VOC废气处理工艺汇总
常见的VOCS废气处理工艺
常见的废气处理工艺是什么?由于废气的种类比较多,处理的方法也各不相同,燃烧法、催化法、吸附法、光氧催化发等是国内比较常用的方法;生物法、低温等离子法等是近几年国外研发出来的一种新技术、新工艺,以下是深圳环保公司技术人员对常见的废气处理工艺作的简要介绍。
一.蓄热燃烧法:蓄热式热氧化(简称RTO)回收热量采用一种新的非稳态热传递方式。
主要原理是:有机废气和净化后的排放气交替循环,通过多次不断地改变流向,来最大限度地捕获热量,蓄热系统提供了极高的热能回收。
通过燃烧来消除有机物的,其操作温度高达700℃-1,000℃,这样不可避免地具有高的燃料费用;为降低燃料费用,需要回收热量,有两种方式:传统的间壁式换热,新型非稳态蓄热换热技术。
二.催化燃烧法:本法是把废气加热到200~300℃经过催化床催化燃烧转化成无害无臭的二氧化碳和水,达到净化目的。
该法适用于高温、中高浓度的有机废气治理,国内外已有广泛使用的经验,效果良好。
该法是治理有机废气的有效方法之一,但对于低浓度、大风量的有机废气治理存在设备投资大、运行成本较高的缺点。
三.活性炭吸附法:利用吸附剂(粒状活性炭和活性炭纤维)的多孔结构,将废气中的VOC捕获。
将含VOC的有机废气通过活性炭床,其中的VOC被吸附剂吸附,废气得到净化,而排入大气。
活性炭吸附法主要用于脂肪和芳香族碳氢化合物、大部分含氯溶剂、常用醇类、部分酮类和酯类等的回收。
对于水溶性VOC气体,用精馏将液体混合物提纯;水不溶性VOC气体,用沉析器直接回收VOC。
比如,涂料中所用的“三苯”与水互不相溶,故可以直接回收。
四、低温等离子技术:低温等离子技术比较适用于低浓度、小分子废气物的处理,它是继固、液、气这三者之后的第四态,当外加电压至气体着火点电压时,气体击穿,产生一新混合体。
之所以成为低温等离子是由于,在放电的过程中虽然电子的温度达到很高,但重粒子温度缺很低,致使整个体系呈现低温状态。
五、光催化技术:光催化技术是适用于低浓度废气物的处理方式之一,它是将TiO2作为催化剂,反应条件比较温和,光解速度较快,光催化的产物:CO2、H2O或其它,它的应用范围比较广,包括醛、酮、氨等有机物废气物,都可利用TiO2进行光催化清除。
完整版VOC废气处理工艺
完整版VOC废气处理工艺一、引言挥发性有机化合物(VOCs)是指在常温下易挥发的有机化合物,它们广泛存在于各个行业的生产过程中,如化工、印刷、油漆、涂料等。
VOCs的排放对环境和人体健康造成严重影响,因此,对VOC废气进行有效处理是保护环境、维护人类健康的重要任务。
二、VOC废气处理工艺原理VOC废气处理工艺的目标是将VOCs转化为无害物质或将其浓度降低到符合排放标准。
常用的VOC废气处理工艺包括吸附、燃烧、催化氧化和生物处理等。
1. 吸附吸附是将VOCs通过物理吸附或化学吸附的方式从废气中去除的工艺。
常用的吸附剂包括活性炭、分子筛等。
废气经过吸附剂床层时,VOCs被吸附在吸附剂表面上,从而实现废气净化的目的。
吸附剂饱和后,可以通过热解或蒸汽再生方式进行再生,使吸附剂重新恢复吸附性能。
2. 燃烧燃烧是将VOCs转化为二氧化碳和水的工艺。
常见的燃烧设备包括焚烧炉、直接燃烧炉等。
废气经过燃烧设备时,VOCs在高温条件下与氧气发生氧化反应,生成CO2和H2O。
燃烧工艺具有高效、彻底的优点,但需要消耗大量的能源。
3. 催化氧化催化氧化是利用催化剂催化VOCs氧化为无害物质的工艺。
常用的催化剂有铂、钯、铁等。
废气经过催化剂床层时,VOCs与氧气在催化剂表面上发生氧化反应,转化为CO2和H2O。
催化氧化工艺具有高效、低温、低能耗的优点。
4. 生物处理生物处理是利用微生物将VOCs降解为无害物质的工艺。
常见的生物处理方法包括生物滤床、生物膜反应器等。
废气经过生物处理设备时,VOCs被微生物降解为CO2和H2O。
生物处理工艺具有低能耗、无二次污染的优点,但对温度、湿度等环境条件有一定要求。
三、完整版VOC废气处理工艺流程根据废气特性和处理要求的不同,完整版VOC废气处理工艺可以采用以下流程:1. 废气预处理废气预处理是指对废气进行除尘、除湿等处理,以保证后续处理设备的正常运行。
常用的废气预处理设备有除尘器、除湿器等。
VOC废气处理工艺汇总
目录1.生物除臭工艺 (2)2.低温等离子体技术 (3)3.有机废气处理工艺 (5)4.高能离子技术 (8)5.吸附催化燃烧 (10)6.RTO蓄热式氧化炉 (10)7.光催化氧化工艺 (12)8.化学吸收工艺 (14)9.植物液除臭工艺 (14)1.生物除臭工艺BCE 系列生物除臭设备适用行业楚天科技BCE 系列生物除臭设备适用于市政污水处理厂、污水泵站、垃圾处理厂(站)、石油石化、医药化工、食品加工、喷涂、印刷、纺织印染、皮革加工等生产行业的恶臭控制。
生物净化工艺能够有效的降解以上各行业相关系统产生的硫化氢、氨、甲烷、三甲胺、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯等污染物质,这些恶臭成分主要是水中有机物在缺氧条件下的产物。
后段过滤床根据废气源条件可选配,以强化处理。
(如活性炭吸附除臭、植物液除臭等)生物净化工艺介绍各臭气源点的臭气经集气系统负压收集后,通过离心风机的抽送,被直接导入洗涤—生物滤床除臭设备。
前段洗涤床具有有效除尘、调节臭气的湿温度、消减峰值浓度冲击、去除部分水溶性物质等功能。
在后段的多级生物过滤床内,通过气液、液固传质由多种微生物将致臭物质降解。
含硫系列臭气被氧化分解成S、SO 32—、SO 42—。
硫黄氧化菌的作用是清除硫化氢、甲硫醇、甲基化硫等硫黄化合物。
含氮系列臭气被氧化分解成NH 4+、NO 2—、NO 3—,消化菌等氮化菌的作用是清除恶臭成分中的氮。
当恶臭气体为H 2S 时,专性的自养型硫氧化菌会在一定的条件下将H 2S 氧化成硫酸根;当恶臭气体为有机硫如甲硫醇时,则首先需要异氧型微生物将有机硫转化成H 2S,然后H 2S 再由自养型微生物氧化成硫酸根。
H 2S+O 2+自养硫化细菌+CO 2→合成细胞物质+SO 42—+H 2OCH 3SH→CH 4+H 2S→CO 2+H 2O+SO 42—当恶臭气体为NH 3时,氨先与水反应生成氨水,然后在有氧条件下,经亚硝酸细菌和硝酸细菌的硝化作用转为硝酸,在兼性厌氧条件下,硝酸盐还原细菌将硝酸盐还原为氮气。
最新VOCs常见废气处理工艺方案
最新VOCs常见废气处理工艺方案近年来,VOCs(挥发性有机物)污染问题日益突出,对环境和人体健康造成严重影响。
为了有效减少VOCs的排放量,采取适当的废气处理工艺方案是必要的。
以下是目前常见的一些最新VOCs废气处理工艺方案。
1.热氧化法(TO)热氧化法是一种将废气加热至高温,并与大量氧气接触使其氧化分解的方法。
这种方法适用于高浓度VOCs废气的处理,可以有效地将挥发性有机物氧化为无害的二氧化碳和水。
然而,这种方法通常需要高能耗和高投资成本。
2.低温等离子体催化氧化法(LEPCO)低温等离子体催化氧化法是一种结合了低温等离子体和催化氧化的废气处理技术。
该方法可以在较低温度下高效氧化降解VOCs,降低能耗和操作成本。
此外,该方法还可以通过更换催化剂来适应不同种类的VOCs 废气。
3.常温等离子体催化氧化法(REPCO)常温等离子体催化氧化法是一种在常温下通过等离子体和催化剂的协同作用进行VOCs氧化降解的废气处理技术。
该方法具有低温度、高效率和低维护成本等优点,适用于处理低浓度VOCs废气。
4.生物滤床生物滤床是一种利用生物膜附着微生物去除VOCs的废气处理方法。
该方法通过将废气通过滤床,使废气中的VOCs被微生物吸附、降解和转化为无害物质,如CO2和H2O。
生物滤床具有操作简单、运行稳定、能耗低等优势,适用于中低浓度VOCs废气的处理。
5.纳米材料吸附法纳米材料吸附法是一种利用纳米材料吸附VOCs的废气处理技术。
该方法通过使用具有高表面积和吸附性能的纳米材料,将废气中的VOCs吸附在纳米材料表面,实现废气净化。
这种方法具有高效、可再生和低维护成本等优点。
6.综合处理技术为了更加有效地处理VOCs废气,综合处理技术也被广泛应用。
常见的综合处理技术包括热电联产技术、吸附-解吸技术、低温等离子体氧化-吸附技术等。
这些综合处理技术能够结合各种废气处理工艺的优点,以实现高效、低能耗和低成本的VOCs废气处理。
塑料厂voc废气处理工艺
塑料厂voc废气处理工艺塑料是20世纪最具创新性的发明,它不仅可以作为建筑材料,还用于制造如零件、用品等家居产品。
然而,在生产过程中,塑料工厂释放的有机废气及其二次污染也日益受到重视。
因此,塑料厂VOC废气处理工艺的研究与开发就成为重要课题。
一、塑料厂VOC废气处理工艺主要有哪些1、热催化法:热催化法是一种有效的处理VOC废气的方法,它可以将有机废气中的有机物分解成无害的氧化物和水,有效地降低VOC污染。
2、活性炭吸附法:活性炭吸附法是以活性炭为吸附剂,将VOC 废气中的有机物吸附在表面上,通过易于去除的方法去除有机物,从而达到减少VOC废气污染的目的。
3、光催化法:光催化法是指将有机废气中的有机物在含有可催化剂的光催化剂中,激发其可催化氧化物或自由基,从而将有机物分解成无毒水和二氧化碳等物质,从而达到减少VOC污染的目的。
二、塑料厂VOC废气处理装置的布置及工艺流程1、安装和布置:塑料厂VOC废气的处理要充分考虑现场空间的现状,根据实际需要将废气处理装置布置在合适的位置;并经过完善的安全保护,以确保处理装置的正常运行。
2、进料和收集:在塑料厂VOC废气处理过程中,要将废气通过进料口进入到处理装置中,由处理装置中的风机收集废气,并将其进一步处理。
3、净化:在塑料厂VOC废气处理过程中,通过不同的净化技术,将有机废气中的有机物分解成无害的氧化物和水,从而达到减少VOC污染的效果。
4、排放:处理后的废气经过检测后,满足排放标准后可以直接排放到大气中,从而达到塑料厂VOC废气的处理目的。
三、塑料厂VOC废气处理措施的环保意义VOC是一种可挥发的有机物,具有较高的挥发性和毒性,如果不及时有效的处理,不仅会对人体健康造成伤害,也会产生二次污染,是环保问题的根源之一。
因此,采取有效的塑料厂VOC废气处理措施对于保护环境、满足社会发展需求具有重要作用。
1、VOC废气处理措施可以有效降低VOC排放,进而达到保护环境的目的。
VOCS废气处理10大工艺技术
VOCS废气处理10大工艺技术VOC是挥发性有机化合物(volatile organic compounds)的英文缩写。
普通意义上的VOC就是指挥发性有机物;但是环保意义上的定义是指活泼的一类挥发性有机物,即会产生危害的那一类挥发性有机物。
本文详细介绍了七种VOC废气处理的主要技术。
一、VOC废气处理技术——热破坏法热破坏法是指直接和辅助燃烧有机气体,也就是VOC,或利用合适的催化剂加快VOC的化学反应,最终达到降低有机物浓度,使其不再具有危害性的一种处理方法。
热破坏法对于浓度较低的有机废气处理效果比较好,因此,在处理低浓度废气中得到了广泛应用。
这种方法主要分为两种,即直接火焰燃烧和催化燃烧。
直接火焰燃烧对有机废气的热处理效率相对较高,一般情况下可达到 99%。
而催化燃烧指的是在催化床层的作用下,加快有机废气的化学反应速度。
这种方法比直接燃烧用时更少,是高浓度、小流量有机废气净化的首选技术。
二、VOC废气处理技术——吸附法有机废气中的吸附法主要适用于低浓度、高通量有机废气。
现阶段,这种有机废气的处理方法已经相当成熟,能量消耗比较小,但是处理效率却非常高,而且可以彻底净化有害有机废气。
实践证明,这种处理方法值得推广应用。
但是这种方法也存在一定缺陷,它需要的设备体积比较庞大,而且工艺流程比较复杂;如果废气中有大量杂质,则容易导致工作人员中毒。
所以,使用此方法处理废气的关键在于吸附剂。
当前,采用吸附法处理有机废气,多使用活性炭,主要是因为活性炭细孔结构比较好,吸附性比较强。
此外,经过氧化铁或臭氧处理,活性炭的吸附性能将会更好,有机废气的处理将会更加安全和有效。
三、VOC废气处理技术——生物处理法生物法净化voc废气是近年发展起来的空气污染控制技术,它比传统工艺投资少,运行费用低,操作简单,应用范围广,是最有望替代燃烧法和吸附净化法的新技术。
从处理的基本原理上讲,采用生物处理方法处理有机废气,是使用微生物的生理过程把有机废气中的有害物质转化为简单的无机物,比如CO2、H2O 和其它简单无机物等。
七大VOCs废气处理技术工艺详解
七大VOCs废气处理技巧工艺详解当前,VOC废气处理技巧重要包含热损坏法.变压吸附分别与净化技巧.吸附法和氧化处理办法等.一.VOC废气处理技巧——热损坏法热损坏法是指直接和帮助燃烧有机气体,也就是VOC,或运用合适的催化剂加速VOC的化学反响,最终达到下降有机物浓度,使其不再具有伤害性的一种处理办法.热损坏法对于浓度较低的有机废气处理后果比较好,是以,在处理低浓度废气中得到了普遍运用.这种办法重要分为两种,即直接火焰燃烧和催化燃烧.直接火焰燃烧对有机废气的热处理效力相对较高,一般情形下可达到 99%.而催化燃烧指的是在催化床层的感化下,加速有机废气的化学反响速度.这种办法比直接燃烧用时更少,是高浓度.小流量有机废气净化的首选技巧.二.VOC废气处理技巧——吸附法有机废气中的吸附法重要实用于低浓度.高通量有机废气.现阶段,这种有机废气的处理办法已经相当成熟,能量消费比较小,但是处理效力却异常高,并且可以完全净化有害有机废气.实践证实,这种处理办法值得推广运用.但是这种办法也消失必定缺点,它须要的装备体积比较宏大,并且工艺流程比较庞杂;假如废气中有大量杂质,则轻易导致工作人员中毒.所以,运用此办法处理废气的症结在于吸附剂.当前,采取吸附法处理有机废气,多运用活性炭,主如果因为活性炭细孔构造比较好,吸附性比较强.此外,经由氧化铁或臭氧处理,活性炭的吸附机能将会更好,有机废气的处理将会加倍安然和有用.三.VOC废气处理技巧——生物处理法从处理的基起源基础理上讲,采取生物处理办法处理有机废气,是运用微生物的心理进程把有机废气中的有害物资转化为简略的无机物,比方CO2.H2O和其它简略无机物等.这是一种无害的有机废气处理方法.一般情形下,一个完全的生物处理有机废气进程包含3个根本步调:a) 有机废气中的有机污染物起首与水接触,在水中可以敏捷消融;b) 在液膜中消融的有机物,在液态浓度低的情形下,可以慢慢集中到生物膜中,进而被附着在生物膜上的微生物接收;c) 被微生物接收的有机废气,在其自身心理代谢进程中,将会被降解,最终转化为对情形没有伤害的化合物资.四.VOC废气处理技巧——变压吸附分别与净化技巧变压吸附分别与净化技巧是运用气体组分可吸附在固体材料上的特征,在有机废气与分别净化妆置中,气体的压力会消失必定的变更,经由过程这种压力变更来处理有机废气[6].PSA 技巧重要运用的是物理法,经由过程物理法来实现有机废气的净化,运用材料主如果沸石分子筛.沸石分子筛,在吸附选择性和吸附量两方面有必定优势.在必定温度和压力下,这种沸石分子筛可以吸附有机废气中的有机成分,然后把残剩气体输送到下个环节中.在吸附有机废气后,经由过程必定工序将其转化,保持并进步吸附剂的再生才能,进而可让吸附剂再次投入运用,然后反复上步调工序,轮回反复,直到有机废气得到净化.近年来,该技巧开端在工业临盆中运用,对于气体分别有优越后果.该技巧的重要优势有:能源消费少.成本比较低.工序操纵主动化及分别净化后混杂物纯度比较高.情形污染小等.运用该技巧对于收受接管和处理有一订价值的气体后果优越,市场成长远景辽阔,成为将来有机废气处理技巧的成长偏向.五.VOC废气处理技巧——氧化法对于有毒.有害,并且不须要收受接管的VOC,热氧化法是最合适的处理技巧和办法.氧化法的基起源基础理:VOC与O2产生氧化反响,生成CO2和H2O,化学方程式如下:从化学反响方程式上看,该氧化反响和化学上的燃烧进程相相似,但其因为VOC浓度比较低,在化学反响中不会产生肉眼可见的火焰.一般情形下,氧化法经由过程两种办法可确保氧化反响的顺遂进行:a) 加热.使含有VOC的有机废气达到反响温度;b) 运用催化剂.假如温度比较低,则氧化反响可在催化剂概况进行[7]. 所以,有机废气处理的氧化法分为以下两种办法:a) 催化氧化法.现阶段,催化氧化法运用的催化剂有两种,即贵金属催化剂和非贵金属催化剂.贵金属催化剂重要包含Pt.Pd等,它们以细颗粒情势依靠在催化剂载体上,而催化剂载体平日是金属或陶瓷蜂窝,或散装填料;非贵金属催化剂主如果由过渡元素金属氧化物,比方MnO2,与粘合剂经由必定比例混杂,然后制成的催化剂.为有用防止催化剂中毒后损掉催化活性,在处理前必须完全清除可使催化剂中毒的物资,比方Pb.Zn和Hg等.假如有机废气中的催化剂毒物.隐瞒质无法清除,则不成运用这种催化氧化法处理VOC;b) 热氧化法.热氧化法当前分为三种:热力燃烧式.间壁式.蓄热式.三种办法的重要差别在于热量收受接管方法.这三种办法均能催化法联合,下降化学反响的反响温度.热力燃烧式热氧化器,一般情形下是指气体焚烧炉.这种气体焚烧炉由助燃剂.混杂区和燃烧室三部分构成.个中,助燃剂,比方自然气.石油等,是帮助燃料,在燃烧进程中,焚烧炉内产生的热混杂区可对VOC废气预热,预热后即可为有机废气的处理供给足够空间.时光,最终实现有机废气的无害化处理.在供氧充足前提下,氧化反响的反响程度——VOC去除率——重要取决于“三T前提”:反响温度(Temperat).时光(Time).湍流混杂情形(Turbulence).这“三T前提”是互相接洽的,在必定规模内,一个前提的改良可使别的两个前提下降.热力燃烧式热氧化器的缺点在于:帮助燃料价钱高,导致装配操纵费用比较高.间壁式热氧化器指的是在热氧化妆置中,参加间壁式热交流器,进而把燃烧室排出气体的热量传送给氧化妆置进口处温度比较低的气体,预热完成后即可促成氧化反响.现阶段,间壁式热交流器的热收受接管率最高可达85%,是以大幅下降了帮助燃料的消费.一般情形下,间壁式热交流器有三种情势:管式.壳式和板式.因为热氧化温度必须掌握在800 ℃~1 000 ℃规模内,是以,间壁式热交流必须由不锈钢或合金材料制成.所以间壁式热交流器的造价相当高,而这也是其缺点地点.此外,材料的热应力也很难清除,这是间壁式热交流的别的一个缺点.蓄热式热氧化器,简称为RTO,在热氧化妆置上钩入蓄热式热交流器,在完成VOC预热后即可进行氧化反响.现阶段,蓄热式热氧化器的热收受接管率已经达到了95%,且其占用空间比较小,帮助燃料的消费也比较少.因为当前的蓄热材料可运用陶瓷填料,其可处理腐化性或含有颗粒物的VOC气体.现阶段,RTO装配分为扭转式和阀门切换式两种,个中,阀门切换式是最罕有的一种,由2个或多个陶瓷填充床构成,经由过程切换阀门来达到转变气流偏向的目标.六.VOC废气处理技巧——液体接收法液体接收法指的是经由过程接收剂与有机废气接触,把有机废气中的有害分子转移到接收剂中,从而实现分别有机废气的目标.这种处理办法是一种典范的物理化学感化进程.有机废气转移到接收剂中后,采取解析办法把接收剂中有害分子去除掉落,然后收受接管,实现接收剂的反复运用和运用.从感化道理的角度划分,此办法可分为化学办法和物理办法.物理办法是指运用物资之间相溶的道理,把水看作接收剂,把有机废气中的有害分子去除掉落,但是对于不溶于水的废气,比方苯,则只能经由过程化学办法清除,也就是经由过程有机废气与溶剂产生化学反响,然后予以去除.七.VOC废气处理技巧——冷凝收受接管法在不合温度下,有机物资的饱和度不合,冷凝收受接管法等于运用有机物这一特色来施展感化,经由过程下降或进步体系压力,把处于蒸汽情形中的有机物资经由过程冷凝方法提掏出来.冷凝提取后,有机废气即可得到比较高的净化.其缺点是操纵难度比较大,在常温下也不轻易用冷却水来完成,须要给冷凝水降温,所以须要较多费用.这种处理办法重要实用于浓度高且温度比较低的有机废气处理.。
VOC废气处理工艺
VOC废气处理工艺:专业知识点、技术知识点及浏览量大标题一、专业知识点1.VOC定义:VOC(Volatile Organic Compounds)是指可挥发的有机化合物,是工业废气的主要成分之一。
2.VOC的危害:VOC对环境和人类健康具有严重的危害,如引起空气污染、导致臭氧层破坏、引发温室效应等。
因此,对VOC废气的处理至关重要。
3.VOC处理工艺的必要性:由于VOC废气对环境和人类健康的危害,各国政府对VOC排放制定了严格的法规和标准。
因此,企业必须采取有效的处理工艺对VOC废气进行处理,以达到排放标准。
4.VOC处理工艺的种类:根据处理原理的不同,VOC处理工艺可分为物理法、化学法、生物法等多种方法。
各种方法都有其优缺点,需要根据具体废气情况和处理要求选择合适的处理工艺。
二、技术知识点1.物理法:物理法包括吸附法和冷凝法。
吸附法是利用吸附剂将VOC 废气中的有机物吸附下来,达到净化目的;冷凝法则是通过降低温度使废气中的有机物冷凝下来,实现分离。
2.化学法:化学法包括燃烧法和催化氧化法。
燃烧法是将VOC废气中的有机物燃烧后生成二氧化碳和水,达到净化目的;催化氧化法则是利用催化剂将有机物转化为二氧化碳和水。
3.生物法:生物法是利用微生物的代谢作用将有机物转化为二氧化碳和水,达到净化目的。
生物法具有能耗低、操作简单等优点,但需要良好的微生物环境和较高的营养物质浓度。
4.联合处理工艺:在实际应用中,往往需要结合多种处理工艺来实现对VOC废气的有效处理。
联合处理工艺可以充分发挥各种方法的优点,达到更好的处理效果。
例如,吸附-催化氧化工艺、吸附-冷凝工艺等。
三、浏览量大标题1.VOC废气处理:了解危害,掌握工艺,保护环境如何有效处理VOC废气:专业工艺助您实现环保生产2.VOC废气处理技术:物理、化学、生物法及联合工艺详解3.VOC废气处理:专家解析,轻松应对环保挑战4.VOC废气处理实战:技术选择与流程设计指南总结:VOC废气处理是环境保护的重要环节之一,对于改善空气质量、保护人类健康具有重要意义。
VOC废气处理技术
VOC废气处理技术VOC(Volatile Organic Compounds),中文全称挥发性有机化合物.在现代化工业生产中,通常将其作为一种溶剂,使用过程中便会挥发排放到大气中。
在石油化工、印刷、人造皮革、电子行业、涂料和医药等行业应用比较广泛。
普通意义上的VOC就是指挥发性有机物;但是环保意义上的定义是指活泼的一类挥发性有机物,即会产生危害的那一类挥发性有机物.目前VOC废气处理技术主要包括热破坏法、变压吸附分离与净化技术、吸附法和氧化处理方法等。
一、热破坏法热破坏法是指直接和辅助燃烧有机气体,也就是VOC,或利用合适的催化剂加快VOC的化学反应,最终达到降低有机物浓度,使其不再具有危害性的一种处理方法.热破坏是目前应用比较广泛也是研究较多的有机废气处理方法,特别是对低浓度有机废气处理效果比较好。
有机化合物的热破坏可分为直接火焰燃烧和催化燃烧。
直接火焰燃烧是一种有机物在气流中直接燃烧和辅助燃料燃烧的方法。
多数情况下,有机物浓度较低,不足以在没有辅助燃料时燃烧.直接火焰燃烧在适当温度和保留时间条件下,可以达到99%的热处理效率。
催化燃烧是有机物在气流中被加热,在催化床层作用下,加快有机物化学反应(或破坏效率的方法),催化剂的存在使有机物在热破坏时比直接燃烧法需要更少的保留时间和更低的温度,是高浓度、小流量有机废气净化的首选技术。
催化剂在催化燃烧系统中起着重要作用.用于有机废气净化的催化剂主要是金属和金属盐,金属包括贵金属和非贵金属。
目前使用的金属催化剂主要是Pt、Pd,技术成熟,而且催化活性高,但价格比较昂贵而且在处理卤素有机物,含N、S、P等元素时,有机物易发生氧化等作用使催化剂失活。
非金属催化剂有过渡族元素钴、稀土等。
近年来催化剂的研制无论是国内还是国外进行得较多,而且多集中于非贵金属催化剂并取能得了很多成果。
例如V2O5+ MOX(M:过渡族金属) + 贵金属制成的催化剂用于治理甲硫醇废气,Pt + Pd + Cu催人剂用于治理含氮有机醇废气.由于有机废气中常出现杂质,很容易引起催化剂中毒,导致催化剂中毒的毒物(抑制剂主要有磷、铅、铋砷、锡、汞、亚铁离子锌、卤素等。
VOC废气处理工艺详解
VOC废气处理工艺详解:技术原理、应用与优化策略一、引言挥发性有机化合物(VOCs)是工业生产过程中产生的主要废气之一,对环境和人类健康造成了严重威胁。
因此,VOC废气处理成为环境保护的重要环节。
本文将详细介绍VOC废气处理工艺的技术原理、应用领域及优化策略,帮助读者全面了解该领域的知识。
二、VOC废气处理工艺技术原理1.吸附法:吸附法是利用吸附剂的吸附作用将VOCs从废气中分离出来。
常用的吸附剂有活性炭、沸石等。
该方法适用于低浓度、风量较小的废气处理。
2.吸收法:吸收法是利用吸收剂与VOCs进行物理或化学反应,将其从废气中吸收。
常用的吸收剂有水、碱性溶液等。
该方法适用于高浓度、风量较大的废气处理。
3.冷凝法:冷凝法是通过降低温度使VOCs冷凝成液体,进而分离出来。
该方法适用于高浓度、低风量的废气处理。
光催化氧化法:光催化氧化法是利用光照射催化剂,产生强氧化剂,将VOCs氧化分解为无害物质。
该方法适用于低浓度、中等风量的废气处理。
4.生物法:生物法是利用微生物的降解作用将VOCs分解为无害物质。
该方法适用于低浓度、大风量的废气处理。
三、VOC废气处理工艺应用领域1.工业生产:工业生产过程中会产生大量的VOCs废气,如石油化工、印刷、制药等行业。
这些废气若未经处理直接排放,会对环境和人类健康造成严重影响。
因此,采用合适的VOC废气处理工艺对工业生产过程中的废气进行处理至关重要。
2.汽车尾气:汽车尾气中含有大量的有害物质,如苯、甲苯等VOCs。
采用合适的VOC废气处理工艺对汽车尾气进行处理,可以有效降低有害物质的排放,改善空气质量。
3.室内空气:室内空气中的VOCs主要来源于装修材料、家具、家用电器等。
采用合适的VOC废气处理工艺对室内空气进行处理,可以创造一个健康、舒适的居住环境。
四、VOC废气处理工艺优化策略1.选择合适的处理工艺:针对不同的废气来源和浓度,选择合适的VOC废气处理工艺至关重要。
VOCs常见废气处理工艺方案
VOCs常见废气处理工艺方案VOCs(挥发性有机物)是一类能在常温下挥发和蒸发的有机化合物,常用的VOCs废气处理工艺方案包括吸附、燃烧和催化氧化等。
1.吸附:吸附是通过一种吸附剂将VOCs从废气中吸附出来。
常用的吸附剂有活性炭、分子筛和活性氧化铝等。
废气经过吸附剂床时,VOCs 被吸附在吸附剂表面上,纯化后的气体可以排放或进一步处理。
吸附过程中的吸附剂可以周期性再生,通过热解、气流冲洗等方法将吸附的VOCs 释放出来,然后重新使用。
2.燃烧:燃烧是将VOCs直接氧化为无害物质的一种方法。
常用的燃烧设备有催化燃烧器、直燃式燃烧器和稳焰燃烧器等。
废气经过燃烧设备时,VOCs与氧气进行充分反应,生成二氧化碳和水等无害物质。
燃烧法对VOCs去除效率高,但需要高温和足够的氧气才能实现充分燃烧,对能源和氧气资源消耗较大。
3.催化氧化:催化氧化是利用催化剂加速VOCs与氧气反应,将其转化为无害物质的方法。
常用的催化剂有贵金属催化剂、活性炭催化剂和金属氧化物催化剂等。
废气经过催化剂反应床时,VOCs与催化剂表面发生化学吸附和反应,生成二氧化碳和水等无害物质。
催化氧化法需要较低的温度和氧气浓度,并且可以实现低温催化氧化,对能源消耗较小。
4.生物处理:生物处理是利用微生物降解VOCs的一种方法。
常见的生物处理方法有生物滤池、生物膜反应器和生物脱附等。
废气经过生物反应器时,微生物降解VOCs成为无害物质,通常需要设立氧气供应系统和调控合适的温度、湿度和pH值等条件。
生物处理法在处理VOCs中具有较好的适应性和低能耗的优势,但对于一些高浓度或复杂组成的废气可能效果较差。
5.膜分离:膜分离是利用不同挥发性有机物在膜上的选择性渗透分离的方法。
常见的膜分离包括多孔性膜、渗透膜和化学选择性膜等。
废气经过膜分离设备时,VOCs通过膜和废气分离,纯化后的气体可以排放或进一步处理。
膜分离法适用于VOCs浓度较低的情况,具有设备结构简单、操作成本较低的特点。
VOCs治理的工艺有哪些?培训讲学
V O C s治理的工艺有哪些?VOCs治理的工艺有哪些?VOCs治理的工艺有哪些?随着工业化程度的不断提高,VOCs的污染有进一步扩大的趋势。
而随着最近环保政策的愈加严厉,对有机污染废气的排放控制就显得更为重要了。
那么,VOCs治理的工艺有哪些呢?下面就由安徽宝华环保科技有限公司来给大家简单介绍下吧!VOCs治理的工艺:1.吸附工艺吸附法主要适用于低浓度气态污染物的净化,对于高浓度的有机气体,通常需要首先经过冷凝等工艺将浓度降低后再进行吸附净化。
吸附技术是最为经典和常用的气体净化技术,也是目前工业VOCs 治理的主流技术之一。
吸附法的关键技术是吸附剂、吸附设备和工艺、再生介质、后处理工艺等。
活性炭因其具有大比表面积和微孔结构而广泛应用于吸附回收有机气体。
目前,对活性炭吸附有机气体的研究主要集中在吸附平衡的预测、活性炭材料的改性及有机物的物化性质对活性炭吸附性能的影响。
优点:适用于低浓度的各种污染物;活性炭价格不高,能源消耗低,应用起来比较经济;通过脱附冷凝可回收溶剂有机物;应用方便,只与同空气相接触就可以发挥作用;活性炭具有良好的耐酸碱和耐热性,化学稳定性较高。
缺点:吸附量小,物理吸附存在吸附饱和问题,随着吸附剂的消耗,吸附能力也变弱,使用一段时间后可能会出现吸附量小或失去吸附功能;吸附时,存在吸附的专一性问题,对混合气体,可能吸附性会减弱,同时也存在分子直径与活性炭孔径不匹配,造成脱附现象。
2.吸收工艺用溶液、溶剂或清水吸收工业废气中的挥发性气体,使其与废气分离的方法叫吸收法。
溶液、溶剂、清水称为吸收剂。
吸收剂不同可以吸收不同的有害气体。
吸收法使用的吸收设备叫吸收器、净化器或洗涤器。
吸收法的工艺流程和湿法除尘工艺近似,只是湿法除尘工艺用清水,而吸收法净化有害气体要用溶剂或溶液。
优点:吸收法工艺比较简单,设备投资较低,操作和维修费用基本与碳吸附法相当,由于吸收介质是采用煤油和吸收液,因此没有二次污染问题。
vocs废气处理工艺流程
vocs废气处理工艺流程
1.废气污染源控制:
废气污染源控制是废气处理的第一步,要从源头进行控制。
如果可能,可以采用替代材料、机械和技术等控制措施,减少污染物的排放量。
2.废气预处理:
废气预处理技术是废气处理的重要环节,其目的是减少污染物浓度,从而减少下一步处理中的负荷。
常见的废气预处理技术有:冷却法,加热法,湿法、电场法和化学方法等。
3.废气继续处理:
废气继续处理技术是指在废气减量预处理后,采取细化处理技术,进一步减少废气中污染物含量的技术。
常见的废气继续处理技术有:氧化法、络合法、催化法、吸附法、热处理等。
4.废气净化处理和尾气处理:
废气净化处理技术是指可以有效减少废气中污染物含量,使其达到国家和地方的排放标准要求,这是废气处理的最终目的。
常见的废气净化处理技术有:活性炭吸附法、电沉降法、催化氧化法、净化塔等。
尾气处理技术是指为废气再生利用等过程,处理净化后的废气中污染物的技术。
常见的尾气处理技术有:洗涤、再循环、吸收等技术。
- 1 -。
国内外voc废气治理工艺
国内外voc废气治理工艺
6. 真空吸附:利用真空吸附技术将VOCቤተ መጻሕፍቲ ባይዱ气中的有机物质吸附在吸附材料上,然后通过脱 附再生将有机物质从吸附材料上脱附出来。
这些治理工艺可以单独应用或组合使用,具体选择取决于VOC废气的特性、浓度、体积等 因素,以及治理要求和经济考虑。不同行业和应用领域也可能有特定的VOC废气治理工艺。
国内外voc废气治理工艺
3. 催化氧化:利用催化剂促进VOC废气中的有机物质与氧气反应,将其氧化为无害的物 质。催化氧化可以通过低温催化氧化、高温催化氧化等方式进行。
4. 生物处理:利用微生物对VOC废气中的有机物质进行降解和转化。生物处理可以通过 生物滤床、生物膜反应器等方式进行。
5. 膜分离:利用特殊的膜材料将VOC废气中的有机物质与气体分离,实现废气的净化。 膜分离可以通过气体渗透膜、吸附膜等方式进行。
国内外voc废气治理工艺
国内外对挥发性有机化合物(VOC)废气的治理工艺有多种方法,以下是一些常见的工 艺:
1. 吸附剂吸附:利用吸附剂(如活性炭、分子筛等)吸附VOC废气中的有机物质,将其 从废气中去除。吸附剂可以通过物理吸附或化学吸附的方式去除VOC。
2. 燃烧处理:将VOC废气进行燃烧,将有机物质氧化为二氧化碳和水。燃烧处理可以通 过直接燃烧、催化燃烧或等离子体燃烧等方式进行。
vocs废气治理工艺
vocs废气治理工艺
VOCs(挥发性有机化合物)废气治理工艺是指针对挥发性有
机化合物废气进行处理的工艺方法。
挥发性有机化合物是一类易挥发的有机化合物,它们在常温下具有较高的蒸汽压和易挥发的性质,对环境和人体健康造成潜在的风险。
VOCs废气治理工艺的选择通常根据废气的成分、浓度、排放
量以及治理要求来确定。
以下是一些常见的VOCs废气治理工艺:
1. 吸附:利用吸附剂将废气中的VOCs吸附到表面,达到净化的目的。
常见的吸附剂有活性炭、分子筛等。
2. 燃烧:将废气中的VOCs通过高温进行燃烧,将其转化为二氧化碳和水。
常见的燃烧设备有直燃炉、催化燃烧炉等。
3. 催化氧化:利用催化剂将废气中的VOCs与氧气反应,将其转化为二氧化碳和水。
催化氧化工艺常常结合燃烧工艺使用,可以降低燃烧温度。
4. 生物处理:利用特定的微生物菌种将废气中的VOCs降解为无害的物质。
生物处理工艺通常用于低浓度、大体积的废气处理。
5. 膜分离:利用膜的选择性透过性将废气中的VOCs分离出来,达到净化目的。
常见的膜分离工艺有吸收膜、渗透膜等。
除了上述的主要工艺,还可以结合多种工艺进行组合处理,以更好地适应不同废气的特征和治理要求。
在选择和设计VOCs 废气治理工艺时,需要综合考虑治理效率、能耗、设备成本、操作维护等因素。
VOC废气处理技术工艺详解
V O C废气处理技术工艺详解-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KIIVOC废气处理技术工艺详解现在,我们知道,挥发性有机化合物,简称为VOC(Volatile Organic Compounds)),在工业生产中,通常作为溶剂来使用,使用之后便散发到大气中。
现阶段,其应用比较广泛的领域包括石油化工、印刷、人造革及电子元器件、烤漆和医药等。
这里就涉及到今天我们要谈到的话题——VOC废气处理技术!VOC废气处理技术工艺详解当前,VOC废气处理技术主要包括热破坏法、变压吸附分离与净化技术、吸附法和氧化处理方法等。
一、VOC废气处理技术——热破坏法热破坏法是指直接和辅助燃烧有机气体,也就是VOC,或利用合适的催化剂加快VOC 的化学反应,最终达到降低有机物浓度,使其不再具有危害性的一种处理方法。
热破坏法对于浓度较低的有机废气处理效果比较好,因此,在处理低浓度废气中得到了广泛应用。
这种方法主要分为两种,即直接火焰燃烧和催化燃烧。
直接火焰燃烧对有机废气的热处理效率相对较高,一般情况下可达到99%。
而催化燃烧指的是在催化床层的作用下,加快有机废气的化学反应速度。
这种方法比直接燃烧用时更少,但是如果离开催化剂辅助,则无法发挥作用。
现阶段,可作为催化剂使用的大都是金属、金属盐。
这两种催化剂的催化效果虽说比较好,技术也已经相当成熟,但是其价格却比较高,所以处理成本也就比较高。
近年来,催化剂研制多集中在非贵金属催化剂方向,取得了比较大的进展。
此外,在催化有机废气过程中,还需要有催化剂的载体,其起着提高催化活性和稳定性的重要作用。
当前,多以陶瓷作为催化剂载体,但在未来的催化剂研究当中,应加快研发高效活性催化剂及其载体。
二、VOC废气处理技术——吸附法有机废气中的吸附法主要适用于低浓度、高通量有机废气。
现阶段,这种有机废气的处理方法已经相当成熟,能量消耗比较小,但是处理效率却非常高,而且可以彻底净化有害有机废气。
VOC废气处理工艺详解
挥发物有机化合物(VOCs)就是指参加空气光化学变化的有机物,包含非甲烷气体氮化合物(乙烷、环己醇、炔烃、脂肪烃等)、含氧量有机化合物(醛、酮、醇、醚等)、有效氯有机化合物、中氮有机化合物、硫含量有机化合物等,是产生活性氧(O3)和可吸入颗粒物(PM2.5)环境污染的关键前体物。
VOC废气的处理有什么加工工艺:当今在我国VOCs涉及到的环境污染制造行业广且各制造行业排污的VOCs类型多种多样、成份繁杂,普遍的有氮化合物、醛类、醚类、酯类等。
加气站、室内装修、餐馆、干洗店、喷漆、化工厂等生产制造或应用溶剂的制造行业都是造成VOCs排污。
除此之外,整治技术性管理体系繁杂,涉及到十多种技术性及组成技术性,一般一个整治公司只有把握一种技术性到几类技术性;特别是在业界对技术性应用领域、应用标准欠缺周期性了解,对工艺技术和清洁武器装备设计方案存很大盲目性等难题。
VOC有机废气处理加工工艺:当今,VOC有机废气处理技术性关键包含热毁坏法、变压吸附的分离出来与清洁技术性、吸咐法和空气氧化解决方式等。
热毁坏法热毁坏法就是指立即和輔助点燃VOC汽体,或运用适合的金属催化剂加速VOC的化学变化,最后做到减少有机化合物浓度值,使其已不具备不良影响的一种解决方式。
热毁坏法针对浓度值较低的工业废气解决实际效果比较好,因而,在解决较低浓度的有机废气中获得了广泛运用。
这类方式关键分成二种,即立即火苗点燃和催化燃烧装置。
立即火苗点燃对工业废气的调质处理高效率相对性较高,一般状况下可做到99%。
而催化燃烧装置指的是在催化反应床层的功效下,加速工业废气的化学变化速率。
这类方式比立即点燃用时越来越少,是浓度较高的、小总流量有机化学废气治理的优选技术性。
活性炭过滤法运用催化剂载体(颗粒状活性碳和活性炭纤维)的多孔材料,将有机废气中的VOC捕捉。
将含VOC的工业废气根据活性碳床,在其中的VOC被催化剂载体吸咐,有机废气获得清洁,而排进空气。
七大VOCs废气处理技术工艺详解
七大VOCs废气处理技术工艺详解当前,VOC废气处理技术主要包括热破坏法、变压吸附分离与净化技术、吸附法和氧化处理方法等。
一、VOC废气处理技术——热破坏法热破坏法是指直接和辅助燃烧有机气体,也就是VOC,或利用合适的催化剂加快VOC的化学反应,最终达到降低有机物浓度,使其不再具有危害性的一种处理方法。
热破坏法对于浓度较低的有机废气处理效果比较好,因此,在处理低浓度废气中得到了广泛应用。
这种方法主要分为两种,即直接火焰燃烧和催化燃烧。
直接火焰燃烧对有机废气的热处理效率相对较高,一般情况下可达到99%。
而催化燃烧指的是在催化床层的作用下,加快有机废气的化学反应速度。
这种方法比直接燃烧用时更少,是高浓度、小流量有机废气净化的首选技术。
二、VOC废气处理技术——吸附法有机废气中的吸附法主要适用于低浓度、高通量有机废气。
现阶段,这种有机废气的处理方法已经相当成熟,能量消耗比较小,但是处理效率却非常高,而且可以彻底净化有害有机废气。
实践证明,这种处理方法值得推广应用。
但是这种方法也存在一定缺陷,它需要的设备体积比较庞大,而且工艺流程比较复杂;如果废气中有大量杂质,则容易导致工作人员中毒。
所以,使用此方法处理废气的关键在于吸附剂。
当前,采用吸附法处理有机废气,多使用活性炭,主要是因为活性炭细孔结构比较好,吸附性比较强。
此外,经过氧化铁或臭氧处理,活性炭的吸附性能将会更好,有机废气的处理将会更加安全和有效。
三、VOC废气处理技术——生物处理法从处理的基本原理上讲,采用生物处理方法处理有机废气,是使用微生物的生理过程把有机废气中的有害物质转化为简单的无机物,比如CO2、H2O和其它简单无机物等。
这是一种无害的有机废气处理方式。
一般情况下,一个完整的生物处理有机废气过程包括3个基本步骤:a) 有机废气中的有机污染物首先与水接触,在水中可以迅速溶解;b) 在液膜中溶解的有机物,在液态浓度低的情况下,可以逐步扩散到生物膜中,进而被附着在生物膜上的微生物吸收;c) 被微生物吸收的有机废气,在其自身生理代谢过程中,将会被降解,最终转化为对环境没有损害的化合物质。
VOC废气处理工艺
VOC废气处理工艺S氧化成硫酸盐,从而达到除臭的效果。
生物净化工艺具有处理效率高、成本低、操作简便等优点。
2.低温等离子体技术低温等离子体技术是利用高压电场激发气体分子形成等离子体,通过等离子体中的化学反应来实现气体净化的技术。
该技术适用于处理含有挥发性有机物(VOCs)的废气,如印刷、油漆、涂料等行业的废气处理。
低温等离子体技术的优点是处理效率高、处理速度快、不需要添加化学试剂、不产生二次污染等。
但是该技术存在能耗较高、设备成本较高等缺点。
因此,在实际应用中需要根据具体情况综合考虑技术和经济因素。
3.有机废气处理工艺有机废气处理工艺是将有机废气通过物理、化学或生物方法进行处理,使其达到国家排放标准。
常用的有机废气处理工艺包括吸附、燃烧、催化氧化等。
吸附是将有机废气中的有害物质吸附到吸附剂上,从而实现净化的过程。
燃烧是将有机废气中的有害物质燃烧成二氧化碳和水,从而实现净化的过程。
催化氧化是在一定条件下,通过催化剂促进有机废气中的有害物质氧化成无害物质。
不同的有机废气处理工艺具有各自的优缺点,需要根据具体情况选择合适的工艺进行处理。
4.高能离子技术高能离子技术是利用高能离子束对废气进行处理的技术。
该技术适用于处理高浓度、高毒性的有机废气,如半导体、光电子、化工等行业的废气处理。
高能离子技术的优点是处理效率高、处理速度快、不需要添加化学试剂、不产生二次污染等。
但是该技术存在设备成本高、能耗较高等缺点。
因此,在实际应用中需要根据具体情况综合考虑技术和经济因素。
5.吸附催化燃烧吸附催化燃烧是将废气中的有机物质通过吸附剂吸附后,再通过催化剂催化燃烧成二氧化碳和水的技术。
该技术适用于处理低浓度、低毒性的有机废气,如汽车尾气、印刷等行业的废气处理。
吸附催化燃烧技术的优点是处理效率高、处理速度快、不需要添加化学试剂、不产生二次污染等。
但是该技术存在催化剂易失活、吸附剂易饱和等缺点。
因此,在实际应用中需要根据具体情况综合考虑技术和经济因素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1.生物除臭工艺 (2)2.低温等离子体技术 (3)3.有机废气处理工艺 (5)4.高能离子技术 (8)5.吸附催化燃烧 (10)6.RTO蓄热式氧化炉 (10)7.光催化氧化工艺 (12)8.化学吸收工艺 (14)9.植物液除臭工艺 (14)1.生物除臭工艺BCE 系列生物除臭设备适用行业楚天科技BCE 系列生物除臭设备适用于市政污水处理厂、污水泵站、垃圾处理厂(站)、石油石化、医药化工、食品加工、喷涂、印刷、纺织印染、皮革加工等生产行业的恶臭控制。
生物净化工艺能够有效的降解以上各行业相关系统产生的硫化氢、氨、甲烷、三甲胺、甲硫醇、甲硫醚、二甲二硫、二硫化碳和苯乙烯等污染物质,这些恶臭成分主要是水中有机物在缺氧条件下的产物。
后段过滤床根据废气源条件可选配,以强化处理。
(如活性炭吸附除臭、植物液除臭等)生物净化工艺介绍各臭气源点的臭气经集气系统负压收集后,通过离心风机的抽送,被直接导入洗涤—生物滤床除臭设备。
前段洗涤床具有有效除尘、调节臭气的湿温度、消减峰值浓度冲击、去除部分水溶性物质等功能。
在后段的多级生物过滤床内,通过气液、液固传质由多种微生物将致臭物质降解。
含硫系列臭气被氧化分解成S、SO 32—、SO 42—。
硫黄氧化菌的作用是清除硫化氢、甲硫醇、甲基化硫等硫黄化合物。
含氮系列臭气被氧化分解成NH 4+、NO 2—、NO 3—,消化菌等氮化菌的作用是清除恶臭成分中的氮。
当恶臭气体为H 2S 时,专性的自养型硫氧化菌会在一定的条件下将H 2S 氧化成硫酸根;当恶臭气体为有机硫如甲硫醇时,则首先需要异氧型微生物将有机硫转化成H 2S,然后H 2S 再由自养型微生物氧化成硫酸根。
H 2S+O 2+自养硫化细菌+CO 2→合成细胞物质+SO 42—+H 2OCH 3SH→CH 4+H 2S→CO 2+H 2O+SO 42—当恶臭气体为NH 3时,氨先与水反应生成氨水,然后在有氧条件下,经亚硝酸细菌和硝酸细菌的硝化作用转为硝酸,在兼性厌氧条件下,硝酸盐还原细菌将硝酸盐还原为氮气。
硝化:NH 3+O 2→HNO 2+H 2OHNO 2+O 2→HNO 3+H 2O反硝化:HNO 3→HNO 2→HNO→N 2O→N 2后段过滤床根据废气源条件可选配,以强化处理。
(如活性炭吸附除臭、植物液除臭等)BCE系列生物净化装置性能特点微生物活性强生物填料寿命长表面积大生物膜易生长、耐腐蚀、耐生物降解、保湿性能好、孔隙率高、压损小及良好的布气布水等特性,使用寿命可达8-10年。
设备操作简单实现自动控制工艺运行按PLC设置实现完全自动、运行稳定、无人管理,可24小时连续运行,也适合于间断运行。
运行能耗少由于本填料良好的保湿性能,喷淋水间歇运行,水的消耗量少。
填料本身耐生物腐蚀,填料本身没有损耗,可长期稳定运行。
除臭工艺先进、合理无二次污染有效去除硫化氢、氨气、甲硫醇等特定污染物,去除率高达95%以上,任何季节、气候条件下都能满足各地最严格的除臭环保要求。
排放产物人畜无害,属环境友好性技术,无二次污染。
2.低温等离子体技术低温等离子体除臭设备适用行业制药、印染、制造、化工、化纤等行业在运作过程中会产生大量挥发性有机污染物(VOCs)传统的处理方法如吸收、吸附、冷凝和燃烧法等(详见:有机废气处理组合工艺),对于低浓度的VOCs很难实现,而光催化降解VOCs又存在催化剂容易失活的问题,利用低温等离子体处理VOCs可以不受上述条件的限制,具有潜在的优势。
低温等离子废气处理设备已经还广泛的应用于环境保护、包装、纺织、塑料制品、汽车制造、电子设备制造、家电制造、计算机制造、手机制造、生物材料、卫生材料、医疗器皿、杀菌消毒、环保设备、石油天然气管道、供暖管道、化工子、半导体、航空航天等行业中。
低温等离子废气处理工艺概述低温等离子体是继固态、液态、气态之后的物质第四态,当外加电压达到气体的放电电压时,气体被击穿,产生包括电子、各种离子、原子和自由基在内的混合体。
放电过程中虽然电子温度很高,但重粒子温度很低,整个体系呈现低温状态,所以称为低温等离子体。
低温等离子体降解污染物是利用这些高能电子、自由基等活性粒子和废气中的污染物作用,使污染物分子在极短的时间内发生分解,并发生后续的各种反应以达到降解污染物的目的。
DBD等离子体反应区富含极高的物质,如高能电子、离子、自由基和激发态分子等,废气中的污染物质可与这些具有较高能量的物质发生反应,使污染物质在极短的时间内发生分解,并发生后续的各种反应以达到讲解污染物的目的。
与传统的电晕放电形势产生的低温等离子技术相比较,DBD等离子体技术放电量是电晕放电的50倍,放电密度是电晕放电的130倍。
所以,传统低温等离子体技术只能用于室内空气异味治理,与其他低温等离子体技术相比较,DBD等离子体技术是唯一用于工业化工艺废气治理的技术。
图1DBD等离子体双介质阻挡放电示意图等离子体去除污染物的基本过程过程一:高能电子的直接轰击过程二:O原子或臭氧的氧化O2+e→2O过程三:OH自由基的氧化H2O+e→OH+HH2O+O→2OHH+O2→OH+O过程四:分子碎片+氧气的反应低温等离子技术特点1、技术高端,工艺简洁:开机后,即自行运转,受工况限制非常少,无需专人操作,除臭率最高可达99%。
2、节能:无机械设备,空气阻力小,耗电量约为0.003kw/m3废气。
3、适应工况范围宽:设备启动、停止十分迅速,随用随开,不受气温的影响。
在250℃以下和在雾态工况环境中均可正常运转。
-50℃至+50℃的环境温度仍可正常运转。
4、设备使用寿命长:本设备由不锈钢材,铜材、钼材、环氧树脂等材料组成,抗氧化,采用防腐蚀材料,电极与废气不直接接触,根本上解决了设备腐蚀问题。
5、结构简单:只需用电,操作极为简单,无需派专职人员看守,基本不占用人工费。
6、无机械设备:故障率低,维修容易。
7、应用范围广:介质阻挡放电产生的低温等离子体中,电子能量高,几乎可以将所有的异味气体分子降解。
低温等离子体技术工艺路线示意图异味气体从气体收集系统收集后进入等离子体反应区,在高能电子的作用下,使异味分子受激发,带电粒子或分子间的化学键被打断,同时空气中的水和氧气在高能电子轰击下也会产生OH自由基、活性氧等强氧化性物质,这些强氧化性物质也会与异味分子反应,使其分解,从而促进异味消除。
净化后的气体经排气筒高空排放。
图为废气处理工艺路线示意图在化工、制药厂正常运作的低温等离子废气处理设备:3.有机废气处理工艺有机废气处理方法概述3、最后阶段就是对脱附出来的有机成分的气体进行冷凝,使其液化,与水自动分层后回用。
技术特点操作简便,节能省力;技术成熟可靠,设备运行稳定;高性能吸附剂,比表面积大,吸-脱附性能好净化效率高;设备运行安全,系统出现气流温度超过正常温度达120℃时,系统配备有排空阀门,可以根据系统的自动安全程序进行工作,实现气流的排空,直至切断吸附床连接,终止吸附-脱附流程。
吸附浓缩+催化氧化技术工艺流程采用的处理方法是吸附法和催化法的组合,充分发挥两者的优点净化效率高,把它们的弊端进行可利用的转化,对吸附物的再生处理利用其本身催化燃烧的热量来进行脱附,恢复吸附体的活性,省去了二次能源,从而补偿了催化剂的价格问题。
对于有机废气的净化这是目前比较先进的治理方法。
应用范围有机废气净化装置适用于净化处理常温、大风量、中、低浓度的有机废气,可处理的有机溶剂包括苯类、酮类、脂类、醇类、醛类、醚类、烷类和其混合类。
该装置可广泛应用于汽车、造船、摩托车、自行车、家用电器、钢琴、集装箱生产厂的喷漆、涂装车间的有机废气净化,也可与制鞋粘胶、印铁制罐、化工塑料、印刷油墨、电缆、漆包线等流水线配套使用。
工作原理处理过程可分为三个阶段:1、用特殊成型的活性炭来充分吸附废气中有机成分的分子,当吸附到一定的饱和度时即停止吸附;2、第二阶段开始时是用附加的加热器加热一股气流,利用热气流去加热吸附饱和的活性炭,将被吸附的有机成分激活气化而从活性炭中脱附逸出。
恢复活性的活性炭即可以重新吸附有机成分的气体分子;3、对脱被附出来的有机成分的气体进行加热,使其达到催化燃烧所需要的温度进入催化燃烧床,这里说燃烧,实质是在催化剂的作用下进行快速激烈的氧化,将有机成分的炭氢分子氧化成CO2和H2O,再通过脱附风机,将其送入吸附床,直到脱附出来的有机成分的分子均被氧化为止,脱附过程即将进行完成。
由于在其氧化反应同时能释放相当多的热量,就在装置中设置了换热器,利用这个热量来加热被脱附出来的有机成分气体,并最终替代加热器工作。
技术特点全自动化控制,操作简便,节能省力;无火焰氧化,净化效率高,设备运行安全,安全高效;催化活性高,性能稳定、阻力小;高性能活性炭吸附剂,比表面积大,吸-脱附性能好,过风阻力小;4.高能离子技术高能离子净化工艺离子发生装置发射出高能正、负离子,它与空气中的有机挥发性气体分子(VOC)接触,打开VOC分子化学键,分解成二氧化碳和水;对硫化氢、氨具有分解作用,分解后的物质与空气中尘埃粒子及固体颗粒碰撞,使颗粒荷电产生聚合作用,形成较大颗粒靠自身重力沉降下来;同时有效地破坏空气中细菌生存的环境,降低空气中细菌浓度,并将其完全消除,从而使气体达到净化的目的。
臭气源通过臭气收集系统,经过滤去除掉颗粒、灰尘之后,进入离子发生器箱体,在此臭气与高能正、负离子接触反应,处理后的洁净空气经引风机排入大气。
高能离子净化装置技术参数(注:ACE系列除臭设备表中尺寸仅供参考;不在本表中的大气量生物除臭装置或用户特殊要求除臭装置,可根据现场条件和用户要求另行设计制造。
)ACE系列高能离子净化装置性能特点体积小,重量轻占地面积仅为生物除臭设备的1/5-1/10,非常适用于有景观要求、布置紧凑、场地狭小、间歇运行等特殊要求的项目。
系统阻力小,能耗低风机阻力小,功率低,能耗低。
投资少节省占地和土建费用、安装调试灵活。
噪音低、无污染没有残留物和二次污染,环保美观。
操作简单、维护方便可根据实际情况频繁启停设备,且适用于温差及湿度变化大的场合,无须保温保湿,操作管理及维护简便,只需每半年清洁过滤器和离子管即可。
ACE系列高能离子净化装置应用领域畜禽养殖场、水产品加工厂、皮革生产车间、面喷涂处理等车间的异味控制,以及污水处理厂、污水泵站、垃圾中转站等空间狭小或场地受限制的场所的异味控制。
采用离子送风系统,可用于改善人工作业环境、减轻设备腐蚀;也可应用于医院、宾馆、酒店、车站、政府大厦、会议室和办公场所的优质气源提供。
5.吸附催化燃烧吸附催化燃烧工艺本净化装置是根据吸附和催化燃烧两个基本原理设计的,即吸附浓缩—催化燃烧法。
该除尘设备采用单床吸附净化有机废气和催化燃烧装置再生激活活性炭工作方式。