薄膜的生长过程和薄膜结构PPT课件

合集下载

薄膜的生长过程和薄膜结构

薄膜的生长过程和薄膜结构

薄膜生长过程概述
(2)表面扩散迁移 吸附气相原子在基体表面上扩散迁移,互相碰 撞结合成原子对或小原子团,并凝结在基体表面上。 (3)原子凝结形成临界核 这种原子团和其他吸附原子碰撞结合 ,或者释放一个单原子。这个过程反复进行,一旦原子团中的原 子数超过某一个临界值,原子团进一步与其他吸附原子碰撞结合 ,只向着长大方向发展形成稳定的原子团。含有临界值原子数的 原子团称为临界核,稳定的原子团称为稳定核。 (4)稳定核捕获其他原子生长 稳定核再捕获其他吸附原子,或者 与入射气相原子相结合使它进一步长大成为小岛。
(5-16)
式中,第一项正是自发形核过程的临界自由能变化(式5-5),
而后一项则为非自发形核相对于自发形核过程能量势垒降低的因
子。接触角θ越小,即衬底与薄膜的浸润性越好,则非自发形核
的能垒降低得越多,非自发形核的倾向也越大。在层状模式时,
形核势垒高度等于零。
薄膜的非自发形核理论
2、薄膜的形核率
形核率是在单位面积上,单位时间内形成的临界核心数目。为
10可求出形核自由能取得极值的条件为:
r* 2(a3 vf a2 fs a2 sv )
3a1GV
(5-14)
应用式5-11后,上式仍等于式5-4,即
r* 2 vf
GV
因而,虽然非自发形核过程的核心形状与自发形核时有所不同,
但二者所对应的临界核心半径相同。
将上式代入5-10得到相应过程的临界自由能变化为:
根据图5.5中表面能之间的平衡条件,核心形状的稳定性要求各
界面能之间满足关系式
sv fs vf cos
(5-11)
即θ取决于各界面之间的数量关系。薄膜与衬底的浸润性越差,

第5章+薄膜的生长过程和薄膜结构

第5章+薄膜的生长过程和薄膜结构
11
特点:每一层原子都自发地平铺于衬底或 者薄膜的表面,降低系统的总能量。
典型例子:沉积ZnSe薄膜时, 一种原子会自发地键合到另 一种原子所形成的表面上。
12
3. 层状-岛状(Stranski-Krastanov)生长模式
在层状—岛状生长模式中,在最开始的一两个原子层厚 度的层状生长之后,生长模式转化为岛状模式。 根本原因:薄膜生长过程中各种能量的相互消长。
3
第一节 薄膜生长过程概述
薄膜的生长过程直接影响到薄膜的结构以 及它最终的性能。 薄膜的生长过程大致划分为两个阶段:新 相形核阶段、薄膜生长阶段。
4
一.薄膜的生长过程
1. 在薄膜形成的最初阶段,一些气态的原子 或分子开始凝聚到衬底表面上,从而开始 了形核阶段。
2. 在衬底表面上形成一些均匀、细小而且可 以运动的原子团,这些原子团称为“岛”。
讨论:
27a12GV 2
(1)在热涨落作用下,半径r< r 的核心由于
降低的趋势而倾向于消失。
(2)r> r 的核心则可伴随着自由能不断下降
而长大。
36
(3) G* 可写为:
G*

16vf 3 3GV 2
(2 3cos 4
cos2
)
其中,
第一项
16
3 vf
是自发形核过程的临界自由能变化,
一.形核过程的分类:
在薄膜沉积过程 的最初阶段,都需 要有新核心形成。
新相的形核过程 自发形核
非自发形核
17
自发形核:指的是整个形核过程完全是在相变
自由能的推动下进行的。 发生条件:一般只是发生在一些精心控制的环 境中。
非自发形核过程:指的是除了有相变自由能作

薄膜的生长过程和薄膜结构

薄膜的生长过程和薄膜结构

光学器件
光学薄膜
01
光学薄膜由多层薄膜构成,用于控制光的反射、透射和偏振等
特性,广泛应用于光学仪器、摄影镜头和照明等领域。
激光器
02
薄膜在激光器中用作反射镜、输出镜和增益介质等,如染料激
光器和光纤激光器。
太阳能电池
03
薄膜在太阳能电池中用作光吸收层和电极等,如染料敏化太阳
能电池和钙钛矿太阳能电池。
等离子体增强化学气相沉积
通过引入等离子体增强反应气体活性,促进化学反应并提高沉积速 率。
液相外延(LPE)
选择性液相外延
通过控制溶液的浓度和热处理条 件,使源物质在基底表面特定区 域析出并生长形成薄膜。
横向液相外延
通过控制溶液的浓度和涂覆方式 ,使源物质在基底表面横向生长 形成薄膜。
分子束外延(MBE)
界面态
在薄膜与基底之间可能存在界面态,即电子或空穴被限制 在界面区域。界面态对薄膜的电子传输和光学性能有重要 影响。
界面结构
界面结构是指薄膜与基底之间的原子排列和相互作用方式。 不同的制备方法和工艺参数可能导致不同的界面结构,从 而影响薄膜的整体性能。
03
薄膜特性
力学性能
弹性模量
描述薄膜在受力时的刚度,反 映了材料抵抗弹性变形的能力
电阻率
衡量薄膜导电难易程度 的物理量,与电导率密
切相关。
击穿电压
描述薄膜所能承受的最 大电场强度,超过此值
会发生绝缘击穿。
光学性能
透光率
衡量光线通过薄膜的能力,与材料的吸收、 反射和散射特性有关。
光谱特性
描述薄膜在不同波长光线下的透射、反射和 吸收特性。
反射率
描述光线在薄膜表面反射的比例,影响光学 器件的性能。

第二章薄膜的制备ppt课件

第二章薄膜的制备ppt课件

在信息显示技术中的应用
在信息存贮技术中的应用
• 第二是在集成电路等电子工业中的应用, 其中,从外延薄膜的生长这一结晶学角 度看也具有显著的成果。
在计算机技术中的应用
在计算机技术中的应用
• 第三是对材料科学的贡献。薄漠制 备是在非平衡状态下进行,和通常的热 力学平衡条件制备材料相比具有:所得 材料的非平衡特征非常明显;可以制取普 通相图中不存在的物质;在低温下可以制 取热力学平衡状态下必须高温才能生成 的物质等优点。
薄膜的主要特性
• 材料薄膜化后,呈现出的一部分主要特性:

几何形状效应
• 块状合成材料一般使用粉末的最小尺寸为 纳米至微米,而薄膜是由尺寸为1埃左右的原子
或分子逐渐生长形成的。采用薄膜工艺可以研
制出块材工艺不能获得的物质(如超晶格材料),
在开发新材料方面,薄膜工艺已成为重要的手
段之一。
非热力学平衡过程
无机薄膜制备工艺
• 单晶薄膜、多晶薄膜和非晶态薄膜在现代微 电子工艺、半导体光电技术、太阳能电池、光纤 通讯、超导技术和保护涂层等方面发挥越来越大 的作用。特别是在电子工业领域里占有极其重要 的地位,例如半导体集成电路、电阻器、电容器、 激光器、磁带、磁头都应用薄膜。
• 薄膜制备工艺包括:薄膜制备方法的选择; 基体材料的选择及表面处理;薄膜制备条件的选 择;结构、性能与工艺参数的关系等。
(2)双蒸发源蒸镀——三温度法
三温度-分子束外延法主要是用 于制备单晶半导体化合物薄膜。从 原理上讲,就是双蒸发源蒸镀法。 但也有区别,在制备薄膜时,必须 同时控制基片和两个蒸发源的温度, 所以也称三温度法。
三温度法 是制备化合物 半导体的一种 基本方法,它 实际上是在V族 元素气氛中蒸 镀Ⅲ族元素, 从这个意义上 讲非常类似于 反应蒸镀。图 示就是典型的 三温度法制备 GaAs单晶薄膜 原理。

《材料物理薄膜物理》课件

《材料物理薄膜物理》课件
《材料物理薄膜物理》 ppt课件
CONTENTS 目录
• 材料物理与薄膜物理概述 • 材料的基本性质 • 薄膜的制备与生长机制 • 薄膜的物理性能与应用 • 材料与薄膜物理与薄膜物理概述
材料物理的定义与重要性
定义
材料物理是一门研究材料结构、性能和应用的科学,主要关注材料的基本组成 、微观结构和宏观性质之间的关系。
CHAPTER 03
薄膜的制备与生长机制
薄膜的制备方法
01
02
03
物理气相沉积法
利用物理过程将材料蒸发 或溅射到基底上形成薄膜 ,包括真空蒸发、溅射和 离子束沉积等。
化学气相沉积法
通过化学反应将气体转化 为固态薄膜,包括热化学 气相沉积和等离子体增强 化学气相沉积等。
液相外延法
在单晶基底上通过控制温 度和成分,使溶质从溶液 中析出,形成单晶薄膜。
介电性能
薄膜的介电常数和介质损耗是其电学 性能的重要参数,影响其在电子和微 波器件中的应用。
薄膜的磁学性能
磁导率与磁损耗
磁性薄膜的磁导率和磁损耗特性决定了其在磁记录、磁传感 器等领域的应用。
磁各向异性
不同方向的磁化行为,影响磁性薄膜的磁学性能和应用。
薄膜的应用领域
光学仪器制造
高反射、高透过的光学薄膜广 泛应用于各种光学仪器制造。
材料在循环应力作用下抵抗断裂的能力, 与其使用寿命密切相关。
材料的热学性质
热容与热导率
描述材料在温度变化时吸收或释放热量的能 力,以及热量在材料内部的传导速度。
热稳定性
材料在温度变化时保持其物理和化学性质稳 定的能力。
热膨胀
材料在温度升高时体积增大的现象。
热辐射
材料发射或吸收电磁辐射的能力,与温度和 波长有关。

薄膜形成过程和生长模式

薄膜形成过程和生长模式

薄膜的形成——薄膜形成过程和生长模式
0 cos 1 2 0
岛的形成又可以用另一热力 学变量描述:吸附能 界面结合能(粘附功)是指 原子团(核)吸附前后体系总的 自由能变化,即 Ecom
Ecom 2 0 1 0 ( 2 1 ) 0 0 cos 0 (1 cos )
薄膜的形成——溅射薄膜的形成过程
★ 溅射薄膜的形成过程
关于溅射薄膜形成过程的特点和溅射薄膜形成与生
长问题,在第三章已讨论。 真空蒸发薄膜和溅射薄膜形成物理过程的不同点:
沉积粒子产生过程 沉积粒子迁移过程
成膜过程
薄膜的形成——薄膜的外延生长
★ 薄膜的外延生长
外延的概念 同质外延 异质外延 失配度
薄膜的形成——薄膜形成过程和生长模式
沟道阶段 孤立的岛有变圆的趋势。当岛结合以后,在岛的生
长过程中变圆趋势减小,岛被拉长,连接网状结构,其 中分布着宽度为5-20nm的沟道。 随着沉积,在沟道中会发生二次或三次成核。
连续薄膜阶段
当沟道和孔洞消除后,入射到基片表面上的原子直 接吸附在薄膜上,形成连续薄膜。
薄膜的形成——薄膜形成过程和生长模式
薄膜形成可划分为四个阶段:成核、结合、沟道、连续 岛状阶段 岛的演变特点 可观察到的最小核尺寸:2-3nm; 核进一步长大变成小岛,横向生长速度大于纵向 生长速度; 形状:球帽形——原形以用热力学变量描述:表面自由能
薄膜的形成——薄膜形成过程和生长模式
★ 薄膜形成过程和生长模式
薄膜形成过程是 指形成稳定核之后的
过程。
薄膜生长模式是 指薄膜形成的宏观形 式。
薄膜的形成——薄膜形成过程和生长模式

薄膜的形成过程及生长方式

薄膜的形成过程及生长方式
7
2. 层状模式
• 例如,半导体膜的单晶外延生长就是这 种模式。
8
5.2 形核阶段
• 新相的形核过程分为两种类型:即自发 形核和非自发形核。
• 所谓自发形核指的是整个形核过程完全 是在相变自由能的推动下进行的;
• 非自发形核则指的是除了有相变自由能 做推动力外,还有其他的因素起着帮助 新相核心生成的作用。
13
• 纤维状组织的一个特点是:纤维的生长 方向与粒子的入射方向近似地满足正切 夹角关系。

tanα =2tanβ
• α ,β分别为粒子入射方向和纤维生长方 向与衬底法向间的夹角。
• 实验证明,纤维状生长与薄膜沉积时原 子入射的方向性有关。
14
• 由图中 可以看 出,随 着温度 的提高, 薄膜密 度上升。
• 薄膜的生长模式可以归纳为三种: • (1)岛状模式(Volmer-Weber模式); • (2)层状模式(Frank-van der
Merwe); • (3)层岛复合模式(Stranski-
Krastanov) • 三种模式的示意图5.2
5
6
1. 岛状模式
• 在绝缘体、卤化物晶体、石墨、云母等 非金属衬底上沉积金属大多数都是这一 生长模式。
• 由于原子的平均扩散距离随着温度的上 升呈指数形式增加,因此,组织形态的 转变发生在0.3Tm附近很小的温度区域。
17
•图5.17是 二维模拟得 出的30°角 倾斜入射沉 积时,薄膜 组织随沉积 温度的变化 情况。
• 由图可以看出,随着衬底温度的上升,薄膜
中的孔洞迅速减少。
18
图5.18显示了衬底温度对薄膜表面形貌的 影响
19
• 可以看出,薄膜的表面形貌从低温的 拱形表面形貌变化为由晶体学平面构 成的多晶形貌。

《薄膜生长机理》课件

《薄膜生长机理》课件
物理模型
STEP 02
化学模型
基于物理过程建立数学模 型,用于描述薄膜生长的 微观机制。
STEP 03
热力学模型
基于热力学原理,研究薄 膜生长过程中的能量转化 和平衡。
考虑化学反应过程,模拟 不同组分在薄膜中的扩散 和反应。
薄膜生长的机制
气相沉积
气体分子在基底表面吸附、迁移、凝结形成薄膜 。
液相沉积
基片的影响
• 总结词:基片是薄膜生长的载体,其特性和状态对薄膜的生长和质量具有重要影响。
• 详细描述:基片的表面粗糙度、清洁度、晶格结构和热膨胀系数等特性对薄膜的生长和质量具有重要影响。基片的表面粗糙度和清洁度会影响薄膜与基片之间的附着力和界面态,从而 影响薄膜的机械性能和电学性能。基片的晶格结构和热膨胀系数会影响薄膜的晶格结构和相组成,从而影响薄膜的物理性能和化学性能。为了获得高质量的薄膜,需要对基片进行严格 的表面处理和清洁,确保其表面粗糙度、清洁度、晶格结构和热膨胀系数等特性满足工艺要求。同时,在沉积过程中需要对基片进行适当的加热和冷却处理,以获得最佳的薄膜质量和 性能。
压力的影响
总结词
压力也是影响薄膜生长的重要因素之一,它能够改变 气体分子的密度和碰撞频率,从而影响化学反应速率 和物质输运过程。
详细描述
在薄膜生长过程中,压力的变化会影响气体分子的浓度 和分布,从而影响化学反应速率和物质输运过程。在化 学气相沉积等工艺中,反应气体分子的浓度和碰撞频率 对于薄膜的生长和质量具有重要影响。在一定压力范围 内,提高压力可以增加气体分子的碰撞频率和反应速率 ,有利于薄膜的生长。但过高的压力可能导致设备承受 过大负荷或引起其他工艺问题。因此,选择合适的压力 对于控制薄膜的生长同样具有重要意义。
面形成薄膜。

薄膜的形成过程及生长方式ppt课件

薄膜的形成过程及生长方式ppt课件

• 5.1.1 形核
• 形核是薄膜的诞生阶段,从本质上讲
是一个气-固相变的过程。
精品课件
3
• 薄膜通常通过材料的气态原子凝聚而 形成。在薄膜形成的最早阶段,原子凝 聚是以三维方式开始的,然后通过扩散 过程核长大形成连续膜。
• 薄膜新奇的结构特点和性质大部分归
因于生长过程,所以薄膜生长是最为基 本的。
• 非自发形核则指的是除了有相变自由能 做推动力外,还有其他的因素起着帮助 新相核心生成的作用。
精品课件
9
• 温度越高,则需要形成的临界核心
的尺寸越大,形核的临界自由能势垒 也越高,这与高温时沉积的薄膜首先 形成粗大的岛状组织相吻合。
• 低温时,临界形核自由能下降,形 成的核心的数目增加,将有利于形成 晶粒细小而连续的薄膜组织。
薄膜的形成过程及生长方式
• 主讲人:张宝贤 • 学号:12191082 • 班级:12级3班
精品课件
1
目录
• 5.1 薄膜生长过程概述 • 5.2 形核阶段 • 5.3 薄膜生长过程与薄膜结构
习题
精品课件
2
5.1、薄膜生长过程概述
• 薄膜的生长可划分为两个不同阶段:

新相的形核阶段

薄膜的生长阶段
精品课件
14
• 由图中 可以看 出,随 着温度 的提高, 薄膜密 度上升。
精品课件
15
低温抑制型薄膜沉积过程的特点:
• 原子的表面扩散能力较低,其沉积的 位置就是其入射到薄膜表面时的位置;
• 决定薄膜组织的唯一因素是原子的入 射方向;
• 形成的薄膜充满了缺陷和孔洞,表面 粗糙。
精品课件
16
5.3.3 高温热激活型薄膜生长

第四章 薄膜的形成及生长

第四章 薄膜的形成及生长

4.3
(ห้องสมุดไป่ตู้) 从蒸发源发出的气相原子入射到基体表面 上,其中有一部分因能量较大而弹性反射 回去,另一部分则吸附在基体表面上。在 吸附的气相原子终有一小部分因能量稍大 而再蒸发出去; (2) 吸附气相原子在基体表面上扩散迁移,相 互碰撞结合成原子对或小原子团并凝结在 基体表面上; (3) 这种原子团和其他吸附原子碰撞结合,或 者释放一个单原子。这个过程反复进行, 一旦原子团中的原子数超过某一个临界值, 原子团进一步与其他吸附原子碰撞结合, 只向着长大向发展形成稳定的原子团。
4.具有一定能量的气相原子,到达基片表面之后可能发生三种现象: 吸附、解吸、反射 (1) 与基体表面原子进行能量交换被吸附; (2) 吸附后气相原子仍有较大的解吸能,在基体表面作短暂停留后再解吸蒸发;
(3) 与基体表面不进行能量交换,入射到基体表面上立即发射回去。
三种情况讨论: ≬ 如果入射的蒸气分子动能不是很大,碰撞到基体表面后,在短暂的时间内即失去法 线方向; ≬ 如果当原子通过范氏力吸附在基体表面,但可能达不到平衡,即还保留有平行于基 体表面的动能且同时又有来自基体的热激发时,则吸附原子将在基体表面移动; 当吸附原子在基体表面移动时,从一个势荆跃迁到另一个势荆的过程中,吸附原子 可能与其吸附原子相互作用,形成稳定的原子团或转变成吸附。但当吸附原子不能形 成居留寿命增加的稳定原子团时,将再次蒸发即发生解吸。
(b) 成核速率 成核速率等于临界核密度乘以每个核的捕获范围,再乘以吸附原子向临界核运动 的总速度。 它与热力学界面能理论成核速率方程式I=Z●ni* ● A ● V相对应,但是没有非平衡 修正因子Z是因为过饱和度比较小,可以忽略非平衡因素的影响。

的过程,大致分成下面几个阶段: ❶ 分子或原子撞击到固体表面;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量与吸附原子数量之间的平衡常数
K
nj n1j
G
e kT
(5-8)
将上式应用于临界核心,即可求出临界核心的面密度
n*
G*
nse kT
(5-9)
新相的自发形核理论
根据上式,临界核心的面密度n*取决于两个量,即n1和 G * 前者正比于气相原子的沉积通量J或气相的压力P,而后者也
薄膜生长过程概述
3)层状外延生长表面是表面能比较高的晶面时,为了降低表 面能,薄膜力图将暴露的晶面改变为低能晶面。因此薄膜在 生长到一定厚度之后,生长模式会由层状模式向岛状模式转 变。
显然,在上述各种机制中,开始的时候层状生长的自由能 较低,但其后,岛状生长在能量上反而变得更加有力。 形核与生长的物理过程
新相的自发形核理论
新相的自发形核理论
r<r*的薄膜核心处于不稳定的状态,它将不断的形成,也会 不断的消失。因此,可以认为在这些不稳定的核心与气相原子 或者衬底表面的吸附原子之间存在着下述的可逆反应:
jA N j
上述自由能变化为: GGj jG1
应用第四章讨论化学平衡时使用过的方法,可以求出核心数
GV 0 它就是新相形核的驱动力。
在新相核心形成的同时,还伴随有新的固-气界面的形成,它导 致相应表面能的增加,其数值为
4 r 2
新相的自发形核理论
综合考虑上面两种能量之后,我们得到形成一个核心时,系
统的自由能变化为:
G43r3GV4r2
(5-3)
将上式r求微分,求出使得自由能变化取得极值的条件为:
薄膜生长过程概述
(2)表面扩散迁移 吸附气相原子在基体表面上扩散迁移,互相碰 撞结合成原子对或小原子团,并凝结在基体表面上。 (3)原子凝结形成临界核 这种原子团和其他吸附原子碰撞结合 ,或者释放一个单原子。这个过程反复进行,一旦原子团中的原 子数超过某一个临界值,原子团进一步与其他吸附原子碰撞结合 ,只向着长大方向发展形成稳定的原子团。含有临界值原子数的 原子团称为临界核,稳定的原子团称为稳定核。 (4)稳定核捕获其他原子生长 稳定核再捕获其他吸附原子,或者 与入射气相原子相结合使它进一步长大成为小岛。
新相的自发形核理论
在薄膜沉积过程的最初阶段,首先要有新相的核心形成。 新相的形核过程可以被分为两种类型:自发形核与非自发形核。 所谓自发形核,指的是整个形核过程完全是在相变自由能的推动 下进行的,而非自发形核则指的是除了有相变自由能作推动力外 ,还有其他的因素起着帮助新相核心生成的作用。
在薄膜与衬底之间浸润性较差的情况下,薄膜的形核过程可以 近似地被认为是一个自发形核的过程。借助图5.3,可以考虑一下 从过饱和气相中凝结出一个球形的新相核心的过程。 当形成一个新相核心时,体自由能变化为:
薄膜生长过程概述
(3)混合生长模式:在最开始一两个原子层厚度时采用层状生 长,之后转化为岛状生长。即先采用层状生长模式而后转化为岛 状生长模式。
薄膜生长过程概述
导致这种模式转变的物理机制比较复杂,但根本原因应该可以 归结为薄膜生长过程中各种能量的相互抵消。被列举出来解释这一 生长模式的原因至少有以下三种: 1)虽然开始生长是外延式的层状生长,但是由于薄膜与衬底之间 晶格常数不匹配,因而随着沉积原子层的增加,应变能逐渐增加。 为了松弛这部分能量,薄膜在生长到一定的厚度之后,生长模式转 化为岛状模式。 2)在Si的(111)晶面上外延生长GaAs时,由于第一层拥有五个 价电子的As原子不仅将使Si晶体表面的全部原子键得到饱和,而 且As原子自身也不再倾向于与其他原子发生键合,这有效的降低 了晶体的表面能,使得其后的沉积过程转变为三维的岛状生长。
第五章 薄膜的生长过程 和薄膜结构
薄膜生长过程概述
薄膜的生长过程直接影响薄 膜的结构以及它的最终性能,像 其他材料的相变一样,薄膜的生 长过程也可被分为两个不同的阶 段,即新相的形核与薄膜的生长 阶段。
薄膜生长过程概述
薄膜形核的三种模式:
实验观察到的薄膜生长模式可以被划分为以下三种: (1)岛状生长模式:这一生长模式表明,被沉积物质的原子或分 子倾向与自身相互键合起来,它们与衬底之间浸润性不好,因此 避免与衬底原子键合,从而形成许多岛,再由岛合并成薄膜,造 成表面粗糙。 (2)层状生长模式:当被沉积物质与衬底之间浸润性很好时,被 沉积物质的原子便倾向于与衬底原子成键结合。因此,薄膜从形 核阶段开始即采取二维扩展模式,薄膜沿衬底表面铺开。在随后 的沉积过程中,一直维持这种层状生长模式。
核形成与生长的物理过程可用下图说明,从图中可看出核的 形成与生长有四个步骤:(1)原子吸附(2)表面扩散迁移(3)原子凝 结形成临界核(4)稳定核捕获其他原子生长
薄膜生长过程概述
(1)原子吸附 从蒸发源蒸发出的气相原子入射到基体表面上, 其中一部分因能量较大而弹性反射回去,另一部分则吸附在基 体上。在吸附的气相原子中有一小部分因能量稍大而再蒸发出 去。
r* 2 GV
(5-4)
称为临界核心半径。
将5-4代入5-3后,可以求出形成临界核心时系统的自由能
变化。
G*
1Байду номын сангаас 3
3GV 2
新相的自发形核理论
即气相的过饱和度越大,临界核心的自由能变化也越小。图 5.4中画出了在两种气相过饱和度时,形核自由能变化随新相核 心半径的变化曲线。可以看出: G *实际上就相当于形核过程的 能垒。在气相的过饱和度较大时,所需克服的形核能垒也较低 。热激活过程提供的能量起伏将使某些原子团具备了 G 大* 小的 自由能涨落,从而导致了新相核心的形成。 r<r*的新相核心将处于不稳定的状态,尺寸较小的核心通过 减小自身的尺寸将可以降低自由能,因此它将倾向于再次消失 。想反,当r>r*时,新相核心将倾向于继续长大,因为核心的 生长将使自由能下降。气相的过饱和度越大,则临界核心的半 径越小。
(43)r3GV 是单位体积的固相在凝结过程中的相变自由能之差。
新相的自发形核理论
新相的自发形核理论
GVk TlnP P Vk TlnJJV
(5-1)
上式还可以写成:
GV
kTln(1S)
(5-2)
S(ppV)/pV 是气相的过饱和度。
GV 0 没有新相的核心可以形成,或者已经形成的新
相核心不再长大。
相关文档
最新文档