电动力学试题及其答案(1)
电动力学期中考试和答案
电动力学期中考试和答案一、选择题(每题3分,共30分)1. 电场强度的定义式为E=F/q,其中E表示电场强度,F表示电场力,q表示试探电荷。
根据定义式,下列说法正确的是()。
A. 电场强度与试探电荷的电量成正比B. 电场强度与试探电荷所受的电场力成正比C. 电场强度与试探电荷的电量和电场力无关D. 电场强度与试探电荷所受的电场力成反比答案:C2. 根据库仑定律,两个点电荷之间的静电力F与它们的电荷量q1和q2的乘积成正比,与它们之间的距离r的平方成反比。
下列说法正确的是()。
A. 静电力与电荷量的乘积成正比B. 静电力与电荷量成反比C. 静电力与距离的平方成正比D. 静电力与距离的平方成反比答案:D3. 电势差U=W/q,其中U表示电势差,W表示电场力做的功,q表示试探电荷的电量。
根据电势差的定义式,下列说法正确的是()。
A. 电势差与试探电荷的电量成正比B. 电势差与试探电荷所受的电场力成正比C. 电势差与试探电荷的电量和电场力无关D. 电势差与试探电荷所受的电场力成反比答案:C4. 电容器的电容C=Q/U,其中C表示电容,Q表示电容器所带的电荷量,U表示电容器两极板之间的电势差。
根据电容的定义式,下列说法正确的是()。
A. 电容与电容器所带的电荷量成正比B. 电容与电容器两极板之间的电势差成正比C. 电容与电容器所带的电荷量和电势差无关D. 电容与电容器所带的电荷量成反比答案:C5. 根据欧姆定律,导体两端的电压U与通过导体的电流I成正比,比例系数为导体的电阻R。
下列说法正确的是()。
A. 电压与电流成正比B. 电压与电流成反比C. 电压与电阻成正比D. 电压与电阻成反比答案:A6. 根据焦耳定律,电流通过导体产生的热量Q与电流的平方I^2、导体的电阻R和通电时间t成正比。
下列说法正确的是()。
A. 热量与电流的平方成正比B. 热量与电流的平方成反比C. 热量与电阻成正比D. 热量与电阻成反比答案:A7. 根据基尔霍夫电压定律,电路中任意闭合回路的电压之和为零。
电动力学习题集答案
电动力学第一章习题及其答案1、 当下列四个选项:(A 、存在磁单级, B 、导体为非等势体, C 、平方反比定律不精确成立,D 、光速为非普适常数)中的_ C ___选项成立时,则必有高斯定律不成立、 2、 若 a 为常矢量 , r= (x - x ')i + ( y - y ')j + (z -z ')k 为从源点指向场点的矢量 ,E 0 , k 为常矢量,则∇⋅(r 2 a) =∇⋅(r 2 a ) = (∇r ⋅a =2r ⋅a ,)⋅a ) = ddrr ∇r ⋅a = 2r r r2∇r = (i +j + k ) (x - x ') + (y - y ') + (z - z ') = i +j y-y' + k = rr∂ ∂x ∂ ∂y ∂ ∂z 2 2 2 x-x' r z-z' rr ⎛ ⎫ ⎪ 2(x -x ') = (x -x ') ,同理, ∂ ∂x(x -x ') 2+(y - y ') 2 +(z -z ') 2 = r 2 (x -x ')2+(y -y ')2+(z -z ')2⎝ ⎪⎪ ⎭(y -y ') (x -x ') +(y - y ') 2 +(z -z ') ∂ ∂y (x -x ') 2 +(y - y ') 2 +(z -z ') 2 = , ∂ ∂z 2 2 = (z -z ') r re e e x x x∇⋅r = ∂(x-x')∇⨯ r = + ∂(y-y') ∂y+ ∂(z-z') = 3∂z, ∂ ∂x ∂ ∂y ∂ ∂zx - x ' y - y ' z - z '= 0, ∂x∇⋅(a ⨯r )=a ⋅(∇⨯r ) = 0 ,) ⨯ r + r ∇ ⨯ r = ∇r 2r ⨯ r = ⨯ r = 0 r ∇ ⨯ rr = ∇( r1 1 3r a ,,∇ ( ⋅ ) = ∂[ a x (x -x' )]+ ∂[ a y (y - y')] j + [ a z ∂ (z -z')] = a r i k ∂x ∂y ∂z∇⋅ r =∇ ⋅ + ∇⋅ =- ⋅ + = r r r 1r 1 r r 3 r2 3 r ,∇ ⋅ (∇ ⨯ A ) = __0___、 r r∇ ⋅[E 0 sin(k ⋅r )] = k ⋅ E 0 cos(k ⋅ r )= __0__、 ∇ ⋅ (E 0 e ik ⋅r ) =, 当 r ≠ 0 时 , ∇ ⨯ = (r / r 3)ik ⋅ E 0 exp(ik ⋅r ) , ∇ ⨯ [rf (r )] = _0_、 ∇ ⋅ [ r f ( r)] 3f (r )+r df (r )drs3、 矢量场 f 的唯一性定理就是说:在以 为界面的区域V 内,若已知矢量场在V 内各点的旋度与散度,以及该矢量在边界上的切向或法向分量,则在 内唯一确定、 f V ∂ρ = 0 ,若 J为稳恒电流情况下的电流密度 ,则 J 满足4、 电荷守恒定律的微分形式为 ∇⋅ J + ∂t∇ ⋅ J = 0 、5、 场强与电势梯度的关系式为, E = -∇ϕ 、对电偶极子而言 ,如已知其在远处的电势为ϕ = P ⋅ r/(4πε 0r ⎛ 4πε 0 ⎝ ⎫ E = 1 3(P ⋅r )r- P3) ,则该点的场强为 ⎪ ⎪ 、 r 5 r 3⎭a (r > a ) 任意一点 D 的散度为 0,Q 6、 自由电荷 均匀分布于一个半径为 的球体内,则在球外内 (r < a )任意一点 D 的散度为 3Q / 4π a 3 、arbr 7、 已知空间电场为 E = + 3 (a ,b 为常数),则空间电荷分布为______、rr 2ar1 r 1 ∇ = - 3 ⇒ E = -b ∇ ⇒r r r 2 r 2 1 a ∇⋅r - 2r ⋅∇r + 4πb δ(r )]ρ = ε 0∇⋅E = ε 0(∇⋅ arr 2 -b ∇ r ) = ε 0[ r 2 r 33a 2r ⋅r + 4πb δ(r )]⇒ ρ = ε 0[ a 2 + 4πb δ(r )] = ε 0[ - r 2r 4 ra8、 电流 I 均匀分布于半径为 的无穷长直导线内,则在导线外 (r > a ) 任意一点 B 的旋度的大小为 0 , 导线内 (r < a )任意一点 B 的旋度的大小为 μ 0I / πa 2 、D ε9、 均匀电介质(介电常数为 )中 ,自由电荷体密度为 ρ f 与电位移矢量 的微分关系为∇ ⋅ D = ρ f , 束缚电荷体密度为 ρ P 与电极化矢量 的微分关系为 ∇ ⋅ P = - ρ P ,则P ρ = - ε - ε 0 ρ 、f ρ P 与 ρ f 间的关系为 P ε10、 无穷大的均匀电介质被均匀极化,极化矢量为 P ,若在σ = -(P - P )θ 21R= -(P cos θ - 0)介质中挖去半径为 R 的球形区域,设空心球的球心到球 P= - P ⋅R面某处的矢径为 R ,则该处的极化电荷面密度为R- P ⋅ R / R 、q ε 11、 电量为的点电荷处于介电常数为 的均匀介质中,则点电荷附近的极化电荷 为 (ε 0 / ε - 1)q 、H 12、 某均匀非铁磁介质中,稳恒自由电流密度为 J f ,磁化电流密度为 J M ,磁导率 ,磁场强度为 ,磁μ 化强度为M ,则∇⨯ H = Jf ,∇⨯ M =J M , JM 与J f 间的关系为J= (μ/ μ 0 - 1)J f、M13、 在 两 种 电 介 质 的 分 界 面 上 , D , E 所 满 足 的 边 值 关 系 的 形 式 为 n ⋅(D2- D1)=σf,- 1 -n ⨯(E2- E1)= 0、ε14、 介电常数为 的均匀各向同性介质中的电场为 E 、 如果在介质中沿电场方向挖一窄缝 ,则缝中电场强度大小为 E 、ε15、 介电常数为 的无限均匀的各项同性介质中的电场为 E ,在垂1 n2直于电场方向横挖一窄缝,则缝中电场强度大小为________、E⎧D 2n - D 1n = 0 ⇒ ⎧ ⎨ ⎩εE = ε 0E 缝 E 2τ = E 1 sin θ1 = 0 ⇒ E 缝 = εE / ε 0 , 、 E E⎨ E 2τ - E 1τ = 0 ⎩ 16、 在半径为 R 的球内充满介电常数为ε 的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球 心的立体角等于 2的一圆锥体介质,则锥体中的场强与介 质中的场强之比为_1:1_、Eσ1nE2ε1Rσ 2极化电荷D 2n = D 1n = 0 ⇒E 1 = E 1τ = E 2τ = E 2 ⇒ E 1 : E 2 = 1:1自由电荷17、 在半径为 R 的球内充满介电常数为ε 的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于 2 的一圆锥体介质,锥体处导体壳上的自由电荷密度与介质 附近导体壳上的自由电荷密度之比为ε 0 / ε 、⎧ ⎨ ⎩ D 2n = D 1n = 0 E = E 1τ = E 2τ = E 2σ = σ 1D ε 0 D 2 ε 内球面上 ⇒ 1= ⇒ ε 0 2 ⇒ σ 1 :σ 2 = ε 0 :ε ε 118、 在 两 种 磁 介 质 的 分 界 面 上 , H , B 所 满 足 的 边 值 关 系 的 矢 量 形 式 为n ⨯ (H 2 - H 1)= α f ,n ⋅ B 2 - B = 0 、( ) 1I μ219、一截面半径为 b 无限长直圆柱导体,均匀地流过电流 I ,则储存在单位长度导 μ1体内的磁场能为__________________、rB ⋅ 2πr = μ 0I ππr 22⇒ B = bμ Ir2, 0 2πb22πrdr =⎰b 0 2μ0b W =⎰B μ I 2r 2 2 2πrdr =⎰ μ0I 2r 3dr4πb 4= μ0I 2b 4 16πb 4 = μ0I 216π12μ01 04π 2b 4 020、在同轴电缆中填满磁导率为 μ1,μ 2的两种磁介质,它们沿轴各占一半空间。
电动力学习题解答1
电动力学习题解答若干运算公式的证明ϕψψϕϕψψϕϕψψϕϕψ∇+∇=∇+∇=∇+∇=∇c c c c )()()(f f f f f f f ⋅∇+⋅∇=⋅∇+⋅∇=⋅∇+⋅∇=⋅∇ϕϕϕϕϕϕϕ)()()()()(c c c c f f f f f f f ⨯∇+⨯∇=⨯∇+⨯∇=⨯∇+⨯∇=⨯∇ϕϕϕϕϕϕϕ)()()()()(c c c c )()()(g f g f g f ⨯⋅∇+⨯⋅∇=⨯⋅∇c c )()(g f f g ⨯∇⋅-⨯∇⋅=c c)()(g f g f ⨯∇⋅-⋅⨯∇=)()()(g f g f g f ⨯⨯∇+⨯⨯∇=⨯⨯∇c cg f f g g f f g )()()()(∇⋅-⋅∇+⋅∇-∇⋅=c c c cg f f g g f f g )()()()(∇⋅-⋅∇+⋅∇-∇⋅=)()()(c c g f g f g f ⋅∇+⋅∇=⋅∇)()(c c g f f g ⋅∇+⋅∇=(利用公式b a c b a c c b a )()()(⋅+⨯⨯=⋅得)f g f g g f g f )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cf g f g g f g f )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=第一章 电磁现象的普遍规律1. 根据算符∇的微分性与向量性,推导下列公式:B A B A A B A B B A )()()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=⋅∇ A A A A )()(221∇⋅-∇=⨯∇⨯A解:(1))()()(c c A B B A B A ⋅∇+⋅∇=⋅∇B A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=c c c cB A B A A B A B )()()()(∇⋅+⨯∇⨯+∇⋅+⨯∇⨯=(2)在(1)中令B A =得:A A A A A A )(2)(2)(∇⋅+⨯∇⨯=⋅∇,所以 A A A A A A )()()(21∇⋅-⋅∇=⨯∇⨯即 A A A A )()(221∇⋅-∇=⨯∇⨯A2. 设u 是空间坐标z y x ,,的函数,证明:u uf u f ∇=∇d d )( , uu u d d )(A A ⋅∇=⋅∇, uu u d d )(A A ⨯∇=⨯∇ 证明: (1)z y x z u f y u f x u f u f e e e ∂∂+∂∂+∂∂=∇)()()()(z y x zu u f yu u f x u u f e e e ∂∂+∂∂+∂∂=d d d d d du uf zu y u xuu f z y x ∇=∂∂+∂∂+∂∂=d d )(d d e e e(2)zu A yu A xu A u z y x ∂∂+∂∂+∂∂=⋅∇)()()()(A zu u A y u u A x u u A z y x ∂∂+∂∂+∂∂=d d d d d d uu zu yu x u uA uA uA z y x z z y y x x d d )()d d d d d d (A e e e e e e ⋅∇=∂∂+∂∂+∂∂⋅++=(3)uA uA uA z u y u x u uu z y x zyxd /d d /d d /d ///d d ∂∂∂∂∂∂=⨯∇e e e A zx y y z x x y z y u u A x u u A x u u A z u u A z u u A y u u A e e e )d d d d ()d d d d ()d d d d (∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=z x y y z x x y z yu A xu A xu A zu A zu A yu A e e e ])()([])()([])()([∂∂-∂∂+∂∂-∂∂+∂∂-∂∂=)(u A ⨯∇=3. 设222)'()'()'(z z y y x x r -+-+-=为源点'x 到场点x 的距离,r 的方向规定为从源点指向场点。
电动力学答案完整
1.7. 有一内外半径分别为 r 1 和 r 2 的空心介质球,介质的电容率为ε,使介质内均匀带静止由电荷f ρ求 1 空间各点的电场;2 极化体电荷和极化面电荷分布。
解(1)fsD ds dV ρ→⋅=⎰⎰, (r 2>r> r 1)即:()2331443fD r r r ππρ⋅=-∴()33133f r r E r rρε→-=, (r 2>r> r 1)由()3321043ff sQ E d s r r πρεε⋅==-⎰, (r> r 2) ∴()3321303f r r E r r ρε→-=, (r> r 2)r> r 1时, 0E = (2)()00000e P E E E εεεχεεεε-===- ∴ ()()()3331010330033303p f f f fr r r P r r r r r εερεερρεεεεεερρεε⎡⎤-⎛⎫-⎢⎥=-∇⋅=--∇⋅=-∇⋅- ⎪⎢⎥⎝⎭⎣⎦--=--=- (r 2>r>r 1)12p n n P P σ=-考虑外球壳时, r= r 2 ,n 从介质 1 指向介质 2 (介质指向真空),P 2n =0()()23333102110332133p n f f r r rr r r P rr r εσεερρεε=--⎛⎫==-=- ⎪⎝⎭ 考虑内球壳时, r= r 1()()13310303p f r r rr rr σεερε=-=--=1.11. 平行板电容器内有两层介质,它们的厚度分别为 l 1 和l 2,电容率为ε1和ε,今在两板接上电动势为 Ε 的电池,求 (1) 电容器两板上的自由电荷密度ωf (2) 介质分界面上的自由电荷密度ωf若介质是漏电的,电导率分别为 σ 1 和σ 2 当电流达到恒定时,上述两问题的结果如何?解:在相同介质中电场是均匀的,并且都有相同指向则11221211220(0)n n f l E l E E D D E E εεσ-=⎧⎪⎨-=-==⎪⎩介质表面上 故:211221EE l l εεε=+,121221EE l l εεε=+又根据12n n f D D σ-=, (n 从介质1指向介质2) 在上极板的交面上,112f D D σ-= 2D 是金属板,故2D =0即:11211221f ED l l εεσεε==+而20f σ=3122f D D D σ'''=-=-,(1D '是下极板金属,故1D '=0)∴31121221f f El l εεσσεε=-=-+若是漏电,并有稳定电流时,由jE σ=可得111j E σ=, 222j E σ=又1212121212,()nn j j l l E j j j j σσ⎧+=⎪⎨⎪===⎩稳定流动得:121212E j j l l σσ==+ ,即1211122121221221j E E l l j E E l l σσσσσσσσ⎧==⎪+⎪⎨⎪==⎪+⎩1231221f E D l l εσσσσ==+上22212219f ED l l εσσσσ=-=-+下2112231221f D D E l l εσεσσσσ-=-=+中1.14、内外半径分别a 和b 的无限长圆柱形电容器,单位长度电荷为f λ,板间填充电导率为σ的非磁性物质。
电动力学习题集答案-1
电动力学第一章习题及其答案1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普适常数)中的_ C ___选项成立时,则必有高斯定律不成立.2. 若a为常矢量, k z z j y y i x x r )'()'()'(-+-+-=为从源点指向场点的矢量,k E,0为常矢量,则)(2a r ⋅∇=a r a r a r a r a r r r dr dr ⋅=⋅=⋅∇=⋅∇=⋅∇22))()(222,=⨯∇r0'''=---∂∂∂∂∂∂z z y y x x e e e zyxxxx, 3)z'-(z )y'-(y )x'-(x =++=⋅∇∂∂∂∂∂∂z y x r ,)()(=⨯∇⋅=⨯⋅∇r a r a ,0)(3211=⨯=⨯=⨯∇+⨯∇=⨯∇∇r r r r r r r r r rrr,a k j i r a za ya xa z y x =++=⋅∇∂∂∂∂∂∂)]z'-(z [)]y'-(y [)]x'-(x [)(,r r rr r rrr r r r 23113=+⋅-=⋅∇+⋅∇=⋅∇ ,=⨯∇⋅∇)(A __0___. =⋅⋅∇)]sin([0r k E )cos(0r k E k ⋅⋅, 当0≠r 时,=⨯∇)/(3r r __0__. =⋅∇⋅)(0r k i e E )exp(0r k i E k i ⋅⋅, =⨯∇)]([r f r _0_. =⋅∇)]([r f r dr r df r r f )()(3+3. 矢量场f的唯一性定理是说:在以s 为界面的区域V 内,若已知矢量场在V 内各点的旋度和散度,以及该矢量在边界上的切向或法向分量,则f在V内唯一确定.4. 电荷守恒定律的微分形式为0=∂∂+⋅∇tJ ρ,若J为稳恒电流情况下的电流密度,则J满足0=⋅∇J.5. 场强与电势梯度的关系式为,ϕ-∇=E.对电偶极子而言,如已知其在远处的电势为)4/(30r r P πεϕ ⋅=,则该点的场强为()⎪⎪⎭⎫ ⎝⎛-⋅=350341r P rr r P Eπε.6. 自由电荷Q 均匀分布于一个半径为a 的球体内,则在球外)(a r >任意一点D的散度为 0,内)(a r <任意一点D的散度为 34/3a Q π.7. 已知空间电场为b a rrb r r a E ,(32 +=为常数),则空间电荷分布为______.8. 电流I 均匀分布于半径为a 的无穷长直导线内,则在导线外)(a r >任意一点B的旋度的大小为 0 , 导线内)(a r <任意一点B的旋度的大小为20/a Iπμ.9. 均匀电介质(介电常数为ε)中,自由电荷体密度为f ρ与电位移矢量D的微分关系为f D ρ=⋅∇ , 束缚电荷体密度为Pρ与电极化矢量P 的微分关系为P P ρ-=⋅∇,则P ρ与f ρ间的关系为fP ρρεεε0--=.10. 无穷大的均匀电介质被均匀极化,极化矢量为P,若在介质中挖去半径为R 的球形区域,设空心球的球心到球面某处的矢径为R,则该处的极化电荷面密度为R R P /⋅-.11. 电量为q的点电荷处于介电常数为ε的均匀介质中,则点电荷附近的极化电荷为q )1/(0-εε.12. 某均匀非铁磁介质中,稳恒自由电流密度为f J,磁化电流密度为M J ,磁导率μ,磁场强度为H ,磁化强度为M ,则=⨯∇H f J ,=⨯∇M M J ,M J 与f J 间的关系为()f M J J1/0-=μμ.13. 在两种电介质的分界面上,E D ,所满足的边值关系的形式为()f D D n σ=-⋅12,()012=-⨯E E n.14. 介电常数为ε的均匀各向同性介质中的电场为E . 如果在介质中沿电场方向挖一窄缝,则缝中电场强度大小为E . 15. 介电常数为ε的无限均匀的各项同性介质中的电场为E ,在垂直于电场方向横挖一窄缝,则缝中电场强度大小为RR P P P P n n P ⋅-=--=--=)0cos ()(12θ,/0sin 00011201212εεθεετττE E E E E E E E D D n n =⇒⎩⎨⎧===⇒⎩⎨⎧=-=-缝缝. 16. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,则锥体中的场强与介质中的场强之比为_1:1_.17. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,锥体处导体壳上的自由电荷密度与介质附近导体壳上的自由电荷密度之比为εε/0.18. 在两种磁介质的分界面上, B H,所满足的边值关系的矢量形式为()fH H n α=-⨯12,()012=-⋅B B n.19. 一截面半径为b 无限长直圆柱导体,均匀地流过电流I ,则储存在单位长度导体内的磁场能为__________________.20. 在同轴电缆中填满磁导率为21,μμ的两种磁介质,它们沿轴各占一半空间。
电动力学试题及其答案(1)
电动力学(A) 试卷班级 姓名 学号一、填空题(每空2分,共32分)1、已知矢径r,则 r = 。
2、已知矢量A和标量φ,则=⨯∇)(A φ 。
3、区域V 内给定自由电荷分布 、 ,在V 的边界上给定或,则V 内电场唯一确定。
4、在迅变电磁场中,引入矢势A和标势φ,则E= , B= 。
5、麦克斯韦方程组的微分形式 、 、、 。
6、电磁场的能量密度为 w = 。
7、库仑规范为 。
8、相对论的基本原理为 , 。
9、电磁波在导电介质中传播时,导体内的电荷密度= 。
10、电荷守恒定律的数学表达式为 。
二、判断题(每题2分,共20分)1、由0ερ=⋅∇E 可知电荷是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该点散度有贡献。
( )2、矢势A沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。
( )3、电磁波在波导管内传播时,其电磁波是横电磁波。
( )4、任何相互作用都不是瞬时作用,而是以有限的速度传播的。
( )5、只要区域V 内各处的电流密度0=j,该区域内就可引入磁标势。
( )6、如果两事件在某一惯性系中是同时发生的,在其他任何惯性系中它们必不同时发生。
( )7、在0=B的区域,其矢势A 也等于零。
( )8、E 、D 、B 、H四个物理量均为描述场的基本物理量。
( )9、由于A B⨯∇=,矢势A 不同,描述的磁场也不同。
( )10、电磁波的波动方程012222=∂∂-∇E tv E适用于任何形式的电磁波。
( )三、证明题(每题9分,共18分)1、利用算符 的矢量性和微分性,证明0)(=∇⨯⋅∇φr式中r为矢径,φ为任一标量。
2、已知平面电磁波的电场强度i t z cE E )sin(0ωω-=,求证此平面电磁波的磁场强度为j t z cc E B )sin(0ωω-=四、计算题(每题10分,共30分)1、迅变场中,已知)cos(0t rK A A ω-⋅= , )cos(0t r K ωφφ-⋅= ,求电磁场的E和B 。
电动力学试题及参考答案
电动力学试题及参考答案一、填空题(每空2分,共32分)1、已知矢径r,则 r = 。
2、已知矢量A 和标量φ,则=⨯∇)(Aφ 。
3、区域V 内给定自由电荷分布 、 ,在V 的边界上给定 或 ,则V 内电场唯一确定。
4、在迅变电磁场中,引入矢势A 和标势φ,则E= ,B= 。
5、麦克斯韦方程组的微分形式 、 、 、 。
6、电磁场的能量密度为 w = 。
7、库仑规范为 。
8、相对论的基本原理为 , 。
9、电磁波在导电介质中传播时,导体内的电荷密度 = 。
10、电荷守恒定律的数学表达式为 。
二、判断题(每题2分,共20分)1、由0ερ=⋅∇E 可知电荷是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该点散度有贡献。
( )2、矢势A沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。
( ) 3、电磁波在波导管内传播时,其电磁波是横电磁波。
( ) 4、任何相互作用都不是瞬时作用,而是以有限的速度传播的。
( )5、只要区域V 内各处的电流密度0=j,该区域内就可引入磁标势。
( )6、如果两事件在某一惯性系中是同时发生的,在其他任何惯性系中它们必不同时发生。
( )7、在0=B的区域,其矢势A 也等于零。
( )8、E 、D 、B 、H四个物理量均为描述场的基本物理量。
( )9、由于A B⨯∇=,矢势A 不同,描述的磁场也不同。
( )10、电磁波的波动方程012222=∂∂-∇E tv E 适用于任何形式的电磁波。
( )三、证明题(每题9分,共18分)1、利用算符 的矢量性和微分性,证明0)(=∇⨯⋅∇φr式中r为矢径,φ为任一标量。
2、已知平面电磁波的电场强度i t z c E E )sin(0ωω-=,求证此平面电磁波的磁场强度为j t z cc E B )sin(0ωω-=四、计算题(每题10分,共30分)1、迅变场中,已知)cos(0t r K A A ω-⋅= , )cos(0t r K ωφφ-⋅= ,求电磁场的E 和B。
电动力学习题答案
电动力学习题答案电动力学是物理学中研究电荷、电场、磁场和它们之间相互作用的分支。
以下是一些典型的电动力学习题及其答案。
# 习题一:库仑定律的应用问题:两个点电荷,一个带电为+3μC,另一个为 -5μC,它们之间的距离为 2m。
求它们之间的静电力大小。
解答:根据库仑定律,两个点电荷之间的静电力 \( F \) 由下式给出:\[ F = k \frac{|q_1 q_2|}{r^2} \]其中 \( k \) 是库仑常数,\( q_1 \) 和 \( q_2 \) 是电荷量,\( r \) 是它们之间的距离。
代入给定的数值:\[ F = 8.9875 \times 10^9 \frac{N \cdot m^2}{C^2} \times\frac{3 \times 10^{-6} C \times (-5 \times 10^{-6} C)}{(2 m)^2} \]\[ F = 37.5 N \]# 习题二:电场强度的计算问题:一个无限大均匀带电平面,电荷面密度为 \( \sigma \)。
求距离平面\( d \) 处的电场强度。
解答:对于无限大均匀带电平面,电场强度 \( E \) 垂直于平面,大小为:\[ E = \frac{\sigma}{2\epsilon_0} \]其中 \( \epsilon_0 \) 是真空电容率。
# 习题三:电势能的计算问题:一个点电荷 \( q \) 位于另一个点电荷 \( Q \) 产生的电场中,两者之间的距离为 \( r \)。
求点电荷 \( q \) 在该电场中的电势能。
解答:点电荷 \( q \) 在由点电荷 \( Q \) 产生的电场中的电势能 \( U \) 为:\[ U = -k \frac{qQ}{r} \]# 习题四:洛伦兹力的计算问题:一个带电粒子,电荷量为 \( q \),以速度 \( v \) 进入一个垂直于其运动方向的磁场 \( B \) 中。
福师《电动力学》在线作业一-0004参考答案
A.ωc=qB/m
B.ωc=γqB/m
C.ωc=qB/γm
D.ωc=qB/γ2m
答案:C
20.
A.A
B.B
C.C
D.D
答案:A
21.
A.A
B.B
C.C
D.D
答案:D
22.恒定电场的源是()。
A.恒定电流
B.静止的电荷
C.时变电流
D.时变的电荷
答案:B
23.
A.A
B.B
C.C
D.D
答案:D
24.关于磁场的描述错误的是____。
A.磁场的散度为0
B.磁场是一个无源场
C.磁感应线总是闭合曲线
D.以上说法都是错误的
答案:D
25.
A.A
B.B
C.C
D.D
答案:A
二、判断题(共25道试题,共50分)
26.
答案:正确
27.一可见平面光波由水入射到空气,入射角为60度时,将不会发生全反射。
答案:正确
40.麦克斯韦方程组最重要的特点是它揭示了电磁场的内部作用和运动。
答案:正确
41.电磁场是一种物质,因此它具有能量、动量,满足能量、动量守恒定律。
电动力学题库答案
一.有一电荷均匀体分布的刚性小球,总电荷Q,半径,以角速度0R ω绕自身某直径旋转a) 求它的磁矩b) 假定认为电子是上述的一个小球,由电子经典半径,其固有磁矩,试证明:如果把自旋理解为经典球自转,将与狭义相对论相矛盾。
cm R 130108.2−×≈高斯尔格实/109.020−×≈m c) 解:a) 如图,小球绕z 轴旋转,则φθωπωπρe Rsin R 43Q R R 43Q v j 33=×==Z 022f R 00f e 5QR dr d sin r )j r (221dv j x 21m 0ωθθππ=××=×=∫∫∫b) 设2020109.0m 5QR −×==实ω则220109.05QR −××=ω其中Q 是电子电量= 库仑19106.1−×而电子赤道表面的线速度vC /10108.2101.6/10109.05QR 109.05R v 111519-3200200秒〉米米库仑特斯拉)(焦耳≈××××××=××==−−−−ω 所以这是违反相对论的。
二.一枚铜币以其边缘为支点立于竖直方向的磁场B=20KG 中,给它一轻微的推力让其倒下,试估计倒下所需要的时间,设铜的,密度。
cm /1065Ω×=σ39−=gmcm ρ解:分析: 如果没有磁场,则铜币一旦偏离竖直位置,就会在重力矩的作用下有加速的倒下,若有磁场时,在人为让它偏离后,运动过程中,磁场使铜币感应而产生磁矩,磁矩在外场中有力矩,磁力矩阻此铜币倒下,二个力矩在运动中平衡,所以迟延了铜币倒下的时间,设在倒下的过程中,币面与竖直面的夹角为θ,磁场对铜币的感应可以看成许多小电流圈,考虑小圆环,r+dr,通过该环的磁通θπθφsin )(2B r =感生电动势==dtd φεdtd Bco r θθπ2感应电流hdr dtd Br hdr r dt d B r Rdi σθθσπθθπεcos 21/2cos 2===h 是铜币的厚度hdr电流环的磁力矩hdr dL m =铜币的总磁力矩(设铜币的半径为)0r h dt d B r dr hr dtd B dL L r r m m σθθπσθθπ22403220cos 81cos 2100===∫∫说明:磁力矩使铜币转向原来的竖直位置,因为电或磁偶极子在外场中总趋于能量最低的位置,在本题中磁偶极子是因外场感应而引起的,在运动过程中是变化的,例如处在竖直位置时,B m v m ⋅==,0,这跟纯磁偶极子不同,为要的运动中的电流圈磁矩不变,必须加外电流。
电动力学考试题和答案
电动力学考试题和答案一、选择题(每题2分,共20分)1. 电场强度的定义式为:A. E = F/qB. E = FqC. E = qFD. E = F/Q答案:A2. 电场线的方向是:A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 从无穷远处指向电荷D. 从电荷指向无穷远处3. 电势差的定义式为:A. U = W/qB. U = WqC. U = qWD. U = W/Q答案:A4. 电容器的电容定义式为:A. C = Q/UB. C = U/QC. C = QVD. C = UV答案:A5. 电流强度的定义式为:B. I = qtC. I = qVD. I = Vq答案:A6. 欧姆定律的公式为:A. V = IRB. V = R/IC. V = I/RD. V = R*I答案:A7. 磁场强度的定义式为:A. B = F/IB. B = FID. B = Vq答案:A8. 洛伦兹力的公式为:A. F = qvBB. F = BqvC. F = qBvD. F = Bvq答案:C9. 磁通量的定义式为:A. Φ = B*AB. Φ = A*BC. Φ = B/AD. Φ = A/B答案:A10. 法拉第电磁感应定律的公式为:A. E = -dΦ/dtB. E = dΦ/dtC. E = Φ/tD. E = tΦ答案:A二、填空题(每题2分,共20分)1. 电场强度的单位是______。
答案:伏特/米(V/m)2. 电势的单位是______。
答案:伏特(V)答案:法拉(F)4. 电流强度的单位是______。
答案:安培(A)5. 电阻的单位是______。
答案:欧姆(Ω)6. 磁场强度的单位是______。
答案:特斯拉(T)7. 磁通量的单位是______。
答案:韦伯(Wb)8. 电感的单位是______。
答案:亨利(H)答案:假想10. 磁场线是______的线。
答案:闭合三、计算题(每题10分,共60分)1. 一个点电荷Q = 2 × 10^-6 C,距离该点电荷r = 0.1 m处的电场强度是多少?答案:E = kQ/r^2 = (9 × 10^9 N·m^2/C^2) × (2 × 10^-6 C) / (0.1 m)^2 =1.8 × 10^4 N/C2. 一个电容器C = 4 μF,两端电压U = 12 V,求该电容器的电荷量Q。
电动力学作业及参考解答
习题与参考答案第1章 电动力学的数学基础与基本理论1.1 A 类练习题1.1.1 利用∇算符的双重性质,证明(1)()A A A ϕϕϕ∇×=∇×+∇×r r r(2)2()()A A A ∇×∇×=∇∇⋅−∇r r r1.1.2 证明以下几个常用等式,其中()x r x x e ′=−r r ()()y z y y e z z e ′′+−+−r r ,a r为常矢量,(,,)u u x y z =。
(1)3r r ′∇⋅=−∇⋅=r r ,(2)0r ∇×=r,(3)r r r r ′∇=−∇=r ,(4)31r r r ∇=−r ,(5)30r r∇×=r, (6)330r r r r ⋅⋅′∇=−∇=r r (0)r ≠,(7)()a r a ∇⋅=r r r,(8)()dA A u u du∇×=∇×r r 。
1.1.3 从真空麦克斯韦方程出发,导出电荷守恒定律的微分形式和真空中的波动方程。
1.1.4证明均匀介质中的极化电荷密度与自由电荷密度满足关系式0(1/)p f ρεερ=−−。
1.1.5 已知电偶极子电势304p R R ϕπε⋅=r r ,试证明电场强度53013()[4p R R p E R Rπε⋅=−r r r r r 。
1.1.6 假设存在孤立磁荷(即磁单极),试改写真空中的麦克斯韦方程组以包括磁荷密度m ρ和磁流密度m J r的贡献。
答案:D ρ∇⋅=ur , m B ρ∇⋅=u r , m B E J t ∂∇×=−−∂u r u r u r , D H J t∂∇×=+∂ur uu r ur 。
1.1.7 从麦克斯韦方程出发导出洛伦茨规范下的达朗贝尔方程,并证明洛伦茨规范中的ψ满足齐次波动方程,即222210c tψψ∂∇−=∂。
1.1.8 证明:(1)在静电情况下,导体外侧的电场总是与表面垂直;(2)在稳恒电流的情况下,导体内侧的电场总是平行于导体表面。
《电动力学》简答题参考答案
《电动力学》简答题参考答案1. 分别写出电流的连续性方程的微分形式与积分形式,并简单说明它的物理意义。
解答:电流的连续性方程的微分形式为0J t ρ∂∇⋅+=∂K 。
其积分形式为d d d d S J S V t ρΩ⋅=−∫∫∫∫K K v 。
电流的连续性方程实际上就是电荷守恒定律的公式表示形式,它表示:当某区域内电荷减少时,是因为有电荷从该区域表面流出的缘故;相反,当某区域内电荷增加时,是因为有电荷通过该区域的表面流入的缘故。
2. 写出麦克斯韦方程组,并对每一个方程用一句话概括其物理意义。
解答:(1)f D ρ∇⋅=K 电荷是电场的源;(2)B E t∂∇×=−∂K K 变化的磁场产生电场; (3)0B ∇⋅=K 磁场是无源场;(4)f D H J t∂∇×=+∂K K K 传导电流以及变化的电场产生磁场。
3. 麦克斯韦方程组中的电场与磁场是否对称?为什么?解答:麦克斯韦方程组中的电场与磁场并不对称,因为电场是有源场,电荷是电场的源,而磁场是无源场,不存在磁荷。
4. 一个空间矢量场A K ,给出哪些条件能把它唯一确定?解答:由矢量场的唯一性定理:(1)位于空间有限区域内的矢量场,当它的散度,旋度以及它在区域边界上的场分布给定之后,该矢量场就被唯一确定;(2)对于无限大空间,如果矢量在无限远处减少至零,则该矢量由其散度和旋度唯一确定。
5. 写出极化电流与极化强度、磁化电流密度与磁化强度之间的关系式。
解答:极化电流与极化强度之间的关系式为P P J t ∂=∂K K ; 磁化电流密度与磁化强度之间的关系式为M J M =∇×K K 。
6. 简述公式d d d d d V V w V f V S tσ−=⋅+⋅∫∫∫v K K K K v 的物理意义。
解答:d d d Vw V t −∫表示单位时间区域V 内电磁场能量的减少,d V f V ⋅∫v K K 表示单位时间电磁场对该区域的电荷系统所作的功,d S σ⋅∫K K v 表示单位时间流出该区域的能量。
电动力学试题库一及答案
福建师范大学物理与光电信息科技学院20___ - 20___ 学年度学期____ 级物理教育专业《电动力学》试题(一)试卷类别:闭卷考试时间:120分钟______________________ 学号____________________一.判断以下概念是否正确,对的打(√),错的打(×)(共15分,每题3分)1.电磁场也是一种物质,因此它具有能量、动量,满足能量动量守恒定律。
( )2.在静电情况,导体内无电荷分布,电荷只分布在表面上。
()3.当光从光密介质中射入,那么在光密与光疏介质界面上就会产生全反射。
()4.在相对论中,间隔2S在任何惯性系都是不变的,也就是说两事件时间先后关系保持不变。
()5.电磁波若要在一个宽为a,高为b的无穷长矩形波导管中传播,其角频率为22⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛≥bnamμεπω()二.简答题。
(每题5分,共15分)1.写出麦克斯韦方程组,由此分析电场与磁场是否对称?为什么?2.在稳恒电流情况下,有没有磁场存在?若有磁场存在,磁场满足什么方程?3.请画出相对论的时空结构图,说明类空与类时的区别.三.证明题。
(共15分)从没有电荷、电流分布的麦克斯韦方程出发,推导真空中的E 、B的波动方程。
四.综合题。
(共55分) 1.内外半径分别为1r 和2r 的无穷长空心导体圆柱,沿轴向流有稳恒均匀自由电流f j,导体的磁导率为μ,求磁感应强度和磁化电流。
(15分)2.有一个很大的电解槽中充满电导率为2σ的液体,使其中流着均匀的电流f j ,今在液体中置入一个电导率为1σ的小球,求稳恒时电流分布和面电荷分布。
(分离变量法)(15分)3.有带电粒子沿z 轴作简谐振动ti ez z ω-=0,设c z <<ω0,求它的辐射场E、B和能流S 。
(13分)- - . 4.一辆以速度v 运动的列车上的观察者,在经过某一高大建筑物时,看见其避雷针跳起一脉冲电火花,电光迅速传播,先后照亮了铁路沿线的两铁塔。
郭硕鸿《电动力学》习题解答完全版(1-6章)
r
r r
r
r
∫ f ⋅ dl = ∫ ( f
l l
r
x
dl x + f y dl y + f z dl z )
r r ∂ ∂ ∂ ∂ ∂ ∂ f f y )dS x + ( f x − f z )dS y + ( f y − f x )dS z ∇ × ⋅ dS = ∫ ( f z − ∫S S ∂y ∂z ∂z ∂x ∂x ∂y
节) 2 求
r r r r r r r r r r r r r r r ∇ ⋅ r , ∇ × r , (a ⋅ ∇)r , ∇(a ⋅ r ), ∇ ⋅ [ E 0 sin(k ⋅ r )]及∇ × [ E 0 sin(k ⋅ r )], 其中a , k 及E 0 均为常矢量
r (r 3 − r13 ) ρ f r ∴E = r , (r2 > r > r1 ) 3εr 3
7 有一内外半径分别为 r1 和 r2 的空心介质球 求 介质的电容率为 ε 使介质内均匀带静止自
由电荷 ρ f 1 2 解 1
空间各点的电场 极化体电荷和极化面电荷分布
r r D ∫ ⋅ dS = ∫ ρ f dV ,
S
(r2>r>r1)
即
D ⋅ 4πr 2 =
4π 3 (r − r13 ) ρ f 3
3
r ex r ∂ ∇ × A(u ) = r∂x Ax (u )
r ey ∂ r ∂y Ay (u )
r ez r r r r r r ∂ ∂ A A ∂ ∂Ax r A ∂ A ∂ A r r ∂ y y x z z =( − )e x + ( − )e y + ( − )e z = ∂ ∂ ∂ ∂ ∂ ∂ ∂ z y z z x x y r Az (u )
郭硕鸿 电动力学 第五版 -第1-4章答案
)
3.4 题为作业题,略。 5. 与书上内容P25 同。 6. 书上习题2 P34,略。 (四)计算题 1.
2. 略。
第二章习题答案
镜像法
2. 书上例题。 P54 例二
3. 书上习题11
4.书上习题12
5.书上习题9
分离变量法
6.第一小题是书上例题,P48 例1,略。 第二小题做法类似, 唯一不同的地方是内导体球没有接地, 电势不为 零,但可以利用带电量Q来求解。 7.书上例题,P49 例2,略。 8.
② 14. ④ 15. ② 16. ②
(二)填空题 1 . 时 谐 2 .
G G − iωt E ( x )e
3.
G G − iωt B ( x )e
4.
G G i ( kG• x G E0 ( x )e −ωt )
5.
G G i ( kG• x G B0 ( x )e −ωt )
6.
1 G G G G ( E • D + H • B) 2
∫
G J ( x' ) dV ' r
5.
1 G G A • J dV 2 ∫V
6.
1 G G B • H dV ∫ ∞ 2
7. 铁磁体
(三)证明题 书上例题,P83例1
(四) 计算题
1. 0 (此题删去) 2. 书上例题P83例二 3. 书上习题P108 第9题
第四章习题答案
(一)单选题 1.① 2. ③ 3. ③ 4. ④ 5. ④ 6. ① 7. ② 12. ① 13.
第三章习题答案
(一) 单选题 1.④ 10. ④ (二)填空题 2. ③ 3. ③ 4. ③ 5. ④ 6. ① 7. ③ 8. ② 9. ①
电动力学第三版答案
1. 根据算符∇的微分性与矢量性推导下列公式B A B A A B A B B A rr r r r r r r r r )()()()()(∇⋅+×∇×+∇⋅+×∇×=⋅∇解1B A v v )(=⋅∇首先算符∇是一个微分算符其具有对其后所有表达式起微分的作用对于本题∇将作用于BA vv 和又∇是一个矢量算符具有矢量的所有性质因此利用公式b a c b c a b a c vv v v v v v v v )()()(⋅−⋅⋅=××可得上式其中右边前两项是∇作用于Av 后两项是∇作用于Bv2根据第一个公式令AvB v可得证2. 设u 是空间坐标xy z 的函数证明.)()()(duA d u u A du Ad u u A u dudf u f rr rr ×∇=×∇⋅∇=⋅∇∇=∇证明1ududfe z u du df e y u du df e du df e z u f e y u f e x u f u f z y x x u z y x ∇=∂∂⋅+∂∂⋅+⋅=∂∂+∂∂+∂∂=∇∂∂r r r r r r )()()()(2du A d u zu dz u A d y u du u A d x u du u A d z u z A y u A x u A u A z y x z y x rr r r r r r r ⋅∇=∂∂⋅+∂∂⋅+∂∂⋅=∂∂+∂∂+∂∂=⋅∇)()()()()()()(3=∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=∂∂∂∂∂∂=×∇z x yy z x x y z z y u x z y xe y A x A e x A z A e z A y A u A u A A zy x e e e u A r r r r rr r r r r r r r r rr )()()()()()()(duA d u e y u du A d x udu A d e x u du A d z u du A d e z u du A d y u du A d z x y y z x x y z r r r r r r r r r r ×∇=∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=)()()(3. 设2'2'2')()()(z z y y x x r −+−+−=为源点'x 到场点x 的距离r 的方向规定为从源点指向场点1 证明下列结果并体会对源变数求微商(''''ze y e x e z y x∂∂+∂∂+∂∂=∇r r r 与对场变数求微商)(ze y e x e z y x∂∂+∂∂+∂∂=∇r r r 的关系 )0.(0,0,11,3'333''≠=−∇=⋅∇=×∇−=−∇=∇=−∇=∇r rr r r r r r r r r r r r r r r r r r (最后一式在人r 0点不成立见第二章第五节)2求均为常矢量及其中及000,)],sin([)]sin([),(,)(,,E k a r k E r k E r a r a r r rr r r r r r r r r r r r r r ⋅×∇⋅⋅∇⋅∇∇⋅×∇⋅∇证明3)()()('''=∂−∂+∂−∂+∂−∂=⋅∇z z z y y y x x x r r 0'''=−−−∂∂∂∂∂∂=×∇z z y y x x z y x e e e r z y xr r r r ])'()'()')][(()[()(z y x z y x z z y y x x e z z e y y e x x e ze y e x e a e a e a r a v r v v v v v v v r v −+−+−∂∂+∂∂+∂∂⋅++=∇⋅ ])'()'()')[((z y x z yxe z z e y y e x x za y a x a v r v −+−+−∂∂+∂∂+∂∂= ae a e a e a z z y y x x vvvv=++=ar a r r a r a r a vv v r v v v v v v ⋅∇⋅+×∇×+∇⋅+×∇×=⋅∇)()()()()( a a r a r r a v r v v v v v ⋅⋅+×∇×+∇⋅=)()()( ar a r a vvv v v ⋅∇⋅+×∇×+=)()())(sin()](sin([)]sin([000E r k E r k r k E rr r r r r r r r ⋅∇⋅+⋅⋅∇=⋅⋅∇0])sin()sin()sin([E e r k z e r k y e r k x z y x r r r r r r r r r ⋅∂∂+⋅∂∂+⋅∂∂= ))(cos())(cos(0E k r k E e k e k e k r k z z y y x x r r r r rr r r r r ⋅⋅=++⋅=000)sin()]sin([)]sin([E r k E r k r k E rr r r r r r r r ×∇⋅+×⋅∇=⋅×∇4. 应用高斯定理证明∫∫×=×∇SVfS d f dV r r r 应用斯托克斯Stokes 定理证明∫∫=∇×LSl d S d φφr r证明1)由高斯定理∫∫⋅=⋅∇SVgS d g dV r r r即∫∫++=∂∂+∂∂+∂∂S zz y y x x V zy x dS g dS g dS g dV z g y g x g )( 而dVk f yf x j f x f z i f z f y dV f x y z x y z V ])()()[(r r r r ∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=×∇∫∫ ∫−∂∂+−∂∂+−∂∂=dVi f j f zk f i f y j f k f x y x x z z y )]()()([r r r r r r 又])()()[(k S d f dS f j dS f dS f i dS f dS f f S d y Sx x y x z z x z y y z Sr rr r r ∫∫−+−+−=× ∫−+−+−=zy x y x z x z y dS i f j f dS k f i f dS j f k f )()()(rr r r r r 若令if j f H k f i f H j f k f H y x Z x z y z y x rr r r r r −=−=−=,, 则上式就是∫∫⋅=⋅∇SVH S d dV H r r r,高斯定理则证毕2)由斯托克斯公式有∫∫⋅×∇=⋅SlSd f l d f r r r r∫∫++=⋅lz z y y x x ldl f dl f dl f l d f )(rr ∫∫∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=⋅×∇S zx y y z x x y z S dS f y f x dS f x f z dS f z f y S d f )()()(r r 而∫∫++=lz k y j x i ldl dl dl l d )(φφφφr∫∫∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=∇×S y x x z z y S k dS x dS y j dS z dS x i dS y dS z S d r r r r )()()(φφφφφφφ ∫∂∂−∂∂+∂∂−∂∂+∂∂−∂∂=zy x dS i yj x dS k x i z dS j z k y )()()(rr r r r r φφφφφφ若令k z j y i x f f f φφφ===,,则证毕5. 已知一个电荷系统的偶极矩定义为,),()('''∫=VdV x t x t P r r r ρ利用电荷守恒定律0=∂∂+⋅∇tJ ρr 证明P r 的变化率为∫=V dV t x J dtPd ''),(r r r证明∫∫∇−=∂∂=∂∂V V dV x j dV x t tP '''''''r r r r r ρ ∫∫∫⋅∇−=⋅∇−⋅∇−=∇−=∂∂V x V x dVj x j dV j x j x dV x j tP '''''''''''''''')((])()([)(r r r r r∫∫⋅−=Sx Sd j x dV j r r '若)0(,0)(,==⋅∞→∫S j S d j x S rr r 则 同理∫∫=∂∂=∂∂'')(,)(dVj t dV j t z z y y ρρr r 即∫=V dV t x j dtPd ''),(r r r6. 若m r是常矢量证明除R 0点以外矢量3R R m A r r r ×=的旋度等于标量3RR m r r ⋅=ϕ的梯度的负值即ϕ−∇=×∇A r其中R 为坐标原点到场点的距离方向由原点指向场点证明mr m r r m r m R m R R m A vv v v v v v v ])1[()]1([1)(1)()]1([)(3∇⋅∇−∇⋅∇−∇∇⋅+∇⋅∇=∇××−∇=××∇=×∇)0(,1)(≠∇∇⋅=r rm vr m m r r m r m R R m 1)()()1()]1([)]1([)(3∇∇⋅−×∇×∇−∇×∇×−=∇⋅−∇=⋅∇=∇vv v v v v ϕ rm m r 1)(])1[(∇∇⋅−=∇⋅∇−vvϕ−∇=×∇∴A v7有一内外半径分别为r 1和r 2的空心介质球介质的电容率为ε使介质内均匀带静止自由电荷f ρ求1 空间各点的电场2极化体电荷和极化面电荷分布解1∫∫=⋅dV S d D f Sρrr , (r 2>r>r 1)f r r r D ρππ)(3443132−=⋅即)(,3)(123313r r r r r r r E f >>−=∴rr ερ 由)(,)(342313200r r r r Q S d E f f S >−==⋅∫ρεπεr r )(,3)(2303132r r r rr r E f >−=∴r r ρε 01时E r r r <2)EE E P e r r r r )(00000εεεεεεχε−=−=)(3]3)([)()(3310331300r rr r r r r r E P f f P r r r r r −⋅∇−−=−⋅∇−−=⋅∇−−=⋅−∇=∴ρεεερεεεεερ f f ρεεερεεε)()03(300−−=−−−=nn P P P 21−=σ考虑外球壳时r r 2 n 从介质1指向介质2介质指向真空2=n Pfr r f n P r r r rr r r P ρεερεεεσ32313203313013)1(3)(2−−=−−===r 考虑到内球壳时r r 23)(133130=−−−==r r f P rrr r rρεεεσ8内外半径分别为r 1和r 2的无穷长中空导体圆柱沿轴向流有恒定均匀自由电流J f 导体的磁导率为µ求磁感应强度和磁化电流解fS f I S d D dtd I l d H =⋅+=⋅∫∫rr r r 当0,0,1===<B H I r r f rr 故时 当r 2>r>r 1时)(2212r r j S d j rH l d H f Sf l−=⋅==⋅∫∫ππr r r r r j r r r r r r j B ff rr v ×−=−=22122122)(2)(µµ 当r>r 2时)(22122r r j rH f −=ππ r j r r r B frr r ×−=2212202)(µ )2()1())()(2212000rr r r j H H M J f M M−××∇−=−×∇=×∇=×∇=r r r r r µµµµµχ )(,)1()1(2100r r r j H f <<−=×∇−=r r µµµµ指向介质从介质21(),(12n M M n Mr r rr−×=α 在内表面上0)2)1(,012212021=−−===r r rr r M M µµ故)(,012r r M n M ==×=rr rα在上表面r r 2时)1(22)(0212221211222−−−=×−×−=×−=−×===µµαr f r r fr r Mj rr r r j r r r r r M n M n rr r rrr r r rf j rr r r 2212202)1(−−−=µµ9证明均匀介质内部的体极化电荷密度P ρ总是等于体自由电荷密度f ρ的倍)1(0εε−−证明ff P E E P ρεεερεεεεεερ)1()()()(0000−−=−−=⋅∇−−=−⋅−∇=⋅−∇=r r r 10证明两个闭合的恒定电流圈之间的相互作用力大小相等方向相反(但两个电流元之间的相互作用力一般并不服从牛顿第三定律)证明1线圈1在线圈2的磁场中的受力 ∫×=23121222024l r r l d I B v v v πµ21112B l d I F d v v v×=∫∫∫∫××=××=∴12123121221210312122211012)(4)(4l l l l r r l d l d I I r r l d I l d I F v r vvv v v πµπµ )()(41221312123121212210∫∫⋅−⋅=l l l d l d r r r r l d l d II v v v v v v πµ12线圈2在线圈1的磁场中受的力同1可得∫∫⋅−⋅=21)()(41232121321212121021l l l d l d r r r r l d l d I I F v v v v v v v πµ2分析表达式1和21式中第一项为0)1()(21221212221212231212123121212=−⋅==⋅=⋅∫∫∫∫∫∫∫l l l l l l r l d r dr l d r r l d l d r r l d l d 一周v v v v v v v v 同理对2式中第一项 ∫∫=⋅210)(3212121l l r r l d l d v v v ∫∫⋅−==∴12)(421312122102112l l l d l d r r II F F v v rv v πµ11. 平行板电容器内有两层介质它们的厚度分别为l 1和l 2电容率为21εε和今再两板接上电动势为Ε的电池求1 电容器两板上的自由电荷密度f ω2 介质分界面上的自由电荷密度f ω若介质是漏电的电导率分别为21σσ和当电流达到恒定时上述两问题的结果如何解在相同介质中电场是均匀的并且都有相同指向则,)00f 2211212211==−=−Ε=+σεε介质表面上E E D D E l E l n n故122112122121,εεεεεεl l E l l E +Ε=+Ε=又根据fn n D D σ=−21 n 从介质1指向介质2在上极板的交面上 121f D D σ=− D 2是金属板故D2即12212111εεεεεσl l D f +== 而02=f σ)0(,'1'1'2'2'13=−=−=D D D D D f 是下极板金属故σ 13122121ff l l σεεεεεσ−=+−=∴ 若是漏电并有稳定电流时222111,σσjE j E r r r r == 又 ===Ε=+积稳定流动电荷不堆,2121222111j j j j j l j l n nrrr σσ 得+Ε==+Ε==+Ε==1221122212212111221121:,σσσσσσσσσσl l j E l l j E l l j j 即12212`13σσσεσl l D f +Ε==上1221122σσσεσl l D f +Ε−=−=下Ε+−=−=1221121232σσσεσεσl l D D f 中12. 证明1 当两种绝缘介质得分界面上不带面自由电荷时电场线的曲折满足1212tan tan εεθθ=其中21εε和分别为两种介质的介电常数21θθ和分别为界面两侧电场线与法线的夹角2当两种导电介质内流有恒定电流时分界面上电场线曲折满足1212tan tan σσθθ=其中21σσ和分别为两种介质的电导率证明(1)根据边界条件112212sin sin ,0)(θθE E E E n ==−×即vv 由于边界面上0=fσ故)(12=−⋅D D n v vv 即111222cos cos θεθεE E = 12121122,εεθθεθεθ==∴tg tg tg tg 即有(2)根据E J vv σ=可得电场方向与电流密度同方向由于电流I 是恒定的故有1221cos cos θθj j =即122211cos cos θσθσE E =而0)(12=−×E E n v vv 即 1122sin sin θθE E = 故有2121σσθθ=tg tg 13试用边值关系证明在绝缘介质与导体的分界面上在静电情况下导体外的电场线总是垂直于导体表面在恒定电流的情况下导体内电场线总是平行于导体表面证明1导体在静电条件下达到静电平衡01导体内E v∴ 而 0)(12=−×E E n v vv 02=×∴E n vv故0E v垂直于导体表面3导体中通过恒定电流时导体表面0=fσ∴导体外0,022==D E vv即 而 0:,0)(10112=⋅=⋅==−⋅E n D n D D n f v vv v v v v εσ即 01=⋅∴E n vv 导体内电场方向和法线垂直即平行于导体表面14内外半径分别为a 和b 的无限长圆柱形电容器单位长度电荷为fλ板间填充电导率为σ的非磁性物质1 证明在介质中任何一点传导电流与位移电流严格抵消因此内部无磁场2求f λ随时间的衰减规律3 求与轴相距为r 的地方的能量耗散功率密度4求长度为l 的一段介质总的能量耗散功率并证明它等于这段的静电能减少率1 证明由电流连续性方程0=∂∂+⋅∇t J f ρr 据高斯定理 D f r⋅∇=ρ 0=∂⋅∂∇+⋅∇∴tDJ rr 即0=∂∂⋅∇+⋅∇tDJ rr 0.0)(=∂∂+∴=∂∂+⋅∇∴t DJ t D J r r r r 即传到电流与位移电流严格抵消(2)解由高斯定理得∫∫=⋅dl dl r D f λπrr 2 rf r f e r E e r D rr r r πελπλ2,2==∴ 又ED E J t D J rr r r rr εσ===∂∂+,,0 t e E E tEE εσεσ===∂∂+∴0,0r r r r rt r r f e e re r r rεσπελπελ−=∴220电动力学习题解答 第一章 电磁现象的普遍规律tf f e εσλλ−=∴03解re r t t D J ft f πλεσπλεσ2)2(0⋅=∂∂−=∂∂−=−r r 能量耗散功率密度σπελσρ222)2(1rJ J f ==5解 单位体积rdrl dV π2⋅= ∫==b a f f abl rdr l r P ln22)2(222πεσλπσπελr 静电能 abl dr r l dV E D W f b a f baln2212212122⋅⋅==⋅=∫∫πελπελr r 减少率 ab l t a b l t W f ff ln2ln 222πεσλλπελ=∂∂⋅−=∂∂−1. 一个半径为R 的电介质球极化强度P=K2r r电容率为(1) 计算束缚电荷的体密度和面密度(2) 计算自由电荷体密度(3) 计算球外和球内的电势(4) 求该带电介质球产生的静电场总能量解(1)2222/)11(rK r rr r K r r K P P −=⋅∇+⋅∇−=⋅∇−=⋅−∇=r r r r ρ RP P P n )(12rr r −⋅−=σ 又球外无极化电荷02=P r RK rr K n P n RRp /21=⋅=⋅=r r rr σ(2) 由公式 E D rr ε= PE D rr r +=0εεεε−=P D r r200)(rKP D f εεεεεερ−=⋅∇−=⋅∇=r r`(3)对于球外电场由高斯定理可得∫=⋅0εQs d E rr外 022002sin )(4εϕθθεεεερπ∫∫∫∫⋅−==⋅∴d drd r r KdV r E f 外r r r )(300r rεεεε−∴KRE 外同理可得球内电场20r rK Er r ⋅−εε内球外电势外外r)(rd 00εεεεϕ−⋅∴∫∞∞KRE r rrR ln)(rd rd 000rεεεεεεϕ−+−⋅⋅∫∫∞K KE E RR球内电势内外内rr r r42022020r2rr r r 2121内内内εεεεεεεεωK K K E D rr r r ⋅⋅⋅⋅⋅∴ ∫∫∫∫−⋅−⋅∴2022202)2d drd sin r r )(21d εεπεϕθθεεεωK R K V W 内内∫∫∫∫−⋅⋅−⋅=2002224200222)(2d drd sin r r 1)(21dεεεπεϕθθεεεεωRK R K V W R 外外200))(1(2εεεεπε−+=∴K R W W W 外内2 在均匀外电场中置入半径为0R 的导体球试用分离变数法球下列两种情况的电势1导体球上接有电池使球与地保持电势差;0φ2 导体球上带总电荷Q.解1当导体球上接有电池与地保持电势差0φ时以地为电势零点本问题的定解条件如下φφ内R=0R02外ϕ∇R>0R 且 =−==∞→0000cos φϕϕθϕR R R R E 外外0ϕ是未置入导体球前坐标原点的电势根据有关的数理知识可解得)cos R Ran 1n nnnn θϕ外P b ∑∞由于00cos ϕθϕ外R E R −=∞→即021210210cos )(cos cos )(cos cos a ϕθθθθθϕ+−=+++++∞→∞=+∞=∑∑R E P RbR b R b P R a R a R n n n n n n nn 外故而有)1(0),1(0,,0100>=>=−==n b n a E a a n n ϕθθϕϕcos b cos 21000Rb R R E +∴外又020100000cosb cos ,0φθθϕϕφϕ=+−====R b R R E R R R R 即外外故而又有=+−=+∴0cos cos 201000000θθφϕR b R E R b 得到 20010000,)(R E b R b =−=ϕφ最后得定解问题的解为)(cos )(cos 03000000R R RR E R R R E >+−++−=θϕφϕθϕ外2当导体球上带总电荷Q 时定解问题存在的方式是=∂∂−+>∇<∇∫∞→→)(ds (Rcos )(0)(00s0R 000R 0R 02020R R Q R E R R R R R 原点的电势是未置入导体球前坐标有限外外内外内外内φεφφϕϕθφφφφ解得满足边界条件的解是∑=0n n n n cos R 内θϕP a ∑=0n n1n n00cos R Rcos 外θθϕϕP b E由于∞→R 外ϕ的表达式中只出现了)1(0cos cos (1>=n b P n 项故θθθθϕϕcos b cos 21000Rb R R E +∴外又有0R R =外ϕ是一个常数导体球是静电平衡C R b R R E R R =+−==θθϕϕcos b cos 201000000外301201000cos cos R E b R b R E ==+−∴即θθθθϕϕcos cos 230000RR E R b R E ++外 又由边界条件Q 外∫∂∂−sds rφε 004πεQ b =∴,000R 4R R Q <−∴ϕπεϕ内023000Rcos cos R 4R R E RR E Q>+外θθπεϕ3均匀介质球的中心置一点电荷fQ 球的电容率为ε球外为真空试用分离变数法求空间电势把结果与使用高斯定理所得结果比较提示空间各点的电势是点电荷f Q 的电势RQ πε4f与球面上的极化电荷所产生的电势的叠加后者满足拉普拉斯方程解一. 高斯法在球外0R R >,由高斯定理有fP f Q Q Q Q s d E =+=⋅∫总rr 0ε对于整个导体球而言束缚电荷)0=P Q 204R Q E f πε=∴r积分后得是积分常数外C C RQ .(40f +πεϕ又由于0,0=∴=∞→C R 外ϕ)(400R R RQ f >=∴πεϕ外在球内0R R <,由介质中的高斯定理∫=⋅fQ s d D r r 又24,R Q E E D f πεε=∴=rrr积分后得到是积分常数内22f.(4C C RQ +πεϕ由于20f 44,0C R Q R Q f R R +==πεπεϕϕ故而有外内).(4400002R R R Q R Q C f f<−=∴πεπε)(44400f0ff R R R Q R Q RQ <−∴πεπεπεϕ内二. 分离变量法本题所求的电势是由点电荷f Q 与介质球的极化电荷两者各自产生的电势的叠加且有着球对称性因此其解可写作'4ϕπεϕ+=R Qf 由于'φ是球对称的其通解为R b a+='ϕ由于球心有f Q 的存在所以有∞→内R ϕ 即a4内RQ f πεϕ在球外有外0R ∞→ϕ 即Rb 4f 外R Q πεϕ 由边界条件得0f 0fRb4a 4,0R R Q R Q R ++πεπεϕϕ即外内20f20020f 0R4b 4,RR 0R Q R R Q R πεεεπεεϕεϕε−=−∂∂∂∂即外内)11(4a),11(400f 0εεπεεπε−−=∴R Q Q b f<−>∴00f00f f 00f ,444,R 4R R R Q R Q R Q R R Q πεπεπεϕπεϕ内外4 均匀介质球电容率为1ε的中心置一自由电偶极子fP r球外充满了另一种介质电容率为2ε求空间各点的电势和极化电荷分布提示同上题'431φπεφ+⋅=RR P f r r ,而'φ满足拉普拉斯方程解RR∂∂=∂∂外内φεφε21又内∑+−=∂∂l 1l 0l 31f 11l 4cos 2(0P R A R P R R πεθεφε∑−−=∂∂外l2l 0l301f 221l (4cos 2(0P R B R P RR πεθεφε比较系数)(cos θl P B00A30113012312113,24242R B A R B R A R ff=−−=+及επερεεπρ得)2(4)(2,)2(4)(22112113211211εεπερεεεεπερεε+−=+−=f fB R A 比较的系数)(cos 2θP 40224221,32R B A R B R A=ε及011(012=+R A ε所以0,022==B A 同理)3,2(,0L ===l B A l l 最后有)(,)2(4)(24cos )2(4)(2403211213132112131R R R RR R R R R R f f f f <+⋅−+⋅=+−+⋅εεπερεεπερθεεπερεεπερφrrr rr r内)(,)2(43)2(4)(24cos )2(4)(2403213211213122112131R R RR RRRRRRR f f f f f >+⋅=+⋅−+⋅=+−+⋅εεπρεεπερεεπερθεεπερεεπερφr r rrr r r r 外球面上的极化电荷密度n P P n n P r,21−=σ从2指向1如果取外法线方向则nn n n p P P )])[()])[(0102内外球外φεεφεεσ∇−−∇−=−= 0)()(0102R RRR内外∂∂−+∂∂−−=φεεφεε]cos )2(4)2(2)(2)2(4cos )(6)[()2(4cos 6)(32112121321200132102θρεεπεεεεεεεπθρεεεεεεπθρεεf f f R R R ++−−−+−−−+−−= θρεεπεεεεθρεεπεεεεεεεcos )2(2)(3cos )2(4)(6)(632112103211012201f f R R +−−=+−+−=求极化偶极子l q P f r r=可以看成两个点电荷相距l 对每一个点电荷运用高斯定理就得到在每个点电荷旁边有极化电荷 ))(1(,)1(1010f P f P q q q q −−=−−=εεεε两者合起来就是极化偶极子 f P P P r r )1(1−=εε5.空心导体球壳地内外半径为R 1和R 2球中心置一偶极子Pr球壳上带电Q 求空间各点电势和电荷分布解+⋅=∞====∇→→∞→为有限值0'1'1301022332,4,0,0r r r r r P C φφπεφφφφφr r=∂∂+∂∂−+⋅====∫∑∫∑===−+013301223131212)(cos 4,),(cos εφφθπεφφφφθφQdS rdS r P r A r r P CC CP r B R r R r l ll f R r R r l l l rr2φ=+++=+++CR A A R P C P R B R B R B f L L θπεθθcos 4cos cos 110210232222120即)4.3.2(0),3.2.1(0,0cos )4(,2111200L L =====+==l A l B R P R A C R B A l l f θπε∑∑+−−=−−=∂∂++−=+−=∂∂+−L L θφθπεθπεθφcos 2)1(cos 2cos 4cos 2311210231310113101R B R B P r B l r A R P P R lA R P r l l l f L l l f 又则∫∫∫====∂∂−02121210210344B R B R dS R B dS R B dS r ππφ000sin cos 4sin cos 22002131020*******=+=−+−=∂∂∫∫∫∫∫ππππϕθθθπεϕθθθπεφd d R R P d d R R P dS r f f 故∫∫==∂∂+∂∂−00134επφφQB r dS r 3101200004,4,4R P A R Q A Q B f πεπεπε−===最后有<<=>=<+⋅−⋅=)(,4)(,4)(,44421202203120310201R r R R QR r r Q R r R QR r P r r P f πεφπεφπεπεπεφr r r r 电荷分布在r R 1的面上313131104cos 4cos 2cos 1R P R P R P r f f f Pπθπθπθφεσ−=−+−=∂∂=在r R 2面上223042R Qr P πφεσ=∂∂−=6在均匀外电场0E r中置入一带均匀自由电荷f ρ的绝缘介质球ε求空间各点的电势解=∇++∑+061)(cos )('2'21φφρεφθφr P r B r A f l l l ll内外内φ是由高斯定理解得的f ρ的作用加上0E r的共同作用'0,cos →∞→−=r r r E φθφ外有限++∑∑+)(cos 61)(cos cos 210θρεφθθφl l e f l l l P r c r P r B r E 内外:)0R r =外内φφ++++23022010000cos P R BR B R B R E θ ++++22020120cos 610P R c R c c R f θρε即000206R B c R f =+ερ012100R c R B R E =+20232R c R B =rr ∂∂=∂∂外内φεφε∑+−−+−=∂∂)1(cos (200l l l R P B l E rθεφ外]L +++= +=∂∂∑−202101002cos 3)(cos 3P R c c R P R lc R r f l l l f εθερθερφ内LL+−−−−2423123cos2cos PRBRBRBEεθεεθε即23RBRfερ−=3112RBECεεε−−=LL42232RBRCεε−=解方程得fRBρε303−=)6131(20εερ+−=fRC33123REREB++−=εεε123εεε+−=EC及2232CRRCεε−=即0)32(2=+RRCεε022==BC同理0==llBC LL3,2=l得<+±>+−+±22223233,cos236131(6,cos)2(3cos3cosRrrERrRrrRErRErRrEfffθεεεεερερφθεεεθερθφ内外7在一个很大的电解槽中充满电导率为2σ的液体使其中流着均匀的电流0fδ今在液体中置入一个电导率为1σ的小球求稳衡时电流和电荷分布讨论21σσ>>及12σσ>>两种情况的电流分布特点先求空间电势∇∇22外内φφ外内φφRr=因为)(Rrnn=外内δδ稳恒电流认为表面无电流堆积即nn流出流入=故rr222221外内φσφσ=并且δδ=∞→r外即θφcosrEr−=∞→外()02Ej fσ=有限内∞→rφ可以理解为在恒流时0→r的小封闭曲面流入流出这时的解即为>+−+<022121300000212,cos )2(cos ,cos 23R r rR E r E R r r E θσσσσθφθσσσφ外内求内外电场)22sin 12222(φθφθθφφφe r e r e E r rr rΦ++−=−∇=)sin (cos 23)22122(0212θθθθσσσθφφe e E e r re E r r r r rr r−+=+内内内ze E r021223σσσ+=[]θθθθσσσσθθe e r R E e e E E r r rr r r sin cos 2)2()sin (cos 212133000++−+−外[]θθθθθσσσσθθe e e rR E e e E r r r rr r r r sin cos cos 3)2()sin (cos 212133000+−+−+−−+−+30302121300cos 3)2(r E e r E R E r v v θσσσσ求电流 根据内内E j vr1σ 外外E j v v2σ 及 =⋅=r f f e r r r E rr r j E j r vr v v v5025020cos )(0θσσ得])(3[2,2335302121211000rj rrr j R j j j j f f f r rr r r r −⋅=σσσσσσσ内外内)(2cos 3)()(2121000120σσσσθεεεω−+=−=−=E E E E E n n n n f 内外8.半径为0R 的导体球外充满均匀绝缘介质ε导体球接地离球心为a 处)(0R a >置一点电荷f Q 试用分离变数法求空间各点电势证明所得结果与镜像法结果相同提示).()(cos )(1cos 211022a R P aR a aR a R rn n n>=−+=∑∞=θθ解1分离变数法由电势叠加原理球外电势''f,4φφπεφ+RQ 外是球面上感应电荷产生的电势且满足定解条件 ==>=∇=∞→00)(,00''2R r r R r 外φφφ根据分离变数法得)(,)(cos 001'R r P r B l l l l>=∑∞=+θφ ∑∞=++−+∴0122f )(cos cos 214l l l lP rB ar r a Q θθπεφ外*)(,)(cos )(cos )(14010a r P rB P a r a Q l ll ln n n f <+=∑∑∞=+∞=θθπε 又0)(cos ])(4[100=+=∑∞=+=n l l oll fR r P R B a R a Q θπεφ外即 0)(4,...,04,0410201000=+=+=++l ll f f fR B a R a Q R B a R a Q R B a Q πεπεπε,4,4,41203100aQ a R B a Q a R B a Q R B fl l l f O fπεπεπε+−=−=−=∴代入*式得解2镜像法如图建立坐标系本题具有球对称性设在球内0r 处有像电荷'Q ,'Q 代替球面上感应电荷对空间电场的作用由对称性'Q 在O f Q 的连线上先令场点P 1在球面上根据边界条件有常数即=−==+fQ Q Q Q f Q Q r r r Q r Q f f'''',0将'Q 的位置选在使∆'Q P 1O∆f Q P 1O,则有常数aR r r fQ Q 0'=为达到这一目的令'Q 距圆心为r 0则 aR r a R R r 200000,==并有aQ R Q aR Q Q r r f f Q Q f0'0''−===−=常数这样满足条件的像电荷就找到了空间各点电势为).(],cos 2)(cos 2[414422020222'1a r aR r a R r aQ R ar r a Q r Qr Q fff >++−−+=+=θθπεπεπεφ外将分离变数法所得结果展开为Legend 级数可证明两种方法所求得的电势相等9接地的空心导体球的内外半径为R 1和R 2在球内离球心为a(a<R 0)处置一点电荷Q 用镜像法求电势导体球上的感应电荷有多少分布在内表面还是外表面解球外的电势及导体内电势恒为0而球内电势只要满足即可内01r =R φ因此做法及答案与上题同解略cos 2cos 2[412124121220θθπεφa R R aR R a QR Ra a R Q−+−−+=内因为球外0=φ故感应电荷集中在内表面并且为Q.R 1R2P210.上题的导体球壳不接地而是带总电荷Q 0,或使其有确定电势0ϕ试求这两种情况的电势又问0ϕ与Q 0是何种关系时两种情况的解是相等的解由于球壳上有自由电荷Q 0并且又是导体球壳故整个球壳应该是等势体其电势用高斯定理求得为2004R Q Q πε+所以球壳内的电势将由Q 的电势像电荷aQR 1−的电势及球壳的电势叠加而成球外电势利用高斯公式就可得故>+=<++−+−−+==)(,4)].(cos 2cos 2[412001202124121220R R RQ Q R R R Q Q a R R aR R a QR Ra a R Q πεφθθπεφφ外内或>=<+−+−−+==)(,).(cos 2cos 2[41202102124121220R R r R R R a R R a R R a QR Ra a R Q φφφθθπεφφ外内当20004R Q Q πεφ+=时两种情况的解相同11在接地的导体平面上有一半径为a 的半球凸部如图半球的球心在导体平面上点电荷Q 位于系统的对称轴上并与平面相距为bb>a 试用电象法求空间电势解如图利用镜像法根据一点电荷附近置一无限大接地导体平板和一点电荷附近置一接地导体球两个模型可确定三个镜像电荷的电量和位置rb r Q Q rba r Qb a Q rb a r Q b a Q rr r−=−=−===−=33222211,,,θθθπεφcos 2cos 21cos 21[4224222220R b a ba Rb aRb b R Rb b R Q +++++−−+=O),20(],cos 22242a R R b a ba Rb a><≤−++πθθ12. 有一点电荷Q 位于两个互相垂直的接地导体平面所围成的直角空间内它到两个平面的距离为a 和b 求空间电势解可以构造如图所示的三个象电荷来代替 两导体板的作用−++−+−−−+−+−=222022200)()()(1)()()(1[4b z a y x x b z a y x x Q πεφ )0,()()()(1)()()(122202220>++++−+−+++−−z y b z a y x x b z a y x x 13.设有两平面围成的直角形无穷容器其内充满电导率为的液体取该两平面为xz 面和yz 面在x 0,y 0,z 0和x 0,y 0,-z 0两点分别置正负电极并通以电流I 求导电液体中的电势解本题的物理模型是由外加电源在A B 两点间建立电场使溶液中的载流子运动形成电流I,当系统稳定时是恒定场即0=∂∂+⋅∇t j ρr 中对于恒定的电流可按静电场的方式处理于是在A 点取包围A 的包围面∫=⋅nQ s d E εr r 而又有σ⋅=⋅=∫E i s d i I rr r r }∫⋅=⇒sd E I r r σ1∴有σεεσ111I Q QI =⇒=对BQ σε1I Q Q B −=−=又在容器壁上,0=n j r即元电流流入容器壁由Ej r rσ=有0=n j r时=n E r∴可取如右图所示电像B(x 0,y 0,z 0)y14.画出函数dx x d )(δ的图说明)()(x P rr δρ∇⋅−=是一个位于原点的偶极子的电荷密度解=∞≠=0,0,0)(x x x δx x x x dx x d x ∆−∆+=→∆)()(lim )(0δδδ10)(0=≠dxxd x δ时2=∆∞−=>∆=→∆x dxx d x x 0lim )(,0x a 00δ时 +∞=∆∞−=<∆→∆xdx x d x b x 0lim )(,0)0δ15证明1)0).((1)(>=a x a ax δδ若a<0,结果如何20)(=x x δ证明1根据∑−=)(()](['kk x x x x φδφδ所以ax ax )()(δδ=2从)(x δ的定义可直接证明有任意良函数f(x),则)()(x F x x f =⋅也为良函数∫=⋅==0)()()(0x x x f dx x x x f δ16一块极化介质的极化矢量为)('x P r r 根据偶极子静电势的公式极化介质所产生的静电势为∫⋅=V dV r rx P '3'4)(πεϕr r r 另外根据极化电荷公式,)(''P n x P P P r r r r r r ⋅=⋅−∇=σρ及极化介质所产生的电势又可表为∫∫⋅+⋅∇−=S V r Sd x P dV r x P 0'''0''4)(4)(πεπεϕr r r r r 试证明以上两表达式是等同的证明∫∫∇⋅=⋅=VVdV rx P dV r r x P '''0'3'01)(41)(41r r rr r πεπεϕ 又有r P r P r P p 11)1('''∇⋅+⋅∇=∇r r r 则][41])([41'''''''''0∫∫∫∫⋅+⋅∇−=⋅∇+⋅∇−=S V V V S d r P dV r P dV r P dV r P r r r r r πεπεϕ ][41][41'0'''0∫∫∫∫+=⋅+⋅∇−=S P V P S V dS r dV rdS r n P dV r P r s rr r σρπεπε刚好是极化体电荷的总电势和极化面电荷产生的总电势之和17证明下述结果并熟悉面电荷和面偶极层两侧电势和电场的变化1 在面电荷两侧电势法向微商有跃变而电势是连续的2 在面偶极层两侧电势有跃变 P n rr ⋅=−0121εϕϕ而电势的法向微商是连续的各带等量正负面电荷密度σ±而靠的很近的两个面形成面偶极层而偶极矩密度.)lim 0l P l r rσσ→∞→=证明1如图可得,20εσss E ∆⋅=∆⋅ 022,200210=−=−=∴z z E εσεσφφεσ面z e E n r r 01112εσφ==∂∂ )(20222z e E nr −==∂∂εσφ 02211εσφφ=∂∂−∂∂∴n n 2)可得ze E r r 0εσ= 00012limlim εεσφφP n l n l E l l r r r r r r ⋅=⋅=⋅=−∴→→ 又EnE n r r =∂∂=∂∂21,φφ++z12lr.012=∂∂−∂∂∴nn φφ18.一个半径为R 0的球面在球坐标20πθ<<的半球面上电势为0ϕ在πθπ<<2的半球面上电势为0ϕ−求空间各点电势提示=−===+−=⋅⋅−⋅⋅⋅⋅⋅−+∫)(,)1()(,0)0(1)1(,12)()()(642)1(531211011偶数奇数n n P P n x P x P dx x P n n n n n n n 解=∞<=∇∇∞→→0022r r 外内外内φφφφ≤<−<≤===πθπφπθφθφ2,20,)(000f R r ∑=)(cos θφl l l P r A内 这是内φ按球函数展开的广义傅立叶级数l l r A 是展开系数∫∫⋅−+=+==−πθθθφθθφ011]sin )(cos [212]cos )(cos [21200d P l d P l f R A l R l R l ll 内内]sin )(cos sin )(cos [21220200∫∫+−+=πππθθθφθθθφd P d P l l l ])()([212100010∫∫−−+=dx x P dx x P l l l φφ ∫∫+−+=−10010)()([212dxx P dx x P l l l φ由)()1()(x P x P l ll −=−则])()()1[(2121010100∫∫+−+=+dx x P dx x P l R A l ll φ∫+−+=+1010)(]1)1[(212dxx P l l l φ当l 为偶数时00=ll R A 当l 为奇数时有101101010012)()()12()(]1)1[(212+−+=+−+=−++∫l x P x P l dx x P l R A l l l l ll φφ ])1(642)2(531)1()1(642531)1[(2121−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−−+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−−=−+l l l ll l φ ])1(642)2(531)1()1(642531)1[(2121−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−++⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅−=−−l l l ll l φ )12()1(642)2(531)1()11()1(642)2(531)1(210210++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=++−⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−−l l l l ll l l l φφ则 )12()1(642)2(531)1(2100++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−l l l R A l ll φ∑<++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=−)(),(cos ))(12()1(642)2(531)1(00210R r l P R rl l l l l l 取奇数内θφφ∑+)(cos 1θφl l lP r B 外又)12()1(642)2(531)1(])(cos [212211110++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=+=−−+∫l l l P l r B l l R l lφθφ外即∑>++⋅⋅⋅⋅⋅−⋅⋅⋅⋅⋅−=+−)(),(cos ))(12()1(642)2(531)1(01021R r l P rR l l l l l l 为奇数外θφ。
电动力学试题及其答案
一、填空题(每空2分,共32分)1、已知矢径r,则 r = 。
2、已知矢量A和标量φ,则=⨯∇)(A φ 。
3、区域V 内给定自由电荷分布 、 ,在V 的边界上给定 或,则V 内电场唯一确定。
4、在迅变电磁场中,引入矢势A 和标势φ,则E= ,B= 。
5、麦克斯韦方程组的微分形式 、 、 、 。
6、电磁场的能量密度为 w = 。
7、库仑规范为 。
8、相对论的基本原理为 , 。
9、电磁波在导电介质中传播时,导体内的电荷密度 = 。
10、电荷守恒定律的数学表达式为 。
二、判断题(每题2分,共20分)1、由0ερ=⋅∇E 可知电荷是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该点散度有贡献。
( )2、矢势A沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。
( )3、电磁波在波导管内传播时,其电磁波是横电磁波。
( )4、任何相互作用都不是瞬时作用,而是以有限的速度传播的。
( )5、只要区域V 内各处的电流密度0=j,该区域内就可引入磁标势。
( )6、如果两事件在某一惯性系中是同时发生的,在其他任何惯性系中它们必不同时发生。
( )7、在0=B 的区域,其矢势A也等于零。
( ) 8、E、D 、B 、H四个物理量均为描述场的基本物理量。
( ) 9、由于A B⨯∇=,矢势A 不同,描述的磁场也不同。
( )10、电磁波的波动方程012222=∂∂-∇E tv E 适用于任何形式的电磁波。
( )三、证明题(每题9分,共18分)1、利用算符 的矢量性和微分性,证明 0)(=∇⨯⋅∇φr式中r为矢径,φ为任一标量。
2、已知平面电磁波的电场强度i t z c E E )sin(0ωω-=,求证此平面电磁波的磁场强度为j t z cc E B )sin(0ωω-=四、计算题(每题10分,共30分)1、迅变场中,已知)cos(0t r K A A ω-⋅= , )cos(0t r K ωφφ-⋅= ,求电磁场的E 和B。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动力学(A) 试卷
班级
一、填空题(每空2分,共32分)
1、已知矢径r
,则 r = 。
2、已知矢量A
和标量φ,则=⨯∇)(A φ 。
3、区域V 内给定自由电荷分布 、 ,在V 的边界上给定 或 ,则V 内电场唯一确定。
4、在迅变电磁场中,引入矢势A 和标势φ,则E
= ,
B
= 。
5、麦克斯韦方程组的微分形式 、 、 、 。
6、电磁场的能量密度为 w = 。
7、库仑规范为 。
8、相对论的基本原理为 , 。
9、电磁波在导电介质中传播时,导体内的电荷密度 = 。
10、电荷守恒定律的数学表达式为 。
二、判断题(每题2分,共20分)
1、由0
ερ
=⋅∇E 可知电荷是电场的源,空间任一点,周围电荷不但对该点的场强有贡献,而且对该
点散度有贡献。
( )
2、矢势A
沿任意闭合回路的环流量等于通过以该回路为边界的任一曲面的磁通量。
( )
3、电磁波在波导管内传播时,其电磁波是横电磁波。
( )
4、任何相互作用都不是瞬时作用,而是以有限的速度传播的。
( )
5、只要区域V 内各处的电流密度0=j
,该区域内就可引入磁标势。
( )
6、如果两事件在某一惯性系中是同时发生的,在其他任何惯性系中它们必不同时发生。
( )
7、在0=B
的区域,其矢势A 也等于零。
( ) 8、E 、D 、B 、H
四个物理量均为描述场的基本物理量。
( )
9、由于A B
⨯∇=,矢势A 不同,描述的磁场也不同。
( )
10、电磁波的波动方程012222
=∂∂-∇E t
v E 适用于任何形式的电磁波。
( )
三、证明题(每题9分,共18分)
1、利用算符 的矢量性和微分性,证明
0)(=∇⨯⋅∇φr
式中r
为矢径,φ为任一标量。
2、已知平面电磁波的电场强度i t z c E E )sin(0ωω
-=,求证此平面电磁波的磁场强度为
j t z c
c E B )sin(0ωω-=
四、计算题(每题10分,共30分)
1、迅变场中,已知)cos(0t r K A A ω-⋅= , )cos(0t r K ωφφ-⋅= ,求电磁场的E 和B。
2、一长度为80厘米的杆,沿其长度方向以0.8 c 的速率相对观察者运动,求该杆首、尾端通过观察者时的时间间隔。
3、在均匀外场0E
中置入一半径为R 的导体球,导体球带总电量为Q ,求空间电势的分布。
电动力学试题(A )答案
一、填空题(每空2分,共32分)
1、r
r
2、A A
⨯∇+⨯∇ϕϕ
3、电势,电势的法线导数。
4、t A E ∂∂--∇=
ϕ A B
⨯∇=
5、t B E ∂∂-=⨯∇ , t
D
j H ∂∂+=⨯∇
, ρ=⋅∇D , 0=⋅∇B
6、)(21H B D E ⋅+⋅
7、0=⋅∇A
8、相对性原理,光速不变原理。
9、0=ρ 10、0=∂∂+
⋅∇t
j ρ
二、判断题(每题2分,共20分)
1、×
2、√
3、×
4、√
5、√
6、×
7、×
8、×
9、√ 10、×
三、证明题(每题9分,共18分) 1、证明:
r r r ⋅∇⨯∇-∇⋅⨯∇=∇⨯⋅∇)()()(ϕϕϕ
∵ 0=⨯∇r
0=∇⨯∇ϕ ∴0)(=∇⨯⋅∇ϕr
2、证明:
由麦克斯韦方程t
B
E ∂∂-=⨯∇
,而
0x
E z y x k j i E ∂∂∂∂∂∂=
⨯∇
k y
E j z E x x ∂∂-∂∂=
j t z c E c
)cos(0ωω
ω-=
所以
⎰--=j
dt t z c E c B )cos(0ωω
ω
j t z c c E )sin(0ωω
-=
四、计算题(每题10分,共30分) 1、 解:
t
A E ∂∂--∇= ϕ
)
sin()sin()]
cos([)]cos([0000t r K A t r K K t r K A t t r K ωωωϕωωϕ-⋅--⋅=-⋅∂∂--⋅-∇=
A B
⨯∇=
)
sin()]
cos([00t r K K A t r K A ωω-⋅⨯=-⋅⨯∇=
2、解:
220
1c
v l l -=
v
c v
l v
l
t 22
01-=
=∆
c
8.08.018.02
-⨯=
9100.2-⨯= (s)
3、解: 建立球坐标系,原点在球心,z 轴E 0沿方向,求解空间为R R 0,由于场具有轴对称性,电势满足拉普拉斯方程
02=∇φ (R 0R )
其解为
θφ(cos )(0
1
∑∞
=++
=n n n n
n n P R B R A ) 边值关系为: 00cos φθφ+-=∞→R E R ① Φφ==0R R ( 待定 ) ② ⎰=∂∂-S Q dS R φ
ε0 ③ 由①式得:
∑∞
=+-=0
000
cos )(cos n n n
R E P R
A φθθ
当n = 0 时 00φ=A 当n = 1 时 01E A -= 当n ≠0,1 时 0=n A 得 ∑∞
=++-=2
100)(cos cos n n
n n
P R B R E θθφφ 由②式得:
∑
∞
=+=+-010
000)(cos cos n n
n n
P R B R E Φθθφ 当n = 0时 Φφ=+
0R B 当n = 1时 0cos cos 20
100=+-θθR B
R E 由上两式解得: )(000φΦ-=R B
03
01E R B =
0B n = ( n ≠0 ,1 )
得 θφφθφcos cos 20300000R
E
R R R R E +-Φ++-= 由③得: o
R R R E R 00cos 30φθφ
-Φ--=∂∂=
⎰=-Φ+
S
Q dS R E )cos 3(0
00φθε
00R 4Q πεφΦ=
-
故得
θπεφθφcos 4cos 230
0000R
R E R Q
R E +++-=。