第七章变压器

第七章变压器
第七章变压器

项目六、变压器

1 变压器的构造

2 变压器的工作原理

一、变压器的构造

1、变压器的分类

1)按用途分:电力变压器、专用电源变压器、调压变压器、测量变压器、隔离变压器。

2)按结构分:双绕组变压器、三绕组变压器、多绕组变压器已经自耦变压器。

3)按相数分:单相变压器、三相变压器和多相变压器。

2、变压器的构造

基本构造:由铁心和绕组构成。

铁心是变压器的磁路通道,是用磁导率较高且相互绝缘的硅钢片制成,以便减少涡流和磁滞损耗。按其构造形式可分为心式和壳式两种,如图1(a)、(b)所示。

图1 心式和壳式变压器

线圈是变压器的电路部分,是用漆色线、沙包线或丝包线绕成。其中和电源相连的线圈叫原线圈(初级绕组),和负载相连的线圈叫副线圈(次级绕组)。

3、额定值及使用注意事项

1)额定值

①额定容量——变压器二次绕组输出的最大视在功率。其大小为副边额定电流的乘积,一般以千伏安表示。

②原边额定电压——接到变压器一次绕组上的最大正常工作电压。

③二次绕组额定电压——当变压器的一次绕组接上额定电压时,二次绕组接上额定负载时的输出电压。

2)使用注意事项

①分清一次绕组、二次绕组,按额定电压正确安装,防止损坏绝缘或过载。 ②防止变压器绕组短路,烧毁变压器。

③工作温度不能过高,电力变压器要有良好的绝缘。

二、变压器的工作原理

变压器是按电磁感应原理工作的,原线圈接在交流电源上,在铁心中产生交变磁通,从而在原、副线圈产生感应电动势,如图2所示。 1、变压器的空载运行和变压比

如图2所示,设原线圈匝数为N 1,端电压为U 1;副线圈匝数为N 2,端电压

为U 2。则,原、副线圈(一次、二次绕组)电压之比等于匝数比,即

n N N U U ==2

1

21 (1)

n 叫做变压器的变压比或变化。

注意:上式在推导过程中,忽略了变

压器原、副线圈的内阻,所以上式为理想变压器的电压变换关系。 2、变压器的负载运行和变流比

在图2的副线圈端加上负载|Z 2|,流过负载的电流为I 2,分析理想变压器原线

圈、副线圈的电流关系。

将变压器视为理想变压器,其内部不消耗功率,输入变压器的功率全部消耗

在负载上,即

2211I U I U =

将上式变形带入(式7-1),可得理想变压器电流变换关系

n

N N U U I I 1

121221=== (2)

3、变压器得阻抗变换作用

设变压器初级输入阻抗为|Z 1|,次级负载阻抗为|Z 2|,则

1

1

1I U Z =

图2 变压器空载运行原理图

将21

212211 I N N I U N N U ==

,代入,得 2

2

2

211I

U N N Z ???? ??= 因为 22

2Z I U =

所以 2222

21

1Z n Z N N

Z =???? ??=

22

1n Z Z =

(3)

可见,次级接上负载|Z 2|时,相当于电源接上阻抗为n 2|Z 2|的负载。变压器的这种阻抗变换特性,在电子线路中常用来实现阻抗匹配和信号源内阻相等,使负载上获得最大功率。

III.例题讲解,巩固练习

【例题1】有一电压比为220/110 V 的降压变压器,如果次级接上55 Ω 的电阻,求变压器初级的输入阻抗。

解1:次级电流 Α255

1102

22===Z U I

初级电流 Α2110

220

2121==≈=

U U N N n Α12

2

21===

n I I 输入阻抗 Ω===

2201

220

111I U Z 解2:变压比 2110

2202121==≈=

U U N N n 输入阻抗

Ω=?==???

? ??≈2205542222

2

1

1Z n Z N

N Z

3 变压器的功率和效率

4 几种常用变压器

一、变压器的功率和效率

1、变压器的功率

实际变压器在工作时,必然存在功率损失。变压器的功率消耗等于原边输入功率1111cos ?I U P =和副边输出功率2222cos ?I U P =之差,及

21P P P -=?

变压器的功率损耗包括铜损和铁损两部分,它们可以通过计算或这使用的方

法求出。

①铜损是由于原、副边有电阻,电流在电阻上要消耗一定的功率。 ②铁损是由于交变的主磁通在铁心中产生的磁滞损耗和涡流损耗。

2、变压器的效率

变压器的效率为变压器输出功率与输入功率的百分比,即

%1001

2

?=

P P η (4)

大容量变压的效率可达98% ~ 99%,小型电源变压器效率约为70% ~ 80%。 二、几种常用变压器 1、自耦变压器

自耦变压器原、副线圈共用一部分绕组,它们之间不仅有磁耦合,还有电的关系,如图3所示。

原、副线圈电压之比和电流之比的关系为

n N N I I U U =≈=2

1

1221 注意:

① 自耦变压器在使用时,一定要注意正确接线,否则易于发生触电事故。 ② 接通电压前,要将手柄转到零位。接通电源后,渐渐转动手柄,调节出

所需要的电压。 1、 小型电源变压器

图 3 自耦变压器符号及原理

小型电源变压器广泛应用与电子仪器中。它一般有一至二个一次绕组和几个不同的二次绕组,可以根据实际需要联结组合,以获得不同的输出电压。 指导学生自己分析教材图(7)(a)、(b),指出各有哪几种工作方式,可以获得哪几种输出电压。

2、 互感器

互感器是一种专供测量仪表,控制设备和保护设备中高电压或大电流时使用的变压器。可分为电压互感器和电流互感器两种。

1)电压互感器

使用时,电压互感器的高压绕组跨接在需要测量的供电线路上,低压绕组则与电压表相连,如图4所示。

可见,高压线路的电压U 1等于所测量电压U 2和变压比n 的乘积,即U 1=nU 2 注意:

(1) 次级绕组不能短路,防止烧坏次级绕组。

(2) 铁心和次级绕组一端必须可靠的接地,防止高压绕组绝缘被破坏时而造成设备的破坏和人身伤亡。

2)电流互感器

使用时,电流互感器的初级绕组与待测电流的负载相串

连,次级绕组则与电流表串联成闭和回路,如图5所示。

通过负载的电流就等于所测电流和变压比倒数的乘积。 注意:

(1) 绝对不能让电流互感器的次级开路,否则易造成危险;

(2) 铁心和次级绕组一端均应可靠接地。

常用的钳形电流表也是一种电流互感器。

它是由一个电流表接成闭合回路的

图4 电压互感器

图5 电流互感器

图6 钳形电流表

次级绕组和一个铁心构成,其铁心可开、可合。测量时,把待测电流的一根导线放入钳口中,电流表上可直接读出被测电流的大小,如图6所示。

3、 三相变压器

三相变压器就是三个相同的单相变压器的组合,如图7所示。三相变压器用于供电系统中。根据三相电源和负载的不同,三相变压器初级和次级线圈可接成星形或三角形。

三相变压器的每一相,就相当于一个独立的单相

变压器。单相变压器的基本公式和分析方法,使用与三相变压器中的任意一相。

4、 变压器铭牌数据

在变压器外壳上均有一块铭牌,要安全正确的使用变压器,必须掌握铭牌各个数据的含义。 ① 型号

用以表明变压器的主要结构、冷却方式、电压和容量等级等等。

如SJL-560/10中:S 表示三相,单相变压器用D 表示;J 表示油浸自冷式冷却方式,风冷式用F 表示;L 表示装有避雷装置;560表示容量为560kV·A ;10表示高压绕组额定电压为10kV 。 ② 额定电压

变压器空载时的电压,三相变压器指线电压。 ③ 额定电流

变压器正常运行时允许通过的最大电流,三相变压器指线电流。 ④ 额定容量

额定容量指变压器的额定输出视在功率S 。在单相变压器中S =U 2I 2;在三相变压器中,223I U S 。 ⑤ 温升

温升是指变压器某些部分与周围环境的温差,变压器所允许的温升由材料的绝缘等级来定。变压器运行时,要注意其温升,确保安全运行。 III.例题讲解,巩固练习

图7 三相变压器

【例题1】有一变压器初级电压为2200 V ,次级电压为220 V ,在接纯电阻

性负载时,测得次级电流为10 A ,变压器的效率为95%。 试求它的损耗功率,初级功率和初级电流。

解:次级负载功率 P 2 = U 2I 2cos ?2 = 220?10 = 2200 W 初级功率 W 231695

.02200

2

1≈=

=

η

P P 损耗功率 P L = P 1 – P 2 = 2316 – 2200 = 116W 初级电流 Α05.12200

2316111≈==U P I

控制电机第三版课后习题答案

第二章 1. 为什么直流发电机电枢绕组元件的电势是交变电势而电刷电势是直流电势 P25 2. 如果图2 - 1中的电枢反时针方向旋转, 试问元件电势的方向和 A 、 B 电刷的极性如何 P7 3. 为了获得最大的直流电势, 电刷应放在什么位置 的电刷放在磁极轴线上 P 9-10 4. 为什么直流测速机的转速不得超过规定的最高转速 5. 如果电刷通过换向器所连接的导体不在几何中性线上, 上, 如图2 - 29 输出特性的影响。 6. 具有16个槽, (1) (2) (3) (4) 会出现什么问题 为什么端部对称的鼓形绕组 负载电阻不能小于给定值 而在偏离几何中性线 分析在此情况下对测速机正、 (见图2 - 3) P23 a 角的直线 反转的 所示,试综合应用所学的知识, (提示:在图中作一辅助线。)正反向特性不一致。 16个换向片的两极直流发电机结构如图 2 - 30所示。 试画出其绕组的完整连接图; 试画出图示时刻绕组的等值电路图; 若电枢沿顺时 针方向旋转, 试在上两图中标出感应电势方向和电刷极性; 如果电刷不是位于磁极轴线上, 例如顺时针方向移动一个换向片的距离, ~魚、—_A 2~A__4<5~~p- L 5 卫 J _臂駅 --- W.——Wv ~_W J _Wv ~VA _■- 第三章 7 8 9 10 11 12 1.直流电动机的电磁转矩和电枢电流由什么决定 答 电也电渝嘉的农示式: / _匕一凤小 直流电动机的电枢电流不仅取决于外加电压和本身的内阻,而且还取决于与转速成 正比的反电势(当=常数时) 根据转矩平衡方程式, 当负载转矩不变时, 电磁转矩不变; 加上励磁电流If 不 变,磁通①不变, 所以电枢电流Ia 也不变,直流电动机的电磁转矩和电枢电流由直流电 动机的总阻转矩决定。 T 二T 厂兀 2.如果用直流发电机作为直流电动机的负载来测定电动机的特性 当其他条件不变,而只是减小发电机负载电阻 么原因 RL 时,电动机的转速就下降。 (见图3 - 33),就会发现, 试问这是什 ^发 —— 如果励磁电流和被拖动的负载转矩都不变, 转速变化怎样 n 而仅仅提高电枢端 尺发 1 a 发 3. 一台他励直流电动机, 电压,试问电枢电流、 答:最终电枢电流不变,转速升高 4.已知一台直流电动机, 其电枢额定电压 Ua=110 V ,额定运行时的电枢电流 la= A ,转 速n=3600 r/m in,它的电枢电阻 Ra=50 Q, 空载阻转矩T0=15 mN m 。 试问该电动机额定 负载转矩是多少

第四章旋转变压器

第四章 旋转变压器 工作原理:一、二次绕组的电磁感应耦合程度由转子的转角决定。当旋转变压器的一次侧外施单相交流电压励磁时,二次侧的输出电压将与转子转角严格保持某种函数关系。 第一节 旋转变压器的结构特点和分类 结构: 旋转变压器的典型结构由定子和转子两部分构成。 铁心:高磁导率的铁镍软磁合金片或硅钢片经冲制、绝缘、叠装而成。定、转子之间的气隙是均匀的,绕组:两个轴线在空间互相垂直的分布绕组。 转子绕组引出线和滑环相接,滑环应有四个,固定在转轴的一端, 分类: 按照输出电压和转子转角的函数关系来分: 1) 正余弦旋转变压器(代号XZ) 2) 线性旋转变压器(代号XX) 3) 比例式旋转变压器(代号XL) 4) 特殊函数旋转变压器(正切函数、倒数函数、圆函数、对数函数等) 按照电机极对数多少来分:单极对和多极对(可以提高系统的精度)。 按照有无电刷与滑环间的滑动接触来分:接触式和无接触式两类。 第二节 正余弦旋转变压器的工作原理 4.2.1正弦绕组 在旋转变压器中常用的绕组有两种形式,即双层短距分布绕组和同心式正 弦绕组。 双层短距分布绕组能够达到较高的绕组精度并有良好的工艺性,但在绕组中存在一定量的谐波磁动势分量,其所引起的正余弦函数的误差达0.01%-0.07%,再加上工艺因素引起的误差,使旋转变压器的精度受到一定的限制,故双层短距分布绕组只适合对精度要求不很高的旋转变压器。 同心式正弦绕组为高精度绕组,它使各次谐波削弱到相当小,正余弦函数的误差从0.06%降到0.03%以下。缺点为工艺性差,绕组系数低。 正弦绕组是指绕组各元件的导体数沿定子内圆或转子外圆按正弦规律分布的同心式绕组。通常有两种分布形式:第一类是绕组的轴线对准槽的中心线,第二类是绕组的轴线对准齿的中心线。旋转变压器大都采用这两类正弦绕组。 图4-2表示了正弦绕组中各元件在空间沿转子圆周外圆分布的情况及空间磁动势的分布情况。为了使正弦绕组中各元件匝数沿圆周按正弦分布,各元件的匝数应满足 Z )i (cos N N cm ci π 12-= 正弦绕组每相的总匝数为 ])142cos(...3cos [cos 4 1 Z Z Z Z N N N cm Z i ci π ππ-+++==∑= 4.2.2 正余弦旋转变压器的工作原理 正余弦旋转变压器通常为两极结构,定子和转子分别安装两套互相垂直的正弦绕组。 定子绕组:21D D ——励磁绕组,43D D ——交轴绕组(或补偿绕组)。 转子绕组(输出绕组):21Z Z ——正弦绕组,43Z Z ——余弦绕组。定、转子间的气隙是均匀的。 图4-2 正弦绕组 f U α 图4-1 正余弦旋转变压器 的原理示意图

自耦变压器容量算

自耦变压器容量算

————————————————————————————————作者:————————————————————————————————日期:

自耦变压器容量计算 一、二次绕组有共同耦合部分的变压器称为自耦变压器。和普通变压器不同,自耦变压器的绕组之间不仅有磁的联系,还有电的联系。通常,把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组。公共绕组和串联绕组共同组成自耦变压器的高压绕组。 公共绕组和串联绕组是通过电磁感应和电的直接连接两种关系耦合起来的,以改变一、二次电压和在一、二次之间传输电能。自耦变压器的串联绕组和公共绕组一般按同心式放置,因串联绕组与高压系统连接,它常布置在铁芯最外层。自耦变压器常用于高、低电压比较接近的场合,例如连接高电压、大容量且电压等级相差不大的电力系统,在工厂和实验室用作调压器和起动补偿器等。电力系统中,常见的有单相自耦变压器和三相自耦变压器,对超高压特大容量的自耦变压器,因受运输条件的限制一般都做成单相的。 由于普通双绕组变压器的一、二次绕组之间只有磁的联系而没有电的联系,功率的传递全靠电磁感应,因此其铭牌上所标称的额定容量就是绕组的额定容量,它取决于绕组的额定电压和额定电流。绕组容量是通过电磁感应从一次传递给二次的,它的大小决定了变压器的主要尺寸和材料消耗,是变压器设计的依据。

自耦变压器的容量是指它的输入容量或输出容量,与一般双绕组变压器的容量表达式相同,额定运行时为 SN=U1NI1N =U2NI2N (1) 根据串联绕组或公共绕组的电压、电流值,计算可得自耦变压器绕组的容量。 串联绕组的额定容量 (2) 公共绕组的额定容量 (3) 可见,虽然自耦变压器容量的表达式与普通双绕组变压器相同,但自耦变压器的容量却不等于它的绕组容量。公共绕组和串联绕组额定容量相等,但都比自耦变压器的额定容量小,这多出的部分1/kSN称为自耦变压器的传导容量,它是由一次侧通过电路直接传递给负载的,不需增加绕组容量。 综上所述,用自耦变压器联系两种电压网络时,因为一、二次绕组间除了磁的联系外,还存在着电的直接联系,从一次侧到二次侧的功率传递,一部分通过绕组间的电磁感应,一部分直接传导,其容量包括传导容量和电磁容量两部分。 传导容量:通过电路关系直接传递的视在功率,它占总容量的1/k,普通变压器没有这一部分。

第七章变压器

1、 了解变压器的构造和作用; 2、 了解变压器的种类。 3、 培养学生实事求是的专业水平,综合分析水平和使用专业知 识解决实际问题的水平。 4、 培养学生学习专业的兴趣,激发学习专业的热情。 了解变压器的 构造和作用。 教学内容: 导入新课: 由课本导入,在输配电中起着重要作用的一个器件一一变压器 讲授新课: 第一节 变压器的构造 、变压器的用途和种类 变压器工作原理:利用互感原理工作的电磁装置。 I T I " 符号如图所示,T 是它的文字符号。 3 £ 变压器的用途:变换交流电压、变换交流电流、变换交流阻抗、[改变相位。 种类:电力变压器、整流变压器、调压变压器、输入输出变压器等。 、变压器的基本构造 是变压器的磁路通道; 用磁导率较高且相互绝缘的薄硅钢片制成,目的减少涡流和磁滞损耗。 按其构造形式可分为心式和壳式两种,如图 心式:线圈绕铁心,壳式:铁心包线圈。 3、线圈: (1) 是变压器的电路部分,匚 (2) 用漆包线、、沙包线或丝包线绕成Ip (3) 和电源相连的线圈叫原线圈 I 初级绕组H 和负载相连的线圈叫副线圈 (次级绕组)10 (4) 绕制:低压线圈靠近铁心柱内层,高压线圈在外层,为减小漏磁通和分布 电容,线圈应分层、分格并交叉绕制。 (5) 附件:屏蔽罩等 课题 课型 第 课时 §7-1变压器的构造 新授 教学难点 了解变压器的构造和作用。 教学方法 讲授法 教学目的 教学重点 1、 2、 1、 组成:由铁心和线圈两部分构成。 2、 铁心: (1) (2) (3) (a )、(b )所示。

巩固练习: 课本P263页复习思考题

复习导入: 1、变压器的工作原理是什么? 2、变压器有哪些用途? 那么变压器是如何工作的呢?如何实现它的用途的呢?这就是这节课要研究的内容 变压器的工作原理 讲授新课: 变压器的工作原理一一电磁感应原理 工作时,原线圈接在交流电源上,在铁心中产生交变磁通,从而在原、 生自感电动势和互感电动势。 、变换交流电压 原线圈接上交流电压,铁心中产生的交变磁通同时通过原、副线圈,原、 的磁通相同。 1、工作基础; 2、种类、构造。 布置作业: 1、复习; 2、预习第二节《变压器的工作原理》 课后记: 课时 课题 § 7-2变压器的工作原理(1) 课型 新授 教学目的 教学重点 1、 理解变压器的工作原理; 2、 掌握变压器变压、变流的特点。 3、 培养学生实事求是的专业水平,综合分析水平和使用专业知 识解决实际问题的水平。 4、 培养学生学习专业的兴趣,激发学习专业的热情。 ______________ 变压器工作原理 教学难点 变流比的使用 教学方法 讲授法 副线圈中分别产 副线圈中交变 课堂小结:

第七章 电力变压器

第七章电力变压器 一、判断题 1.变压器油枕可减少变压器油氧化和受潮的机会。√ 2.电力变压器中的变压器油主要起绝缘和冷却作用。√ 3.变压器的防爆管有防止因变压器内部严重故障时油箱破裂的作用。√ 4.变压器利用电磁感应原理,把交流输入电压升高或降低为不同频率的交流输出电压。x 5.变压器二次电流是由一次电流决定的。x 6.干式变压器承受冲击过电压的能力较好。x 7.配电变压器按用途分为升压和降压变压器。√ 8.输电主网与电力网间用的变压器多数是降压变压器。x 9.变压器的额定电压为绕组的线电压。√ 10.变压器容量的单位是kW。X 11.变压器型号第二位字母表示冷却方式。√ 12.变压器型号中斜线后面的数字表示变压器高压绕组的额定电压,其单位是kV。√ 13.变压器型号中横短线后面的数字表示变压器的额定容量,其单位是kVA。√ 14.型号为SFP-6300/35变压器中的P表示强迫油循环。√ 15.变压器中性点接地属于保护接地。x 16.接地变压器的绕组相电压中无三次谐波分量。√ 17.变压器的分接开关往丨档方向调整时,可降低二次侧的电压。√ 18.降压配电变压器的二次输出的额定电压要高于用电设备额定电压10%左右。X 19.变压器送电时,尤其是大容量变压器,应在听到空载运行的声响3min后,才能进行下一步操作。√ 20.变压器投入正常运行后,要定期进行巡视和检查。√ 21.并列运行的变压器,若接线组别不同,则会造成短路故障。√ 22.在变压器的保护中,过电流保护是位于后备保护。√ 23.变压器电源侧发生故障时,变压器的瓦斯保护装置应动作。X 24.在35/0.4kV的配电系统中,应在变电器的高低压侧分别装设阀型避雷器作防雷保护。√ 25.变压器的气体继电器安装于油箱和油枕之间。√ 26.大容量变压器应装设电流差动保护代替电流速断保护。√ 27.运行中的电压互感器不允许开路。X 28.电压互感器二次侧的额定电压为100V。√ 29.JDJ-10电压互感器,额定电压为10kV。√ 30.发生线性谐振过电压时,电压互感器铁芯严重饱和,常造成电压互感器损坏。x 31.系统的高低压一次侧负荷电流无论多大,电流互感器的二次电流都统一为1A。X 32.运行中的电流互感器二次侧严禁开路。√ 二、单选题 1.纯净的变压器油具有优良的(B)性能。 A.导热 B.冷却 C.导电 2.变压器防爆管的作用是(B)。 A.使瓦斯保护动作,断路器跳闸

自耦变压器

自耦变压器 科技名词定义 中文名称:自耦变压器 英文名称:autotransformer 定义:至少有两个绕组具有公共部分的变压器。 所属学科:电力(一级学科);变电(二级学科) 本内容由全国科学技术名词审定委员会审定公布

编辑本段概述 石家庄金山变压器有限公司 自耦变压器是指它的绕组是初级和次级是在同一调绕组上的变压器。根据结构还可细分为可调压式和固定式。 编辑本段什么是变压器? 自耦变压器降压启动控制线路 在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为1.5:1~2:1。

因为初级和次级线圈直接相连,有跨级漏电的危险。所以不能作行灯变压器。 编辑本段自耦变压器和与干式变压器的区别 在目前的电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。220KV以下几乎没有自耦变。 自耦变压器在较低电压下是使用最多是用来作为电机降压启动使用 对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。干式变压器由于散热条件差,所以容量不能做得很大,一般只有中小型变压器,电压等级也基本上在35KV及以下,但现在国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。 编辑本段自耦变压器的工作原理 自耦变压器零序差动保护原理图

第七章电力变压器继电保护

第七章电力变压器的继电保护 第一节变压器故障、不正常状态与保护方式 根据我国的实际情况,变压器和发电机与高压输电线路元件相比,故障概率比较低,但其故障后对电力系统的影响却很大。但是保护装置本身的不合理,将给变压器本身造成极大的危害。因此,对电力变压器应该配置完善可靠的继电保护装置。 一、变压器的故障 变压器的故障主要包括以下几类。 (1)相间短路。这是变压器最严重的故障类型。它包括变压器箱体内部的相间短路和引出线(从套管出口到电流互感器之间的电气一次引出线)的相间短路。由于相间短路会严重地烧损变压器本体设备,严重时会使得变压器整体报废,因此,当变压器发生这种类型的故障时,要求瞬时切除故障。 (2)接地(或对铁芯)短路。显然这种短路故障只会发生在中性点接地的系统一侧。对这种故障的处理方式和相间短路故障是相同的,但同时要考虑接地短路发生在中性点附近时保护的灵敏度。 (3)匝间或层间短路。对于大型变压器,为改善其冲击过电压性能,广泛采用新型结构和工艺,匝间短路故障发生的几率有增加的趋势。当短路匝数少,保护对其反应灵敏度又不足时,在短路环内的大电流往往会引起铁芯的严重烧损。如何选择和配置灵敏的匝间短路保护,对大型变压器就显得比较重要。 (4)铁芯局部发热和烧损。由于变压器内部磁场分布不均匀、制造工艺水平差、绕组绝缘水平下降等因素,会使铁芯局部发热和烧损,继而引发更严重的相间短路。因此,应及时检测这一类故障。 (5)油面下降。由于变压器漏油等原因造成变压器内油面下降,会引起变压器内部绕组过热和绝缘水平下降,给变压器的安全运行造成危害。因此当变压器油面下降时,应及时检测并予以处理。 二、变压器不正常运行状态 变压器不正常运行状态,是指变压器本体没有发生故障,但外部环境变化后引起了变压器的非正常工作状态。这种非正常运行状态如果不及时处理或告警,预示着将会引发变压器的内部故障。因此,从这种观点看,这一类保护也可称之为故障预测保护。 (1)过负荷。变压器有一定的过负荷能力,但若长期处于过负荷下运行,会使变压器绕组的绝缘水平下降,加速其老化,缩短其寿命。运行人员应及时了解过负荷运行状态,以便能作相应处理。 (2)过电流。过电流一般是由于外部短路后,大电流流经变压器而引起的。由于变压器在这种电流下会烧损,一般要求和区外保护配合后,经延时切除变压器。 (3)零序过流。由于变压器的绕组一般都是分级绝缘的,绝缘水平在整个绕组上不一致,当区外发生接地短路时,会使中性点电压升高,影响变压器安全运行。 (4)其他故障。如通风设备故障、冷却器故障等。这些故障也都必须作相应的处理。 三、变压器保护配置 根据《电力系统继电保护及自动装置技术规程》规定,对电力变压器的下列故障及异常运行方式应装设相应的保护装置: 1.0.8MVA及以上的油浸式变压器和0.4MVA及以上的车间内油浸式变压器,均应装设瓦斯保护。当壳内故障产生轻微瓦斯或油面下降时应瞬时动作于信号;当产生大量瓦斯时,应动作于断开变压器各侧断路器,当变压器安装处电源侧无断路器或短路开关时,可作用于信号。 2.对变压器引出线套管及内部的短路故障应装设相应的保护装置并应符合下列规定: (1)10MVA及以上的单独运行变压器和6.3MVA及以上的并列运行变压器,应装设纵联差动保护6.3MVA及以下单独运行的重要变压器亦可装设纵联差动保护; (2)10MVA以下的变压器可装设电流速断保护和过电流保护2MVA及以上的变压器当电流速断灵敏系数不符合要求时宜装设纵联差动保护; (3)0.4MVA及以上,一次电压为10kV及以下线圈为三角-星形连接的变压器,可采用两相三继电

自耦变压器容量计算

自耦变压器容量计算 【摘要】为保证金属资源的可持续发展,大力研究自耦变压器有十分重要的现实意义。本文主要介绍自耦变压器的容量计算,对自耦变压器的原理以及自耦变压的优点进行论述,最后再根据举例,对自耦变压器的容量进行系统的分析。 【关键词】自耦变压器;容量计算;原理 0.引言 自耦变压器是一、二次边共用一部分绕组,可以实现升压或者降压变化的电力变压器。与普通变压器相比,普通变压器的原、副绕组之间只有磁的联系而没有电路上的联系,而自耦变压器的原、副绕组之间不仅有磁的联系而且还有电路上的直接联系。总的来看,自耦变压器不仅减少了原材料的使用,更有利于磁电之间的联系。 1.自耦变压器的结构原理分析 自耦变压器可以由一台双绕组变压器演变过来。设有一台双绕组变压器,原、副绕组匝数分别为N1和N2,额定电压为U1N和U2N,额定电流为I1N和I2N,其变比为K=N1 /N2≈U1N/U2N.如果保持两个绕组的额定电压和额定电流不变,把原绕组和副绕组顺极性串联起来作为新的原边。而副绕组还同时作为副边,它的两个端点接到负载阻抗ZL,便演变成了一台降压自耦变压器。 从绕组的作用看,绕组ax供高、低压两侧共用,叫做公共绕组;而绕组Aa 则与公共绕组串联后供高压侧使用,叫做串联绕组。 自耦变压器的变比为:Ka===K+1 式中:K=为双绕组变压器的变比。 与双绕组变压器相比,在变压器额定容量(通过容量)相同时,自耦变压器的绕组容量(电磁容量)比双绕组变压器的小;变压器硅钢片和铜线的用量与绕组的额定感应电动势和通过的额定电流有关,也就是和绕组的容量有关,现在自耦变压器的绕组容量减小了,当然所用的材料也少了,从而可以降低成本;由于铜线和硅钢片用量减少,在同样的电流密度和磁通密度下,自耦变压器的铜耗和铁耗以及激磁电流都比较小,从而提高了效率;由于铜线和硅钢片用量减少,自耦变压器的重量及外形尺寸都较双绕组变压器小,即减小了变电所的厂房面积和运输安装的困难;反过来说,在运输条件有一定限制的条件下,即变压器的外形尺寸有一定限制的条件下,自耦变压器的容量可以比双绕组变压器的大,即提高了变压器的极限容量;效益系数越小。 通过以上分析,自耦变压器的变比越接近1就越好,一般以不超过2为宜。此外,如果变比太大,高、低压相差悬殊,由于自耦变压器原、副边有电路上的连接,会给低压边的绝缘及安全用电带来一定的困难,所以,自耦变压器适用于原、副边电压变比不大的场合。 2.自耦变压器的基本方程 2.1电流关系 按照全电流定律,自耦变压器的激磁磁动势m应等于串联绕组的磁动势W 与公共绕组的磁动势W之和。考虑到激磁电流是由电源供给的,它流经的匝数为N+N 3.自耦变压器的容量分析 自耦变压器的额定容量(又叫通过容量) 和绕组容量(又叫电磁容量)二者是

自动控制元件(第四版)习题答案

部分习题答案,仅供参考! 直流测速发电机 1.为什么直流发电机电枢绕组元件的电势是交变电势而电刷电势是直流电势 答:电枢连续旋转,导体ab和cd轮流交替地切割N极和S极下的磁力线,因而ab和cd中的电势及线圈电势是交变的。 由于通过换向器的作用,无论线圈转到什么位置,电刷通过换向片只与处于一定极性下的导体相连接,如电刷A始终与处在N极下的导体相连接,而处在一定极性下的导体电势方向是不变的,因而电刷两端得到的电势极性不变,为直流电势。 2. 如果图2 - 1 中的电枢反时针方向旋转,试问元件电势的方向和A、B电刷的极性如何 答:在图示瞬时,N极下导体ab中电势的方向由b指向a,S极下导体cd中电势由d指向c。电刷A通过换向片与线圈的a端相接触,电刷B与线圈的d端相接触,故此时A电刷为正,B电刷为负。 当电枢转过180°以后,导体cd处于N极下,导体ab处于S极下,这时它们的电势与前一时刻大小相等方向相反,于是线圈电势的方向也变为由a到d,此时d为正,a为负,仍然是A刷为正,B刷为负。 4. 为什么直流测速机的转速不得超过规定的最高转速负载电阻不能小于给定值

答:转速越高,负载电阻越小,电枢电流越大,电枢反应的去磁作用越强,磁通被削弱得越多,输出特性偏离直线越远,线性误差越大,为了减少电枢反应对输出特性的影响,直流测速发电机的转速不得超过规定的最高转速,负载电阻不能低于最小负载电阻值,以保证线性误差在限度的范围内。而且换向周期与转速成反比,电机转速越高,元件的换向周期越短;eL正比于单位时间内换向元件电流的变化量。基于上述分析,eL必正比转速的平方,即eL∝n2。同样可以证明ea∝n2。因此,换向元件的附加电流及延迟换向去磁磁通与n2成正比,使输出特性呈现非线性。所以,直流测速发电机的转速上限要受到延迟换向去磁效应的限制。为了改善线性度,采用限制转速的措施来削弱延迟换向去磁作用,即规定了最高工作转速。 第三章 1. 直流电动机的电磁转矩和电枢电流由什么决定 答;直流电动机的电枢电流不仅取决于外加电压和本身的内阻,而且还取决于与转速成正比的反电势(当=常数时) 根据转矩平衡方程式,当负载转矩不变时,电磁转矩不变;加上励磁电流If不变,磁通Φ不变,所以电枢电流Ia也不变,直流电动机的电磁转矩和电枢电流由直流电动机的总阻转矩决定。 3. 一台他励直流电动机,如果励磁电流和被拖动的负载转矩都不变,而仅仅提高电枢端电压,试问电枢电流、转速变化怎样答:当直流伺服电动机负载转矩、励磁电流不变时,仅将电枢电压

第七章变压器

项目六、变压器 1 变压器的构造 2 变压器的工作原理 一、变压器的构造 1、变压器的分类 1)按用途分:电力变压器、专用电源变压器、调压变压器、测量变压器、隔离变压器。 2)按结构分:双绕组变压器、三绕组变压器、多绕组变压器已经自耦变压器。 3)按相数分:单相变压器、三相变压器和多相变压器。 2、变压器的构造 基本构造:由铁心和绕组构成。 铁心是变压器的磁路通道,是用磁导率较高且相互绝缘的硅钢片制成,以便减少涡流和磁滞损耗。按其构造形式可分为心式和壳式两种,如图1(a)、(b)所示。 图1 心式和壳式变压器 线圈是变压器的电路部分,是用漆色线、沙包线或丝包线绕成。其中和电源相连的线圈叫原线圈(初级绕组),和负载相连的线圈叫副线圈(次级绕组)。 3、额定值及使用注意事项 1)额定值 ①额定容量——变压器二次绕组输出的最大视在功率。其大小为副边额定电流的乘积,一般以千伏安表示。 ②原边额定电压——接到变压器一次绕组上的最大正常工作电压。 ③二次绕组额定电压——当变压器的一次绕组接上额定电压时,二次绕组接上额定负载时的输出电压。

2)使用注意事项 ①分清一次绕组、二次绕组,按额定电压正确安装,防止损坏绝缘或过载。 ②防止变压器绕组短路,烧毁变压器。 ③工作温度不能过高,电力变压器要有良好的绝缘。 二、变压器的工作原理 变压器是按电磁感应原理工作的,原线圈接在交流电源上,在铁心中产生交变磁通,从而在原、副线圈产生感应电动势,如图2所示。 1、变压器的空载运行和变压比 如图2所示,设原线圈匝数为N 1,端电压为U 1;副线圈匝数为N 2,端电压 为U 2。则,原、副线圈(一次、二次绕组)电压之比等于匝数比,即 n N N U U ==2 1 21 (1) n 叫做变压器的变压比或变化。 注意:上式在推导过程中,忽略了变 压器原、副线圈的内阻,所以上式为理想变压器的电压变换关系。 2、变压器的负载运行和变流比 在图2的副线圈端加上负载|Z 2|,流过负载的电流为I 2,分析理想变压器原线 圈、副线圈的电流关系。 将变压器视为理想变压器,其内部不消耗功率,输入变压器的功率全部消耗 在负载上,即 2211I U I U = 将上式变形带入(式7-1),可得理想变压器电流变换关系 n N N U U I I 1 121221=== (2) 3、变压器得阻抗变换作用 设变压器初级输入阻抗为|Z 1|,次级负载阻抗为|Z 2|,则 1 1 1I U Z = 图2 变压器空载运行原理图

自耦变压器损耗对比

自耦变压器损耗对比: 以DQY-40000/220为例: 注:温升还可以稍微再降低一点点。 变压器器身干燥工艺: 1.适用范围 本工艺适用于电压35Kv、110kV变压器器身真空干燥。 2.适用目的 保证器身干燥,提高变压器运行质量。 3.设备及工具 3.1设备 3.1.1立式真空罐:外形8.8*5.2*5.1m, 净空7.4*4*4m。 3.1.2真空泵 a. H-150A滑阀真空泵,2只,抽气速率150L/S,极限真空1Pa; b. ZJ-1200A机械增压泵,1只,抽气速率1200L/S,极限真空0.06Pa。 3.2测量仪器仪表及工具 3.2.1真空计 a.指针式真空表:(0-0.1)MPa; b.麦氏真空计:(0-650)Pa; c.电子式真空计:(1Pa-1kPa); 3.2.2兆欧表:2500v/2000MΩ; 3.2.3温度计:水银温度计. 0-150℃; 3.2.4量杯:1000ml,2000ml,各一只。 4.工艺准备 4.1器身吊入烘房前,应对真空干燥设备进行检查

4.1.1检查真空干燥设备是否正常完好,尤其注意有无漏气、漏水、漏油。罐沿密封要良好,罐底应清洁无污物; 4.1.2检查真空泵内的油位是否在要求范围内(泵上有油标),并打开放油阀门检查油是否有污物及水份,如果有水必须放出后关闭阀门; 4.1.3定期对真空泵内油进行过滤及添加(一个月进行一次并作记录)。 4.2器身吊入烘房前,对器身进行检查 4.2.1清除器身各处的污物,灰尘,杂物; 4.2.2将器身吊起,用布或棉纱等擦净垫角上的灰尘污物; 4.3器身吊入烘房: 将器身吊入罐内,要求器身各处距烘房壁或蒸汽管距离300mm以上,以防止损坏绝缘件。操作人员对器身栓钢丝绳或接线时,必须穿戴干净的工作服、工作鞋,装配工的服饰要杜绝金属及零散小物件,以防随身物品掉入器身及污染产品。 4.4放测温元件 4.4.1每炉测温元件2只,在靠近加热管最近的线圈侧面上、中、下三处分别放上测温元件一只,测量温度以中间温度为主,其他两只测温元件温度只作为参考。在真空度(20-40)kPa阶段,各个温度均不得超过120℃; 4.4.2测温导线不得互相接触; 4.5关闭罐盖之前检查测量线圈温度计的位置是否正确,测温元件运行是否正常; 4.6把需要与器身一同处理的附件放在器身上,如果器身上无法放置,必须将附件垫高到距烘房底500mm以上,不可直接放在烘房底上; 4.7要求每隔1小时检查测温元件温度值、蒸汽压力、真空度、出水量,如实填入记录表格,同时记录变压器型号、容量、电压、台数、工作号、入炉出炉时间等。 5.工艺过程 5.1真空干燥的工艺过程按表一; 注:下面所注真空度指罐内残压值,单位(Pa) 表一真空干燥工艺过程

电机及拖动 第七章 习题

第七章驱动和控制微电机 思考题与习题 7.1 单相异步电动机主要分为哪几种类型?简述罩极电动机的工作原理。 7.2 三相异步电动机起动时,如果电源一相断线,这时电动机能否起动?如绕 组一相断线,这时电动机能否起动?Y联结和?联结情况是否一样?如果运行中电源或绕组一相断线,能否继续旋转,有何不良后果? 7.3 试比较单相异步电动机和三相异步电动机的Tem-s 曲线,着重就以下各点 比较:(1)当s=0时的转矩;(2)当s=1时的转矩;(3)最大转矩;(4)在有相同转矩时的转差率;(5)当1

自耦变压器的原理、接线、结构

自耦变压器的原理、接线、结构 自耦变压器降压启动控制线路 在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初 级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的 变换,一般匝数比为1.5:1~2:1。因为初级和次级线圈直接相连,有跨级漏电的危险。所以不能作行灯变压器。 区别在电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。 220KV以下几乎没有自耦变压器。自耦变压器在较低电压下是使用最多是用来作为电 机降压启动使用。 对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。干式变压器由于散热条件差,所以容量不能做得很大,一般只有 中小型变压器,电压等级也基本上在35KV及以下,但国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。 工作原理自耦变压器零序差动保护原理图 自耦变压器 1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高. ⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是 左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。 ⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一 部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线 匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部 分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、 电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得 到广泛应用.。 三相自耦变压器

第七章 电气安装工程

第七章电气安装工程 本章内容,电气安装工程,电气系统主要设备组成,电气的安装及调试工艺。 第一节电气安装工程概论 电力系统基本概念。工厂供电系统是电力系统的主要组成部分。企业供电网络系统是由外部送电线路、降压变电所、企业内部高低压网络及车间变电所等组成。电力系统一般是由发电厂、输电线路、变电所、配电线路及用电设备构成。 第二节电气设备 一、电气设备主要由电力变压器、特种变压器、互感器、调压器、开关柜。 变配电设备主要是指变压器和开关。变压器是一种静止的电气设备,它的作用是变换交流电的电压。应用最广泛的变压器有电力变压器、自耦变压器、感应变压调整、仪表用的互感器、专用变压器。主要类别有电力变压器、特种变压器、互感器和调压器。互感器是电力系统中供测量和保护用的重要设备,分为电压互感器和电流互感器。调压器一种能给负载以可调电压的设备。它分为接触调压器、感应调压器、磁性调压器和移动调压器几种类型。 二、蓄电池及直流系统主要设备,蓄电池是产生直流电的一种装置,是一种储存电能的设备。按结构蓄电池可分为开口型和密闭型两种;按蓄电池的电解液可分为酸性和碱性蓄电池两种;按用途可分为固定型蓄电池、启动用蓄电池、动力牵引用蓄电池等。

整流装置是将交流电转换成直流电的一种装置。可控硅整流装置的优点是体积小、寿命长、整流效率高、整流特性好、工作温度高。与直流发电机相比,可控硅整流器无噪声、无旋转易磨损部件、使用维护简便。 三、高压开关设备的主要器件 高压开关设备主要用于关合及开断 3kV 及其以上正常电力线路,以输送及倒换电力负荷,从电力系统中退出故障设备及故障线段,以保证电力系统安全、正常运行;将两段电力线路以至电力系统的两部分隔开;将已退出运行的设备或线路和进行可靠接地,以保证电力线路、设备和运行维修人员的安全。因此, 压开关设备是非常重要的输配电设备。 高压开关(电器)设备主要有断路器、重合器、分段器、负荷开关、接触器、熔断器、隔离开关和接地开关等,以及上述产品与其他电器产品的组合产品,它们在结构上相互依托,有机地构成一个整体,如隔离负荷开关、熔断器式开关、敞开式组合电器等。 (一)断路器 断路器是高压开关设备中最重要、最复杂的一种器件。它既能关合、承载、开断运行回路的正常电流,又能关合、承载和开断规定的过载电流(如短路电流)。广泛用于电力系统的发电石、变电所、开关站及用电线路上,同时承担着控制和保护双重任务。 (二)隔离开关、接地开关与敞开式组合电器 1 .隔离开关与接地开关

很实用的自耦变压器设计方法方法

自耦变压器设计 一. 自耦变压器的定义 绕组间具有电磁及电气连接的变压器称为自耦变压器。 自耦变压器的优.缺点: 优点:体积小,成本低,传输功率大,效率比普通变压器高,电压调整率比普通变压器低。 缺点:由于绕组间具有公共的连接点,电磁及电气有连接,所以不能作为隔离变压器使用。 二. 自耦变压器设计原则: 自耦变压器的设计应按照电磁感应传递的功率即结构容量(也就是铁芯功率)来设计,而不是按其传递容量即输出功率P 来设计。 三. 自耦变压器的特点: 特点:公共绕组的电流是初.次级电流之差. 四. 自耦变压器的结构容量计算: 1. 升压式 如图一所示,0----U1输入,0----U2输出,功率P . 初级电流I1=P/U1 次级电流I2=P/U2 公共绕组电流为I1-I2 设计输入: 初级输入电压:U1 次级输出电压:U2-U1 次级输出电流:I2 结构容量V AB=(U2-U1)×I2=U2I2-U1I2=P-U1×P/U2=P ×(1-U1/U2) 结构容量相等的公式: U1×(I1-I2)=(U2-U1)×I2=P ×(1-U1/U2) 例题1: 0---100V 输入,0----120V 输出,功率为600V A 的自耦变压器. 解: 初级电流I1=600/100=6A 次级电流I2=600/120=5A 公共绕组电流I1-I2=6A-5A=1A 结构容量V AB=P ×(1-U1/U2)=600×(1-100/120)=100V A 结构容量相等: 100V ×1A=20V ×5A=100V A

设计输入: 初级输入电压:100V 次级输出电压:20V 次级输出电流:5A 2. 降压式 如图一所示,0----U1输入,0----U2输出,功率P . 初级电流I1=P/U1 次级电流I2=P/U2 公共绕组电流为I2-I1 设计输入: 初级输入电压:U1-U2 次级输出电压:U2 次级输出电流:I2-I1 结构容量V AB=U2×(I2-I1)=U2I2-U2I1=P-U2×P/U1=P ×(1-U2/U1) 结构容量相等的公式: U2×(I2-I1)=(U1-U2)×I1=P ×(1-U2/U1) 例题2: 0---120V 输入,0----100V 输出,功率为600V A 的自耦变压器. 解: 初级电流I1=600/120=5A 次级电流I2=600/100=6A 公共绕组电流I2-I1=6A-5A=1A 结构容量V AB=P ×(1-U2/U1)=600×(1-100/120)=100V A 结构容量相等: 100V ×1A=20V ×5A=100V A 设计输入: 初级输入电压:100V 次级输出电压:20V 次级输出电流:5A 例题3: 自耦变压器0V~187V~220V ,187V 抽头电流为120A 解:设公共绕组0~187V 电流为I1,187~220V 段电流为I2, 则: I1+I2=120A 根据结构容量相等公式有:187I1=33I2 得出:I1=18A I2=102A 设计输入: 初级输入电压:33V 次级输出电压:187V 次级输出电流:18A

第七章 变压器

第七章 变压器 本章的主要任务是学习磁路的基本定律和变压器的基本工作原理,了解变压器的主要性能指标及其工程应用。 本章基本要求 1. 掌握磁路欧姆定律。 2. 了解变压器的基本结构。 3. 熟悉变压器的工作原理和外特性。 4. 了解变压器的主要性能指标。 5. 学会变压器绕组的极性测定。 6. 了解特殊变压器的用途。 本章习题解析 7-1 变压器是否能用来变换恒定直流电压?为什么? 答:变压器的工作原理是电磁感应原理,即原边交变的电流在铁心激发交变的磁场,副边的线圈在交变的磁场中产生交变的感应电动势。平稳的直流电不可能有这种“电生磁-磁生电”的持续变换过程。因此,没有直接用于直流电传输的变压器。 7-2 变压器的主磁通与什么因素有关?当原边电压不变,副边负载变化时,工作磁通的大小会发生变化吗?试分析其过程。 答:影响变压器主磁通大小的因素有电源电压u 1、电源频率f 和一次侧线圈匝数N 1,与铁心材质及几何尺寸基本无关。 副边负载变化时,工作磁通的大小会变化。因为一次侧接交流电源,二次侧接负载L Z ,二次侧中便有负载电流流过,这种情况称为负载运行。根据磁动势平衡和能量传递,当接入2222F I N I Z L →→→也将作用于主磁路上。F 2的出现,使m Φ趋于改变。 7-3 变压器原、副边之间没有电的直接联系,原边输出的能量是怎样传递到副边的?当变压器副边负载减小时,原边供给能量也随之减少,为什么? 答:变压器的基本工作原理是电磁感应原理,现以单相双绕组变压器为例说明其基本工作原理:当一次侧绕组加上电压u 1时,流过电流i 1,在铁心中就产生交变磁通Φ1,这个磁通称为主磁通,在它的作用下,两侧绕组分别感应电势e 1和e 2,感应电势公式为E = 4.44fN Φm ,式中E 为感应电势有效值,f 为频率,N 为匝数,Φm 为主磁通最大值。 由于二次绕组与一次绕组匝数不同,感应电势e 1和e 2大小也不同,当略去内阻抗压降后,电压u 1和u 2大小也就不同。 当变压器二次侧空载时,一次侧仅流过主磁通的电流(i 0),这个电流称为激磁电流。当二次侧加负载流过负载电流i 2时,也在铁心中产生磁通,力图改变主磁通,但一次侧电压不变时,主磁通

自耦变压器的原理、接线、结构

自耦变压器的原理、接线、结构自耦变压器降压启动控制线路 在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为1.5:1~2:1。因为初级和次级线圈直接相连,有跨级漏电的危险。所以不能作行灯变压器。 区别在电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。220KV以下几乎没有自耦变压器。自耦变压器在较低电压下是使用最多是用来作为电机降压启动使用。 对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。干式变压器由于散热条件差,所以容量不能做得很大,一般只有中小型变压器,电压等级也基本上在35KV及以下,但国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。 工作原理自耦变压器零序差动保护原理图 自耦变压器 1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高. ⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。 ⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得到广泛应用.。 三相自耦变压器

变频器原理及应用第7章习题解答

第7章 思考题答案 1. 异步电动机的变频调速的理论依据是什么? 答:三相交流电动机的同步转速(即定子旋转磁场转速)n 0可表示为 p f n 1060= 如果将电源频率调节为f x ,则同步转速n 0x 也随之调节成 p f n x x 600= 异步电动机变频后的转速n x 的表达式为 )1(60)1(0s p f s n n x x x -=-= 这就是异步电动机变频调速的理论依据。 2. 简述异步电动机常用的起动和制动方法。 答:在生产中,除了小容量的三相异步电动机能直接起动外,一般要采取不同的方法起动,比如自耦变压器降压起动、串电阻或电抗器降压起动、Y-Δ降压起动等。在变频调速系统中,变频器用降低频率f 1从而也降低了U 1的方法来起动电动机。 三相异步电动机的制动方式有直流制动、回馈制动和反接制动等。 3. 传统的异步电动机调速方法有哪些? 答:三相异步电动机的调速方式主要有三种,即变极调速、变转差率调速和变频率调速。 4. 实现异步电动机变频调速有哪些要求? 答:在额定频率以下,即f 1<f N 调频时,同时下调加在定子绕组上的电压,即恒V /f 控制。这时应当注意的是,电动机工作在额定频率时,其定子电压也应是额定电压,即: f 1 = f N U 1=U N 若在额定频率以上调频时,U 1就不能跟着上调了,因为电动机定子绕组上的电压不允许超过额定电压,即必须保持U 1=U N 不变。 5. 异步电动机变频调速时,在额定频率以下调节频率,必须同时调节加在定子绕组上的电压,即恒V /f 控制,为什么? 答:由于额定工作时电动机的磁通已接近饱和,ΦM 增加将会使电动机的铁心出现深度

相关文档
最新文档