)1 20 -【解析】【分析】(1)根据有理数的加法法则计算;(2)根据有理数的加法法则计算;【详解】解:(1)(6)(13)-+-=-6-13=-19;(2)4354⎛⎫-+ ⎪⎝⎭=34 45 -=151620 20-=1 20 -【考点】本题考查了有理数的加法运算,解题的关键是注意运算过程中的符号问题.5、15,0.81,227,171,3.14,π,1.6;-12,-3.1;15,171,0;15,-12,0.81,-3,227,-3.1,-4,171,0,3.14,1.6.【解析】【分析】正数就是大于0的数,负数就是小于0的数,有理数是整数与分数的统称,据此即可进行分类.【详解】解:正数集合{15,0.81,227,171,3.14,π,1.6,…};负分数集合{12-,-3.1,…};非负整数集合{15,171,0,…};有理数集合{15,12-,0.81,-3,227,-3.1,-4,171,0,3.14,1.6,…}.【考点】本题主要考查了有理数的概念,认真掌握正数、负数、整数、分数、正有理数、负有理数的定义与特点是解题关键.注意整数和正数的区别,注意0是整数,但不是正数.。
第一章《有理数》测试(难)
第一章《有理数》测试一.选择题(共9小题)1.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤不仅是有理数,而且是分数;⑥是无限不循环小数,所以不是有理数;⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为()A.7个B.6个C.5个D.4个2.若a为有理数,且满足|a|+a=0,则()A.a>0B.a≥0C.a<0D.a≤03.若|x|=7,|y|=9,则x﹣y为()A.±2B.±16C.﹣2和﹣16D.±2和±16 4.把﹣1,0,1,2,3这五个数,填入下列方框中,使行、列三个数的和相等,其中错误的是()A.B.C.D.5.计算×(﹣a)÷(﹣)×a等于()A.1B.a2C.﹣a D.6.的倒数与4的相反数的商是()A.﹣5B.5C.D.7.若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3B.a2和b2C.﹣a和﹣b D.和8.有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为负数的个数是()①a+b;②a﹣b;③﹣a+b;④﹣a﹣b;⑤ab;⑥;⑦;⑧a3b3;⑨b3﹣a3.A.4个B.5个C.6个D.7个9.计算:(﹣﹣)×(﹣34)的结果为()A.﹣21B.21C.﹣24D.24二.填空题(共8小题)10.相反数等于本身的数有,倒数等于本身的数有,奇次幂等于本身的数有,绝对值等于本身的数有.11.在数轴上把点A(﹣5)沿数轴移动6个单位后得到点B,则B所表示的数为.12.比较大小:①﹣0.﹣(+);②+(﹣5)﹣|﹣17|;③﹣32(﹣2)3.13.填“>”或“<”或“=”号:①若m>0,n>0,且|m|<|n|,则m+n0,m﹣n0,mn0,0;②若m<0,n<0,且|m|<|n|,则m+n0,m﹣n0,mn0,0;③若m>0,n<0,且|m|<|n|,则m+n0,m﹣n0,mn0,0;④若m>0,n<0,且|m|>|n|,则m+n0,m﹣n0,mn0,0;⑤若m、n互为相反数,则m+n=.14.①125÷(﹣)×=;②1﹣2+3﹣4+5﹣…﹣2014+2015﹣2016+2017=.15.若|6﹣x|与|y+9|互为相反数,则x=,y=,(x+y)÷(x﹣y)=.16.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为,现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2017=.17.已知:,,,…,观察上面的计算过程,寻找规律并计算C106=.三.解答题(共8小题)18.①399×(﹣6);②﹣99×3;③﹣60×(3﹣+﹣)④2×(﹣5)+23﹣3÷;⑤﹣14﹣(2﹣0.5)××[﹣].⑥÷[2﹣(﹣1+2)]×0.4﹣(﹣2)2×(﹣).20.①1﹣2+3﹣4+5﹣6+7﹣8+9﹣…﹣2012+2013﹣2014+2015﹣2016;②(﹣1)×(﹣1)×(﹣1)×…×(﹣1)×(﹣1)×(﹣1);③1﹣﹣﹣﹣﹣…﹣﹣﹣.21.已知:a、b、c、d是互不相等的整数,且abcd=9,求代数式a+b+c+d的值.22.规定○是一种新的运算符号,且a○b=a2+a×b﹣a+2,例如:2○3=22+2×3﹣2+2=10.请你根据上面的规定试求:①﹣2○1的值;②1○3○5的值.23.如图的图例是一个方阵图,每行的3个数、每列的3个数、斜对角的3个数相加的和均相等.如果将方阵图的每个数都加上同一个数,那么方阵中每行的3个数、每列的3个数、斜对角的3个数相加的和仍然相等,这样就形成新的方阵图.根据图①②③中给出的数,对照原来的方阵图,请你完成图①②③的方阵图?24.观察下列三行数:﹣2,4,﹣8,16,﹣32,…①0,6,﹣6,18,﹣30,…②﹣1,2,﹣4,8,﹣16,…③(1)第①行的数按什么规律排列?写出第①行的第n个数;(2)第②、③行数与第①行数分别有什么关系?(3)取每行第7个数,计算这三个数的和.一.选择题(共9小题)1.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③正整数、负整数、正分数、负分数统称为有理数;④非负数就是正数;⑤不仅是有理数,而且是分数;⑥是无限不循环小数,所以不是有理数;⑦无限小数不都是有理数;⑧正数中没有最小的数,负数中没有最大的数.其中错误的说法的个数为()A.7个B.6个C.5个D.4个【分析】有理数的分类:有理数,依此即可作出判断.【解答】解:①没有最小的整数,故错误;②有理数包括正数、0和负数,故错误;③正整数、负整数、0、正分数、负分数统称为有理数,故错误;④非负数就是正数和0,故错误;⑤是无理数,故错误;⑥是无限循环小数,所以是有理数,故错误;⑦无限小数不都是有理数是正确的;⑧正数中没有最小的数,负数中没有最大的数是正确的.故其中错误的说法的个数为6个.故选:B.【点评】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.2.若a为有理数,且满足|a|+a=0,则()A.a>0B.a≥0C.a<0D.a≤0【分析】根据绝对值的性质即可得到a≤0,从而得到答案.【解答】解:∵|a|+a=0,∴|a|=﹣a,∴a≤0,即a为负数或0.故选:D.【点评】本题考查了绝对值的性质:若a>0,则|a|=a;若a<0,|a|=﹣a;若a=0,|a|=0.3.若|x|=7,|y|=9,则x﹣y为()A.±2B.±16C.﹣2和﹣16D.±2和±16【分析】根据题意,利用绝对值的代数意义求出x与y的值,即可确定出x﹣y 的值.【解答】解:∵|x|=7,|y|=9,∴x=﹣7,y=9;x=﹣7,y=﹣9;x=7,y=9;x=7,y=﹣9;则x﹣y=﹣16或2或﹣2或16.故选:D.【点评】此题考查了有理数的减法,绝对值,熟练掌握运算法则是解本题的关键.4.把﹣1,0,1,2,3这五个数,填入下列方框中,使行、列三个数的和相等,其中错误的是()A.B.C.D.【分析】由图逐一验证,运用排除法即可选得.【解答】解:验证四个选项:A、行:1+(﹣1)+2=2,列:3﹣1+0=2,行=列,对;B、行:﹣1+3+2=4,列:1+3+0=4,行=列,对;C、行:0+1+2=3,列:3+1﹣1=3,行=列,对;D、行:3+0﹣1=2,列:2+0+1=3,行≠列,错.故选:D.【点评】本题为选取错误选项的题,常有一些题目这样设计,目的是要求学生认真读题.本题为数字规律题,考查学生灵活运用知识能力.5.计算×(﹣a)÷(﹣)×a等于()A.1B.a2C.﹣a D.【分析】根据有理数的除法法则:除以一个数等于乘以这个数的倒数,可得答案.【解答】解:×(﹣a)÷(﹣)×a=•(﹣a)•(﹣a)•a=a2,故选:B.【点评】本题考查了有理数的除法,解题关键是把有理数的除法转化成有理数的乘法.6.的倒数与4的相反数的商是()A.﹣5B.5C.D.【分析】依据相反数、倒数的概念先求得﹣1的倒数与4的相反数,然后根据有理数的除法法则求出它们的商.【解答】解:∵﹣1的倒数是﹣,4的相反数是﹣4,∴﹣÷(﹣4)=.故选:C.【点评】主要考查相反数、倒数的概念及有理数的除法法则.7.若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3B.a2和b2C.﹣a和﹣b D.和【分析】由a与b互为相反数,得到a=﹣b,代入各项检验即可得到结果.【解答】解:A、因为a=﹣b,所以a3=﹣b3,即a3和b3互为相反数,故本选项错误;B、因为a=﹣b,所以a2=b2,即a2和b2不互为相反数,故本选项正确;C、因为a=﹣b,所以﹣a=b,即﹣a和﹣b互为相反数,故本选项错误;D、因为a=﹣b,所以=﹣,即和互为相反数,故本选项错误;故选:B.【点评】此题考查了相反数的概念:只有符号不同的两个数叫做互为相反数.8.有理数a、b在数轴上分别对应的点为M、N,则下列式子结果为负数的个数是()①a+b;②a﹣b;③﹣a+b;④﹣a﹣b;⑤ab;⑥;⑦;⑧a3b3;⑨b3﹣a3.A.4个B.5个C.6个D.7个【分析】根据数轴上点的位置得出a,b的范围,即可做出判断.【解答】解:根据题意得:a<0,b>0,|a|>|b|,则①a+b<0,是负数;②a﹣b<0,是负数;③﹣a+b>0,是正数;④﹣a﹣b>0,是正数;⑤ab<0,是负数;⑥<0,是负数;⑦>0,是正数;⑧a3b3<0,是负数;⑨b3﹣a3>0,是正数.则结果为负数的个数是5个.故选:B.【点评】此题考查了有理数的混合运算,以及数轴,弄清数轴上点的位置是解本题的关键.9.计算:(﹣﹣)×(﹣34)的结果为()A.﹣21B.21C.﹣24D.24【分析】原式先计算乘方运算,再利用乘法分配律计算即可得到结果.【解答】解:原式=(﹣﹣)×(﹣81)=﹣9+27+3=21,故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二.填空题(共8小题)10.相反数等于本身的数有0,倒数等于本身的数有±1,奇次幂等于本身的数有±1,0,绝对值等于本身的数有非负数.【分析】根据只有符号不同的两个数互为相反数,乘积为的两个数互为倒数,绝对值的性质,可得答案.【解答】解:相反数等于本身的数有0,倒数等于本身的数有±1,奇次幂等于本身的数有±1,0,绝对值等于本身的数有非负数,故答案为:0,±1,±1、0.【点评】本题考查了倒数,利用了相反数的定义、倒数的定义、绝对值的性质.11.在数轴上把点A(﹣5)沿数轴移动6个单位后得到点B,则B所表示的数为1或﹣11.【分析】考虑两种情况:要求的点在已知点左移或右移6个单位长度.【解答】解:在数轴上把点A(﹣5)沿数轴移动6个单位后得到点B,则B所表示的数为:﹣5+6=1,或﹣5﹣6=﹣11,故答案为:1或﹣11.【点评】此题考查了数轴,要求掌握数轴上的两点间距离公式的运用.在数轴上求到已知点的距离为一个定值的点有两个.12.比较大小:①﹣0.=﹣(+);②+(﹣5)>﹣|﹣17|;③﹣32<(﹣2)3.【分析】先化简符号,再根据实数的大小比较法则比较即可.【解答】解::①﹣0.=﹣(+),②+(﹣5)>﹣|﹣17|;③﹣32 <(﹣2)3.故答案为:=,>,<.【点评】本题考查了对实数的大小比较法则,绝对值,相反数的应用,能正确化简符号是解此题的关键.13.填“>”或“<”或“=”号:①若m>0,n>0,且|m|<|n|,则m+n>0,m﹣n<0,mn>0,>0;②若m<0,n<0,且|m|<|n|,则m+n<0,m﹣n>0,mn>0,>0;③若m>0,n<0,且|m|<|n|,则m+n<0,m﹣n>0,mn<0,<0;④若m>0,n<0,且|m|>|n|,则m+n>0,m﹣n>0,mn<0,<0;⑤若m、n互为相反数,则m+n=0.【分析】各项利用有理数的加减乘除法则,以及相反数定义计算即可得到结果.【解答】解:①若m>0,n>0,且|m|<|n|,则m+n>0,m﹣n<0,mn>0,>0;②若m<0,n<0,且|m|<|n|,则m+n<0,m﹣n>0,mn>0,>0;③若m>0,n<0,且|m|<|n|,则m+n<0,m﹣n>0,mn<0,<0;④若m>0,n<0,且|m|>|n|,则m+n>0,m﹣n>0,mn<0,<0;⑤若m、n互为相反数,则m+n=0.故答案为:①>;<;>;>;②<;>;>;>;③<;>;<;<;④>;>;<;<;⑤0【点评】此题考查了有理数的乘除、加减法则,熟练掌握运算法则是解本题的关键.14.①125÷(﹣)×=﹣180;②1﹣2+3﹣4+5﹣…﹣2014+2015﹣2016+2017=1009.【分析】①将除法变为乘法,再约分计算即可求解;②两个一组计算即可求解.【解答】解:①125÷(﹣)×=125÷(﹣)×=﹣180;②1﹣2+3﹣4+5﹣…﹣2014+2015﹣2016+2017==(1﹣2)+(3﹣4)+…+(2015﹣2016)+2017=﹣1×1008+2017=﹣1008+2017=1009.故答案为:﹣180;1009.【点评】此题考查了有理数混合运算,有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.15.若|6﹣x|与|y+9|互为相反数,则x=6,y=﹣9,(x+y)÷(x﹣y)=﹣.【分析】根据相反数的概念列出算式,求出x、y的值,计算即可.【解答】解:由题意得,|6﹣x|+|y+9|=0,则6﹣x=0,y+9=0,解得,x=6,y=﹣9,则(x+y)÷(x﹣y)=﹣,故答案为:6;﹣9;﹣.【点评】本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.16.若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为,现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2017=﹣.【分析】根据题目中的数据可以分别求得前面几个数据值,从而可以发现其中的规律,从而可以解答本题.【解答】解:由题意可得,x1=﹣,x2=,x3=,x4=,2017÷3=672…1,∴x2017=,故答案为:.【点评】本题考查数字的变化类,解题的关键是发现数字之间的变化规律.17.已知:,,,…,观察上面的计算过程,寻找规律并计算C106=210.【分析】对于C a b(b<a)来讲,等于一个分式,其中分母是从1到b的b个数相乘,分子是从a开始乘,乘b的个数.【解答】解:;;;…;C106==210.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.三.解答题(共8小题)18.①399×(﹣6);②﹣99×3;③﹣60×(3﹣+﹣).【分析】①原式变形后,利用乘法分配律计算即可得到结果;②原式变形后,利用乘法分配律计算即可得到结果;③原式利用乘法分配律计算即可得到结果.【解答】解:①原式=(400+)×(﹣6)=﹣2400﹣=﹣2401;②原式=(﹣100+)×3=﹣300+=﹣299;③原式=﹣185+15﹣20+28=﹣162.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.①2×(﹣5)+23﹣3÷;②﹣14﹣(2﹣0.5)××[﹣].【分析】①原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;②原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:①原式=﹣10+8﹣6=﹣8;②原式=﹣1﹣××=﹣1.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.①1﹣2+3﹣4+5﹣6+7﹣8+9﹣…﹣2012+2013﹣2014+2015﹣2016;②(﹣1)×(﹣1)×(﹣1)×…×(﹣1)×(﹣1)×(﹣1);③1﹣﹣﹣﹣﹣…﹣﹣﹣.(提示:﹣=﹣1+,…﹣=﹣+,…以此类推!)【分析】①原式结合后,相加即可得到结果;②原式先计算括号中的减法运算,约分即可得到结果;③原式变形后,抵消合并即可得到结果.【解答】解:①原式=﹣1﹣1…﹣1(1008个﹣1)=﹣1008;②原式=﹣×(﹣)×(﹣)×…×(﹣)×(﹣)×(﹣)=;③原式=1+(﹣1+)+(﹣+)+…+(﹣+)+(﹣+)+(﹣+)=.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.21.已知:a、b、c、d是互不相等的整数,且abcd=9,求代数式a+b+c+d的值.【分析】把9分解质因数,然后判断出a、b、c、d四个数,再求和即可.【解答】解:9=(﹣1)×(﹣9)=1×9=3×3=(﹣3)×(﹣3),∵a、b、c、d是互不相等的整数,且abcd=9,∴a、b、c、d四个数为﹣1、1、﹣3、3,∴a+b+c+d=﹣1+1﹣3+3=0.【点评】本题考查了有理数的乘法,有理数的加法,根据9的质因数判断出a、b、c、d四个数的值是解题的关键.22.规定○是一种新的运算符号,且a○b=a2+a×b﹣a+2,例如:2○3=22+2×3﹣2+2=10.请你根据上面的规定试求:①﹣2○1的值;②1○3○5的值.【分析】根据新运算的运算顺序,把﹣2○1,1○3○5列出式子,再根据有理数混合运算的顺序和法则分别进行计算即可.【解答】解:①﹣2○1=(﹣2)2+(﹣2)×1﹣(﹣2)+2=4﹣2+2+2=6;②1○3○5=(12+1×3﹣1+2)○5=(1+3﹣1+2)○5=5○5=52+5×5﹣5+2=25+25﹣5+2=47.【点评】此题考查了有理数的混合运算,掌握新运算的规律是解题的关键,是一道新题型.23.如图的图例是一个方阵图,每行的3个数、每列的3个数、斜对角的3个数相加的和均相等.如果将方阵图的每个数都加上同一个数,那么方阵中每行的3个数、每列的3个数、斜对角的3个数相加的和仍然相等,这样就形成新的方阵图.根据图①②③中给出的数,对照原来的方阵图,请你完成图①②③的方阵图?【分析】(1)图①中正中间的数1变为图②中正中间的数0,所以将图①中各数依次加上2即可;(2)可将图①中各数依次减去3,填表即可;(3)可将图①中各数依次减去7,填表即可.【解答】解:(1)将图①中各数依次加上2,如图①;(2)将图①中各数依次减去3,如图②;(3)可将图①中各数依次减去7,如图③.【点评】本题考查了有理数的加法,九方格题目,趣味性较强,本题的关键是了解九方格的特点.24.观察下列三行数:﹣2,4,﹣8,16,﹣32,…①0,6,﹣6,18,﹣30,…②﹣1,2,﹣4,8,﹣16,…③(1)第①行的数按什么规律排列?写出第①行的第n个数;(2)第②、③行数与第①行数分别有什么关系?(3)取每行第7个数,计算这三个数的和.【分析】(1)第①行有理数是按照﹣2的正整数次幂排列的;(2)第②行为第①行的数加2;第③行为第①行的数的一半,分别写出第n个数的表达式;(3)根据各行的表达式求出第7个数,然后相加即可得解.【解答】解:(1)第①行的有理数分别是﹣2,(﹣2)2,(﹣2)3,(﹣2)4,…,故第n个数为(﹣2)n(n是正整数);(2)第②行的数等于第①行相应的数加2,即第n的数为(﹣2)n+2(n是正整数),第③行的数等于第①行相应的数的一半,即第n个数是×(﹣2)n(n是正整数);(3)∵第①行的第7个数为(﹣2)7=﹣128,第②行的第7个数为(﹣2)7+2=﹣126,第③的第7个数为×(﹣2)7=﹣64,所以,这三个数的和为:(﹣128)+(﹣126)+(﹣64)=﹣318.【点评】本题是对数字变化规律的考查,认真观察、仔细思考,善用联想是解决这类问题的方法,观察出第②③行的数与第①行的数的联系是解题的关键.25.÷[2﹣(﹣1+2)]×0.4﹣(﹣2)2×(﹣).【分析】有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.依此计算即可求解.【解答】解:÷[2﹣(﹣1+2)]×0.4﹣(﹣2)2×(﹣)=÷(2.5﹣1.25)×0.4﹣4×(﹣)=25÷1.25×0.4+1=20×0.4+1=8+1=9.【点评】此题考查了有理数混合运算,进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.规律方法,有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.。
第一章有理数奥数题
第一章有理数奥数题(1)1.2002*20032003-203*20022002=2.已知a-2的绝对值+2b+1的绝对值=0,求a-2b+1的值3.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0B.B.a,b之一是0C.C.a,b互为相反数D.D.a,b互为倒数4.一乳制品加工场销售员小王给超市送来10箱奶粉,每箱20袋,每袋400g,当他要返回厂里时,突然接到厂部打来电话,说这10箱奶粉中有一箱因装罐机出现了故障,每袋少装了20g,要求他立即把缺量的一箱带回去更换.但超市里正忙,小王只能称一次,就要将那缺量的奶粉找出来.请你帮他想个办法,能办到吗?5.将一张长方形的纸对折,可得到一条折痕,继续对折,对折时每次折痕与上次折痕保持平行,继续对折三次后,可以得7条折痕,如果对这n次,可以得到多少条折痕?6.23个不同的正整数的和是4825,问;这23个数的最大公约数可能达到的最大值是多少?写出你的结论,并说明理由。
7.当x=3分之2,y=-4分之3,z=-2又2分之1,分别求下列代数式值(1)+(-x)-(-y)-(-z)(2) -(+x)+( -y) -(-z)有理数奥数题(2)一、填空题:(每小题5分,共50分) 1、计算: (1)125×888=___________; (2) =___________。
2、把用“<”连接起来:________________。
3、下面有两串按某种规律排列的数,请按规律填上空缺的数。
(1) ( ); (2)15,20,10,( ),5,30,( ),35。
4、有甲、乙、丙三个数,已知甲、乙;乙、丙;丙、甲两数的平均数分别为40、46、43,那么甲、乙、丙三个数的平均数是___________。
5、下边的加法竖式的申、办、奥、运四个汉字,分别代表四个不同的数字,请问:申办奥运分别为何数字时算式成立。
申=______;办=______;奥=______;运=______。
七年级数学上册《第一章有理数》单元测试卷及答案
七年级数学上册《第一章有理数》单元测试卷及答案注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如 需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写 在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:第一章有理数。
5.难度系数:中等。
第I 卷(选择题)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列五个数中,绝对值最小的数为( ) A .5-B . −(−2)C .0D . −0.32.下列说法正确的是( )A .“向东10米”与“向西5米”不是相反意义的量B .如果气球上升25米记作25+米,那么15-米的意义就是下降15-米C .如果气温下降6℃,记为6-℃,那么8+℃的意义就是下降8℃D .若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米 3.设x 为有理数,若x x =,则( ) A .x 为正数B .x 为负数C .x 为非正数D .x 为非负数4.下面说法:①a 的相反数是a -;②符号相反的数互为相反数;③()3.8--的相反数是 3.8-;④一个数和它的相反数可能相等;⑤正数与负数互为相反数.正确的有( ) A .0个B .1个C .2个D .3个5.以下数轴画法正确的是( ) A .B .C .D .6.有理数−|−2|、−22023−(−1)、0、−(−2)2中负数个数( ) A .2个B .3个C .4个D .5个7.有下列说法,正确的个数是( )个①0是最小的整数;②一个有理数不是正数就是负数 ;③若a 是正数,则a -是负数; ④自然数一定是正数;⑤一个整数不是正整数就是负整数;⑥非负数就是指正数. A .0B .1C .2D .38.已知a b ,在数轴上的位置如图所示,则下列结论:①0a b <<,②||||a b <,③0ab->,④b a a b -<+,正确的是( )A .②③B .①②C .①③D .①④9.m 和n 互为相反数,a 是最大的负整数,则m+n2023−3a 的值为( ) A .3B .7-C .0D .202310.下列说法中,正确的个数( ) ①若11a a=,则0a ≥; ②若a b >,则有()()a b a b +-是正数;③,,A B C 三点在数轴上对应的数分别是2-、6、x ,若相邻两点的距离相等,则2x =; ④若代数式29312011x x x +-+-+的值与x 无关,则该代数式的值为2021; ⑤0,0a b c abc ++=<,则b c a c a ba b c+++++的值为1±. A .1个B .2个C .3个D .4个第Ⅱ卷二、填空题(本大题共6小题,每小题3分,满分18分)11.化简337⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦= .12.若b -的相反数是 2.4-,则b = .13.下面的数轴被墨迹盖住一部分,被盖住的整数有 个.14.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d+++的最大值是 . 15.新定义如下:()3f x x =-, ()2g y y =+ 例如:() 2235f -=--=, ()3325g =+= 根据上述知识, 若()()6f x g x +=, 则x 的值为 . 16.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________; (2)当a = 时,12a -+有最小值,最小值是 .三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤) 17.(4分)已知a ,b 是有理数,且满足|1||2|0a b -+-=,求a 与b 的值.18.(4分)把下列各数的序号填入相应的大括号内:①13- ②0.2 ③227 ④20%- ⑤3-- ⑥()0.75-+ ⑦0 ⑧34- ⑨π2 ⑩()35-- 正有理数集合:{_______________…}; 非负数集合:{_______________…}; 非正整数集合:{_______________…}; 分数集合:{_______________…}.19.(6分)七年级某班级为了促进同学养成良好的学习习惯,每天都对同学进行学规管理记分.如下是小李同学第5周学规得分(规定:加分为“+”,扣分为“−”). 日期周一 周二 周三 周四 周五学规得分 +5+3−4+7−2(1)第5周小李学规得分总计是多少?(2)根据班规,一学期里班级还会将同学每周的学规得分进行累加.已知小李同学第4周末学规累加分数为65分,若他在第6周末学规累加分数达到72分,则他第6周的学规得分总计是多少分?20.(6分)如图所示,观察数轴,请回答:(1)点C 与点D 的距离为 ,点B 与点D 的距离为 ;(2)点B 与点E 的距离为 ,点A 与点C 的距离为 ;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN = (用m ,n 表示).21.(8分)(1)画数轴并在数轴上表示下列各数:0,3,1.5,-4,1 32-;(2)按从小到大的顺序用“<”号把(1)中的这些数连接起来;(3)直接填空:数轴上表示3和表示1的两点之间的距离是 ,数轴上A 点表示的数为1.5,B 点表示的数为32-,则点A ,B 两点之间的距离是 .22.(10分)已知有A ,B ,C 三个数的“家族”:A :{-1,3.1,-4,6,2.1}B :14.2,2.1,1,10,8⎧⎫---⎨⎬⎩⎭ C :{2.1,-4.2,8,6}.(1)请把每个“家族”中所含的数填入图中的相应部分.(2)把A ,B ,C 三个数的“家族”中的负数写在横线上:_________. (3)有没有同时属于A ,B ,C 三个数的“家族”的数?若有,请指出.23.(10分)阅读下面的文字,完成后面的问题: 我们知道:11×2=1−12;12×3=12−13;13×4=13−14. 那么: (1)14×5=______;12019×2020=______;(2)用含有n 的式子表示你发现的规律______; (3)求式子11×2+12×3+13×4+⋯+12019×2020的值.24.(12分)阅读材料:x 的几何意义是数轴上数x 的对应点与原点之间的距离,即0x x =-,也可以说x 表示数轴上数x 与数0对应点之间的距离.这个结论可以推广为12x x -表示数轴上数1x 与数2x 对应点之间的距离,根据材料的说法,试求: (1)34x +=;(2)若x 为有理数,代数式32x -+有没有最大值?如果有,求出这个最大值及此时x 的值是多少?如果没有,请说明理由;(3)若x 为有理数,则13x x -+-有最______值(填“大”或“小”),其值为________.25.(12分)定义:若A ,B ,C 为数轴上三点,若点C 到点A 的距离是点C 到点B 的距离2倍,我们就称点C 是【A ,B 】的美好点.例如:如图1,点A 表示的数为1-,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的美好点;又如,表示0的点D 到点A 的距离是1,到点B 的距离是2,那么点D 就不是【A ,B 】的美好点,但点D 是【B ,A 】的美好点.如图2,M ,N 为数轴上两点,点M 所表示的数为7-,点N 所表示的数为2(1)点E ,F ,G 表示的数分别是-3,6.5,11,其中是【M ,N 】美好点的是 ; 写出【N ,M 】美好点H 所表示的数是 .(2)现有一只电子蚂蚁P 从点N 开始出发,以2个单位每秒的速度向左运动.当t 为何值时,P ,M 和N 中恰有一个点为其余两点的美好点?参考答案第I 卷(选择题)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列五个数中,绝对值最小的数为( ) A .5-B . −(−2)C .0D . −0.3【答案】C【分析】先求出每个数的绝对值,再根据有理数的大小比较法则比较即可.本题考查了有理数的大小比较和绝对值,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.【详解】解:55-= ()22--= 00= 0.30.3-= ∵00.325<<< ∴绝对值最小的是0. 故选:C .2.下列说法正确的是( )A .“向东10米”与“向西5米”不是相反意义的量B .如果气球上升25米记作25+米,那么15-米的意义就是下降15-米C .如果气温下降6℃,记为6-℃,那么8+℃的意义就是下降8℃D .若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米 【答案】D【分析】此题考查了正数和负数的实际意义,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,依次判断各可. 【详解】解:“向东10米”与“向西5米”是相反意义的量;故A 不符合题意; 如果气球上升25米记作25+米,那么15-米的意义就是下降15米;故B 不符合题意; 如果气温下降6℃,记为6-℃,那么8+℃的意义就是上升8℃;故C 不符合题意;若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米,正确,故D 符合题意; 故选D3.设x 为有理数,若x x =,则( ) A .x 为正数 B .x 为负数C .x 为非正数D .x 为非负数【答案】D【分析】本题考查绝对值的性质,根据(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩直接判断即可得到答案;【详解】解:∵x x = ∴x 是非负数 故选:D .4.下面说法:①a 的相反数是a -;②符号相反的数互为相反数;③()3.8--的相反数是 3.8-;④一个数和它的相反数可能相等;⑤正数与负数互为相反数.正确的有( ) A .0个 B .1个C .2个D .3个【答案】D【分析】本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,只有符号不同的两个数是互为相反数.根据相反数的定义一一进行分析即可得出答案.【详解】解:①a 的相反数是a -,说法正确;②只有符号不同的两个数互为相反数,说法错误;③()3.8--的相反数是 3.8-,说法正确;④一个数和它的相反数可能相等,如0的相反数等于0,说法正确;⑤正数与负数不一定互为相反数,如2和1-,说法错误;故正确的有3个. 故选:D .5.以下数轴画法正确的是( ) A .B .C .D .【答案】C【分析】本题考查数轴,了解数轴三要素是关键.根据数轴三要素:原点,正方向,单位长度,逐一排除即可.【详解】解:A .没有正方向,错误,不符合题意; B .单位长度不相等,错误,不符合题意;C .有正方向,原点,单位长度相等,正确,符合题意;D .选项没有原点,错误,不符合题意. 故选:C .6.有理数−|−2|、−22023−(−1)、0、−(−2)2中负数个数( ) A .2个 B .3个C .4个D .5个【答案】B【分析】本题考查了负数的概念,含乘方的有理数化简与化简绝对值,负数就是小于0的数,带负号的数不一定负数.熟练掌握以上知识点是解题的关键.根据相关性质化简各项,再利用负数的概念进行判断即可. 【详解】解: −|−2|=−2,是负数; −22023是负数;()1--=1,不是负数;0不是负数;−(−2)2=−4,是负数; 综上:有3个负数 故选:B .7.有下列说法,正确的个数是( )个①0是最小的整数;②一个有理数不是正数就是负数 ;③若a 是正数,则a -是负数; ④自然数一定是正数;⑤一个整数不是正整数就是负整数;⑥非负数就是指正数. A .0 B .1 C .2 D .3【答案】B【分析】本题考查了整数“整数包括正整数、0和负整数”、有理数的分类“有理数可分为正有理数、0和负有理数”、正数与负数,熟练掌握有理数的分类是解题关键.根据整数、有理数的分类、正数与负数逐个判断即可得.【详解】解:①0不是最小的整数,如负整数10-<,则原说法错误; ②有理数0既不是正数也不是负数,则原说法错误; ③若a 是正数,则a -是负数,则原说法正确; ④自然数0不是正数,则原说法错误;⑤整数0既不是正整数也不是负整数,则原说法错误; ⑥非负数就是指不是负数,即正数和0,则原说法错误; 综上,正确的个数是1个, 故选:B .8.已知a b ,在数轴上的位置如图所示,则下列结论:①0a b <<,②||||a b <,③0ab->,④b a a b -<+,正确的是( )A .②③B .①②C .①③D .①④【答案】C【分析】本题考查根据点在数轴上的位置比较代数式大小,熟练掌握利用数轴比较数的大小是解决问题的关键.【详解】解:a,b 在数轴上的位置如图所示:0a b ∴<<故①0a b <<正确 a b > ②错误;由①②可得0ab->,③正确; 0,0a b b a +<->∴b a a b ->+ ④错误;综上所述,正确的有①③ 故选:C .9.m 和n 互为相反数,a 是最大的负整数,则m+n2023−3a 的值为( ) A .3 B .7- C .0 D .2023【答案】A【分析】本题考查相反数的性质,负整数.根据相反数、负整数的性质求出相关数据,再通过计算即可求解. 【详解】∵m 和n 互为相反数,a 是最大的负整数 ∴0m n += 1a =-∴m+n2023−3a =02023−3×(−1)=3. 故选:A .10.下列说法中,正确的个数( ) ①若11a a=,则0a ≥; ②若a b >,则有()()a b a b +-是正数;③,,A B C 三点在数轴上对应的数分别是2-、6、x ,若相邻两点的距离相等,则2x =; ④若代数式29312011x x x +-+-+的值与x 无关,则该代数式的值为2021; ⑤0,0a b c abc ++=<,则b c a c a ba b c +++++的值为1±.A .1个B .2个C .3个D .4个【答案】A【分析】本题考查有绝对值的化简,数轴上两点间的距离,解答本题的关键是对于错误的结论,要说明理由或者举出反例. 【详解】若11a a=,则a >0, 故①错误, 不合题意; 若a b >则0a b >>或0a b a >>>-或0a b a ->>>或0b a >> 当0a b >>时, 则有()()0a b a b +->是是正数当0a b a >>>-时, 则有()()0a b a b +->是正数 当0a b a ->>>时, 则有()()0a b a b +->是正数 当0b a >>时, 则有()()0a b a b +->是是正数由上可得, ()()0a b a b +->是正数, 故②正确,符合题意;A B C 、、三点在数轴上对应的数分别是-2、6、x ,若相邻两点的距离相等,则x =2或10-或14,故③错误,不合题意;若代数式29312011x x x +-+-+的值与x 无关,则29312011293120112019x x x x x x +-+-+=+-+-+= 故④错误,不合题意;0,0a b c abc ++=<∴a b c 、、中一定是一负两正 b c a +=- ,a c b a b c +=-+=- 不妨设0,0,0a b c >>< b c a c a ba b c+++∴++ b c a c a b a b c +++=++- a b c a b c---=++- 111=--+1=-,故⑤错误,不合题意;故选: A .第Ⅱ卷二、填空题(本大题共6小题,每小题3分,满分18分)11.化简337⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦ .【答案】337-/247-【分析】本题主要考查了多重符号化简,熟练掌握相反数定义,根据“只有符号不同的两个数互为相反数”进行求解即可.【详解】解:333377⎡⎤⎛⎫---=- ⎪⎢⎥⎝⎭⎣⎦.故答案为:337-.12.若b -的相反数是 2.4-,则b = .【答案】 2.4-【分析】根据相反数的性质解答即可.本题考查了相反数的性质,熟练掌握互为相反数的两个数的和为0,列出方程求解是解题的关键.【详解】解:根据题意,得()2.40b -+-=解得 2.4b =-.故答案为: 2.4-.13.下面的数轴被墨迹盖住一部分,被盖住的整数有 个.【答案】9【分析】本题考查了数轴.熟练掌握数轴是解题的关键.根据在数轴上表示有理数进行作答即可.【详解】解:由数轴可知,被盖住的整数有−6,−5,−4,−3,−2,1,2,3,4共9个故答案为:9.14.有理数a ,b ,c ,d 使||1abcd abcd =-,则a b c d a b c d +++的最大值是 . 【答案】2【分析】根据绝对值的运用判断出有理数a ,b ,c ,d 中负数的个数,然后分别讨论求出最大值.本题主要考查了绝对值的运用,采用分类讨论的思想进行解题. 【详解】解:||1abcd abcd=- ∴有理数a ,b ,c ,d 中负数为奇数个.①若有理数a ,b ,c ,d 有一个负三个正 则||||||||2a b c d a b c d+++=; ②若有理数a ,b ,c ,d 有三个负一个正 则||||||||2a b c d a b c d+++=-; 所以||||||||a b c d a b c d +++的最大值是2. 故答案为:2.15.新定义如下:()3f x x =- ()2g y y =+; 例如:() 2235f -=--= ()3325g =+=;根据上述知识, 若()()6f x g x +=, 则x 的值为 . 【答案】72或52-【分析】本题考查了新定义,求代数式的值,化简绝对值,绝对值方程,正确理解新定义是解题的关键.根据()()6f x g x +=得出含绝对值的方程,解方程可得答案. 【详解】解:由题可得:326x x -++=当3x ≥时326x x -++=,解得72x =; 当23x -<<时326x x -++=,方程无解;当2x ≤-时326x x ---=,解得52x =-; 故答案为:72或52-. 16.已知x 是非负数,且非负数中最小的数是0.(1)已知210a b -+-=,则a b +的值是_________;(2)当a =________时,12a -+有最小值,最小值是______.【答案】(1)3(2)1,2【分析】本题考查绝对值;(1)有绝对值的非负性可以得出000+=,代入即可求出答案.(2)根据绝对值的非负性解题即可.【详解】(1)∵2010a b -≥-≥, 210a b -+-= ∴2010a b -=-=,∴21a b ==,∴3a b +=故答案为:3;(2)∵10a -≥∴当10a -=时,10a -=最小,此时12a -+有最小值∴当1a =时12a -+有最小值,最小值是2故答案为:1,2.三、解答题(本大题共9小题,满分72分.解答应写出文字说明,证明过程或演算步骤)17.(4分)已知a ,b 是有理数,且满足|1||2|0a b -+-=,求a 与b 的值.【答案】1a = 2b =【分析】本题考查了绝对值非负的性质.当它们相加和为0时,必须满足其中的每一项都等于0.根据非负数的性质列出方程求出未知数的值.【详解】解:|1||2|0a b -+-=10a ∴-= 20b -=1a ∴= 2b =故答案为:1a = 2b =.18.(4分)把下列各数的序号填入相应的大括号内: ①13- ②0.2 ③227 ④20%- ⑤3-- ⑥()0.75-+ ⑦0 ⑧34- ⑨π2 ⑩()35-- 正有理数集合:{_______________…};非负数集合:{_______________…};非正整数集合:{_______________…};分数集合:{_______________…}.【答案】②③⑧⑩ ②③⑦⑧⑨⑩ ⑤⑦ ①②③④⑥⑧【分析】本题考查了正有理数、非负数、非正整数、分数的定义,根据定义直接求解即可,解题的关键是熟悉正有理数、非负数、非正整数、分数的定义,熟练掌握此题的特点并能熟练运用. 【详解】由33--=- ()0.750.75-+=- 3344-= ()3535--= 正有理数集合:{②③⑧⑩…};非负数集合:{②③⑦⑧⑨⑩…};非正整数集合:{⑤⑦…};分数集合:{①②③④⑥⑧…}故答案为:②③⑧⑩ ②③⑦⑧⑨⑩ ⑤⑦ ①②③④⑥⑧19.(6分)七年级某班级为了促进同学养成良好的学习习惯,每天都对同学进行学规管理记分.如下是小李同学第5周学规得分(规定:加分为“+”,扣分为“−”). 日期 周一 周二 周三 周四 周五学规得分 +5+3 −4 +7 −2 (1)第5周小李学规得分总计是多少?(2)根据班规,一学期里班级还会将同学每周的学规得分进行累加.已知小李同学第4周末学规累加分数为65分,若他在第6周末学规累加分数达到72分,则他第6周的学规得分总计是多少分?【答案】(1)9分(2)-2分【分析】(1)将表格中的得分求和即可;(2)第4周末学规累加分数和第5周学规得分相加,得到第5周末学规累加分数,用第6周末学规累加分数减去第5周末学规累加分数,即为第6周的学规得分.【详解】(1)解:∵+5+3−4+7−2=9∵第5周小李学规得分总计是9分;(2)解:∵第4周末学规累加分数为65分,第5周学规得分总计是9分∵第5周末学规累加分数为:65+9=74∵72-74=-2∵第6周的学规得分总计是-2分.20.(6分)如图所示,观察数轴,请回答:(1)点C 与点D 的距离为 ,点B 与点D 的距离为 ;(2)点B 与点E 的距离为 ,点A 与点C 的距离为 ;发现:在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN = (用m ,n 表示)【答案】(1)3,2(2)4,7 m n -【分析】本题主要考查数轴,熟练掌握数轴上两点间的距离公式是解题的关键.(1)直接根据数轴上两点间的距离进行计算即可.(2)根据数轴上两点间的距离进行计算,再进行规律总结,即可得到答案.【详解】(1)解:点C 与点D 的距离为303-=点B 与点D 的距离为0(2)2--=故答案为:3,2;(2)解:点B 与点E 的距离为2(2)4--=,点A 与点C 的距离为3(4)7--=在数轴上,如果点M 与点N 分别表示数m ,n ,则他们之间的距离可表示为MN m n =-故答案为:4,7 m n -.21.(8分)(1)画数轴并在数轴上表示下列各数:0,3,1.5,-4,1 32-; (2)按从小到大的顺序用“<”号把(1)中的这些数连接起来;(3)直接填空:数轴上表示3和表示1的两点之间的距离是 ,数轴上A 点表示的数为1.5,B 点表示的数为32-,则点A ,B 两点之间的距离是 .【答案】(1)见解析;(2)3401 1.532-<-<<<<;(3)2,3 【分析】本题考查了有理数的大小比较,数轴,准确在数轴上找到各数对应的点是解题的关键. (1)先在数轴上准确找到各数对应的点,即可解答;(2)利用(1)的结论,即可解答;(3)根据数轴上两点间距离公式进行计算,即可解答.【详解】解:(1)如图:(2)由(1)可得:3401 1.532-<-<<<<; (3)数轴上表示3和表示1的两点之间的距离312=-=,数轴上A 点表示的数为1.5,B 点表示的数为32-,则点A ,B 两点之间的距离31.5 1.5 1.532⎛⎫=--=+= ⎪⎝⎭故答案为:2;3.22.(10分)已知有A ,B ,C 三个数的“家族”:A :{-1,3.1,-4,6,2.1}B :14.2,2.1,1,10,8⎧⎫---⎨⎬⎩⎭ C :{2.1,-4.2,8,6}. (1)请把每个“家族”中所含的数填入图中的相应部分.(2)把A ,B ,C 三个数的“家族”中的负数写在横线上:__________.(3)有没有同时属于A ,B ,C 三个数的“家族”的数?若有,请指出.【答案】(1)见解析;(2) -1,-4,-4.2,18-;(3)见解析. 【分析】(1)根据数集的包含关系进行分类(2)选出负数;(3)根据观察易得.【详解】解:(1)如图所示.(2)-1,-4,-4.21 8 -(3)有,是2.1.故答案为(2)-1,-4,-4;218-;(3)有,是2.1.23.(10分)阅读下面的文字,完成后面的问题:我们知道:11×2=1−12;12×3=12−13;13×4=13−14.那么:(1)14×5=______;12019×2020=______;(2)用含有n的式子表示你发现的规律______;(3)求式子11×2+12×3+13×4+⋯+12019×2020的值.【答案】(1)14−15(2)12019−12020(3)20192020.【分析】(1)根据阅读部分的提示规律直接进行计算即可;(2)根据阅读部分的提示规律用含n的代数式表示即可;(3)根据得到的规律把原式化为:11−12+12−13+13−14+⋯+12019−12020,再计算即可;(4)先利用非负数的性质求解x,y,再代入代入式结合规律进行计算即可。
七年级数学上册第一章有理数经典大题例题
(名师选题)七年级数学上册第一章有理数经典大题例题单选题1、实际测量一座山的高度时,有时需要在若干个观测点中测量两个相邻可视观测点的相对高度如A−C为90米表示观测点A比观测点C高90米),然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录,根据这次测量的数据,可得A−B是()米.答案:A分析:数轴法:设点C为原点,则A表示数90,D表示数-80,以此类推,将以上各观测点在数轴上表示,即可解题.解:设点C为原点,则A表示数90,D表示数-80,以此类推将以上各观测点在数轴上表示如下:即E表示数-140,F表示数-90,G表示数-160,B表示数-120∴A−B=90−(−120)=90+120=210故选:A.小提示:本题考查正负数在实际生活中的应用,是基础考点,利用数轴解题是关键.2、在3,﹣3,0,﹣2这四个数中,最小的数是()A.3B.﹣3C.0D.﹣2答案:B分析:有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.解:根据有理数比较大小的方法,可得﹣3<﹣2<0<3,∴各数中最小的数是﹣3.故选:B.小提示:此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3、在《九章算术注》中用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(白色为正,黑色为负),如图1表示的是+21−32=−11的计算过程,则图2表示的过程是在计算()A.(−13)+(+23)=10B.(−31)+(+32)=1C.(+13)+(+23)=36D.(+13)+(−23)=−10答案:A分析:根据图1可知,一横表示10,一竖表示1,白色为正,黑色为负,由此即可得出答案.解:由图1可知,一横表示10,一竖表示1,白色为正,黑色为负,则图2表示的过程是在计算(−13)+(+23)=10,故选:A.小提示:本题考查了有理数的加减法,掌握理解每个算筹所表示的数是解题关键.4、a,b是有理数,它们在数轴上的位置如图所示.把a,b,﹣a,﹣b按照从小到大的顺序排列,正确的是()A.b<a<−a<−b B.−a<b<−b<aC.b<−a<a<−b D.−b<−a<a<b答案:C分析:先根据a,b两点在数轴上的位置判断出其符号,进而可得出结论.解:∵由图可知,b<0<a,|a|<|b|,∴0<a<-b,b<-a<0,∴b<-a<a<-b.故选:C.小提示:本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大的特点是解答此题的关键.5、按照如图所示的计算程序,若x=3,则输出的结果是()A.1B.9C.−71D.−81答案:C分析:将x的值代入程序图中的程序按要求计算即可.解:当x=3时,10-x2=10-9=1>0,于是再把x=1输入,10-x2=10-1=9>0,不合题意;再把x=9输入,10-x2=10-81=-71<0,符合题意,因此输出的数为:-71,故选:C.小提示:本题主要考查了求代数式的值,有理数的混合运算,本题是操作型题目,按程序图的要求运算是解题的关键.6、对于有理数a、b,有以下几种说法,其中正确的说法个数是()①若a+b=0,则a与b互为相反数;②若a+b<0,则a与b异号;③a+b>0,则a与b同号时,则a>0,b>0;④|a|>|b|且a、b异号,则a+b>0;⑤|a|<b,则a+b>0.A.3个B.2个C.1个D.0个分析:根据相反数的意义:只有符号不同的两个数互为相反数,若a+b=0,移项可得a=-b,满足相反数的定义,故a与b互为相反数,可判定①;举一个反例满足a+b<0,可以取a与b同时为负数满足条件,但a与b不异号,可判定②;根据条件可得a+b大于0,且a与b同号,可得a与b只能同时为正,进而得到a、b大于0,可判定③;举一个反例,例如a=﹣3,b=2,满足条件,但是a+b=﹣1<0,可判定④;由|a|<b,所以b>0,所以a+b>0,可判定⑤.解:①若a+b=0,则a=﹣b,即a与b互为相反数,故①正确;②若a+b<0,若a=﹣1,b=﹣2,a+b=﹣3<0,但是a与b同号,故②错误;③a+b>0,若a与b同号,只有同时为正,故a>0,b>0,故③正确;④若|a|>|b|,且a,b异号,例如a=﹣3,b=2,满足条件,但是a+b=﹣1<0,故④错误.⑤由|a|<b,所以b>0,所以a+b>0,故⑤正确;则正确的结论有①③⑤,共3个.故选:A.小提示:此题考查了有理数的加法运算,熟练掌握有理数的加法运算法则是解本题的关键.7、若|a|=4,|b|=2,且a+b的绝对值与它的相反数相等,则a+b的值是()A.−2B.−6C.−2或−6D.2或6答案:C分析:由|a|=4,|b|=2,可确定两个a的值与两个b的值,则可计算出a+b的所有可能值,再由a+b的绝对值与它的相反数相等,可判断出a+b的符号是非正数,从而最后可得到a+b的值.∵|a|=4,|b|=2∴a=±4,b=±2∴a+b=6,2,−6,−2∵a+b的绝对值与它的相反数相等,即|a+b|=−(a+b)∴a+b≤0∴a+b=−6或−2小提示:本题考查了绝对值的性质,注意:a 与b 的值均有两个,不要忽略负数;一个数的绝对值等于它的相反数,则这个数必定是非正数.8、某玩具商店周年店庆,全场八折促销,持会员卡可在促销活动的基础上再打六折.某电动汽车原价300元,小明持会员卡购买这个电动汽车需要花( )元A .240B .180C .160D .144答案:D分析:根据题意,列出算式,即可求解.解:300×0.8×0.6=144(元),故选D .小提示:本题主要考查有理数乘法运算的实际应用,理解题意,列出算式,是解题的关键.9、有理数−2,−12,0,32中,绝对值最大的数是( )A .−2B .−12C .0D .32答案:A分析:根据绝对值的含义求出各个数的绝对值,再比较大小即可.|−2|=2,|−12|=12,0的绝对值为0,|32|=32, ∵0<12<32<2, ∴绝对值最大的数为-2,故选:A .小提示:本题考查了绝对值的含义以及有理数的大小比较等知识,掌握绝对值的含义是解答本题的关键.10、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…,31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38 =6561,…,根据上述算式中的规律,221+311的末位数字是( )A .3B .5C .7D .9答案:D分析:通过观察发现:2n 的个位数字是2,4,8,6四个一循环,所以根据21÷4=5…1,得出221的个位数字与21的个位数字相同;以3为底的幂的末位数字是3,9,7,1依次循环的.11÷4=2…3即可知311的个位数字,从而得到221+311的末位数字.解:由题意可知,21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,……,即末位数字是每4个算式是一个周期,末位分别为2,4,8,6,∵21÷4=5…1,∴21的末位数字与21的末位数字相同,为2;由题意可知,31=3,32=9,33=27,34=81,35=243,36=729,37=2187…以3为底的幂的末位数字是3,9,7,1依次循环的,11÷4=2…3,所以311的个位数字是7,所以221+311的个位数字是9,故选:D.小提示:本题考查的是尾数特征,规律型:数字的变化类,根据题意找出数字循环的规律是解答此题的关键.填空题11、某检修小组从A地出发,在东西方向的马路上检修线路,若规定向东行驶为正,向西行驶为负,一天中五次行驶记录如下(单位:km):+7,-9,+8,-6,-5.则收工时检修小组在A地__________边______km.答案:西 5分析:将题中数据求和,根据结果的正负可判断方向,根据数值的大小可判断收工时检修小组与A地的距离.解:由题意得:+7-9+8-6-5=(7+8)-(9+6+5)=15-20=-5(km),∴收工时检修小组在A地西边5km.所以答案是:西,5.小提示:此题主要考查了正数、负数的特征和应用,有理数加法运算及应用,解答此题的关键是要明确:用正负数表示两种具有相反意义的量.12、若有理数a、b、c在数轴上位置如图所示,则化简|c−a|−|a+b|+|b−c|的结果为_______.答案:2a分析:通过数轴上a、b、c的位置,根据数轴上右边的点大于左边的点,可得a>0>c>b,|a|<|b|,|b|>|c|,所以c−a<0、a+b<0,b−c<0.所以根据绝对值的运算方法可得.|c−a|−|a+b|+|b−c|=−(c−a)+(a+b)−(b−c)=−c+a+a+b−b+c=2a.解:∵由数轴得:a>0>c>b,|a|<|b|,|b|>|c|∴c−a<0、a+b<0,b−c<0∴|c−a|−|a+b|+|b−c|=−(c−a)+(a+b)−(b−c)=−c+a+a+b−b+c=2a所以答案是:2a.小提示:本题主要考查知识点为,绝对值的定义:数轴上的点到原点的距离、绝对值的运算:|a|={a(a>0) 0(a=0)−a(a<0),数轴上的点的位置关系.能通过数轴判断数的大小关系、理解绝对值的定义,掌握绝对值的运算,是解决本题的关键.13、在一个比例中,两个内项互为倒数,其中一个外项是24,另一个外项是___.答案:124分析:根据比例内项之积等于外项之积及有理数除法运算法则解答解:∵两个内项互为倒数,∴两内项之积等于1,∵比例内项之积等于外项之积,一个外项为24,∴另一个外项是1÷24=124.所以答案是:124.小提示:此题考查了有理数的除法计算法则,比例式的比例内项之积等于外项之积的性质,正确理解比例式的性质及有理数除法计算法则是解题的关键.14、计算:(−1)3+|−2|=___________.答案:1分析:根据有理数的乘方,化简绝对值进行计算即可求解.解:原式=−1+2=1.所以答案是:1.小提示:本题考查了有理数的混合运算,正确的计算是解题的关键.15、元旦节期间,某商场对顾客实行这样的优惠政策:若一次购物不超过200元,则不予折扣;若一次购物超过200元不超过500元,则按标价给予八折优惠:若一次购物超过500元,其中500元按上述八折优惠外,超过500元的部分给予七折优惠.小明的妈妈两次购物分别付款192元和384元,如果她合起来一次性购买同样多的商品,那么她可以节约______元.答案:55.6或22##22或55.6分析:根据题意分类讨论,分别求得两次购物标价,进而根据优惠方案求解即可.解:付款192的商品如果按规定:每一次购物不超过200元,则不予折扣付款,则商品的标价为192元;付款192的商品如果按规定:若一次购物超过200元,不超过500元,按标价给予八折优惠付款,则标价为192÷0.8=240元;由500×0.8=400,所以付款384的商品没有超过500元,则按规定:若一次购物超过200元,不超过500元,按标价给予八折优惠付款,则商品的标价为384÷0.8=480元,所以某人两次购物分别付款192元和384元的商品的总标价为192+480=672(元)或240+480=720(元),当他合起来一次购买同样的商品时,可按规定:若一次购物超过500元,其中500元按上述八折优惠之外,超过500元部分给予七折优惠进行付款.总标价为672元应实际付款数=500×0.8+(672-500)×0.7=520.4(元),则他可节约(192+384)-520.4=55.6(元);总标价为720元应实际付款数=500×0.8+(720-500)×0.7=554(元),则他可节约(192+384)-554=22(元).所以答案是:55.6或22.小提示:本题考查了有理数运算的应用,分别求得两次购物标价是解题的关键.解答题16、小红与小亮两位同学计算﹣32﹣6×(12−13)的过程如图:请判断他们的解法是否正确(在相应的方框内打“√”或“×”),并写出你的解答过程.答案:见解析分析:利用含乘方的有理数运算法则和乘法结合律计算即可.解:正确解答过程如下:原式=−9−6×12+6×13=−9−3+2=−10.小提示:本题考查含乘方的有理数运算和乘法结合律,解题的关键是掌握含乘方的有理数运算法则和乘法结合律,能够正确计算.17、如图所示,某数学活动小组编制了一道有理数混合运算题,即输入一个有理数,按照自左向右的顺序运算,可得计算结果,其中“●”表示一个有理数.(1)若●表示2,输入数为−3,求计算结果;(2)若计算结果为8,且输入的数字是4,则●表示的数是几?(3)若输入数为a,●表示的数为b,当计算结果为0时,请求出a与b之间的数量关系.答案:(1)3(2)-17(3)b=−2a−1分析:(1)根据题意代入相应的值运算即可;(2)设●表示的数为x,根据题意得出相应的方程求解即可;(3)根据输入数为a,●表示的数为b,当计算结果为0时,求出a,b之间的关系.(1)解:∵●表示2,输入数为−3∴(−3)×(−4)÷2+(−1)−2=12÷2−1−2=3;(2)解:设●表示的数为x,根据题意得:4×(−4)÷2+(−1)−x=8,∴x=−17;(3)解:∵输入数为a,●表示的数为b,当计算结果为0时,∴−4a+(−1)−b=0,2整理得b=−2a−1.小提示:本题主要考查有理数的混合运算,解答的关键理解清楚题意,并掌握相应的运算法则.18、如图,已知数轴上的点A、B对应的数分别是-5和1.(1)若P到点A、B的距离相等,求点P对应的数;(2)动点P从点A出发,以2个长度单位/秒的速度向右运动,设运动时间为t秒,问:是否存在某个时刻t,恰好使得P到点A的距离是点P到点B的距离的2倍?若存在,请求出t的值;若不存在,请说明理由;(3)若动点P从点A出发向点B运动,同时,动点Q从点B出发向点A运动,经过2秒相遇;若动点P从点A 出发向点B运动,同时,动点Q从点B出发与点P同向运动,经过6秒相遇,试求P点与Q点的运动速度(长度单位/秒)答案:(1)−2;(2)存在;2或6;(3)2单位长度/秒;1单位长度/秒分析:(1)设点P对应的数为x,表示出BP与PA,根据BP=PA求出x的值,即可确定出点P对应的数;(2)表示出点P对应的数,进而表示出PA与PB,根据PA=2PB求出t的值即可;(3)设P点的运动速度m单位长度/秒,Q点的运动速度n单位长度/秒,根据题意列出关于m、n的二元一次方程组求解即可得出答案.(1)点A、B对应的数分别是-5和1,设点P对应的数为x,则PA=x+5,PB=1−x,∵PA=PB,∴x+5=1−x,解得:x=−2,∴点P对应的数为-2;(2)P 对应的数为−5+2t ,∴PA =2t ,PB =|−5+2t −1|=|2t −6|,∵PA =2PB ,∴2t =2|2t −6|,当t =2t −6时,t =6,当t +2t −6=0时,t =2,答:当t =2或6时,恰好使得P 到点A 的距离是点P 到点B 的距离的2倍;(3)设P 点的运动速度m 单位长度/秒,Q 点的运动速度n 单位长度/秒,根据题意得,{2m +2n =6−6m −6n =6, 解得:{m =2n =1, 答:P 点的运动速度2单位长度/秒,Q 点的运动速度1单位长度/秒.小提示:本题考查数轴上的点表示的数及两点间的距离、一元一次方程的应用,二元一次方程组的应用等知识,根据题中描述找到等量关系式是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴的认识及应用1.如图,数轴上的A,B,C三点所表示的数是分别是a、b、c,其中AB=BC,如果|a|>|b|>|c|,那么该数轴的原点O的位置应该在()A.点A的左边 B.点A与点B之间C.点B与点C之间 D.点B与点C之间(靠近点C)或点C的右边2.在数轴上,与表示数﹣5的点的距离是2的点表示的数是()A.﹣3 B.﹣7 C.±3 D.﹣3或﹣73.如果a表示有理数,那么下列说法中正确的是()A.+a和﹣(﹣a)互为相反数B.+a和﹣a一定不相等C.﹣a一定是负数D.﹣(+a)和+(﹣a)一定相等4.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;则翻转2015次后,数轴上数2015所对应的点是()A.点C B.点D C.点A D.点B5.如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次将点A向左移动3个单位长度到达点A1,第二次将点A1向右移动6个单位长度到达点A2,第三次将点A2向左移动9个单位长度到达点A3,…按照这种移动规律进行下去,第51次移动到点A51,那么点A51所表示的数为()A.﹣74 B.﹣77 C.﹣80 D.﹣836.如图,数轴上P、Q、S、T四点对应的整数分别是p、q、s、t,且有p+q+s+t=﹣2,那么,原点应是点()A.P B.Q C.S D.T7.点A、B分别是数﹣3,﹣1在数轴上对应的点.使线段AB沿数轴向右移动到A′B′,且线段A′B′的中点对应的数是3,则点A′对应的数是,点A移动的距离是.8.如图,数轴的单位长度为1,如果R表示的数是﹣1,则数轴上表示相反数的两点是.9.如图,小黄和小陈观察蜗牛爬行,蜗牛在以A为起点沿数轴匀速爬向B点的过程中,到达C点时用了9分钟,那么到达B点还需要分钟.10.一质点P从距原点1个单位的A点处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从A1点跳动到OA1的中点A2处,第三次从A2点跳动到OA2的中点A3处,如此不断跳动下去,则第5次跳动后,该质点到原点O的距离为.11.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是﹣2.已知点A、B是数轴上的点,完成下列各题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是,A、B两点间的距离是.(2)如果点A表示数是3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点B表示的数是,A、B两点间的距离是.(3)一般地,如果点A表示数为a,将点A向右移动b个单位长度,再向左移动c个单位长度,那么请你猜想终点B表示的数是,A、B两点间的距离是.12.操作探究:已知在纸面上有一数轴(如图所示),操作一:(1)折叠纸面,使表示的1点与﹣1表示的点重合,则﹣3表示的点与表示的点重合;操作二:(2)折叠纸面,使﹣1表示的点与3表示的点重合,回答以下问题:①5表示的点与数表示的点重合;②若数轴上A、B两点之间距离为11,(A在B的左侧),且A、B两点经折叠后重合,求A、B两点表示的数是多少.13.一只蜗牛从A点出发,在一条数轴上来回爬行,规定:向正半轴运动记为“+”,向负半轴运动记为“﹣”,从开始到结束爬行的各段路程(单位:cm)依次为+7,﹣5,﹣10,﹣8,+9,﹣6,+12,+4.(1)若A点在数轴上表示的数为﹣2,则蜗牛停在数轴上何处,请通过计算加以说明.(2)若蜗牛的爬行速度为每秒cm,请问蜗牛一共爬行了多少秒?14.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东500m处,商场在学校西300m处,医院在学校东600m处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m.(1)请画一条数轴并在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离;(3)若小新家也位于这条马路旁,在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,试求小新家与学校的距离.绝对值及其应用1.已知a,b是有理数,|ab|=﹣ab(ab≠0),|a+b|=|a|﹣b.用数轴上的点来表示a,b 下列正确的是()A. B.C. D.2.a,b在数轴上的位置如图,化简|a+b|的结果是()A.﹣a﹣b B.a+b C.a﹣b D.b﹣a3.数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|4.已知数轴上的三点A、B、C,分别表示有理数a、1、﹣1,那么|a+1|表示为()A.A、B两点间的距离B.A、C两点间的距离C.A、B两点到原点的距离之和D.A、C两点倒原点的距离之和5.若|m|=﹣m,则|m﹣1|﹣|m﹣2|= .6.有理数a、b在数轴上如图,(1)在数轴上表示﹣a、﹣b;(2)试把这a、b、0、﹣a、﹣b五个数按从小到大用“<”连接.(3)用>、=或<填空:|a| a,|b| b.7.绝对值大于2而小于6的所有整数的和是多少?(列式计算)8.数轴上两点间的距离等于这两点所对应的数的差的绝对值.例:如图所示,点A、B在数轴上分别对应的数为a、b,则A、B两点间的距离表示为|AB|=|a﹣b|.根据以上知识解题:(1)若数轴上两点A、B表示的数为x、﹣1,①A、B之间的距离可用含x的式子表示为;②若该两点之间的距离为2,那么x值为.(2)|x+1|+|x﹣2|的最小值为,此时x的取值是;(3)已知(|x+1|+|x﹣2|)(|y﹣3|+|y+2|)=15,求x﹣2y的最大值和最小值.9.已知有理数a,b在数轴上的位置如图所示.(1)在数轴上标出﹣a,﹣b的位置,并比较a,b,﹣a,﹣b的大小:(2)化简|a+b|+|a﹣b|.10.阅读:已知点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为|AB|=|a ﹣b|.理解:(1)数轴上表示2和﹣3的两点之间的距离是;(2)数轴上表示x和﹣5的两点A和B之间的距离是;(3)当代数式|x﹣1|+|x+3|取最小值时,相应的x的取值范围是;最小值是.应用:某环形道路上顺次排列有四家快递公司:A、B、C、D,它们顺次有快递车16辆,8辆,4辆,12辆,为使各快递公司的车辆数相同,允许一些快递公司向相邻公司调出,问共有多少种调配方案,使调动的车辆数最少?并求出调出的最少车辆有理数的加法1.下面结论正确的有()①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.⑥正数加负数,其和一定等于0.A.0个B.1个C.2个D.3个2.两数相加,其和小于每一个加数,那么()A.这两个加数必有一个是0B.这两个加数必是两个负数C.这两个加数一正一负,且负数的绝对值较大D.这两个加数的符号不能确定3.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.104.在进行异号的两个有理数加法运算时,用到下面的一些操作:①将绝对值较大的有理数的符号作为结果的符号并记住②将记住的符号和绝对值的差一起作为最终的计算结果③用较大的绝对值减去较小的绝对值④求两个有理数的绝对值⑤比较两个绝对值的大小其中操作顺序正确的步骤是()A.①②③④⑤B.④⑤③②①C.①⑤③④②D.④⑤①③②5.已知a与1的和是一个负数,则|a|=()A.a B.﹣a C.a或﹣a D.无法确定6.若两个非零有理数a,b,满足|a|=a,|b|=﹣b,a+b<0,则a,b的取值符合题意的是()A.a=2,b=﹣1 B.a=﹣2,b=1 C.a=1,b=﹣2 D.a=﹣1,b=﹣27.在下表从左到右的每隔小格子中都填入一个有理数,使得其中任意四个相邻格子中所填的有理数之和都为﹣5,则第2015个格子中应填入的有理数是()a ﹣7b ﹣4cdef 2 …A.﹣7 B.﹣4 C.4 D.28.已知|x|=2,|y|=5,且x>y,则x+y= .9.一个数为﹣5,另一个数比它的相反数大4,这两数的和为.10.一组数:1,﹣2,3,﹣4,5,﹣6,…,99,﹣100,这100个数的和等于.11.观察下面的几个算式:1+2+1=4,1+2+3+2+1=9,1+2+3+4+3+2+1=16,1+2+3+4+5+4+3+2+1=25,…根据你所发现的规律,请你直接写出下面式子的结果:1+2+3+…+99+100+99+…+3+2+1= .12.计算题(1)5.6+4.4+(﹣8.1)(2)(﹣7)+(﹣4)+(+9)+(﹣5)(3)+(﹣)+(4)5(5)(﹣9)+15(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)13.阅读下面文字:对于(﹣5)+(﹣9)+17+(﹣3)可以如下计算:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+(17+)+[(﹣3)+(﹣)]=[(一5)+(﹣9)+17+(一3)]+[(﹣)+(﹣)++(﹣)]=0+(﹣1)=﹣1上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(﹣1)+(﹣2000)+4000+(﹣1999)有理数的加减混合运算1.将6﹣(+3)﹣(﹣7)+(﹣2)写成省略加号的和的形式为()A.﹣6﹣3+7﹣2 B.6﹣3﹣7﹣2 C.6﹣3+7﹣2 D.6+3﹣7﹣22.1﹣2+3﹣4+5﹣6+…+2005﹣2006的结果是()A.0 B.100 C.﹣1003 D.10033.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a﹣b+c的值为()A.2 B.﹣2 C.2或﹣2 D.以上都不对4.下列交换加数位置的变形中,正确的是()A.1﹣4+5﹣4=1﹣4+4﹣5 B.1﹣2+3﹣4=2﹣1+4﹣3C.4﹣7﹣5+8=4﹣5+8﹣7 D.﹣3+4﹣1﹣2=2+4﹣3﹣15.大家都知道,八点五十五可以说成九点差五分,有时这样表达更清楚.这启发人们设计一种新的加减计数法.比如:9写成1,1=10﹣1;198写成20,20=200﹣2;7683写成13,13=10000﹣2320+3总之,数字上画一杠表示减去它,按这个方法请计算53﹣31=()A.1990 B.2068 C.2134 D.30246.实际测量一座山的高度时,可在若干个观测点中测量每两个相邻可视观测点的相对高度,然后用这些相对高度计算出山的高度.下表是某次测量数据的部分记录(用A﹣C表示观测点A相对观测点C的高度)根据这次测量的数据,可得观测点A相对观测点B的高度是()米.A﹣C C﹣D E﹣D F﹣E G﹣F B﹣G90米 80米﹣60米50米﹣70米40米A.210 B.130 C.390 D.﹣2107.50个连续正奇数的和l+3+5+7+…+99与50个连续正偶数的和:2+4+6+8+…+100,它们的差是()A.0 B.50 C.﹣50 D.50508.将一根12cm长的木棒和一根9cm长的木棒捆在一起,长度为17cm,则两根木棒的捆绑长度(重叠部分的长度)为cm.9.计算:= .10.规定图形表示运算x+z﹣y﹣w.则= .11.“△”表示一种新的运算符号,已知:2△3=2﹣3+4,7△2=7﹣8,3△5=3﹣4+5﹣6+7,…;按此规则,计算:(1)10△3=(2)若x△7=2003,则x= .12.)解答下列各题:(1)(﹣3.6)+(+2.5)(2)﹣(﹣3)﹣2(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)(4)﹣5﹣(﹣11)﹣(﹣)(5)3﹣(﹣)+(﹣)(6)﹣|﹣1|﹣()﹣(﹣2.75)(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)(8)(﹣4)﹣(+5)﹣(﹣4)13.兴业银行中山街储蓄所上午在一段时间内办理了5件储蓄业务:存入1080元;取出902元;存入990元;存入1000元;取出1100元,这时银行现款增加了多少元?14.张华记录了今年雨季钱塘江一周内水位变化的情况如下表(正号表示比前一天高,负号表示比前一天低):星期一二三四五六日水位变化(m)+0.2+0.80 ﹣0.40 +0.03 +0.28 ﹣0.36 ﹣0.045(1)本周星期水位最高,星期水位最低.(2)与上周末相比,本周日的水位是上升了还是下降了?(写出计算过程)15.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A到B 记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A→C(,),B→D(,);(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出依次行走停点E、F、M、N的位置.16.解答题:(1)已知a,b互为相反数,c,d互为倒数,x的绝对值为1,求a+b+x2﹣cdx.(2)10箱苹果,如果每箱以30千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+2,+1,0,﹣1,﹣1.5,﹣2,+1,﹣1,﹣1,﹣0.5.这10箱苹果的总质量是多少千克?(3)小亮用50元钱买了10枝钢笔,准备以一定的价格出售,如果每枝钢笔以6元的价格为标准,超过的记作正数,不足的记作负数,记录如下:0.5,0.7,﹣1,﹣1.5,0.8,1,﹣1.5,﹣2.1,9,0.9.①这10枝钢笔的最高的售价和最低的售价各是几元?②当小亮卖完钢笔后是盈还是亏?有理数乘法1.以下各数中,填入□中能使(﹣)×□=﹣2成立的是()A.﹣1 B.2 C.4 D.﹣42.若四个有理数相乘,积为负数,则负因数的个数是()A.1 B.2 C.3 D.1或33.从﹣3,﹣1,1,5,6五个数中任取两个数相乘,若所得积中的最大值为a,最小值为b,则的值为()A.﹣ B.﹣2 C.﹣ D.﹣104.算式(﹣1)×(﹣3)×之值为何?()A.B.C.D.5.两个有理数的积是负数,和也是负数,那么这两个数()A.都是负数B.互为相反数C.其中绝对值大的数是正数,另一个是负数D.其中绝对值大的数是负数,另一个是正数6.若a+b<0且ab<0,那么()A.a<0,b>0 B.a<0,b<0C.a>0,b<0 D.a,b异号,且负数绝对值较大7.若|a|=3,|b|=5,且a、b异号,则a•b= .8.若a<b<0,则(a+b)(a﹣b)0.9.若定义新运算:a△b=(﹣2)×a×3×b,请利用此定义计算:(1△2)△(﹣3)= .10.如果4个不等的偶数m,n,p,q满足(3﹣m)(3﹣n)(3﹣p)(3﹣q)=9,那么m+n+p+q 等于.11.用简便方法计算:(1)﹣13×﹣0.34×+×(﹣13)﹣×0.34(2)(﹣﹣+﹣)×(﹣60)12.用简便方法计算(1)99×(﹣9)(2)(﹣5)×(﹣3)+(﹣7)×(﹣3)+12×(﹣3)有理数的除法1.下列说法不正确的是()A.一个数(不为0)与它的倒数之积是1B.一个数与它的相反数之和为0C.两个数的商为﹣1,这两个数互为相反数D.两个数的积为1,这两个数互为相反数2.两个不为零的有理数相除,如果交换被除数与除数的位置而商不变,那么这两个数一定是()A.相等 B.互为相反数C.互为倒数 D.相等或互为相反数3.已知非零实数a,b,c,满足,则等于()A.±1 B.﹣1 C.0 D.14.下列等式中不成立的是()A.﹣ B.=C.÷1.2÷ D.5.要使为整数,a只需为()A.奇数 B.偶数 C.5的倍数D.个位是5的数6.已知有10包相同数量的饼干,如果将其中1包饼干平分给23名学生,最少剩3片.如果将此10包饼干平分给23名学生,那么最少剩下的饼干的片数是()A.0 B.3 C.7 D.107.若=2,=6,则= .8.若a,b互为倒数,则a2b﹣(a﹣2017)值为.9.已知a﹣1的倒数是﹣,那么a+1的相反数是.10.(1)(﹣)×(﹣3)÷(﹣1)÷3(2)[(+)﹣(﹣)﹣(+)]÷(﹣)11.计算(1)(﹣3)×(﹣9)﹣8×(﹣5)(2)﹣63÷7+45÷(﹣9)(3)(﹣)×1÷(﹣1)(4)(1﹣+)×(﹣48).12.阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.有理数的乘方1.计算(﹣1)2017的结果是()A.﹣1 B.1 C.﹣2017 D.20172.a2=1,b是2的相反数,则a+b的值为()A.﹣3 B.﹣1 C.﹣1或﹣3 D.1或﹣33.下列说法中,正确的是()A.若a≠b,则a2≠b2 B.若a>|b|,则a>bC.若|a|=|b|,则a=b D.若|a|>|b|,则a>b4.若x、y为有理数,下列各式成立的是()A.(﹣x)3=x3B.(﹣x)4=﹣x4C.x4=﹣x4D.﹣x3=(﹣x)35.下列各组数中,结果相等的是()A.﹣12与(﹣1)2B.C.﹣|﹣2|与﹣(﹣2)D.(﹣3)3与﹣33 6.若a2=25,|b|=3,且ab>0,则a+b的值为()A.8 B.﹣8 C.8或﹣8 D.8或﹣27.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为220的末位数字是()A.2 B.4 C.6 D.88.我国古代典籍《庄子•天下篇》中曾说过一句话:“一尺之棰,日取其半,万世不竭”,现有一根长为1尺的木杆,第1次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,如此反复,则第99次截取后,此木杆剩下的长度为()A.尺B.尺C.尺D.尺9.已知:2+=22×,3+=32×,4+=42×…,若14+=142×(a、b均为正整数),则a+b= .10.用“☆”、“★”定义新运算:对于任意有理数a、b,都有a☆b=a b和a★b=b a,那么(﹣3☆2)★1= .11.已知:|a|=3,|b|=2,且a<b,求(a+b)2的值.12.若(2a﹣1)2+|2a+b|=0,且|c﹣1|=2,求c•(a3﹣b)的值.13.阅读下列计算公式:2n+1﹣2n=2n(2﹣1)=2n.请你根据以上规律,计算:220﹣219﹣218﹣…﹣23﹣22+2.14.阅读材料,求值:1+2+22+23+24+ (22015)解:设S=1+2+22+23+24+…+22015,将等式两边同时乘以2得:2S=2+22+23+24+…+22015+22016将下式减去上式得2S﹣S=22016﹣1即S=1+2+22+23+24+…+22015=22016﹣1请你仿照此法计算:(1)1+2+22+23+…+210(2)1+3+32+33+34+…+3n(其中n为正整数)15.如果有理数a、b满足|ab﹣2|+(1﹣b)2=0,试求:++…+的值.有理数的乘方参考答案与试题解析一.选择题(共10小题)1.A.2.C.3.B.4.C.5.D.6.D.7.C.8.B.9.C.10.B二.填空题(共5小题)11.﹣;212.>.13.209.14.1.15.22017﹣1三.解答题(共5小题)16.解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵a<b,∴a=﹣3,b=±2,∴(a+b)2=(﹣3+2)2=1,或(a+b)2=(﹣3﹣2)2=25,综上所述,(a+b)2的值为1或25.17.解:∵(2a﹣1)2+|2a+b|=0∵(2a﹣1)2≥0,|2a+b|≥0,∴2a﹣1=0,2a+b=0∴a=,b=﹣1∵|c﹣1|=2∴c﹣1=±2∴c=3或﹣1当a=,b=﹣1,c=3时,c(a3﹣b)=3×[()3﹣(﹣1)]=,当a=,b=﹣1,c=﹣1时,c(a3﹣b)=(﹣1)×[()3﹣(﹣1)]=﹣.18.解:∵2n+1﹣2n=2n(2﹣1)=2n∴220﹣219﹣218﹣…﹣23﹣22+2=219﹣218﹣…﹣23﹣22+2=218﹣…﹣23﹣22+2=22+2=619.解:(1)设S=1+2+22+23+24+ (210)将等式两边同时乘以2,得2S=2+22+23+24+…+211将下式减去上式,得2S﹣S=211﹣1即S=1+2+22+23+24+…+210=211﹣1;(2)设S=1+3+32+33+34+…+3n,将等式两边同时乘以3,得3S=3+32+33+34+…+3n+1,将下式减去上式,得3S﹣S=3n+1﹣1即2S=3n+1﹣1得S=1+3+32+33+34+…+3n=.20.解:由题意得,ab﹣2=0,1﹣b=0,解得a=2,b=1,所以,+++…+,=+++…+,=1﹣+﹣+﹣+…+﹣,=1﹣,=.有理数的除法参考答案与试题解析一.选择题(共10小题)1.A.2.B.3.D.4.D.5.D.6.D.7.B.8.C.9.A.10.C.二.填空题(共5小题)11..12.12.13.2017.14.1.15.26.5万.三.解答题(共5小题)16.解:(1)原式=﹣×××=﹣;(2)原式=(+﹣)×(﹣105)=﹣15﹣35+21=﹣29.17.解:(1)(﹣3)×(﹣9)﹣8×(﹣5)=27+40=67(2)﹣63÷7+45÷(﹣9)=﹣9+(﹣5)=﹣14(3)==(4)==﹣48+8﹣36=﹣76.18.解:(1)根据分析,可得第1处是第二步,错误原因是运算顺序错误.第2处是第三步,错误原因是符号错误.(2)(﹣15)÷()×6=(﹣15)÷(﹣)×6==故答案为:二、运算顺序错误;三、符号错误.19.解:根据题意得:[8﹣(﹣1)]×(1000÷6)=1500(m),则热气球的高度为1500m.20.解:根据题意得:[﹣++(﹣)2×(﹣6)]÷(﹣)=[﹣++×(﹣6)]×(﹣42)=﹣21+14﹣30+112=75,则原式=.有理数乘法参考答案与试题解析一.选择题(共10小题)1.D.2.C.3.D.4.C.5.A.6.D.7.D.8.D.9.B.10.A.二.填空题(共5小题)11.﹣5.12.﹣15.13.>.14.﹣216.15.12.三.解答题(共5小题)16.解:(1)﹣13×﹣0.34×+×(﹣13)﹣×0.34 =﹣13×﹣×13﹣×0.34﹣0.34×=﹣13×(+)﹣(+)×0.34=﹣13×1﹣1×0.34=﹣13﹣0.34=﹣13.34(2)(﹣﹣+﹣)×(﹣60)=(﹣)×(﹣60)﹣×(﹣60)+×(﹣60)﹣×(﹣60)=20+15﹣12+28=5117.解:(1)根据题意得:3﹣(﹣5)=3+5=8;(2)﹣==﹣2.18.解:(1)原式=(100﹣)×(﹣9)=﹣900+=﹣899.(2)原式=(﹣5﹣7+12)×(﹣3)=0×(﹣3)=0.19.解:(1)(﹣+﹣)×(﹣12)=﹣×(﹣12)+×(﹣12)+(﹣)×(﹣12)=6﹣10+7=3;(2)7×(﹣)﹣×(﹣4)﹣0.75×11=(﹣7+4﹣11)×=.20.解:(1)原式=﹣(10×0.1×)=﹣;(2)原式=3×=;(3)原式=0.有理数的加减混合运算参考答案与试题解析一.选择题(共10小题)1.C.2.:C.4.A.5.C.6.B.7.B.8.C.9.A.10.C.二.选择题(共5小题)11.﹣5+10﹣9﹣2.12.4.13.﹣1.5.14.﹣2.15.11;2000.三.解答题(共5小题)16.解:(1)(﹣3.6)+(+2.5)=﹣3.6+2.5=﹣1.1(2)﹣(﹣3)﹣2=(﹣2)+(3)=﹣3+4=1(3)(﹣49)﹣(+91)﹣(﹣5)+(﹣9)=(﹣49﹣91﹣9)+5=﹣149+5=﹣144(4)﹣5﹣(﹣11)﹣(﹣)=﹣5+11+=6+3=9(5)3﹣(﹣)+(﹣)=(3﹣)+()=3+3=6(6)﹣|﹣1|﹣()﹣(﹣2.75)=﹣1﹣2+2.75=0.4+2.75﹣(1+2)=3.15﹣3.75=﹣0.6(7)(﹣7)﹣(﹣11)+(﹣9)﹣(+2)=﹣7+11﹣9﹣2=11﹣(7+9+2)=11﹣18=﹣7(8)(﹣4)﹣(+5)﹣(﹣4)=(﹣4)+4﹣5=0﹣5=﹣517.解:存入记为正,则取出记为负.1080+(﹣902)+990+1000+(﹣1100)=(1080+990+1000)+[(﹣902)+(﹣1100)] =3070+(﹣2002)=1068(元).即这时银行现款增加了1068元.18.解:(1)设上周日的水位是a,星期一:a+0.25;星期二:a+0.80+0.25=a+1.05;星期三:a+1.05+(﹣0.40)=a+0.65;星期四:a+0.65+(+0.03)=a+0.68;星期五:a+0.68+(+0.28)=a+0.96;星期六:a+0.96+(﹣0.36)=a+0.60;星期日:a+0.60+(﹣0.04)=a+0.56;∴星期二水位最高;星期一水位最低,故答案为:二,一.解:(2)上周日的水位是a,则这周末的水位是a+0.56,∴(a+0.56)﹣a=0.56>0,即本周日的水位是上升了.19.解:(1)由向上向右走为正,向下向左走为负可得A→C(+3,+4),B→D(+3,﹣2);故答案为:+3,+4,+3,﹣2.(2)甲虫走过的路程为:1+4+2+1+2=10,(3)如图,甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),在图中标出依次行走停点E、F、M、N的位置.20.解:(1)∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴a+b+x2﹣cdx=x2﹣x∵|x|=1,∴x=±1∴当x=1时,x2﹣x=0;当x=﹣1时,x2﹣x=2;(2)2+1+0﹣1﹣1.5﹣2+1﹣1﹣1﹣0.5=﹣330×10+(﹣3)=897答:这10箱苹果的总质量是897千克.(3)①最高售价为6+9=15元最低售价为6﹣2.1=3.9元②6×10+0.5+0.7﹣1﹣1.5+0.8+1﹣1.5﹣2.1+9+0.8﹣50=16.3元答:小亮卖完钢笔后盈利16.3元.有理数的加法参考答案与试题解析一.选择题(共10小题)1.C.2.C.3.B.4.A.5.B.6.D.7.B.8.C.9.C.10.C.二.填空题(共5小题)11.﹣3或﹣7.12.4.13.﹣50.14.﹣0.9,﹣2.1,﹣,.15.10000.三.解答题(共5小题)16.解:原式=[31+(﹣31)]+[(﹣102)+(+102)]+39 =0+0+39=39.17.解:(1)5.6+4.4+(﹣8.1)=10﹣8.1=1.9;(2)(﹣7)+(﹣4)+(+9)+(﹣5)=﹣7﹣4+9﹣5=﹣16+9=﹣7;(3)+(﹣)+=(﹣)+(﹣﹣)+=0﹣1+=﹣;(4)5=(5+4)+(﹣5﹣)=10﹣6=4;(5)(﹣9)+15=(﹣9﹣15)+[(15﹣3)﹣22.5]=﹣25+[12.5﹣22.5]=﹣25﹣10=﹣35;(6)(﹣18)+(+53)+(﹣53.6)+(+18)+(﹣100)=(﹣18+18)+(+53﹣53.6)+(﹣100)=0+0﹣100=﹣100.18.解:(1)+(﹣)++(﹣)+(﹣)=+(﹣)+(﹣)+(﹣)+=0﹣1+=﹣;(2)解:原式=[(﹣)+(﹣5)]+(3+2)=﹣6+6=0;(3)解:原式=[(﹣6.9)+(﹣3.1)]+[(﹣8.7)+7]=﹣10+(﹣1.7)=﹣11.7;(4)解:原式===2.19.解:乙数=﹣2015﹣(20)=﹣2015+20=﹣1995.20.解:(﹣1)+(﹣2000)+4000+(﹣1999)=﹣1+(﹣)+(﹣2000)+(﹣)+4000++(﹣1999)+(﹣),=﹣1+(﹣2000)+4000+(﹣1999)+(﹣)+(﹣)++(﹣),=(﹣2)+,=﹣.绝对值及其应用参考答案与试题解析1.B.2.C.3.C.4.C.5.A.6.D.7.D.8.B.9.B.10.A.11.﹣0.3.12.﹣2.13.﹣2.14.>15.﹣1.16.>,=.17.绝对值大于2而小于6的所有整数的和是0.18.|x+1|;﹣3或1;3,﹣1≤x≤2;6,﹣7.19.解:(1)如图所示:,b<﹣a<a<﹣b.(2)∵a>0>b,而且|a|<|b|,∴a+b<0,a﹣b>0,∴|a+b|+|a﹣b|=﹣(a+b)+(a﹣b)=﹣a﹣b+a﹣b=﹣2b20.解:(1)2和﹣3的两点之间的距离是|2﹣(﹣3)|=5,故答案为:5.(2)A和B之间的距离是|x﹣(﹣5)|=|x+5|,故答案为:|x+5|.(3)代数式|x﹣1|+|x+3|表示在数轴上到1和﹣3两点的距离的和,当x在﹣3和1之间时,代数式取得最小值,最小值是﹣3和1之间的距离|1﹣(﹣3)|=4.故当﹣3≤x≤1时,代数式取得最小值,最小值是4.故答案为:﹣3≤x≤1,4.应用:根据题意,共有5种调配方案,如下图所示:由上可知,调出的最小车辆数为:4+2+6=12辆.数.数轴的认识及应用参考答案与试题解析一.选择题(共10小题)1.A.2.D.3.D.4.D.5.D.6.D.7.B.8.A.9.B.10.C.二.选择题(共5小题)11.2、5.12.3.13.P,Q.14.6.15..三.解答题(共5小题)16.解:(1)由图可知,点A表示数﹣3,将点A向右移动7个单位长度,那么终点B表示的数是4,A、B两点间的距离是|﹣3﹣4|=7;故答案为:4,7;(2)如果点A表示数3,将点A向左移动7个单位长度,则点A表示3﹣7=﹣4,再向右移动5个单位长度,那么终点B表示的数是﹣4+5=1,A、B两点间的距离是|3﹣1|=2;故答案为:1,2;(3)点A表示数为a,将点A向右移动b个单位长度,则点A表示a+b,再向左移动c个单位长度,那么终点B表示的数是a+b﹣c,A、B两点间的距离是|a+b﹣c﹣a|=|b﹣c|.故答案为:a+b﹣c,|b﹣c|.17.解:(1)∵1与﹣1重合,∴折痕点为原点,∴﹣3表示的点与3表示的点重合.故答案为:3.(2)①∵由表示﹣1的点与表示3的点重合,∴可确定对称点是表示1的点,∴5表示的点与数﹣3表示的点重合.故答案为:﹣3.②由题意可得,A、B两点距离对称点的距离为11÷2=5.5,∵对称点是表示1的点,∴A、B两点表示的数分别是﹣4.5,6.5.18.解:如图所示;19.解:(1)﹣2+7+(﹣5)+(﹣10)+(﹣8)+9+(﹣6)+12+4=1,所以蜗牛停在数轴上表示1的位置;(2)|7|+|﹣5|+|﹣10|+|﹣8|+|9|+|﹣6|+|12|+|4|=61.61÷=122秒.20.解:(1)如图,(2)青少年宫与商场之间的距离|500﹣(﹣300)|=800m,(3)①∵小新家在青少年宫的西边,且到商场与青少年宫的距离之和等于到医院的距离,∴小新家到医院的距离为800m,设小新家在数轴上为xm,则600﹣x=800,解得x=﹣200m,∴小新家与学校的距离为200m.②当小新家在商场的西边时,设小新家在数轴上为xm,则﹣300﹣x+500﹣x=600﹣x,解得x=﹣400m∴小新家与学校的距离为400m.。