指数函数和对数函数复习(有详细知识点和习题详解)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指数函数与对数函数总结与练习
一、指数的性质 (一)整数指数幂
1.整数指数幂概念:
a
n n
a a a a 个⋅⋅⋅= )(*
∈N n ()010a a =≠ ()1
0,n
n a
a n N a
-*=
≠∈ 2.整数指数幂的运算性质:(1)(),m n m n a a a m n Z +⋅=∈ (2)()
(),n
m mn a
a m n Z =∈
(3)()()n
n
n
ab a b
n Z =⋅∈
其中m n m n
m n
a a a a
a
--÷=⋅=, ()1n
n n n n
n a a a b a b b b --⎛⎫=⋅=⋅= ⎪⎝⎭
.
3.a 的n 次方根的概念 一般地,如果一个数的n 次方等于a (
)*
∈>N
n n ,1,那么这个数叫做a 的n 次方根,
即: 若a x n
=,则x 叫做a 的n 次方根, ()*
∈>N n n ,1
说明:①若n 是奇数,则a 的n 次方根记作n a ; 若0>a 则0>n a ,若o a <则0 ②若n 是偶数,且0>a 则a 的正的n 次方根记作n a ,a 的负的n 次方根,记作: n a -;(例如:8的平方根228±=± 16的4次方根2164±=±) ③若n 是偶数,且0a <则n a 没意义,即负数没有偶次方根; ④( )* ∈>=N n n n ,100 0=; ⑤式子n a 叫根式,n 叫根指数,a 叫被开方数。 ∴ n a =. . 4.a 的n 次方根的性质 一般地,若n 是奇数,则a a n n =; 若n 是偶数,则⎩⎨⎧<-≥==0 0a a a a a a n n . 5.例题分析: 例1.求下列各式的值: (1)( )33 8- (2)() 2 10- (3)()44 3π- (4) 例2.已知,0< ∈>N n n ,1, 化简:()()n n n n b a b a ++-. (二)分数指数幂 1.分数指数幂: ()102 5 0a a a ==> ()124 3 0a a a ==> 即当根式的被开方数能被根指数整除时,根式可以写成分数指数幂的形式; 如果幂的运算性质(2)() n k kn a a =对分数指数幂也适用, 例如:若0a >,则3 223233a a a ⨯⎛⎫== ⎪⎝⎭ ,4 554544a a a ⨯⎛⎫== ⎪⎝⎭, 23a = 4 5 a =. 即当根式的被开方数不能被根指数整除时,根式也可以写成分数指数幂的形式。 规定:(1)正数的正分数指数幂的意义是)0,,,1m n a a m n N n *=>∈>; (2)正数的负分数指数幂的意义是)10,,,1m n m n a a m n N n a -* == >∈>. 2.分数指数幂的运算性质:整数指数幂的运算性质对于分数指数幂也同样适用 即 ()() 10,,r s r s a a a a r s Q +=>∈ ()()()20,,s r rs a a a r s Q =>∈ ()() ()30,0,r r r ab a b a b r Q =>>∈ 说明:(1)有理数指数幂的运算性质对无理数指数幂同样适用; (2)0的正分数指数幂等于0,0的负分数指数幂没意义。 3.例题分析: 例1. 用分数指数幂的形式表示下列各式()a o >: 2 a 3a 例2.计算下列各式的值(式中字母都是正数). (1)21 1511336622263a b a b a b ⎛⎫⎛⎫⎛⎫ -÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ; (2)8 3184m n -⎛⎫ ⎪⎝⎭; 例3.计算下列各式: (1) (2)2 0a >. (三)综合应用 例1.化简:1 1555x x x -+++. 例2.化简:)()(4 1412121y x y x -÷-. 例3.已知1 3x x -+=,求下列各式的值:(1)1 12 2x x - +;(2)332 2 x x - +. 二、指数函数 1.指数函数定义: 一般地,函数x y a =(0a >且1a ≠)叫做指数函数,其中x 是自变量,函数定义域是R . 2.指数函数x y a =在底数1a >及01a <<这两种情况下的图象和性质: 1a > 01a << 图象 性质 (1)定义域:R (2)值域:(0,)+∞ (3)过点(0,1),即0x =时1y = (4)在R 上是增函数 (4)在R 上是减函数 例1.求下列函数的定义域、值域: (1)121 8x y -= (2)11()2 x y =-(3)3 x y -=