电动力学试题及其答案(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动力学(A) 试卷
班级
一、填空题(每空2分,共32分)
1、已知矢径r
,则 r = 。
2、已知矢量A
和标量φ,则=⨯∇)(A φ 。
3、区域V 内给定自由电荷分布 、 ,在V 的边界上给定 或 ,则V 内电场唯一确定。
4、在迅变电磁场中,引入矢势A 和标势φ,则E
= ,
B
= 。
5、麦克斯韦方程组的微分形式 、 、 、 。
6、电磁场的能量密度为 w = 。
7、库仑规范为 。
8、相对论的基本原理为 , 。 9、电磁波在导电介质中传播时,导体内的电荷密度 = 。 10、电荷守恒定律的数学表达式为 。
二、判断题(每题2分,共20分)
1、由0
ερ
=⋅∇E 可知电荷是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该
点散度有贡献。( )
2、矢势A
沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。( )
3、电磁波在波导管内传播时,其电磁波是横电磁波。( )
4、任何相互作用都不是瞬时作用,而是以有限的速度传播的。( )
5、只要区域V 内各处的电流密度0=j
,该区域内就可引入磁标势。( )
6、如果两事件在某一惯性系中是同时发生的,在其他任何惯性系中它们必不同时发生。( )
7、在0=B
的区域,其矢势A 也等于零。( ) 8、E 、D 、B 、H
四个物理量均为描述场的基本物理量。( )
9、由于A B
⨯∇=,矢势A 不同,描述的磁场也不同。( )
10、电磁波的波动方程012222
=∂∂-∇E t
v E 适用于任何形式的电磁波。( )
三、证明题(每题9分,共18分)
1、利用算符 的矢量性和微分性,证明
0)(=∇⨯⋅∇φr
式中r
为矢径,φ为任一标量。
2、已知平面电磁波的电场强度i t z c E E )sin(0ωω
-=,求证此平面电磁波的磁场强度为
j t z c
c E B )sin(0ωω-=
四、计算题(每题10分,共30分)
1、迅变场中,已知)cos(0t r K A A ω-⋅= , )cos(0t r K ωφφ-⋅= ,求电磁场的E 和B
。
2、一长度为80厘米的杆,沿其长度方向以0.8 c 的速率相对观察者运动,求该杆首、尾端通过观察者时的时间间隔。
3、在均匀外场0E
中置入一半径为R 的导体球,导体球带总电量为Q ,求空间电势的分布。
电动力学试题(A )答案
一、填空题(每空2分,共32分)
1、r
r
2、A A
⨯∇+⨯∇ϕϕ
3、电势,电势的法线导数。
4、t A E ∂∂--∇=
ϕ A B
⨯∇=
5、t B E ∂∂-=⨯∇ , t
D
j H ∂∂+=⨯∇
, ρ=⋅∇D , 0=⋅∇B
6、)(21H B D E ⋅+⋅
7、0=⋅∇A
8、相对性原理,光速不变原理。 9、0=ρ 10、0=∂∂+
⋅∇t
j ρ
二、判断题(每题2分,共20分)
1、×
2、√
3、×
4、√
5、√
6、×
7、×
8、×
9、√ 10、×
三、证明题(每题9分,共18分) 1、证明:
r r r ⋅∇⨯∇-∇⋅⨯∇=∇⨯⋅∇)()()(ϕϕϕ
∵ 0=⨯∇r
0=∇⨯∇ϕ ∴0)(=∇⨯⋅∇ϕr
2、证明:
由麦克斯韦方程t
B
E ∂∂-=⨯∇
,而
0x
E z y x k j i E ∂∂∂∂∂∂=
⨯∇
k y
E j z E x x ∂∂-∂∂=
j t z c E c
)cos(0ωω
ω-=
所以
⎰--=j
dt t z c E c B )cos(0ωω
ω
j t z c c E )sin(0ωω
-=
四、计算题(每题10分,共30分) 1、 解:
t
A E ∂∂--∇= ϕ
)
sin()sin()]
cos([)]cos([0000t r K A t r K K t r K A t t r K ωωωϕωωϕ-⋅--⋅=-⋅∂∂--⋅-∇=
A B
⨯∇=
)
sin()]
cos([00t r K K A t r K A ωω-⋅⨯=-⋅⨯∇=
2、解:
220
1c
v l l -=
v
c v
l v
l
t 22
01-=
=∆
c
8.08.018.02
-⨯=
9100.2-⨯= (s)
3、解: 建立球坐标系,原点在球心,z 轴E 0沿方向,求解空间为R R 0,由于场具有轴对称性,电势满足拉普拉斯方程
02=∇φ (R 0R )
其解为
θφ(cos )(0
1
∑∞
=++
=n n n n
n n P R B R A ) 边值关系为: 00cos φθφ+-=∞→R E R ① Φφ==0R R ( 待定 ) ② ⎰=∂∂-S Q dS R φ
ε0 ③ 由①式得:
∑∞
=+-=0
000
cos )(cos n n n
R E P R
A φθθ
当n = 0 时 00φ=A 当n = 1 时 01E A -= 当n ≠0,1 时 0=n A 得 ∑∞
=++-=2
100)(cos cos n n
n n
P R B R E θθφφ 由②式得:
∑
∞
=+=+-010
000)(cos cos n n
n n
P R B R E Φθθφ 当n = 0时 Φφ=+
0R B 当n = 1时 0cos cos 20
100=+-θθR B
R E 由上两式解得: )(000φΦ-=R B
03
01E R B =
0B n = ( n ≠0 ,1 )
得 θφφθφcos cos 20300000R
E
R R R R E +-Φ++-= 由③得: o
R R R E R 00cos 30φθφ
-Φ--=∂∂=
⎰=-Φ+
S
Q dS R E )cos 3(0
00φθε