人教版五年级数学下册知识整理资料(2018)

合集下载

人教版五年级数学下册知识点汇总

人教版五年级数学下册知识点汇总

人教版五年级数学下册知识点汇总1.观察小正方体的形状可以有多种不同的摆法,取决于观察的方向。

但是,当从三个方向观察时,小正方体只有一种摆法。

如果想象不出来,可以借助小正方体的摆法来简化问题。

2.因数和倍数是数学中的基本概念。

如果整数a除以非零整数b能得到一个整数商,那么a就是b的倍数,b就是a的因数。

一个数的因数个数是有限的,最小的因数是1,最大的因数是它本身。

要找一个数的因数,可以成对地按顺序查找。

一个数的倍数个数是无限的,最小的倍数是它本身,没有最大的倍数。

要找一个数的倍数,可以依次乘以非零自然数。

3.2、5、3的倍数有不同的特征。

以2结尾的数字是2的倍数,以5结尾的数字是5的倍数。

如果一个数各位数字的和是3的倍数,那么这个数就是3的倍数。

一个数字既是2的倍数,也是5的倍数,那么它以0结尾。

4.偶数是2的倍数,奇数不是2的倍数。

最小的偶数是0,最小的奇数是1.质数只有1和它本身两个因数,最小的质数是2.如果一个数字除了1和它本身还有其他因数,那么它是合数。

最小的合数是4.100以内的质数有25个,包括2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97.5.长方体有6个面,每个面都是长方形,有12条棱,相对的四条棱平行且相等,有8个顶点。

正方体有6个面,每个面都是正方形,有12条棱,所有的棱都相等,有8个顶点。

长方体的长、宽、高是相交于一个顶点的三条棱的长度。

长方体的棱长总和等于长、宽、高之和的4倍,正方体的棱长总和等于棱长的12倍。

长方体或正方体的表面积是6个面积的总和。

长方体的表面积等于长×宽+长×高+宽×高的2倍,用公式表示为S=(ab+ah+bh)×2.正方体的表面积等于棱长的平方乘以6,用公式表示为S=6²。

表面积的常用单位有平方厘米、平方分米和平方米,相邻两个单位的进率为100.物体所占空间的大小叫做物体的体积。

人教版五年级数学下册笔记整理完整版

人教版五年级数学下册笔记整理完整版

第一单元图形的变换(1)轴对称图形的概念:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形叫做轴对称图形。

沿着的那条对折直线叫做对称轴。

(2)轴对称图形的性质:在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等。

(3)平移:沿着直线移动,这样的现象叫做平移。

(4)旋转:物体都绕着一个固定的点或一个固定的轴移动,这样的现象叫做旋转。

(旋转三要素:旋转中心、旋转方向、旋转角)(5)等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有两条对称轴,正方形有四条对称轴,正五边形有5条对称轴,正六边形有6条对称轴,圆形有无数条对称轴。

(6)第二单元因数和倍数注意:为了方便,在研究因数和倍数的时候,我们所说的数指的是整数(一般不包括0)。

1、整除:被除数、除数和商都是非0的自然数,并且没有余数。

如果a能被b整除,那么b是a的因数,a是b的倍数一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

1是所有自然数的因数。

一个数的倍数的个数是无限的,最小的倍数是它本身。

没有最大的倍数。

2、自然数按能不能被2整除来分:奇数偶数奇数:不能被2整除的数,最小的奇数是1偶数:能被2整除的数,最小的偶数是0连续的奇数,如1、3、5等,连续偶数如、12、14、16、等,连续的奇数或连续的偶数前后相差2。

用字母表示连续的奇数或偶数(a-2)、a、(a+2)3、2、3、5倍数的特征个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时被2、3、5整除的最大的两位数是90,最小的两位数是30,最小的三位数是120。

4、自然数按因数的个数来分:质数、合数、1质数:有且只有两个因数,1和它本身。

最小的质数是2合数:至少有三个因数,1、它本身、别的因数,最小的合数是41:只有1个因数。

“1”既不是质数,也不是合数。

每个合数都可以由几个质数相乘得到。

人教版五年级下册数学知识点归纳

人教版五年级下册数学知识点归纳

人教版五年级数学下册知识点归纳总结第一单元观察物体(三)1、根据一个方向观察到的形状摆小正方体;有多种摆法;无法确定立体图形的形状.2、根据三个方向观察到的形状摆小正方休;只有1 种摆法.3、只要对着原来物体的前面或后面的任意1个正方体添1个正方体;从正面看到的形状就都不变.4、从正面、左面、上面3个不同的方向观察同一组物体而画出的图形就是三视图.5、综合三视图的形状;可以确定出立体图形中小正方体的摆放位置;通常只有一种摆法.6、由三视图拼摆正方体的方法:俯视图打地基;主视图疯狂盖;左视图拆违章.7、先摆出符合正面的立体图形;再摆出符合上面的立体图形;最后确定立体图形.根据从正面、左面、上面观察到的平面图形还原立体图形只有唯一的一种情况.8、想象不出来时;用小正方体摆一摆就简单了.第二单元因数和倍数1、整除:被除数、除数和商都是自然数;并且没有余数.整数与自然数的关系:整数包括自然数. 最小的自然数是02、因数、倍数:在整数除法中;如果商是整数而没有余数;我们就说被除数是除数的倍数;除数是被除数的因数.例:12÷2=6;12是6的倍数;6是12的因数.为了方便;在研究因数和倍数时;我们所说的数是自然数(一般不包括0).数a能被b整除;那么a就是b的倍数;b就是a的因数.因数和倍数是相互依存的;不能单独存在.一个数的因数的个数是有限的;最小的因数是1;最大的因数是它本身.一个数的因数的求法:成对地按顺序找.一个数的倍数的个数是无限的;最小的倍数是它本身.一个数的倍数的求法:依次乘以自然数.一个数的最大因数=最小倍数=它本身3、2、3、5的倍数特征1)奇数和偶数的意义:在自然数中;是2的倍数的数叫做偶数(0也是偶数);不是2的倍数的数叫做奇数.①自然数按能不能被2整除来分:奇数、偶数.奇数:不能被2整除的数;叫奇数.也就是个位上是1、3、5、7、9的数.偶数:能被2整除的数叫偶数(0也是偶数);也就是个位上是0、2、4、6、8的数.②最小的奇数是1;最小的偶数是0.③奇数、偶数的运算性质:奇数±奇数=偶数偶数±偶数=偶数奇数±偶数=奇数(大减小)奇数×奇数=奇数奇数×偶数=偶数偶数×偶数=偶数2整除数特征2 末尾是0;2;4;6;83或9 各数位上数的和是3或9的倍数5 末尾是0或52和5 个位上的数是02、3和5 是30的倍数的数(最大的两位数是90;最小的三位数是120)4或25 末两位数所组成的数是4或25的倍数8或125 末三位数所组成的数是8或125的倍数7、11、13 末三位与前几位数的差(大减小)是7或11或13的倍数例题:1、从0、4、5、8、9中取出三个数字组成三位数;①在能被2整除的数中;最大的是(984 );最小的是(450 )②在能被3整除的数中;最大的是(984 );最小的是(405 )③在能被5整除的数中;最大的是(980 );最小的是(405 )2、在四位数21□0的方框中填入一个数;使它能同时被2、3、5整除;最多能( 4 )种填法.4、质数和合数①质数和合数的意义:一个数;如果只有1和它本身两个因数;这样的数叫做质素和(或素数);一个数;如果除了1和它本身还有别的因数;这样的数叫做合数.②自然数按因数的个数来分:质数、合数、1、0四类.质数(或素数):只有1和它本身两个因数.合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数).1:只有1个因数.“1”既不是质数;也不是合数.0:最小的质数是2;最小的合数是4;连续的两个质数是2、3.所有的奇数都是质数.(×)所有的偶数都是合数(×)在1;2;3……自然数中;除了质数以外都是合数.(×)两个质数的和是偶数.(×)③质数×质数=合数每个合数都可以由几个质数相乘得到;质数相乘一定得合数.④20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数;是的就是合数;不是的就是质数.5、最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:A;最小的偶数是:0;A的最小倍数是:A;最小的质数是:2;最小的自然数是:0;最小的合数是:4猜电话号码0592-A B C D E F G提示:A——5的最小倍数 B——最小的自然数 C——5的最大因数 D——它既是4的倍数;又是4的因数 E——它的所有因数是1;2;3;6 F——它的所有因数是1; 3 G——它只有一个因数;这个号码就是附:判断(1)因为7×8=56;所以56是倍数;7和8是因数(×)(2)1是1;2;3;4;5…的因数(√)(3)14比12大;所以14的因数比12的因数多(×)(4)因为1.2÷0.6=2;所以1.2是0.6倍数. ( × )第三单元长方体和正方体1、长方体或正方体的认识①一般是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体.两个面相交的边叫做棱.三条棱相交的点叫做顶点.相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高.判断:长方体的三条棱分别叫做长方体的长宽高.(×)长方体特点:有6个面(6个面都是长方形或者4个面是长方形,2个面是正方形);8个顶点;12条棱;相对的面的面积相等;相对的棱的长度相等.一个长方体(不含正方体)最多有6个面是长方形;最少有4个面是长方形;最多有2个面是正方形.最多有4个面完全相同.用6个完全一样的长方形可以围成一个长方体(×).长方体12条棱可以分成3组;分别有4条长、4条宽、4条高.②由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体).正方体特点:正方体有12条棱;它们的长度都相等.有8个顶点.正方形的6个面是完全相同的正方形.正方体可以说是长、宽、高都相等的长方体;它是一种特殊的长方体.相同点不同点面棱长方体都有6个面;12条棱;8个顶点. 6个面都是长方形.(有可能有两个相对的面是正方形).相对的棱的长度都相等正方体6个面都是正方形. 12条棱都相等.4、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4长= 棱长总和÷4-宽-高a=L÷4-b-h宽= 棱长总和÷4-长-高b=L÷4-a-h高= 棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12 L=a×12正方体的棱长=棱长总和÷12 a=L÷12例1、如图;有一个长5分米、宽和高都是3分米的长方体硬纸箱;如果用绳子将箱子横着捆两道;长着捆一道;打结处共用2分米.一共要用绳子多长?2、一盒饼干长20厘米;宽15厘米;高30厘米;现在要在它的四周贴上商标纸;这张商标纸的面积是多少平方厘米?2、长方体或正方体的表面积表面积的意义:长方体或者正方体的6个面的总面积;叫做它的表面积.长方体表面积的计算方法.长方体表面积=(长×宽+长×高+宽×高)×2;用字母表示为S=2(ab+ah+bh);长方体的表面积=长×宽×2+长×高×2+宽×高×2;用字母表示为:S=2ab+2ah+2bh.无底(或无盖)长方体表面积= 长×宽+(长×高+宽×高)×2S=2(ab+ah+bh)-ab S=2(ah+bh)+ab无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)贴墙纸正方体表面积的计算方法:正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示:S= 6a2 生活实际:油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面.注意1:用刀分开物体时;每分一次增加两个面.(表面积相应增加)如:一根长方体木料;长1.5米;宽和厚都是2分米;把它锯成4段;表面积最少增加()平方分米.①8 ②16 ③24 ④32注意2:长方体或正方体的长、宽、高同时扩大(或缩小)几倍;表面积会扩大(或缩小)倍数的平方倍.如长、宽、高各扩大3倍;表面积就会扩大到原来的9倍.长、宽、高各缩小3倍;表面积就会缩小到原来的1 / 9.3、长方体和正方体的体积(1)体积的意义:物体所占空间的大小叫做物体的体积.(2)体积单位:立方米;立方分米;立方厘米;用字母表示为m3;dm3;cm3.体积相邻单位间的进率是1000:1m3=1000dm31dm3=1000cm3(3)长方体的体积= 长×宽×高V=abh长= 体积÷宽÷高a=V÷b÷h宽= 体积÷长÷高b=V÷a÷h高= 体积÷长÷宽h= V÷a÷b正方体的体积= 棱长×棱长×棱长V=a×a×a = a3 读作“a的立方”表示3个a相乘;(即a·a·a)某纸盒厂生产一种正方体纸板箱;棱长40厘米;它的体积是多少立方厘米?合多少立方分米?长方体的长为12厘米;高为8厘米;阴影部分的两个面的面积和是200平方厘米;这个长方体的体积是多少立方厘米?长方体的长是6厘米;宽是4厘米;高是2厘米;它的棱长总和是()厘米;六个面中最大的面积是()平方厘米;表面积是()平方厘米;体积是()立方厘米.将一个正方体钢坯锻造成长方体;正方体和长方体(体积相等;表面积不相等).表面积相等的长方体和正方体的体积相比;(1).①正方体体积大②长方体体积大③相等体积相等的长方体和正方体的表面积相比;(2).①正方体表面积大②长方体表面积大③相等(4)底面积长方体或正方体底面的面积叫做底面积.(横截面积相当于底面积;长相当于高).长方体的体积= 长×宽×高= 底面积×高正方体的体积= 棱长×棱长×棱长底面积= 横截面面积×长底面积所以;长(正)方体的体积用字母表示:V=S h如:1、表面积是54平方厘米的正方体;它的体积是()立方厘米.2、把一块棱长是20厘米的正方体钢坯;锻造成底面积是16平方厘米的长方体钢材;长方体钢材长多少厘米?注意:一个长方体和一个正方体的棱长总和相等;但体积不一定相等.长方体或正方体的长、宽、高同时扩大几倍;体积就会扩大倍数的立方倍.如长、宽、高各扩大2倍;体积就会扩大到原来的8倍.正方体的棱长扩大2倍;则体积扩大()倍.①2 ②4 ③6 ④8(5) 体积单位间的进率:1m3=1000dm31dm3=1000cm3(6) 容积和容积单位:箱子、油桶、仓库等(容器)所能容纳物体的体积;通常叫做他们的容积.计量容积;一般就用体积单位.计量液体的体积;如水、油等;单位升或毫升;常用的容积单位有升和毫升;也可以写成L和ml.1升=1立方分米1毫升=1立方厘米1升=1000毫升(1 L = 1 dm3 1 ml = 1 cm3 1 L = 1000 ml )长方体或正方体容器容积的计算方法;跟体积的计算方法相同.但要从容器里面量长、宽、高.(所以;对于同一个物体;体积大于容积.)⏹长方体的体积就是长方体的容积.()⏹一个菜窖能容纳6立方米白菜;这个菜窖的(②)是 6立方米.①体积②容积③表面积⏹一块长40厘米、宽30厘米的长方形铁板;把它的四个角分别切掉边长为4厘米的正方形;然后焊接成一个无盖的盒子.它的表面积是多少?容积是多少升?* 形状不规则的物体可以用排水法求体积;形状规则的物体可以用公式直接求体积.排水法的公式:V物体=V现在-V原来也可以V物体=S×(h现在- h原来)V物体= S×h升高×进率(7)、【体积单位换算】大单位小单位小单位 大单位进率: 1立方米=1000立方分米=1000000立方厘米 (体积相邻单位进率1000) 1立方分米=1000立方厘米=1升=1000毫升1立方厘米=1毫升1平方米=100平方分米=10000平方厘米1平方千米=100公顷=1000000平方米注意:长方体与正方体关系把长方体或正方体截成若干个小长方体(或正方体)后;表面积增加了;体积不变.【单位换算】 重量单位进率;时间单位进率;长度单位进率.长度单位:1千米 =1000 米 1 分米=10 厘米 1厘米=10毫米 1分米=100毫米1米=10分米=100厘米=1000毫米 (相邻单位进率10)面积单位:1平方千米=100公顷 1公顷=10000平方米1平方米=100平方分米 1平方分米=100平方厘米 (面积相邻单位进率100)质量单位:1吨=1000千克 1千克=1000克人 民 币:1元=10角 1角=10分 1元=100分第四单元 分数的意义和性质1、分数的意义:一个物体、一物体等都可以看作一个整体;把这个整体平均分成若干份;这样的一份或几份都可以用分数来表示.2、单位“1”:一个整体可以用自然数1来表示;通常把它叫做单位“1”.(也就是把什么平均分什么就是单位“1”.)3、分数单位:把单位“1”平均分成若干份;表示其中一份的数叫做分数单位.如54 的分数单位是51 . 4、分数与除法A ÷B=B A (B ≠0;除数不能为0;分母也不能够为0) 例如: 4÷5= 54 5、真分数和假分数、带分数 1、真分数:分子比分母小的分数叫真分数.真分数<1.2、假分数:分子比分母大或分子和分母相等的分数叫假分数.假分数≧13、带分数:带分数由整数和真分数组成的分数.带分数>1.4、真分数<1≤假分数 真分数<1<带分数6、假分数与整数、带分数的互化(1)假分数化为整数或带分数;用分子÷分母;商作为整数;余数作为分子; 如:510=10÷5=2 521 =21÷5=4 51 (2)整数化为假分数;用整数乘以分母得分子 如:2=48)( 2×4=8 (8作分子) (3)带分数化为假分数;用整数乘以分母加分子;得数就是假分数的分子;分母不变;如: 551=526)( 5×5+1=26 (4)1等于任何分子和分母相同的分数.如:1=22 = 33 = 44 = 55 =… = 100100 =… 7、分数的基本性质: 分数的分子和分母同时乘以或除以相同的数(0除外);分数的大小不变.8、最简分数:分数的分子和分母只有公因数1;像这样的分数叫做最简分数.一个最简分数;如果分母中除了2和5以外;不含其他的质因数;就能够化成有限小数.反之则不可以.9、约分:把一个分数化成和它相等;但分子和分母都比较小的分数;叫做约分. 如:3024 =54 10、通分:把异分母分数分别化成和原来相等的同分母分数;叫做通分.如:52和41 可以化成 208和205 11、分数和小数的互化(1)小数化为分数:数小数位数.一位小数;分母是10;两位小数;分母是100……如:0.3= 103 0.03=1003 0.003=10003 (2)分数化为小数: 方法一:把分数化为分母是10、100、1000…… 如:103 =0.3 53=106=0.6 41=10025=0.25 方法二:用分子÷分母 如:43=3÷4=0.75 (3)带分数化为小数:先把整数后的分数化为小数;再加上整数如:2103=2+0.3=2.3 12、比分数的大小: 分母相同;分子大;分数就大;分子相同;分母小;分数才大.分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较.13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数. 21=0.5 41=0.25 43=0.75 51=0.2 52=0.4 53=0.6 54=0.8 81=0.125 83=0.375 85=0.625 87=0.875 201=0.05 251=0.04. 14、两个数互质的特殊判断方法:① 1和任何大于1的自然数互质.②2和任何奇数都是互质数.③相邻的两个自然数是互质数.④相邻的两个奇数互质.⑤不相同的两个质数互质.⑥当一个数是合数;另一个数是质数时(除了合数是质数的倍数情况下);一般情况下这两个数也都是互质数.15、求最大公因数的方法:①倍数关系:最大公因数就是较小数.②互质关系:最大公因数就是1③一般关系:从大到小看较小数的因数是否是较大数的因数.16、分数知识图解:16、分数知识图解:分数的产生分数的意义分数与意义:把单位1平均分成几份;表示其中的一份或几份.分数与除法:分子(被除数);分母(除数);分数值(商).真分数真分数小于1真分数与假分数假分数假分数大于1或等于1带分数(整数部分和真分数)假分数化带分数、整数(分子除以分母;商作整数部分;余数作分子)分数的基本性质分数的分子、分母同时扩大或缩小相同的倍数;分数的大小不变.通分、通分子:化成分母不同;大小不变的分数(通分)最大公因数约分求最大公因数最简分数分子分母互质的分数(最简真分数、最简假分数)约分及其方法最小公倍数通分求最小公倍数分数比大小(通分、通分子、化成小数)通分及其方法小数化分数小数化成分母是10、100、1000的分数再化简分数和小数的互化分数化小数分子除以分母;除不尽的取近似值第五单元图形的运动(三)图形变换的基本方式是平移、对称和旋转.1、轴对称: 如果一个图形沿着一条直线对折后两部分完全重合;这样的图形叫做轴对称图形;这条直线叫做对称轴.(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴;等边三角形有3条对称轴;长方形有2条对称轴;正方形有4条对称轴;等腰梯形有1条对称轴;任意梯形和平行四边形不是轴对称图形.(2)圆有无数条对称轴.(3)对称点到对称轴的距离相等.(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同.3平行四边形(除棱形)属于中心对称图形.2、旋转:在平面内;一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转;定点O叫做旋转中心;旋转的角度叫做旋转角;原图形上的一点旋转后成为的另一点成为对应点.(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点;角度和方向.(3)长方形绕中点旋转180度与原来重合;正方形绕中点旋转90度与原来重合.等边三角形绕中点旋转120度与原来重合.旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等;都等于旋转角;(5)旋转中心是唯一不动的点.3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数第六单元分数的加法和减法(1) 同分母分数加、减法 (分母不变;分子相加减)1、分数数的加法和减法 (2) 异分母分数加、减法 (通分后再加减)(3) 分数加减混合运算:同整数.(4) 结果要是最简分数2、带分数加减法: 带分数相加减;整数部分和分数部分分别相加减;再把所得的结果合并起来. 附:具体解释(一)同分母分数加、减法1、同分母分数加、减法: 同分母分数相加、减;分母不变;只把分子相加减.2、计算的结果;能约分的要约成最简分数.(二)异分母分数加、减法1、分母不同;也就是分数单位不同;不能直接相加、减.2、异分母分数的加减法:异分母分数相加、减;要先通分;再按照同分母分数加减法的方法进行计算.(三)分数加减混合运算1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同.在一个算式中;如果有括号;应先算括号里面的;再算括号外面的;如果只含有同一级运算;应从左到右依次计算.2、整数加法的交换律、结合律对分数加法同样适用.3、21-121= 31-2161= 41-31121= 51-41201=第七单元 统计众数 一组数据中出现次数最多的数叫众数.众数能够反映一组数据的集中情况.统计 在一组数据中;众数可能不止一个;也可能没有众数.复式折线统计图综合应用 打电话的最优方案1、众数: 一组数据中出现次数最多的一个数或几个数;就是这组数据的众数.众数能够反映一组数据的集中情况.在一组数据中;众数可能不止一个;也可能没有众数.2、中位数:(1)按大小排列;(2)如果数据的个数是单数;那么最中间的那个数就是中位数;(3)如果数据的个数是双数;那么最中间的那两个数的平均数就是中位数.3、平均数的求法:总数÷总份数=平均数4、一组数据的一般水平:(1)当一组数据中没有偏大偏小的数;也没有个别数据多次出现;用平均数表示一般水平.(2)当一组数据中有偏大或偏小的数时;用中位数来表示一般水平.(3)当一组数据中有个别数据多次出现;就用众数来表示一般水平.4、平均数、中位数和众数的联系与区别:①平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数.容易受极端数据的影响;表示一组数据的平均情况.②中位数:将一组数据按大小顺序排列;处在最中间位置的一个数叫做这组数据的中位数.它不受极端数据的影响;表示一组数据的一般情况.③众数:在一组数据中出现次数最多的数叫做这组数据的众数.它不受极端数据的影响;表示一组数据的集中情况.5、统计图:我们学过——条形统计图、复式折线统计图.条形统计图优点:条形统计图能形象地反映出数量的多少.折线统计图优点:折线统计图不仅能表示出数量的多少;还能反映出数量的变化情况.注:①画图时注意:一“点”(描点)、二“连”(连线)三“标”(标数据).②要用不同的线段分别连接两组数据中的数.6、打电话:规律——人人不闲着;每人都在传.(技巧:已知人数依次×2)(1)逐个法:所需时间最多.(2)分组法:相对节约时间.(3)同时进行法:最节约时间.第8单元数学广角用天平找次品规律:1、把所有物品尽可能平均地分成3份;(如余1则放入到最后一份中;如余2则分别放入到前两份中);保证找出次品而且称的次数一定最少.2、数目与测试的次数的关系:2~3个物体;保证能找出次品需要测的次数是1次4~9个物体;保证能找出次品需要测的次数是2次10~27个物体;保证能找出次品需要测的次数是3次28~81个物体;保证能找出次品需要测的次数是4次82~243个物体;保证能找出次品需要测的次数是5次244~729个物体;保证能找出次品需要测的次数是6次3、找次品规律1 2 3 4 5 …次数3 3×3 3×3×3 3×3×3×3 3×3×3×3×3 …3 9 27 81 243 …次品个数第九单元总复习(略)。

人教版数学五年级下册知识点归纳总结

人教版数学五年级下册知识点归纳总结

【经典】新课标人教版五年级数学下册知识点归纳第一部分图形与几何一、观察物体1、从不同的位置(或同一位置)观察物体,看到的形状可能相同也可能不同;从同一位置观察长方体或正方体时不能看到所有的面,最多只能看到三个面,最少看到一个面。

2、正面、侧面(左面,右面)、后面都是相对的,它是随着观察角度的变化而变化。

通过观察、想象、猜测,培养空间想象力和思维能力,能正确辨认从正面、侧面、上面观察到的简单物体的形状。

3、观察物体,从实物观察到对立体图形的观察有一个体验、认识、提高的过程,多观察物体,多画观察到的图形,自己制作立体图形,有意识的训练想象能力,逐渐就会观察立体图形了。

4、观察物体,先要确定观察的位置(方向)(常选择上面、正面、左侧面、右侧面),再确定观察的形状,并把它画下来,在平面图形画上斜线。

5、根据各个位置看到的平面图形推算共有几个小正方体方法:从正面看数层数,从下往上数;从上面看数列数,从左往右数;从左面看数排数,前排在右后排在左,从右往左数。

6、至少用8个正方体可拼成较大的正方体,27个64个125个。

都可拼成较大正方体。

二、图形的运动图形变换的基本方式是对称、平移和旋转。

对称点是关于一条直线对称的点(对称点一般用于轴对称),对应点是一个图形经变换后的图形与变换前的图形位置相同的点(对应点一般用于平移和旋转)(一)图形的平移1、平移不改变图形的大小和形状。

2、平移的三要素:原图形的位置、平移的方向、平移的距离。

平移的方向一般为:水平方向、垂直方向两种。

平移的距离:一般为几个单位长度(也即几个方格)3、平移是整个图形的移动,图形的每个关键点都需要按要求移动。

4、把图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。

(2)找出原图形的各关键点。

(3)根据题目要求将各个点依次平移。

(4)顺次连接平移后的各点,标明各点名称。

(二)轴对称: 如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2018人教版五年级数学下册全册知识点总结

2018人教版五年级数学下册全册知识点总结

2018人教版五年级数学下册全册知识点总结2018人教版五年级数学下册全册知识点总结第一单元观察物体1、长方体(或正方体)放在桌子上,从不同角度观察,一次最多能看到3个面(或说成:最多同时能看到3个面)。

2、给出一个(或两个)方向观察的图形无法确定立体图形的形状。

由三个方向观察到的图形就可以确定立体图形的形状并还原立体图形。

3、从一个方向看到的图形摆立体图形,有多种摆法。

4、从多个角度观察立体图形先根据平面图分析出要拼搭的立体图形有几层;然后确定要拼搭的立体图形有几排;最后根据平面图形确定每层和每排的小正方体的个数。

第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

找因数的方法:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数的个数是无限的,最小的倍数是它本身。

2、自然数按能不能被2整除来分:奇数偶数奇数:不能被2整除的数偶数:能被2整除的数。

最小的奇数是1,最小的偶数是0.个位上是0,2,4,6,8的数都是2的倍数。

个位上是0或5的数,是5的倍数。

一个数各位上的数的和是3的倍数,这个数就是3的倍数。

能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。

3、自然数按因数的个数来分:质数、合数、1.质数:有且只有两个因数,1和它本身合数:至少有三个因数,1、它本身、别的因数1:只有1个因数。

“1”既不是质数,也不是合数。

最小的质数是2,最小的合数是4。

20以内的质数:有8个(2、3、5、7、11、13、17、19)100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、974、分解质因数用短除法分解质因数(一个合数写成几个质数相乘的形式)5、公因数、最大公因数几个数公有的因数叫这些数的公因数。

人教版五年级下册数学知识点总结

人教版五年级下册数学知识点总结

人教版五年级下册数学知识点总结
人教版五年级下册数学知识点总结
下面是人教版五年级下册数学的知识点总结:
1. 大数的运算:加法和减法运算中,使用进位和退位的方法,对大数进行运算。

2. 分数:认识分子和分母的含义,学习分数的简化和比较大小。

3. 小数:认识小数的整数部分和小数部分,学习小数与分数的互相转化。

4. 等式和不等式:认识等式和不等式的符号,学习等式和不等式的应用。

5. 变量的应用:认识代数中的变量,学习代数表达式的应用。

6. 单位换算:认识长度、重量、容量的不同单位,学习单位之间的换算方法。

7. 三角形和四边形:认识各类三角形和四边形的特点,学习计算形状的周长和面积。

8. 二维图形:认识各类二维图形,学习判断、画图形的方法。

9. 三维图形:认识各类三维图形,学习判断、画立体图形的方法。

10.时、分、秒:认识时、分、秒的关系,学习读取和设置时间的方法。

11.日期和星期:认识日期和星期的表示方法,学习计算日期和星期的方法。

12.数据的统计:学习用图表表示数据,学习读取和分析图表的方法。

以上是人教版五年级下册数学的主要知识点总结。

在学习这些知识点时,同学们要认真听讲、做好课后作业,并多做练习题和习题册的题目巩固知识。

希望同学们能够善于思考、勤于练习,掌握好这些数学知识,取得好成绩。

五年级下册重点知识归纳

五年级下册重点知识归纳

五年级下册重点知识归纳一、数学(人教版五年级下册)1. 因数与倍数。

- 因数和倍数的概念:如果a× b = c(a、b、c都是非0自然数),那么a和b 是c的因数,c是a和b的倍数。

例如3×4 = 12,3和4是12的因数,12是3和4的倍数。

- 一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。

- 2、3、5的倍数特征:- 2的倍数特征:个位上是0、2、4、6、8的数是2的倍数。

- 3的倍数特征:一个数各位上的数字之和是3的倍数,这个数就是3的倍数。

- 5的倍数特征:个位上是0或5的数是5的倍数。

- 既是2又是5的倍数特征:个位上是0的数。

- 质数与合数:- 质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数)。

例如2、3、5、7等。

- 合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

例如4、6、8、9等。

- 1既不是质数也不是合数。

2. 长方体和正方体。

- 长方体:- 长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形),相对的面完全相同;有12条棱,相对的棱长度相等;有8个顶点。

- 长方体的棱长总和=(长 + 宽+高)×4。

- 长方体的表面积=(长×宽+长×高+宽×高)×2。

- 长方体的体积 = 长×宽×高,用字母表示V = abh。

- 正方体:- 正方体是特殊的长方体,正方体的6个面都是正方形,6个面完全相同;12条棱长度都相等;8个顶点。

- 正方体的棱长总和=棱长×12。

- 正方体的表面积 = 棱长×棱长×6,用字母表示S = 6a^2。

- 正方体的体积=棱长×棱长×棱长,用字母表示V=a^3。

- 体积单位:- 常用的体积单位有立方厘米、立方分米、立方米。

最新人教版五年级数学下册全册知识要点

最新人教版五年级数学下册全册知识要点

人教版五年级数学(下册)知识要点图形变换的基本方式是平移、对称和旋转。

1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

(1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

(2)圆有无数条对称轴。

(3)对称点到对称轴的距离相等。

(4)轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。

(5)对称图形包括轴对称图形和中心对称图形。

平行四边形(除棱形)属于中心对称图形。

2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

(1)生活中的旋转:电风扇、车轮、纸风车(2)旋转要明确绕点,角度和方向。

(3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。

等边三角形绕中点旋转120度与原来重合。

旋转的性质:(1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;(2)其中对应点到旋转中心的距离相等;(3)旋转前后图形的大小和形状没有改变;(4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;(5)旋转中心是唯一不动的点。

3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

人教版五年级数学下册总复习资料

人教版五年级数学下册总复习资料
⑶1只有一个因数,所以1不是质数,也不是合数。
16、按因数的个数,把非零的自然数分成1、质数和合数。
最小的质数是(2),2是唯一的偶质数。最小的合数是(4),
20以内的质数有2、3、5、7、11、13、17、19.
20以内合数有:4、6、8、9、10、12、14、15、16、18、20.
17、质数和合数的个数是无限的。没有最大的质数和合数。
S= ab+ 2ah+2bh
练习题:(1)亮亮家要给一个长0.75m,宽0.5m,高1.6m的简易衣柜换布罩,(没有底面)。至少需要用布多少平方米?
(2)健身中心新建军一个游泳池,该游泳池的长是50m,是宽的2倍,深2.5m。现要在池的四周和底面都帖上瓷砖,共需要帖多少平方米的瓷砖?
无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)
例如:14是7的倍数,21是7的倍数。14和21的和也是7的倍数。
64是8的倍数,32是8的倍数。64和32的差也是8的倍数。
10、个位上是0、2、4、6、8的数都是2的倍数。整数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。奇数和偶数的个数是无限的,没有最大的。
例:按2的倍数的特征,自然数分成(奇数)和(偶数)。最小的偶数是(0),最小的奇数是(1)。
7、箱子、油桶、仓库等所能 容纳 物体的体积,通常叫做它们的容积。实心的物体没有容积。计量一般物体的体积,就用体积单位。计量液体的体积,常用容积单位升L和毫升ml。
1立方分米=1升,或1 dm3=1L;1立方厘米=1亳升,或1 cm3=1ml。
1升=1000毫升,或1L=1000ml。
容积和体积的异同:
=长×高×2+宽×高×2
练习题:(1)一个长方体的饼干盒,长10cm,宽6cm,高12cm。如果围着它帖一圈商标纸( 上下面不帖),这张商标纸的面积至少要多少平方厘米?

人教版五年级下册数学知识点总结+习题练习(分模块)

人教版五年级下册数学知识点总结+习题练习(分模块)

人教版五年级下册数学知识点总结+习题练习(分模块)第一部分知识梳理一、因数和倍数1、如果ab=c(a、b、c都是不为0的整数),那么我们就说a 和b是c的因数,c是a和b的倍数。

因数和倍数是相互依存的。

例如:38=24,3和8是24的因数,24是3和8的倍数。

2、一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

3、一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

4、一个非零的自然数,既是它本身的倍数,又是它本身的因数。

5、找因数的方法:(1)列乘法算式:例如:要写出18的所有因数,方法如下:118=1829=1836=18所以,18的因数有:1、2、3、6、9、18共6个。

(2)列除法算式:例如:要写出24的所有因数,方法如下:241=24242=12243=8244=6245=4、8(因为4、8不是整数,所以5和4、8不是24的因数)所以,24的因数有:1、2、3、4、6、8、12、24共8个。

6、找倍数的方法:用这个数分别乘1、2、3、4、5…直到所乘的积接近所规定的限制范围为止,所乘得的积就是这个数的倍数。

例如:写出30以内4的倍数。

41=442=843=1244=1645=2046=2447=28 所以,30以内4的倍数有:4、8、12、16、20、24、28。

二、2、5、3的倍数的特征1、个位上是0、2、4、6、8的数都是2的倍数。

2、个位上是0或5的数都是5的倍数。

3、一个数各个数位上的数相加的和是3的倍数,这个数就是3的倍数。

4、同时是2、5的倍数的数末尾必须是0。

最小的两位数是10,最大的两位数是90。

同时是2、5、3的倍数的数末尾必须是0,而且各个数位上的数相加的和是3的倍数。

最小的两位数是30,最大的两位数是90。

三、奇数和偶数1、自然数中,是2的倍数的数叫做偶数,偶数也叫双数。

如:0、2、4、6、8、10、12、14、16…都是偶数。

人教版五年级数学下册知识点梳理(绝密)

人教版五年级数学下册知识点梳理(绝密)

人教版五年级数学下册知识点梳理(绝密)人教版五年级数学下册知识点梳理第一单元《观察物体三》不同角度观察一个物体时,可以看到相邻的两个或三个面,但不可能同时看到长方体或正方体相对的面。

第二单元因数和倍数一、因数和倍数在整数除法中,如果被除数能整除除数且商为整数,则被除数是除数的倍数,除数是被除数的因数。

因数和倍数是相互依存的。

一个数的因数个数有限,最小因数为1,最大因数为该数本身。

求一个数的因数可以成对地按顺序找,或用除法进行计算。

一个数的倍数个数无限,最小倍数为该数本身。

求一个数的倍数可以依次乘自然数。

二、自然数按能否被2整除分为奇数和偶数。

奇数是不是2的倍数的数,最小奇数为1.偶数是2的倍数,最小偶数为2.2、3、5倍数的特征:个位上是2、4、6、8的数都是2的倍数。

个位上是0或5的数是5的倍数。

一个数各位上的数字之和是3的倍数,则该数是3的倍数。

同时是2和5的倍数的数,个位上的数字一定是0.同时是2、3、5的倍数的数,个位上是0并且各位上的数字之和是3的倍数。

最大的两位数是90,最小的两位数是30,最小的三位数是120.三、自然数按因数的个数分为质数和合数。

质数是只有1和它本身两个因数的数,如2、3、5、7、11、13、17、19等。

合数是除了1和它本身还有别的因数的数,如4、6、8、9、10、12、14、15、16、18、20、22、26、49等。

合数至少有三个因数,即1、它本身和别的因数。

1既不是质数也不是合数。

最小的质数是2,最小的合数是4.20以内的质数有8个,分别是2、3、5、7、11、13、17、19.常见误区:1.不同角度观察一个物体时,可以看到同时看到长方体或正方体相对的面。

这是错误的。

2.所有奇数都是质数,所有偶数都是合数。

这是错误的,因为9是奇数但不是质数,2是偶数但是质数。

1、长方体和正方体都是三维图形,其中正方体也被称为立方体。

2、长方体的长、宽、高各有4条,相互平行且长度相等。

(完整版)人教版五年级数学下册知识点归纳总结

(完整版)人教版五年级数学下册知识点归纳总结

人教版五年级数学下册知识点归纳总结第一单元观察物体(三)1、不同角度观察一个物体,看到的面都是两个或三个相邻的面。

2、不可能一次看到长方体或正方体相对的面。

注意点1)这里所说的正面、左面和上面,都是相对于观察者而言的。

2)站在任意一个位置,最多只能看到长方体的3个面。

3)从不同的位置观察物体,看到的形状可能是不同的。

4)从一个或两个方向看到的图形是不能确定立体图形的形状的。

5)同一角度观察不同的立体图形,得到的平面图形可能是相同,也可能是不同的。

6)如果从物体的右面观察,看到的不一定和从左面看到的完全相同。

第二单元因数和倍数1、整除:被除数、除数和商都是自然数,并且没有余数。

整数与自然数的关系:整数包括自然数。

2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

例:12是6的倍数,6是12的因数。

(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。

因数和倍数是相互依存的,不能单独存在。

(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的因数的求法:成对地按顺序找。

(3)一个数的倍数的个数是无限的,最小的倍数是它本身。

一个数的倍数的求法:依次乘以自然数。

(4)2、3、5的倍数特征1)个位上是0,2,4,6,8的数都是2的倍数。

2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

3)个位上是0或5的数,是5的倍数。

4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。

同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

3、自然数按能不能被2整除来分:奇数、偶数。

奇数:不能被2整除的数。

叫奇数。

也就是个位上是1、3、5、7、9的数。

偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

最小的奇数是1,最小的偶数是0.关系:奇数+、- 偶数=奇数奇数+、- 奇数=偶数偶数+、-偶数=偶数。

2018新人教版五年级下册数学知识点整理

2018新人教版五年级下册数学知识点整理

2018新人教版五年级下册数学知识点整理第一单元图形的变换一、平移物体或图形平移后本身的形状、大小和方向都不会改变。

二、轴对称1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

2、轴对称图形的特征和性质:①对应点到对称轴的距离相等;②对应点的连线与对称轴垂直;③对称轴两边的图形大小、形状完全相同。

3、对称图形包括轴对称图形和中心对称图形。

平行四边形(除棱形)属于中心对称图形三、旋转1、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。

2、旋转只改变物体的位置(旋转中心位置不会变),不改变物体的形状、大小。

第二单元因数和倍数1、像0、1、2、3、4、5、6……这样的数是自然数。

2、像-3、-2、-1、0、1、2、3……这样的数是整数。

3、整数与自然数的关系:整数包括自然数。

一、因数和倍数所指的是整数,不包括0。

因为0和任何数相乘都等于0;0除以任何数都等于0。

1、如果整数a能被b整除,那么a就是b的倍数,b就是a的因数。

2、因数和倍数是相互依存的,不能单独存在。

二、因数1、一个数的因数的个数是有限的。

一个数的最小因数是1,最大的因数是它本身。

2、一个数的因数的求法:成对地按顺序找。

三、倍数1、一个数的倍数的个数是无限的。

一个数的最小倍数是它本身,没有最大的倍数。

2344、表面积的常用单位有:平方米、平方分米、平方厘米相邻两个面积单位之间的进率是1001m2 =100dm2 1 dm2 =100 cm25、生活实际油箱、罐头盒等都是6个面;游泳池、鱼缸等都只有5个面;水管、烟囱等都只有4个面。

6、长方体或正方体每截断一次会增加两个截面,所以这时的两个物体的表面积大于原来物体的表面积。

7、长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

三、长方体和正方体的体积1、体积:物体所占空间的大小叫做物体的体积。

五年级下册数学知识点总结

五年级下册数学知识点总结

五年级下册数学知识点总结人教版五年级下册数学知识点总结本学期的期末考试已经临近,各年级、各学科都已经进入到紧张的复习阶段。

应届毕业生店铺整理了人教版五年级下册数学知识点总结,供大家参考!五年级下册数学知识点总结11.轴对称:如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。

对称轴:折痕所在的这条直线叫做对称轴。

2.轴对称图形的性质:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。

轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

3.轴对称的性质:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

这样我们就得到了以下性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

(2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(3)线段的垂直平分线上的点与这条线段的两个端点的距离相等。

(4)对称轴是到线段两端距离相等的点的集合。

4.轴对称图形的作用:(1)可以通过对称轴的一边从而画出另一边;(2)可以通过画对称轴得出的两个图形全等。

5.因数:整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数。

在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数。

6.自然数的因数(举例):6的因数有:1和6,2和3.10的因数有:1和10,2和5.15的因数有:1和15,3和5.25的因数有:1和25,5.7.因数的分类:除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。

我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。

8.倍数:对于整数m,能被n整除(n/m),那么m就是n的倍数。

五年级下册数学知识点总结人教版

五年级下册数学知识点总结人教版

五年级下册数学知识点总结人教版五年级下册数学知识点总结第一单元小数乘法1、小数乘整数:@意义——求几个相同加数的和的简便运算。

如:1.5×3表示求3个1.5的和的简便运算(或1.5的3倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

2、小数乘小数:@意义——就是求这个数的几分之几是多少。

如:1.5×0.8就是求1.5的十分之八是多少(或求1.5的1.8倍是多少)。

@计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

注意:按整数算出积后,小数末尾的0要去掉,也就是把小数化简;位数不够时,要用0占位。

3、规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。

4、求近似数的方法一般有三种:⑴四舍五入法; ⑵进一法; ⑶去尾法5、计算钱数,保留两位小数,表示计算到分;保留一位小数,表示计算到角。

6、小数四则运算顺序和运算定律跟整数是一样的。

7、运算定律和性质:@ 加法:加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)@ 减法:a-b-c=a-(b+c)a-(b+c)=a-b-c@ 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c【(a-b)×c=a×c-b×c】@ 除法:a÷b÷c=a÷(b×c)a÷(b×c) =a÷b÷c第二单元位置1、数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右分别为列数和行数,即“先列后行”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版五年级数学下册知识整理资料
一、观察物体(三)
1、根据三个方向看到的形状图还原立体图形,有时候摆法不唯一。

2、根据从三个方向看到的图形摆出相应的几何组合体,体会有些摆法的确定性。

二、因数与倍数
1、在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

例如:12÷2=6,我们就说12是2和6的倍数,2和6是12的因数。

因数和倍数是相互依存的关系。

注意:为了方便,在研究因数和倍数时,我们所说的数指的是自然数。

2、一个数的因数个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数是无限的,其中最小的倍数是它本身,没有最大倍数。

3、奇数与偶数:
自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇数。

偶数:个位是0,2,4,6,8的数。

奇数:个位不是0,2,4,6,8的数。

4、倍数特征:
2的倍数的特征:个位是0,2,4,6,8。

3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。

5的倍数的特征:个位是0或5。

5、质数与合数:
质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。

合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。

1既不是质数,也不是合数。

6、奇数与偶数的运算规律
偶数+偶数=偶数奇数+奇数=偶数奇数+偶数=奇数
偶数-偶数=偶数奇数-奇数=偶数奇数-偶数=奇数
偶数个偶数相加是偶数,奇数个奇数相加是奇数。

偶数×偶数=偶数奇数×奇数=奇数奇数×偶数=偶数
7、质因数:如果一个质数是某个数的因数,那么这个质数就是这个数的质因数。

8、分解质因数:把一个合数用质因数相乘的方式表示出来叫做分解质因数。

9、100以内的质数表:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

三、长方体和正方体
1、 长方体有6个面,一般都是长方形(特殊情况有两个相对的面是正方形),相对的面面积相等;有8个顶点,12条棱;12条棱可以分为三组:4条长,4条宽,4条高。

2.、正方体有6个面,都是面积相等的正方形;有8个顶点,12条棱,每条棱的长度都相等。

正方体是特殊的长方体。

(长宽高都相等)
长方体的棱长总和=(长+宽+高)×4 正方体的棱长总和=棱长×12 3、长方体6个面的总面积叫作它的表面积。

长方体相对的面的面积相等:
前后面的面积=长×高;左右面的面积=宽×高;上下面的面积=长×宽 4、长方体的表面积=(长×宽+长×高+宽×高)×2 2)(⨯⨯+⨯+⨯=h b h a b a S
正方体6个面的总面积叫作它的表面积,6个面的面积都相等。

正方体的表面积=棱长×棱长×6 2
66a a a S =⨯⨯=
5、物体所占空间的大小叫作物体的体积。

常用的体积单位有:立方厘米,立方分米,立方米。

1立方米=1000立方分米 1立方分米=1000立方厘米 1立方米=1000000立方厘米 6、容器所能容纳物体的体积叫作容器的容积。

常用的容积单位有:升和毫升
1升=1立方分米 1毫升=1立方厘米 7、相邻的的体积单位之间的互化:
高级单位 低级单位 (大化小除于进率,小化大乘于进率)
8、计算物体的体积用体积单位,计算液体、气体的体积一般用容积单位。

长方体的体积=长×宽×高 abh h b a =⨯⨯=V
正方体的体积=棱长×棱长×棱长 3
a a a a V =⨯⨯=
长方体(正方体)的体积=底面积×高 Sh h S V =⨯=
9、正方形 :周长=边长×4 C=4a 面积=边长×边长 S=a ×a=a ²
长方形 :周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 四、分数的意义和性质:
我们可以把1个物体看作一个整体,也可以把许多物体看成一个整体。

将一个物体或是许多物体看成一个整体,通常我们把它叫做单位“1”。

1、分数的意义:把单位“1”平均分成若干份,表示这样1份或者几份的数,叫做分数。


÷进率
×进率
示其中一份的数叫分数单位,如:2
3的分数单位是
1
3。

2、分数与除法的关系:
被除数÷除数= 被除数
除数
a ÷
b =
a
b(b≠0) 如:3÷7=7
3
3、真分数:分子比分母小的分数叫做真分数。

真分数小于1
4
5
6
7
8
9
10
11
12、互质关系的两个数,最大公约数为1,最小公倍数为乘积。

13、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。

(通分用最小公倍数)
14、约分:把一个分数的分子、分母同时除以公因数,分数值不变,这个过程叫约分。

15、最简分数:分子、分母是互质数的分数,叫做最简分数。

分数计算到最后,得数必须化
成最简分数。

16、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

五、图形的运动(三)
1、图形旋转有三个关键要素:旋转的方向,旋转的角度,旋转的中心。

2、旋转方向有两种:顺时针旋转、逆时针旋转。

相关文档
最新文档