大学物理第三章测试题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章答案

1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化?

答:当刚体作匀变速转动时,角加速度β不变。刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。又因该点速度的方向变化,所以一定有法向加速度2n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。

2.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?

答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;

(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大?

答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快;

(2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。

3. 如图所示,一半径为r ,质量为m 1的匀质圆盘作为定滑轮,绕有轻绳,绳上挂一质量为m 2的重物,求重物下落的加速度。

解:设绳中张力为T

对于重物按牛顿第二定律有

22m g T m a -= (1)

对于滑轮按转动定律有 212

Tr mr β=

(2) 由角量线量关系有 a r β= (3)

联立以上三式解得

.4 有一半径为R 的均匀球体,绕通过其一直径的光滑固定轴匀速转动,转动周期为0T .如它的半径由R 自动收缩为R 2

1,求球体收缩后的转动周期.(球体对于通过直径的轴的转动惯

量为J =2mR2 / 5,式中m 和R 分别为球体的质量和半径).

解:(1) 球体收缩过程满足角动量守恒:

0022I I ωω=

2000202225421()52

mR I I m R ωωωω=== 所以

0202244

T T π

πωω=== .6 一质量均匀分布的圆盘,质量为M ,半径为R ,放在一粗糙水平面上(圆盘与水平面之间的摩擦系数为μ),圆盘可绕通过其中心O 的竖直固定光滑轴转动.开始时,圆盘静止,一质量为m 的子弹以水平速度v0垂直于圆盘半径打入圆盘边缘并嵌在盘边上,求

(1) 子弹击中圆盘后,盘所获得的角速度.

(2) 经过多少时间后,圆盘停止转动.

解:(1) 子弹击中圆盘过程满足角动量守恒:

2201()2

mRv mR MR ω=+ 所以 0022()22

mRv mv mR MR m M R ω==++ (2)圆盘受到的摩擦力矩为

0223

R M rdrgr MRg μσπμ'=-⋅=-⎰

由转动定律得 M I

β'= 2200001()(0)12()()32223

mv mR MR m M R I mv t M Mg MRg ωωωωβμμ+-+--===='-

相关文档
最新文档