材料成型知识点归纳总结
材料成形技术基础 知识点总结
材料成形技术基础知识点总结滑移系:晶体中一个滑移面及该面上的一个华滑移方向的组合。
纤维组织:金属经冷加工变形后,晶粒形状发生改变,其变化趋势大致与金属的宏观变形一致,若变形程度很大,则晶粒呈现一片纤维状的条纹。
拉深:当凸模下降与坯料接触,坯料首先弯曲,于凸模圆角接触的材料发生胀形形变,凸模继续下降,法兰部分坯料在切向压应力,径向拉应力的作用下沿凹模圆角向直壁流动,形成筒部,进行拉深变形。
自发形核:在单一的液相中,通过自身的结构起伏形成新相核心的过程。
非自发形核:在不均匀的液体中,依靠外来杂质和容器壁面提供衬底而进行形核的过程。
焊接热循环:在焊接热源的作用下,焊件上的某一点温度随时间变化的过程。
焊接残余应力:由于焊接过程中的不均匀加热等因素而导致的焊接结构中存在残余应力。
温度场:加热和冷却过程中某一瞬间温度分布。
材料成型过程中的三种流:材料流,能量流,信息流。
液态金属在凝固和冷却到室温时发生:液态,凝固,固态三种收缩。
减小及消除焊接残余应力的措施有:热处理,温差拉伸,拉力载荷,爆炸冲击,振动法等。
液态金属结构:液态金属有许多近程有序的原子集团组成,原子集团内部原子规则排列,其结构与原固体相似;有大的能量起伏,激烈的热运动和大量的空穴;所有原子集团和空穴时聚时散,时小时大,始终处于瞬息万变的状态。
形核剂应具备哪些条件:失配度小,粗糙度大,分散性好,高温稳定性好。
加工硬化:金属经冷塑性变形后,随着变形程度的增加,金属的强度硬度增加,而塑性韧性降低,这种现象叫。
其成因与位错的交互作用有关,随着塑性变形的进行,位错密度不断增加,位错反应和相互交割加剧,结果产生固定割阶,位错缠结等障碍,以致形成胞装亚结构,使位错难以越过这些障碍而被限制在一定范围内运动,这样,要使金属继续变形就需要不断增加外力才能克服位错间强大的交互作用力。
滑移变形时通常把滑移因子u为0.5或接近0.5的取向称为软取向,把u为0或接近0 的取向称为硬取向。
材料成型工艺基础知识点总结
铸造是将液态金属浇注到具有与零件形状及尺寸相适应的铸型空腔中,待冷却凝固后,获得一定形状和性能的零件或毛坯的方法。
优点:成型方便,工艺适应性广;成本低廉,生产周期短。
缺点:劳动强度大,生产条件差,产物污染环境;生产工序较多;铸件质量不稳定,废品率高。
合金铸造性能:合金在铸造生产中获得优质铸件的能力。
1.合金的充型能力:液态合金充满型腔,获得尺寸正确、形状完整、轮廓清晰的铸件的能力,取决于合金的流动性、浇注条件、铸型条件;合金的流动性是指合金本身在液态下的流动能力。
决定于合金的化学成分、结晶特性、粘度、凝固温度范围、浇注温度、浇注压力、金属型导热能力。
合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。
2.合金的收缩:合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,分为液态、凝固、固态三个阶段,取决于化学成分、浇注温度、铸件结构和铸型条件。
缩孔和缩松的防止方法:1.顺序凝固原则:使铸件按递增的温度梯度方向从一个部分到另一个部分依次凝固。
如在铸件可能出现縮孔的热节处安放冒口,使铸件从远离冒口的部位开始凝固,冒口本身最后凝固。
主要适用于纯金属和结晶温度范围窄、靠近共晶成分的合金以及凝固收缩大的合金补缩;2.加压补缩法:压力铸造、离心铸造等。
铸件的固态收缩受到阻碍及热作用,会产生铸造内应力。
1.热应力:由于铸件壁厚不均匀、各部分冷却速度不一致,致使铸件在同一时期内各部分的收缩不一致;先厚-薄+,后厚+薄-。
同时凝固原则:采取必要措施使铸件各部分冷却速度尽量一致,如将内浇道开在薄壁处减速凝固,在远离浇道的厚壁处出放置冷铁加快凝固,从而使铸件各部分冷却速度尽量一致。
主要适用于缩孔、缩松倾向较小的灰口铸铁等合金。
2.机械应力:铸件收缩时受到铸型、型芯等的机械阻碍而引起的应力,通过时效处理(自然~、人工~)来消除。
铸件的变形与防止:设计铸件时尽量使壁厚均匀、形状简单、结构对称:对于重要零件进行去应力退火。
材料成型技术基础知识点总结
第一章铸造1.铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。
2.充型:溶化合金填充铸型的过程。
3.充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。
4.充型能力的影响因素:金属液本身的流动能力(合金流动性)浇注条件:浇注温度、充型压力铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构流动性是熔融金属的流动能力,是液态金属固有的属性。
5.影响合金流动性的因素:(1)合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。
(2)化学成份:纯金属和共晶成分的合金流动性最好;(3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。
6.金属的凝固方式:①逐层凝固方式②体积凝固方式或称“糊状凝固方式”。
③中间凝固方式7.收缩:液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。
收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。
8.合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。
液态收缩和凝固收缩,通常以体积收缩率表示。
液态收缩和凝固收缩是铸件产生缩孔、缩松缺陷的基本原因。
合金的固态收缩,通常用线收缩率来表示。
固态收缩是铸件产生内应力、裂纹和变形等缺陷的主要原因。
9.影响收缩的因素(1)化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。
??? (2)浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。
??? (3)铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍。
???(4)铸型和型芯对铸件的收缩也产生机械阻力10.缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。
大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。
缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。
材料成型基础大纲
材料成型基础考试知识点(模具塑工)1、液态金属的结构液态金属是由许多“原子集团”组成,其中原子呈与原固体“显微晶体”类似的规则排列。
热运动剧烈,原子集团时散时聚,空位较多。
可将液态金属的结构总结为:“近程有序,远程无序”+“能量起伏、结构起伏、成分起伏”。
液态金属结构特点1)液态金属是由游动的原子集团构成。
2)液态金属中的原子热运动强烈,原子所具有的能量各不相同,且瞬息万变,这种原子间能量的不均匀性,成为能量起伏。
3)由于液态原子处于能量起伏之中,原子团是时聚时散,时大时小,此起彼伏的,成为结构起伏。
4)对于多元素液态金属而言,同一种元素在不同原子团中的分布量不同,也随着原子的热运动瞬息万变,这种现象称为成分起伏。
2、液态金属的充形能力和流动性1)充形能力:液态金属充满型腔,获得形状完整、轮廓清晰的铸件的能力。
2)流动性:液态金属本身的流动能力。
影响充形能力的因素:液态金属的流动性(金属)、铸型、浇筑条件、铸件结构。
3、铸件的凝固方式金属或合金在铸型中凝固时,可以分为三个典型的区域:1)液相区2)固液两相区3)固相区三种凝固方式:逐层凝固、体积凝固、中间凝固1)逐层凝固:铸件凝固过程中,液体和固体之前有明显的界限分开,液体向固体转变。
固体逐层加厚,这种方式称为逐层凝固。
(纯金属是典型的逐层凝固)2)体积凝固:宽结晶温度范围的合金在凝固过程中,液体和固体之前的凝固区域很宽,甚至贯穿铸件的整个断面,这种方式称为体积凝固。
3)中间凝固:介于上两者之前的凝固方式。
影响凝固方式的因素:1)结晶温度范围的影响:结晶温度范围增加,凝固由逐层凝固向体积凝固发展;结晶范围范围剑侠,凝固由体积凝固向逐层凝固发展。
2)温度梯度的影响:温度梯度增加,凝固向逐层凝固发展;温度梯度减小,凝固向体积凝固发展。
4、铸造合金的收缩铸造合金从液态冷却到室温的过程中,其体积和尺寸缩减的现象称为收缩,他主要包括液态收缩、凝固收缩和固态收缩三个阶段。
材料成型技术基础知识点总结
材料成型技术基础知识点总结材料成型技术是指利用压力、温度和时间等因素,通过给予物质以一定的形状,以获得具备特定功能和要求的制品的一种技术方法。
材料成型技术在各个行业的制造过程中起着重要的作用。
下面将对材料成型技术的基础知识点进行总结。
1.材料成型的分类:材料成型可分为热成型和冷成型两类。
热成型是指在高温下进行的成型过程,包括热压、热拉伸、热挤压等。
冷成型是指在常温下进行的成型过程,包括冷弯、冷挤压、冷拔等。
2.材料成型的原理:材料成型的基本原理是通过对材料施加力和热量,使其发生塑性变形,进而得到所需形状和尺寸的制品。
材料成型的力学过程包括拉伸、挤压、弯曲、剪切等。
热量作用主要是为了降低材料的硬度,提高其变形能力。
3.材料成型工艺:材料成型的工艺包括模具设计、加工设备的选择与调试、成型过程的操作等。
模具是材料成型的关键工具,模具的设计要考虑到材料的特性、形状和尺寸的要求。
加工设备的选择与调试要根据材料的成型要求和加工量来确定。
成型过程的操作要严格控制力和热的加工参数,保证制品的质量。
4.材料成型的性能影响因素:材料成型的性能受到许多因素的影响,包括材料的物理和化学性质、成型工艺的参数、设备的性能等。
材料的性能对成型工艺的选择和制品的质量有着重要影响。
成型工艺的参数如温度、压力、速度等也会对成品的性能产生影响。
设备的性能如精度、刚度、压力等也会影响到成型的结果。
5.材料成型的应用:材料成型技术广泛应用于诸多领域,如汽车制造、航空航天、电子、建筑等。
汽车制造中的车身、发动机零部件等都需要经过冲压成型、挤压成型等工艺。
航空航天中的飞机壳体、涡轮叶片等也需要通过成型工艺进行制作。
电子产品中的外壳、散热器等也需要通过成型技术来获得所需的形状。
建筑领域中的钢结构、混凝土构件等亦需要经过成型工艺来生产。
综上所述,材料成型技术是制造过程中不可或缺的一部分。
通过了解材料成型的分类、原理、工艺、性能影响因素和应用,可以更好地理解和应用材料成型技术,提高制品的质量和生产效率。
材料成形技术基础知识总结
第一章绪论1. 现代制造过程的分类:质量增加、质量不变、质量减少2. 质量增加过程:渗碳,渗氮,氰化处理,电镀3. 质量减少过程:切削,切割,电解,落料,冲孔,剪切4. 质量不变过程:锻造,轧制第二章液态材料铸造成形技术过程1. 充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力。
表征方式:最小壁厚2. 充型能力弱:产生浇不足,冷隔,气孔,夹杂,缩孔,热裂等缺陷3. 充型能力取决于:金属自身的流动能力(主要),铸型性质(速度,热交换强度,蓄热系数),浇筑条件(速度温度),铸型结构(折算厚度)4. 金属的流动性:1. 定义:液态金属自身的流动能力2. 测量方法:将金属液浇入螺旋型试样铸型中,表征方式:螺旋线试样长度5. 收缩铸件在液态,凝固和固态冷却过程中所产生的体积和尺寸减小的现象6. 收缩的三个阶段1. 液态凝固阶段表现:腔内液面降低2. 凝固收缩阶段3. 固态收缩阶段表现:铸件外形尺寸减少;是产生拉力、变形、裂纹等缺陷的基本原因凝固:逐层凝固,体积凝固,中间凝固。
7. 铸件的实际收缩1. 铸型表面的摩擦阻力2. 热阻力(壁厚均匀则无3. 机械阻力只受到1,自由收缩否则为受阻收缩8. 缩孔:凝固过程,大而密集的孔洞形成条件:金属在恒温/很窄的温度范围结晶,铸件由表及里逐层凝固原因:金属的液态收缩和凝固收缩值大于固态收缩值,且得不到补偿形成部位:铸件最后凝固区域9. 缩松:凝固过程小而分散的孔洞形成条件:结晶温度范围较宽,体积凝固原因:金属的液态收缩和凝固收缩大于固态收缩形成部位:铸件壁中心区域厚大部位10. 防止方法:1. 采用顺序凝固即a.合理设计内浇口位置和浇注工艺b.合理应用冒口、冷铁和补贴等技术措施2. 加压补缩11. 铸造应力:铸件在凝固和随后的冷却过程中,固态收缩受到阻碍而引起的内应力分类:热应力【薄壁、细小部位:冷的快,受压应力(凸出);厚壁、粗大部位:冷得慢,受拉应力(凹进)】,相变应力,机械阻碍应力12.减少措施:选弹性模量,收缩系数小;同时凝固;浇冒口,缓冷;选退让性好的砂芯13. 热裂:形状特征:裂缝短,缝隙宽,形状曲折,缝内呈氧化颜色防止措施:改善型砂退让性冷裂:形状特征:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色14. 吸气性:金属在熔炼过程中会溶解气体(主要H2、N2、O2)15. 吸气过程:气分子撞击金属液表面,高温而离解为原子,吸附在金属表面,扩散到内部16. 偏析:铸件凝固后,截面上不同部位,以至于晶粒内部产生化学成分不均匀的现象宏观偏析:成分不均匀现象表现在较大尺寸范围,分类:正偏析(k>1),逆偏析(k<1)k:溶质平衡分配系数(固相溶质/液相溶质)微观偏析:微小范围内的化学成分不均匀,分类:晶内偏析(消除:扩散退火,均匀化退火)和晶界偏析(细化晶粒)17. 气孔分类:侵入气孔:砂型或型芯中的挥发物挥发生成析出气孔:溶解于金属液的气体因溶解度下降析出反应气孔:化学反应产生的气体18. 浇注系统结构和功能1. 结构:浇口杯,直浇道,横浇道,内浇道2. 功能:连接型腔浇包,平稳导入液态金属;挡渣及排除腔中气体;调节温度分布控制凝固顺序;合理地充满铸型19. 冒口定义:储存金属液补偿铸件收缩,防止缩松缩孔。
材料成型知识点归纳总结
一、焊接部分1.焊接是通过局部加热或同时加压,并且利用或不用填充材料,使两个分离的焊件达到牢固结合的一种连接方法。
实质——金属原子间的结合。
2.应用:制造金属结构件;2、生产机械零件;3、焊补和堆焊。
3.特点:与铆接相比1 . 节省金属;2 . 密封性好;3 . 施工简便,生产率高。
与铸造相比 1 . 工序简单,生产周期短;2 . 节省金属;3 . 较易保证质量4.焊条电弧焊:焊条电弧焊(手工电弧焊)是用电弧作为热源,利用手工操作焊条进行焊接的熔焊方法,简称手弧焊,是应用最为广泛的焊接方法。
5.焊接电弧:焊接电弧是在电极与工件之间的气体介质中长时间稳定放电现象,即局部气体有大量电子流通过的导电现象。
电极可以是焊条、钨极和碳棒。
用直流电焊机时有正接法和反接法.6.引弧方式接触短路引弧高频高压引弧7.常见接头形式:对接搭接角接T型接头8.保护焊缝质量的措施:1、对熔池进行有效的保护,限制空气进入焊接区(药皮、焊剂和气体等)。
2、渗加有用合金元素,调整焊缝的化学成分(锰铁、硅铁等)。
3、进行脱氧和脱磷。
9.牌号J×××J-结构钢焊条××-熔敷金属抗拉强度最低值×-药皮类型及焊接电源种类10.焊缝由熔池金属结晶而成。
冷却凝固后形成由铁素体和少量珠光体组成的柱状晶铸态组织。
11.热影响区的组织过热区正火区部分相变区熔合区12.影响焊缝质量的因素影响焊缝金属组织和性能的因素有焊接材料、焊接方法、焊接工艺参数、焊接操作方法、焊接接头形式、坡口和焊后热处理等。
13.改善焊接热影响区性能方法:1.用手工电弧焊或埋弧焊焊一般低碳钢结构时,热影响区较窄,焊后不处理即可保证使用。
2.重要的钢结构或用电渣焊焊接构件,要用焊后热处理方法消除热影响区。
3.碳素钢、低合金结构钢构件,用焊后正火消除。
4.焊后不能接受热处理的金属材料或构件,要正确选择焊接方法与焊接工艺。
材料成型原理复习总结
材料成型原理复习总结名词解释:1溶质平衡分配系数:定义为特定温度下固相合金成分浓度与液相合金成分浓度达到平衡时的比值。
2液态金属的充型能力:充型过程中,液态金属充满铸型型腔,获得形状完整,轮廓清晰的铸件的能力。
3孕育处理:是在浇注之前或者浇注过程中向液态金属中添加少量物质以达到细化晶粒,改善宏观组织目的的一种工艺方法。
4最小阻力定律:当变形体质点有可能沿不同方向移动时,则物体各质点将沿着阻力最小的方向移动。
5金属的超塑性:所谓超常的塑性变形行为,具有均匀变形能力,其伸长率可以达到百分之几百,甚至几千,这就是金属的超塑性6定向凝固原则:就是在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,尔后是靠近你冒口部位凝固,最后才是冒口本身的凝固。
7偏析:合金在凝固过程中发生的化学成分不均匀的现象称为偏析。
8平衡凝固:是指液,固相溶质成分完全达到平衡状态图对应温度的平衡成分。
9相变应力:具有固态相变的合金,若各部分发生相变的时刻及相变的程度不同,其内部就可能产生应力,这种应力就成为相变引力。
10晶体择优生长:在发展成为柱状晶组织的过程中需要淘汰取向不利的晶体,这个互相竞争淘汰的晶体生长过程称为晶体的择优生长。
简答题1.简述金属压力加工(塑性成形)的特点和应用。
答:1生产效率高。
(适用于大批量生产)2.改善了金属的组织和结构(钢锭内部的组织缺陷经塑性变形后组织变得致密,夹杂物被击碎;与机械加工相比,金属的纤维组织不会被切断,因而结构性能得到提高)3材料的利用率高(无切削,只有少量的工艺废料,因此利用率高)4尺寸精度高(精密锻造,精密挤压,精密冲裁零件,可以达到不需要机械加工就可以使用的程度)应用:金属的塑性加工在汽车,拖拉机,船舶,兵器,航空和家用电器等行业都有广泛的应用。
2.什么是缩孔和缩松?请分别简述这两种铸造缺陷产生的条件和基本原因。
答:铸件在凝固的过程中,由于合金的液态收缩和凝固收缩,往往在铸件最后凝固的部位出现孔洞.容积大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。
材料成形技术基础知识点总结
材料成形技术基础知识点总结1.材料成形的基本原理:材料成形是通过施加外力使材料发生形状和/或尺寸改变的过程。
常见的成形方法包括压力成形、热成形、热力复合成形等。
不同的成形方法有不同的原理和适用范围,可以选择最适合的方法进行成形。
2.压力成形技术:压力成形是指通过施加压力使材料发生形状和/或尺寸改变的成形方法。
常见的压力成形技术包括锻造、压力铸造、挤压、拉伸、冲压等。
这些技术可以用于加工金属材料和非金属材料,具有高效率和高精度的特点。
3.热成形技术:热成形是指通过加热材料使其变软,然后进行形状和/或尺寸改变的成形方法。
常见的热成形技术包括热压缩、热拉伸、热挤压、热转锻等。
热成形可以用于加工高温材料和难塑料材料,可以提高材料的可塑性和改善成形效果。
4.热力复合成形技术:热力复合成形是指通过加热和施加压力使两个或多个材料发生结合的成形方法。
常见的热力复合成形技术包括焊接、热压焊、热胶合等。
这些技术可以用于加工复合材料,可以获得更强的接合强度和更好的接合效果。
5.材料成形工艺的设计:材料成形工艺的设计是指根据产品的要求和材料的性能选择合适的成形方法,并确定合理的工艺参数。
工艺参数包括温度、压力、速度等,对成形效果和产品质量具有重要影响。
工艺设计需要考虑材料的可塑性、成形难度、成形精度等因素,可以通过实验和数值模拟来优化设计。
6.材料成形工具的设计与制造:材料成形工具是实现成形过程的重要设备,需要根据产品的形状和尺寸设计相应的工具。
工具设计包括毛坯设计、凸模设计、模具结构设计等。
材料成形工具的制造需要精密的加工工艺和高质量的材料,可以采用数控加工、电火花等先进技术来提高工具的精度和寿命。
7.材料成形过程的监测与控制:材料成形过程需要对温度、压力、力量、速度等进行监测和控制,以确保成形效果和产品质量的稳定。
常用的监测和控制技术包括传感器、自动控制系统等。
这些技术可以实时监测成形过程的参数,并根据需求调整工艺参数,以达到最佳的成形效果。
材料成型技术基础知识点
第一章铸造1 铸造通常是将液态金属浇注到与零件的形状、尺寸相适应的铸型型腔中,待其冷却凝固后,以获得毛坯或零件的生产方法。
2 铸造的特点(1)较强的适应性(铸件形状、质量、尺寸、材料不受限制)(2)良好的经济性(3)铸件力学性能较差、质量不够稳定(4)铸造生产条件和环境差(铸造生产过程中、混沙、造型、清沙过程中产生大量的粉尘,熔炼浇注温度很高,铸造过程中还有大量的烟雾、刺激性气体产生,工人劳动强度很大)3 铸件被广泛应用于国防军工、航空航天、矿山冶金、交通运输工具、石化通用设备、农业机械、建筑机械等领域。
4 液态金属的充型能力:液态金属充满铸型型腔,获得形状完整、轮廓清晰的铸件的能力5 影响充型能力的主要因素有:液态金属的流动性、铸型性质、浇注条件以及铸件结构等6 金属的凝固方式:逐层凝固、体积凝固、中间凝固。
7 铸件在冷却过程中,体积和尺寸缩小的现象叫做收缩,收缩性是铸造合金固有的物理性质。
8 金属从液态冷却到室温,要经历三个相互联系的收缩阶段(1)液态收缩-----从浇注温度冷却至凝固开始温度之间的收缩(2)凝固收缩-----从凝固开始温度冷却至凝固结束温度之间的收缩(3)固体收缩-----从凝固完毕时的温度冷却至室温之间的收缩9 影响铸件收缩的主要因素有:化学成分、浇注温度、铸件结构、铸型条件等。
10 铸造的内应力分为:热应力、相变应力、收缩应力。
(1)热应力是铸件在凝固和冷却过程中,不同部位由于收缩不均衡而引起的应力(2)相变应力是由于固态相变,各部分体积发生不均衡变化引起的应力(3)收缩应力是由于铸型、型芯等阻碍铸件的收缩产生的应力,收缩应力一般使铸件产生拉伸或剪切应力。
11热裂是在铸件凝固末期高温下形成的裂纹;12冷裂是铸件在低温时形成的裂纹。
13防止冷裂和热裂的主要方法是减小铸造内应力。
14灰口铸铁的性能特点:熔点较低,凝固温度范围小,流动性好,凝固收缩小,具有良好的铸造性能,综合机械性能低,抗压强度比抗拉强度高3-4倍。
材料成形技术基础知识点总结
铸造:将熔融的液体浇注到与零件的形状相适应的铸型型腔中,冷却后获得逐渐的工艺方法。
1、铸造的实质利用了液体的流动形成。
2、铸造的特点A 适应性大(铸件分量、合金种类、零件形状都不受限制);B 成本低C 工序多,质量不稳定,废品率高D 力学性能较同样材料的锻件差。
力学性能差的原因是:铸造毛胚的晶粒粗大,组织疏松, 成份不均匀3、铸造的应用铸造毛胚主要用于受力较小,形状复杂(特别是腔内复杂)或者简单、分量较大的零件毛胚。
1、铸件的凝固(1)铸造合金的结晶结晶过程是由液态到固态晶体的转变过程.它由晶核的形成和长大两部份组成。
通常情况下,铸件的结晶有如下特点:A 以非均质形核为主B 以枝状晶方式生长为主.结晶过程中,晶核数目的多少是影响晶粒度大小的重要因素,因此可通过增加晶核数目来细化晶粒. 晶体生长方式决定了最终的晶体形貌,不同晶体生长方式可得到枝状晶、柱状晶、等轴晶或者混合组织等.(2)铸件的凝固方式逐渐的凝固方式有三种类型:A 逐层凝固B 糊状凝固C 中间凝固2、合金的铸造性能(1)流动性合金的流动性即为液态合金的充型能力,是合金本身的性能。
它反映了液态金属的充型能力,但液态金属的充型能力除与流动性有关,还与外界条件如铸型性质、浇注条件和铸件结构等因素有关,是各种因素的综合反映。
生产上改善合金的充型能力可以从一下各方面着手:A 选择挨近共晶成份的趋于逐层凝固的合金,它们的流动性好;B 提高浇注温度,延长金属流动时间;C 提高充填能力D 设置出气冒口,减少型内气体,降低金属液流动时阻力。
(2)收缩性A 缩孔、缩松形成与铸件的液态收缩和凝固收缩的过程中.对于逐层凝固的合金由于固液两相共存区很小甚至没有,液固界面泾渭分明,已凝固区域的收缩就能顺利得到相邻液相的补充,如果最后凝固出的金属得不到液态金属的补充,就会在该处形成一个集中的缩孔。
适当控制凝固顺序,让铸件按远离冒口部份最先凝固,然后朝冒口方向凝固, 最后才是冒口本身的凝固(即顺序凝固方式) ,就把缩孔转移到最后凝固的部位—- 冒口中去,而去除冒口后的铸件则是所要的致密铸件。
材料成型设备_知识点总结
1.成形:毛坯(一般指固态金属或非金属)在外界压力的作用下,借助于模具通过材料的塑性变形来获得模具所给予的形状,尺寸和性能的制品。
2.成型:指也太或半固态的原材料(金属或非金属)在外界压力或自重力的作用下,通过流动填充(或模具)的型腔来获得于型腔的形状和尺寸想一致的制品3.曲柄压力机是通过曲柄连杆机构获得材料成形时所需的力和直线位移的成型设备。
4.曲柄压力机的组成:工作机构,传动机构,操作机构,能源部分,支持部分,辅助系统5.曲柄压力机的分类:开式和闭式(根据床身结构)开式:便于模具安装调整和成型操作,但是机身刚度(特别是角刚度)较差,变形后影响制作精度和降低模具寿命,使用小型压力机,常用1000KN以下。
闭式:机身为框架结构,机身前后敞开,两侧封闭,在前后两面进行模具安装和成形操作,机身手里变形后,产生垂直变形,可以用模具闭合高度调节差消除,对制件精度和模具运行精度不产生影响,适用于大中型曲柄压力机。
(1)位为类代号,J代表机械类,Y表示液压机,(2)为变形代号设计(3)位为压力机组别,2为开式,3位闭式(4)位为压力机型别,1型为固定台式曲柄压力机,2型为活动台式(5)位为分隔符,以横线表示(6)位为设备工作能力,160代表标称压力为160*10=1600KN (7)位为改进设计代号,对设备的结构和性能所做的改进,依次位A,B,C6.实际情况下曲柄滑块机构受力:1滑块与导轨面处,摩擦力与运动方向相反且是单面受力。
2曲柄支承颈d0和轴承之间的摩擦,由于摩擦产生的阻力力矩,3曲柄颈和连杆大端轴承之间的摩擦同曲柄支撑处阻力一样位阻力力矩,4连杆销处连杆小端与滑块支撑处之间的摩擦力矩。
7.装模高度调节方式的特点及应用:1调节连杆长度,特点:结构紧凑,可降低压力机的高度R较大,行程大,组连接球头和支座的加工比较困难需专用设备,降低了弯曲强度。
适用于较大行程的中小型压力机。
2调节滑块高度,特点:载荷分配较合理,有一定的磨损消耗,与球头式连杆相比柱销式连杆的抗弯曲强度提高了,铰接柱销的加工比较方便,适用于大型的压力机,3调节工作台高度,多用于小型压力机。
材料成型技术基础考点总结
第2章铸造定义:熔炼金属、制造铸型并将熔融金属浇入铸型凝固后,获得具有一定形状、尺寸和性能的金属零件或毛坯的成形方法包括砂型铸造和特种铸造两大类优点:工艺适应性强,铸件的结构形状和尺寸和大小几乎不受限制,常用的合金都能铸造;原材料来源广泛,价格低廉,设备投资较少应用:适于制造形状复杂、特别是内腔形状复杂的零件或毛坯,尤其是要求承压、抗振或耐磨的零件。
缺点:工艺因素影响较大,铸件易出现浇不到、缩孔、气孔、裂纹等缺陷,组织疏松,晶粒粗大。
质量不稳定,一般情况下,铸件的力学性能远不及塑性成形件金属液的充型能力:金属液充满铸型型腔,获得轮廓清晰、形状、准确的铸件的能力。
充型能力差的液态合金易产生浇不到和冷隔等缺陷。
取决于液态金属的流动性、铸型条件、浇注条件1.金属的流动性:金属液本身的流动能力,流动性好则充型能力强,易于获得轮廓清晰、壁薄而形状复杂的铸件,且易于防止各类铸造缺陷。
衡量:螺旋型流动试样长度影响金属流动性本质因素(1)合金成分:共晶成分和纯金属最好(2)合金的质量热容、密度和热导率:质量热容和密度大,含热量大;流动性好热导率小,散热慢;流动性好影响金属流动性本质因素2.铸型条件铸型的蓄热系数:其值越大,激冷能力越强,金属液保持液态的时间就较短,充型能力越低选用蓄热系数小的造型材料,在型腔壁喷涂料铸型温度:铸型的温度越高,金属液冷却就越慢,保持液态时间就越长铸型中的气体:形成影响充型的气体阻力3.浇注条件浇注温度:浇注温度高,金属液的粘度低,保持液态的时间长。
若温度过高,增大了缩孔、气孔、粘砂等缺陷倾向充型压力:充型压力越大,流动性就越好。
充型压力过大,会造成金属飞溅加剧氧化,及因气体来不及排出而产生气孔、浇不到等缺陷。
注:铸件的结构过于复杂、壁厚过小等,也使金属液充型困难铸型从金属液吸收并储存热量的能力金属的收缩特性:收缩指铸造合金从液态凝固和冷却至室温过程中产生的体积和尺寸的缩减。
收缩较大的合金易产生缩孔、缩松缺陷,以及因铸造应力的出现而易产生变形、裂纹等铸造缺陷。
材料成型技术基础总复习知识点归纳
材料成型技术基础总复习知识点归纳二、铸造1.零件结构分析:筒壁过厚;圆角过渡,易产生应力集中。
2.铸造方法:砂型铸造(手工造型)及两箱造型。
3.选择浇注位置和分型面4.确定工艺参数(1) 铸件尺寸公差:因精度要求不高,故取CT15(2) 要求的机械加工余量(RMA ):余量等级取H 级。
参考表2-6,余量值取5mm ,标注为GB/T 6414-CT15-RMA5(H)(3) 铸件线收缩率:因是灰铸铁件及受阻收缩,取0.8%(4) 起模斜度:因铸件凸缘端为机加工面,增加壁厚式,斜度值1°(5) 不铸出的孔:该铸件6个φ18孔均不铸出(6) 芯头形式:参考图2-39,采用水平芯头零件结构的铸造工艺性:1、基本原则:1) 铸件的结构形状应便于造型、制芯和清理2) 铸件的结构形状应利于减少铸造缺陷3) 对铸造性能差的合金其铸件结构应从严要求2、铸造性能要求:1) 铸件壁厚应均匀、合理(外壁>内壁>肋(筋))2) 铸件壁的连接(圆角过渡、避免交叉和锐角、避免壁厚突变)3) 防止铸件变形(结构尽量对称)4) 避免较大而薄的水平面5) 减少轮形铸件的内应力(避免受阻收缩)3、铸造工艺要求:1)外形铸件外形分型面应尽量少而平;避免局部凸起或凹下侧凹和凸台不应妨碍起模;垂直于分型面的非加工面应具有结构斜度2)内腔尽量采用开放式、半开放式结构;应利于型芯的固定、排气和清理3)大件和形状复杂件可采用组合结构三、塑性成形金属塑性成形的方法:锻造、冲压、挤压、轧制、拉拔自由锻1、零件结构分析2、绘制锻件图(余块、余量、公差)3、确定变形工序(镦粗、冲孔、芯轴、拔长、弯曲、切肩、锻台阶)4、计算坯料质量(mo= (md+mc+mq) (1+δ))和尺寸(首工序镦粗:D0≥0.8 拔长:D0≥ 零件结构的自由锻工艺性1)应避免锥形或楔形,尽量采用圆柱面和平行面,以利于锻造2)各表面交接处应避免弧线和曲线,尽量采用直线或圆,以利于锻制3)应避免肋板或凸台,以利于减少余块和简化锻造工艺4)大件和形状复杂的锻件,可采用锻—焊,锻—螺纹联接等组合结构模锻1、零件结构分析(分模面、结构斜度、圆角过渡、腹板厚度)2、绘制锻件图(余块、机械加工余量、锻件公差、模锻斜度、模锻圆角)3、确定变形工步(镦粗、拔长、滚压、弯曲、预锻、终锻)4、修整工序选择(切边、冲连皮、校正、热处理(正火或退火)、清理) 30V max Dy零件结构的模锻工艺性1)应有合理的分模面,以保证锻件从模膛中取出又利于金属填充、减少余块和易于制模2)与分模面垂直的非加工面应有结构斜度,以利于从模膛中取出锻件(圆角过渡,利金属流动,防应力集中)3)应避免肋的设置过密或高宽比过大,利于金属充填模膛4)应避免腹板过薄,以减小变形抗力以及利于金属填充模膛5)应尽量避免深孔或多孔结构,以利于制模和减少余块6)形状复杂性件宜采用锻—焊、锻—螺纹联接等组合结构,以利于模具和减少余块冲压(冲裁、弯曲、拉深、缩口、起伏和翻孔)冲裁:落料模:D凹≈(Dmin)D凸≈(D凹-Zmin)冲孔模:d凸≈(dmax)d凹≈(d凸+Zmin)弯曲:工件内侧圆角半径≥凸模圆角半径、弯曲件毛坯长度拉伸:拉深间隙、拉伸模尺寸、毛坯直径、拉深次数冲压工序:1)带孔平板件:单工序:先落料后冲孔,连续模:先冲孔后落料2)带孔的弯曲件或拉深件:热处理、拉深/弯曲、冲孔3)形状复杂的弯曲件:先弯两端、两侧,后弯中间模具:单工序模、复合模、连续模1、零件结构分析:孔边距过小,宜加大2、冲裁间隙:取大间隙Z/2=(10%~12.5%)δ故Z=0.30~0.38mm模具刃口尺寸:落料模:D凹≈(Dmin)=33.2 D凸≈(D凹-Zmin)=32.9冲孔模:d凸≈(dmax)=26.7 d凹≈(d凸+Zmin)=273、冲压工序选择工序类型:平板件,冲孔和落料工序工序顺序:大批量,先冲孔后落料4、模具类型:精度要求不高且为大批量生产,采用连续模零件结构的冲压工艺性1)材料:尽量选用价格较低的材料2)精度和表面质量:3)冲压件的形状和尺寸1)冲裁件:①形状尽可能简单、对称②圆弧过渡、避免锐角③注意孔形、孔径、孔位2)弯曲件:①形状②h、a、c≥2δ、l≥r+(1~2)δ、R/r≥0.5δ③冲孔槽防止孔变形④位置3)拉深件:①形状②转角l≥R/r+0.5δ、R≥2~4δ、r≥2δ③位置④组合工艺、切口工艺四、连接成形焊接头力学性能:相变重结晶区、焊缝金属区、母材、不完全重结晶区、熔合区、过热区焊接残余应力:调节1)设:减少焊缝的数量和尺寸并避免焊缝密集和交叉;采用刚性较小的接头2)工:合理的焊接顺序(先内后外、先短后长、交叉处不起头收尾)、降低焊接接头的刚性、加热减应区、锤击焊缝、预热和后热2、消除:1)去应力退火2)机械拉伸法3)温差拉伸法4)振动法3、焊接残余变形控制和矫正:(收缩变形、角变形、弯曲变形、扭曲变形、失稳变形)1)设:尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状2、合理安排焊缝位置2)工:反变形法、刚性固定法、合理选用焊接方法和焊接规范、选用合理的装配焊接顺序材料的焊接性:(材料的化学成分、焊接方法、焊接材料、焊件结构类型、服役要求)焊接性评价:碳当量、冷裂纹敏感系数公式金属材料的焊接:1、碳钢:(①淬硬组织、裂纹;②预热和后热;③低氢型焊条、碱度较高的焊剂;④去应力退火或高温回火)1)低碳钢、强度低的低合金结构钢:各种方法,无需采用任何工艺措施方便施焊2)中碳钢:①易②③④小电流、低焊速和多层焊。
排版好的材料成形知识点总结
铸造:让金属液流入并凝固在预先制备的铸型中,获得特定形状的毛坯或零件(铸件)的方法或技术。
浇注系统:液态金属流入型腔的通道力学特性:1. 粘性流体流动:液态金属是有粘性的流体。
液态金属的粘性与其成分有关,在流动过程中又随液态金属温度的降低而不断增大,当液态金属中出现晶体时,液体的粘度急剧增加,其流速和流态也会发生急剧变化。
2. 不稳定流动:在充型过程中液态金属温度不断降低而铸型温度不断增高,两者之间的热交换呈不稳定状态。
随着液流温度下降,粘度增加,流动阻力也随之增加;加之充型过程中液流的压头增加或和减少,液态金属的流速和流态也不断变化,导致液态金属在充填铸型过程中的不稳定流动。
3. 多孔管中流动:由于砂型具有一定的孔隙,可以把砂型中的浇注系统和型腔看作是多孔的管道和容器。
液态金属在“多孔管”中流动时,往往不能很好地贴附于管壁,此时可能将外界气体卷入液流,形成气孔或引起金属液的氧化而形成氧化夹渣。
4. 湍流流动:生产实践中的测试和计算证明,液态金属在浇注系统中流动时,其雷诺数Re 大于临界雷诺数Re临,属于湍流流动。
浇注系统:浇口杯的作用:承接来自浇包的金属液,防止金属液飞溅和溢出,便于浇注;减轻液流对型腔的冲击;分离渣滓和气泡,阻止其进入型腔;增加充型压力头。
直浇道的作用:将来自浇口杯的液流引入横浇道、内浇道或直接进入型腔。
2)、液态金属在直浇道中的流动特征:负压、离壁,容易吸入空气;控制方法:增大流动阻力、降低流动速度、减小直浇道尺寸。
浇口窝的作用有:1)缓冲作用。
2)缩短拐弯处的高度紊流区。
3)改善内浇道的流量分布。
4)减少浇道拐弯处的局部阻力系数和水头损失。
横浇道是连接直浇道和内浇道的中间通道,它的功用主要有稳流、分配液流和挡渣三个方面。
影响上浮速度和横浇道挡渣作用的主要因素有:①、杂质与合金液的密度差越大,渣子越易上浮除去。
②、渣团半径R越大,渣子上浮速度越大,越易除去。
③、合金液在横浇道中的流动速度υ横越大,液流在横浇道中的紊流程度越大,杂质上浮所遇到的干扰越大。
《材料成型》基础知识点
材料成型》基础知识点1.简述铸造生产中改善合金充型能力的主要措施。
(1)适当提高浇注温度。
(2)保证适当的充型压力。
(3)使用蓄热能力弱的造型材料。
如砂型。
(4)预热铸型。
(5)使铸型具有良好的透气性。
2.简述缩孔产生的原因及防止措施。
凝固温度区间小的合金充满型腔后,由于逐层凝固,铸件表层迅速凝固成一硬壳层,而内部液体温度较高。
随温度下降,凝固层加厚,内部剩余液体由于液态收缩和补充凝固层的凝固收缩,体积减小,液面下降,铸件内部产生空隙,形成缩孔。
措施:(1)使铸件实现“定向凝固”,按放冒口。
(2)合理使用冷铁。
3.简述缩松产生的原因及防止措施。
出现在呈糊状凝固方式的合金中或断面较大的铸件中,被树枝状晶体分隔开的液体区难以得到补缩所致。
措施:(1)、尽量选用凝固区域小的合金或共晶合金。
(2)、增大铸件的冷却速度,使铸件以逐层凝固方式进行凝固。
(3)、加大结晶压力。
(不清楚)4.缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止?缩孔和缩松使铸件的有效承载面积减少,且在孔洞部位易产生应力集中,使铸件力学性能下降;缩孔和缩松使铸件的气密性、物理性能和化学性能下降。
缩孔可以采用顺序凝固通过安放冒口,将缩孔转移到冒口之中,最后将冒口切除,就可以获得致密的铸件。
而铸件产生缩松时,由于发达的树枝晶布满了整个截面而使冒口的补缩通道受阻,因此即使采用顺序凝固安放冒口也很无法消除。
5.什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合?定向凝固就是在铸件上可能出现缩孔的厚大部位安放冒口,使铸件上远离冒口的部位先凝固然后是靠近冒口的部位凝固,最后才是冒口本身的凝固。
同时凝固,就是采取必要的工艺措施,使铸件各部分冷却速度尽量一致。
实现定向凝固的措施是:设置冒口;合理使用冷铁。
它广泛应用于收缩大或壁厚差较大的易产生缩孔的铸件,如铸钢、高强度铸铁和可锻铸铁等。
实现同时凝固的措施是:将浇口开在铸件的薄壁处,在厚壁处可放置冷铁以加快其冷却速度。
材料成型原理期末知识点总结
1.液体的表观特征具有流动性(液体最显著的性质);可完全占据容器的空间并取得容器内腔的形状(类似于气体,不同于固体); 不能够象固体那样承受剪切应力,表明液体的原子或分子之间的结合力没有固体中强(类似于气体,不同于固体);具有自由表面(类似于固体,不同于气体); 液体可压缩性很低(类似于固体,不同于气体)。
2.液体: 长程无序近程有序(短程有序) 3.4.每个原子在三维方向都有相邻原子,频繁相互碰撞而交换能量。
每时每刻都有一些原子能量超过(或低于)原子平均能量(“能量起伏”),即原子能量的不均匀性。
5.由于“能量起伏”,一部分金属原子(离子)从某个团簇中分化出去,同时又会有另一些原子组合到该团簇中,此起彼伏,不断发生着这样的涨落过程,似乎原子团簇本身在“游动”一样,团簇的尺寸及其内部原子数量都随时间和空间发生着改变,这种现象称为“结构起伏”。
6.温度越高原子团簇平均尺寸越小。
7.“浓度起伏”——同种元素及不同元素之间的原子间结合力存在差别,结合力较强的原子容易聚集在一起,把别的原于排挤到别处,表现为游动原子团簇之间存在着成分差异。
8.黏度η定义:当液态金属在外力作用下流动时,由于分子间存在内聚力,因此使液体内部产生内摩擦力,以阻碍液层间的相对滑动。
液体的这种性质称为粘滞性,用黏度表征。
dy dV X(作用于液体表面的应力τ大小与垂直于该平面方向上的速度梯度的比例内摩擦阻力越大,液体越不容易流动,液体的黏度越大。
9.液态金属的黏度及其影响因素:Tk U Tk B exp203b①液体的原子之间结合力越大,则内摩擦阻力越大,黏度也就越高;黏度随原子间距δ增大而降低,但总的趋势随温度T 而下降;②如果混合热H 为负值,合金元素的增加会使合金液的黏度上升;③若溶质与溶剂在固态形成金属间化合物,则合金液的粘度将会明显高于纯溶剂金属液的粘度,因为合金液中存在异类原子间较强的化学结合键;④表面活性元素(如向Al-Si 合金中添加的变质元素Na )使液体粘度降低,非表面活性杂质的存在使粘度提高。
材料成型技术基础复习重点
1.11.常用的力学性能判据各用什么符号表示?它们的物理含义各是什么?塑性,弹性,刚度,强度,硬度,韧性1.2金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。
细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。
合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。
固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。
1.3铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体1.4钢的牌号和分类影响铸铁石墨化的因素主要有化学成分和冷却速度1.5塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。
热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。
热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。
橡胶橡胶是可改性或已被改性为某种状态的弹性体。
1.6复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。
通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。
1.8工程材料的发展趋势据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。
今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。
2.0材料的凝固理论凝固:由液态转变为固态的过程。
结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。
粗糙界面:微观粗糙、宏观光滑;将生长成为光滑的树枝;大部分金属属于此类光滑界面:微观光滑、宏观粗糙;将生长成为有棱角的晶体;非金属、类金属(Bi、Sb、Si)属于此类偏析:金属凝固过程中发生化学成分不均匀的现象宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象2.1铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、焊接部分1.焊接是通过局部加热或同时加压,并且利用或不用填充材料,使两个分离的焊件达到牢固结合的一种连接方法。
实质——金属原子间的结合。
2.应用:制造金属结构件;2、生产机械零件;3、焊补和堆焊。
3.特点:与铆接相比1 . 节省金属;2 . 密封性好;3 . 施工简便,生产率高。
与铸造相比 1 . 工序简单,生产周期短;2 . 节省金属; 3 . 较易保证质量4.焊条电弧焊:焊条电弧焊(手工电弧焊)是用电弧作为热源,利用手工操作焊条进行焊接的熔焊方法,简称手弧焊,是应用最为广泛的焊接方法。
5.焊接电弧:焊接电弧是在电极与工件之间的气体介质中长时间稳定放电现象,即局部气体有大量电子流通过的导电现象。
电极可以是焊条、钨极和碳棒。
用直流电焊机时有正接法和反接法.6.引弧方式接触短路引弧高频高压引弧7.常见接头形式:对接搭接角接T型接头8.保护焊缝质量的措施:1、对熔池进行有效的保护,限制空气进入焊接区(药皮、焊剂和气体等)。
2、渗加有用合金元素,调整焊缝的化学成分(锰铁、硅铁等)。
3、进行脱氧和脱磷。
9.牌号J×××J-结构钢焊条××-熔敷金属抗拉强度最低值×-药皮类型及焊接电源种类10.焊缝由熔池金属结晶而成。
冷却凝固后形成由铁素体和少量珠光体组成的柱状晶铸态组织。
11.热影响区的组织过热区正火区部分相变区熔合区12.影响焊缝质量的因素影响焊缝金属组织和性能的因素有焊接材料、焊接方法、焊接工艺参数、焊接操作方法、焊接接头形式、坡口和焊后热处理等。
13.改善焊接热影响区性能方法:1.用手工电弧焊或埋弧焊焊一般低碳钢结构时,热影响区较窄,焊后不处理即可保证使用。
2.重要的钢结构或用电渣焊焊接构件,要用焊后热处理方法消除热影响区。
3.碳素钢、低合金结构钢构件,用焊后正火消除。
4.焊后不能接受热处理的金属材料或构件,要正确选择焊接方法与焊接工艺。
14.常见的焊接缺陷裂纹夹渣未焊透未熔合焊瘤气孔咬边15.焊接应力的产生及变形的基本形式收缩变形弯曲变形波浪变形扭曲变形角变形16.焊接应力与变形产生的原因焊接过程中,对焊件进行了局部不均匀的加热是产生焊接应力与变形。
17.防止和减少焊接变形的措施:可以从设计和工艺两方面综合考虑来降低焊接应力。
在设计焊接结构时,应采用刚性较小的接头形式,尽量减少焊缝数量和截面尺寸,避免焊缝集中等。
18.矫正焊接变形的方法机械矫正法火焰加热矫正法19.坡口:焊件较薄时,在焊件接头处只需留出一定的间隙,用单面焊或双面焊,就可以保证焊透。
焊件较厚时,为保证焊透,需预先将接头处加工成一定几何形状的坡口。
20.焊缝位置:熔焊时,焊缝所处的空间位置称为焊接位置。
它有平焊、立焊、横焊和仰焊等四种。
21.埋弧自动焊的焊接电弧是在熔剂下燃烧,其引弧,维持一定弧长和向前移动电弧等主要焊接动作都由机械设备自动完成,故称为埋弧自动焊。
22.埋弧自动焊特点:1.生产率高2.焊缝质量好3.节省焊接材料和电能4.改善了劳动条件5.焊件变形小6.设备费用一次性投资较大。
但由于埋弧焊是利用焊剂堆积进行焊接的,故只适用于平焊和直焊缝,不能焊空间位置焊缝及不规则焊缝。
23.自动焊工艺:仔细下料、清洁表面、准备坡口和装配点固。
24.气体保护焊:用外加气体作为电弧介质并保护电弧和焊接区的电弧焊。
按照保护气体的不同,气体保护焊分为两类:使用惰性气体作为保护的称惰性气体保护焊,包括氩弧焊、氦弧焊、混合气体保护焊等;使用CO2气体作为保护的气体保护焊,简称CO2焊。
特点:保护气体廉价,成本低;热量集中,焊速快,不用清渣,生产率高;明弧操作,焊接方便;热影响区小,质量好,尤其适合焊接薄板。
主要用于30mm 以下厚度的低碳钢和部分合金结构钢。
缺点是熔滴飞溅较为严重,焊缝不光滑,弧光强烈操作不当,易产生气孔。
焊接工艺规范:采用直流反接,低电压(小于36V)和大电流密度。
25. CO2气体保护焊的特点:生产率高(2)焊渣少(3)焊接变形和内应力小(4)操作简便(5)抗锈能力强(6)适用范围广不仅能焊薄板,也能焊中厚板,焊件厚度最厚可达50?mm(对接形式),同时可全位置焊接。
(7)采用Si、Mn含量较高的焊丝,还可脱氧和渗合金。
C02气体保护焊的不足之处是飞溅大、弧光强、抗风力弱、很难用交流电源焊接,以及CO2气体保护焊设备复杂等。
26.氩弧焊是利用惰性气体—氩气保护的一种弧焊方法。
利用从喷嘴中喷出的氩气,在电弧区形成一个连续封闭的氩气层,使电极和金属熔池与空气隔绝,防止氧、氮等有害气体侵入,起保护作用。
同时,氩气是一种惰性气体,既不易与金属起化学反应,也不溶解于液体金属中,因此母材中的合金元素不会烧损,焊缝不易产生气孔,焊接质量较高。
氩弧焊特点:(1)氩气保护性能优良(2)焊接变形与应力小(3)氩弧焊是明弧操作,熔池可见性好,便于观察,技术容易掌握。
27.气焊是利用气体火焰加热熔化焊件接头和焊丝的一种焊接方法。
28.切割:金属切割除机械切割外,常用的还有氧乙炔切割、等离子弧切割和激光切割等。
利用氧-乙炔焰热能将被切割金属预热到燃点,再通高压氧射流,使金属在高温纯氧中剧烈燃烧并放热,借助氧射流的压力将切割处的氧化物熔渣吹走,形成切口。
29.氧一乙炔切割的条件:1)金属的燃点必须低于其熔点,不然金属在未燃烧前被熔化,不能实现整齐地切割。
2)金属氧化物的熔点应低于金属本身的熔点,不然高熔点的氧化物会阻碍下层金属与切割氧射流的接触,使切割困难。
3)金属燃烧时应能产生大量的热,保证下层金属有足够的预热温度。
30.电渣焊是利用电流通过液体熔渣所产生的电阻热将焊件和焊丝(电极)熔化形成焊缝的。
特点:电渣焊不需开坡口 2 . 焊缝质量好 3 . 焊剂及电能消耗少4 . 焊后一般要热处理 5 . 对电极材料要求高31.电阻焊是利用电流通过焊件及其接触处产生的电阻热,将焊件局部加热到塑性状态或部分熔化状态,然后在压力下形成焊接接头的焊接方法。
分类:点焊缝焊对焊32.对焊:利用电阻热使两个工件在整个断面上焊接起来的一种方法。
特点(1) .操作简便(2) .被焊工件焊前要求高(3) .焊接质量不易保证。
应用:仅用于断面简单强度要求不高工件33.摩擦焊:利用工件相互高速旋转产生的热量同时加压进行焊接的一种方法。
特点应用:1 .接头质量好2 .可焊范围广3 .不需填充金属4 .需灵敏制动装置5 .用于圆形工件、棒料及管子的对接。
34. 钎焊是将熔点比焊件低的钎料熔化后作为填充金属而将固态焊件联结起来的一种焊接方法。
分类(根据钎料熔点的不同)硬钎焊,软钎焊35.时间极短,以毫秒或微秒计,所以即使局部温度高达3000C,但焊接仍是一个“冷过程”2)爆炸焊接头具有双重连接的特点,既有冶金特点的连接,又有犬牙交错的机械连接,故接头强度较高。
3)不需要复杂的设备,工艺简单,成本低,使用方便。
4)噪声大,制造大面积复合板需较大场地。
5)对冲击韧度低、塑性很差的金屑不能采用爆炸焊36.影响金属材料焊接性的因素:焊接性主要取决于金属材料的化学成分和物理性能等1).材料因素,是指母材和焊材(焊条、焊丝)的成分;2).工艺因素,是指焊接方法、坡口形式和加工质量、装配质量、电源种类和电极等;3).结构因素,是指设计时应考虑焊接接头处于刚度较小状态,避免出现截面突变、交叉焊缝等容易引起应力集中的结点;4).使用条件,是指工作温度、工作介质、载荷性质等。
二、锻造部分1.通过金属坯料在压力(冲击力、静压力)作用下产生塑性变形,获得具有一定形状、尺寸和力学性能的毛坯或零件的方法称为锻压生产。
锻(造)(冲)压主要包括锻造和冲压两种方式(自由锻造、模型锻造、冲压、挤压和辗轧等)。
2.锻造是使金属坯料在热态下经过压力加工获得锻件的工艺方法。
锻件的冲击韧性优于铸件。
应用:机床主轴、齿轮、内燃机曲轴、连杆、涡轮机叶轮、起重吊钩、轴承圈等重要的、受力大的机械零件的毛坯。
3. 冲压生产一般是在冷态下采用冲压模具对金属薄板加压使其产生变形或分离,所获得的制品称为冲压件。
应用:汽车和拖拉机的覆盖件、油箱、链片、弹壳、机罩、垫圈及日用品和型材等。
4.特点:1.制件组织紧密,力学性能高;2.除自由锻造外,生产率都比较高;3.材料的利用率高。
4.锻压所用的金属材料应具有良好的塑性。
5.固态下成形,不能获得形状很复杂(特别是内腔)的制品。
5.应用:轧制、挤压、拉拔——金属型材、板材、钢材、线材等;自由锻、模锻——承受重载的机械零件,如机器主轴、重要齿轮、炮管、枪管等;板料冲压——汽车制造、电器、仪表及日用品。
6.金属锻造加热时允许的最高温度称为始锻温度,停止锻造的温度称为终锻温度7.冷变形强化(加工硬化)金属材料在冷塑性变形时,其强度、硬度升高,而塑性、韧性下降的现象(变形量增加,强化效果更明显)。
产生原因:滑移面上产生了微小碎晶,晶格畸变。
(内应力)加工硬化的应用:提高强度、使变形均匀、提高安全性。
8.塑性变形可分为冷变形和热变形。
在再结晶温度以下的变形称为冷变形(冷拉、冷轧、冷冲压、冷挤压等). 在再结晶温度以上的变形称为热变形(锻造、热轧等).9.金属的冷塑性变形对组织结构和性能的影响:对组织结构的影响:冷塑性变形使金属晶粒的晶格畸变,位错增加,位错密度升高,形成纤维组织;对性能的影响:使金属的硬度、强度增加,塑性、韧性降低。
特点:工件的尺寸、形状精度高,表面质量好,材料硬度、强度提高,劳动条件好;但变形抗力大,变形程度小,内部残余应力大,必须进行再结晶退火后才可继续对其进行加工。
加工形式:冷轧、冷拔、冷镦、冷冲压和冷挤压10.自由锻造是利用冲击力或静压力使金属坯料在锤面与砧面之间自由流动塑性变形的锻造方法。
锻件的形状和尺寸主要靠锻工的操作技术来保证。
分类手工锻造机器锻造特点及应用:1.金属在两砧块之间受力变形是自由流动,用简单的通用工具,靠工人操作成形,灵活性大,成本低。
2.自由锻在打碎粗大的组织,锻合内部缺陷,改善大型锻件内部质量,提高力学性能方面具有独特作用。
3.生产率低,劳动强度大,对工人技术水平要求高。
4.只能锻造形状简单的锻件,尺寸、形状精度低,表面粗糙,金属消耗量大,加工余量大。
自由锻工序:1) 基本工序2) 辅助工序3) 精整工序基本工序:(1) 镦粗(2) 拔长(3) 冲孔(4) 弯曲(5) 扭转(6) 错移(7) 切割11.胎模锻是在自由锻设备上利用胎模生产模锻件的工艺方法(即用自由锻方法制坯,在胎模内成型)。
特点及应用:胎模锻兼有自由锻和模锻的特点。
胎模锻广泛应用于中小批量、小型多品种的锻件。
12.1.胎模不固定在设备上,使用方便2.锻模结构简单,制造容易,成本低3.锻件形状准确、尺寸精度较高,表面质量较好4.生产率较高应用——没有模锻设备的工厂,中、小批量及小型多品种锻件的生产。