石英晶体振荡器的主要参数

合集下载

晶体振荡原理

晶体振荡原理

石英晶体、晶振介绍文摘2010-10-25 23:36:39 阅读50 评论0 字号:大中小订阅石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器、手机等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。

可以说只要需要稳定时钟的地方,就必需要有晶体振荡器。

一:认识晶体、晶振常见晶体振荡器有两类,一类是无源晶体,也叫无源晶振,另一类是有源晶振,也叫钟振。

无源晶体外形如下图:(HC-49S 插脚)(HC-49S/SMD 贴片)无源晶体以以上两种封装的晶体最为常用,广泛应用于普通设备上,尤其是嵌入式设备,若对体积大小有要求,可以选择更小的贴片封装,如下图:(XG5032 贴片)(XS3225 贴片1,3脚有效,2,4脚为空脚)当前消费类电子如手机,MP4,笔记本等,XS3225封装最为常用。

具体关于晶体的封装及参数信息,请参考国内最大的高端晶体晶振厂家:浙江省东晶电子股份有限公司网站提供的信息:/product.aspx/23无源晶体说穿了就是封装了一下晶体,在晶体两面镀上电极引出两根线即可,那么有源晶振就是在无源晶体的基础上加了一个晶体振荡电路,,比如采用一个74HC04或者54HC04之类的非门与晶体勾通三点式电容振荡电路,所以它具有电源,地,时钟输出三个脚,有些还会增加一个脚,就是晶振工作控制脚,当不需要工作的时候,可以关掉晶振降低功耗。

如下图:(OS3225 与XS3225外形一样,只是脚位定义不同1:EN控制脚,2:GND地,3:OUT信号输出,4:VCC电源,一般为3.3V 或者5V)。

晶振内部振荡电路等效图如下:非门5404的输出脚2就是信号输出脚。

二:晶体振荡电路原理分析(本篇由东晶电子网上独家代理创易电子提供技术文档)我们以最常见得MCU振荡电路为例,参考电路如下:很多人做MCU51单片机得时候,不明白晶体两边为什么要加两个电容,大小一般在15pF~33pF之间,有些特殊的,还需要在晶体上并联一个大电阻,一般老师的解释是提高晶体振荡电路的稳定性,有助于起振,而对于其根本原理没有解释。

石英晶体振荡器的主要参数

石英晶体振荡器的主要参数

石英晶体振荡器的主要参数
晶振的主要参数有标称频率,负载电容、频率精度、频率稳定度等。

不同的晶振标称频率不同,标称频率大都标明在晶振外壳上。

如常用一般晶振标称频率有:48kHz、500 kHz、503.5 kHz、1MHz~40.50 MHz等,对于特别要求的晶振频率可达到1000 MHz以上,也有的没有标称频率,如CRB、ZTB、Ja等系列。

负载电容是指晶振的两条引线连接IC块内部及外部全部有效电容之和,可看作晶振片在电路中串接电容。

负载频率不同打算振荡器的振荡频率不同。

标称频率相同的晶振,负载电容不肯定相同。

由于石英晶体振荡器有两个谐振频率,一个是串联揩振晶振的低负载电容晶振:另一个为并联揩振晶振的高负载电容晶振。

所以,标称频率相同的晶振互换时还必需要求负载电容一至,不能冒然互换,否则会造成电器工作不正常。

频率精度和频率稳定度:由于一般晶振的性能基本都能达到一般电器的要求,对于高档设备还需要有肯定的频率精度和频率稳定度。

频率精度从10^(-4)量级到10^(-10)量级不等。

稳定度从±1到±100ppm不等。

这要依据详细的设备需要而选择合适的晶振,如通信网络,无线数据传输等系统就需要更高要求的石英晶体振荡器。

因此,晶振的参数打算了晶振的品质和性能。

在实际应用中要依据详细要求选择适当的晶振,因不同性能的晶振其价格不同,要求越高价格也越贵,一般选择只要满意要求即可。

1。

晶振电路原理

晶振电路原理

晶体振荡器,简称晶振。

在电气上它可以等效成一个电容和一个电阻并联再串联一个电容的二端网络,电工学上这个网络有两个谐振点,以频率的高低分其中较低的频率是串联谐振,较高的频率是并联谐振。

由于晶体自身的特性致使这两个频率的距离相当的接近,在这个极窄的频率范围内,晶振等效为一个电感,所以只要晶振的两端并联上合适的电容它就会组成并联谐振电路。

这个并联谐振电路加到一个负反馈电路中就可以构成正弦波振荡电路,由于晶振等效为电感的频率范围很窄,所以即使其他元件的参数变化很大,这个振荡器的频率也不会有很大的变化。

晶振有一个重要的参数,那就是负载电容值,选择与负载电容值相等的并联电容,就可以得到晶振标称的谐振频率。

一般的晶振振荡电路都是在一个反相放大器(注意是放大器不是反相器)的两端接入晶振,再有两个电容分别接到晶振的两端,每个电容的另一端再接到地,这两个电容串联的容量值就应该等于负载电容,请注意一般IC的引脚都有等效输入电容,这个不能忽略。

一般的晶振的负载电容为15p或12.5p ,如果再考虑元件引脚的等效输入电容,则两个22p的电容构成晶振的振荡电路就是比较好的选择。

晶体振荡器也分为无源晶振和有源晶振两种类型。

无源晶振与有源晶振(谐振)的英文名称不同,无源晶振为crystal(晶体),而有源晶振则叫做oscillator(振荡器)。

无源晶振需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振是一个完整的谐振振荡器。

谐振振荡器包括石英(或其晶体材料)晶体谐振器,陶瓷谐振器,LC谐振器等。

晶振与谐振振荡器有其共同的交集有源晶体谐振振荡器。

石英晶片所以能做振荡电路(谐振)是基于它的压电效应,从物理学中知道,若在晶片的两个极板间加一电场,会使晶体产生机械变形;反之,若在极板间施加机械力,又会在相应的方向上产生电场,这种现象称为压电效应。

如在极板间所加的是交变电压,就会产生机械变形振动,同时机械变形振动又会产生交变电场。

石英晶体产品基础知识(培训)

石英晶体产品基础知识(培训)
出而随意提高激励电平!
什么是晶振的过分驱动
晶振过分驱动的后果是将逐渐损耗减少晶振的接触电镀,这将引起频率的上 升,并导致晶振的早期失效。
如何判断晶振是否被过分驱动?
可用一台示波器检测OSC输出脚,如果检测到非常清晰的正弦波,且正弦波 的上限值和下限值都符合时钟输入需要,则晶振未被过分驱动;相反,如果 正弦波形的波峰,波谷两端被削平,而使波形成为方形,则晶振被过分驱动。 这时就需要用电阻RS来防止晶振被过分驱动。判断电阻RS值大小的最简单 的方法就是串联一个5k或10k的微调电阻,从0开始慢慢调高,一直到正弦波 不再被削平为止。通过此办法就可以找到最接近的电阻RS值。
4、电源和负载 晶体振荡器的频率稳定性亦受到振荡器电源电压变动以及振荡器负载 变动的影响。一般考虑为+/-5%或+/-10%。
5、输出波形 晶体振荡器有CMOS、TTL、CMOS/TTL兼容、PECL和正弦波输出。
6 、起动时间 晶体振器从起动到稳定输出的时间,用ms表示。
7 、上升时间 /下降时间 波形前沿/后沿在两规定电平之间变化的时间间隔,两个电平
石英晶体振荡器电路结构
六、产品主要参数
石英晶体谐振器的主要参数
• 1、标称频率 该频率特指晶体技术条件中规定的频率,表示为MHz或KHz。
• 2、调整频差 标称频率在一定温度(一般是25℃)下的允许偏差,表示为百分数(%)或百 万分之几(ppm)。
• 3、负载电容(CL) 与晶体一起决定负载谐振频率的有效外界电容。任何外部电容一旦与石英晶 体串联,即会成为其谐振频率的一个决定因素。负载电容变化时,频率也会 随之改变。因此,在电路中使用时,经常会以标准负载电容来微调频率至期 望值。
1. 1880年法国P,居里兄弟发现石英晶体的压电效应。

石英晶体振荡电路石英谐振器

石英晶体振荡电路石英谐振器
UCC 30 k B C 4 750 V 320 p C2 V 4700 p C3 (b ) C1 L C2 C4
6.8 k
C1 120 p 200 (a )
C4为微调电容, 用来改变振荡 频率,不过频 率调节范围是 很小的。
37
石英谐振器
2.串联型晶体振荡电路
电路结构
等效电路
注:晶体相当于短路元件,常串接在正反馈支路中。
29
石英谐振器
二、石英晶体振荡电路
石英晶体在电路中可以起三种作用:
一是充当等效电感,晶体工作在接近于并联谐振频率 fp
的狭窄的感性区域内, 这类振荡器称为并联谐振型石英晶体 振荡器;
二是石英晶体充当短路元件,并将它串接在反馈支路内, 用以控制反馈系数,它工作在石英晶体的串联谐振频率fq上, 称为串联谐振型石英晶体振荡器; 三是充当等效电容,使用较少。
12
石英谐振器
(4)恒温控制式晶体谐振器(OCXO):将晶体和振荡电路置 于恒温槽中,以消除环境温度变化对频率的影响。OCXO频 率精度是10-7~10-8量级,对某些特殊应用甚至达到更高。主 要用于移动通信基地站、国防、导航、频率计数器、频谱和 网络分析仪等设备、仪表中。
13
石英谐振器
目前发展中的还有数字补偿 式晶体振荡器(DCXO)微机补偿
电 感 三点式
电 容 三点式 石英晶 体
10-2~10-4
10-3~10-4 10-5~10-11

好 好
几千赫~几十兆 赫
几兆赫~几百兆 赫 几百千赫~一百 兆赫
可在较宽范围内调节频率
只能在小范围内调节频率 (适用于固定频率) 只能在极小范围内微调频 率(适用于固定频率)
易起振,输出振 幅大

晶振基础知识

晶振基础知识

4.晶振的应用 并联电路:
(a)串联共振振荡器 (b)并联共振振荡器 1):如何选择晶体? 对于一个高可靠性的系统设计,晶体的选择非常重要,尤其设计带有睡眠唤醒(往往用低电压以求低功 耗)的系统。这是因为低供电电压使提供给晶体的激励功率减少,造成晶体起振很慢或根本就不能起振 。这一现象在上电复位时并不特别明显,原因时上电时电路有足够的扰动,很容易建立振荡。在睡眠 唤醒时,电路的扰动要比上电时小得多,起振变得很不容易。在振荡回路中,晶体既不能过激励(容易 振到高次谐波上)也不能欠激励(不容易起振)。晶体的选择至少必须考虑:谐振频点,负载电容,激励 功率,温度特性,长期稳定性。 2):晶振驱动 电阻RS常用来防止晶振被过分驱动。过分驱动晶振会渐渐损耗减少晶振的接触电镀,这将引起频率的 上升。可用一台示波器检测OSC输出脚,如果检测一非常清晰的正弦波,且正弦波的上限值和下限值 都符合时钟输入需要,则晶振未被过分驱动;相反,如果正弦波形的波峰,波谷两端被削平,而使波 形成为方形,则晶振被过分驱动。这时就需要用电阻RS来防止晶振被过分驱动。判断电阻RS值大小的 最简单的方法就是串联一个5k或10k的微调电阻,从0开始慢慢调高,一直到正弦波不再被削平为止。 通过此办法就可以找到最接近的电阻RS值。
3).如何选择电容C1,C2? (1):因为每一种晶振都有各自的特性,所以最好按制造厂商所提供的数值选择外部元器件。 (2): 在许可范围内,C1,C2值越低越好。应该试用电容将他的振荡频率调到IC所需要的频率,越准确越好, C值偏大虽有利于振荡器的稳定,但将会增加起振时间。 (3):应使C2值大于C1值,这样可使上电时,加快晶振起振。
2.晶振的基本原理
2.1. 晶振的原理
石英晶体之所以可以作为谐振器,是由于它具有正(机械能→电能)、反(电能→机械能)压电效应。沿 石英晶片的电轴或机械轴施加压力,则在晶片的电轴两面三刀个表面产生正、负电荷,呈现出电压,其 大小与所加力产生的形变成正比;若施加张力,则产生反向电压,这种现象称为正电效应。当沿石英晶 片的电轴方向加电场,则晶片在电轴和机械轴方向将延伸或压缩,发生形变,这种现象称为反压电效应。 因此,在晶体两面三刀端加上交流电压时,晶片会随电压的变化产生机械振动,机械振动又会在晶片内 表面产生交变电荷。由于晶体是有弹性的固体,对于某一振动方式,有一个固有的机械谐振频率。当外 加交流电压等于晶片的固有机械谐振频率时,晶片的机械振动幅度最大,流过晶片的电流最大,产生了 共振现象。石英晶片的共振具有多谐性,即除可以基频共振外,还可以谐频共振,通常把利用晶片的基 频共振的谐振器,利用晶片谐频共振的谐振器称为泛音谐振器,一般能利用的是3、5、7之类的奇次泛音。 晶片的振动频率与厚度成反比,工作频率越高,要求晶片越薄(尺寸越大,频率越低),,这样的晶片 其机械强度就越差,加工越困难,而且容易振碎,因此在工作频率较高时常采用泛音晶体。一般地,在 工作频率小于20MHZ时采用基频晶体,在工作频率大于20MHZ时采用泛音晶体。

石英晶体稳频的多谐振荡器

石英晶体稳频的多谐振荡器

u2/3V0 ttu08.1 多谐振荡器本次重点内容:1、多谐振荡器的工作原理。

2、周期的计算方法。

教学过程一、多谐振荡器特点1.多谐振荡器没有稳定状态,只有两个暂稳态。

2.通过电容的充电和放电,使两个暂稳态相互交替,从而产生自激振荡,无需外触发。

3.输出周期性的矩形脉冲信号,由于含有丰富的谐波分量,故称作多谐振荡器。

二、电路组成电路如图8.1 (a) 所示 , 定时元件除电容 C 之外 , 还有两个电阻 R1 和 R2 将高、低电平触发端( ⑥、②脚) 短接后连接到 C 与R2 的连接处, 将放电端( ⑦脚) 接到R1与R2的连接处图8.1 (a) 电路组成 (b) 工作波形三、工作原理接通电源瞬间 t =to 时 , 电容 C 来不及充电 ,u c 为低电平 , 此时 ,555 定时器内 R =0,S=1, 触发器置 1, 即 Q =1, 输出u o为高电平。

同时由于Q=0, 放电管 V 截止 , 电容 C 开始充电 , 电路进入暂稳态。

一般多谐振荡器的工作过程可分为以下四个阶段 ( 见图 (b)):(1) 暂稳态 I(O ~t l): 电容 C 充电 , 充电回路为 V DD → R1 → R2 → C →地 ,充电时间常数为 为τ1=(R1+R2)C, 电容 C 上的电压 u c 随时间 t 按指数规律上升 , 此阶段内输出电压 uo 稳定在高电平。

(2) 自动翻转 I(t =tl): 当电容上的电压 uc 上升到了32V DD 时 , 由于 555 定时器内 S=0,R=1, 使触发器状态Q 由 1 变为 0, Q 由0变成 1, 输出电压 uo 由高电平跳变为低电平 , 电容 C 中止充电。

(3) 暂稳态 Ⅱ (t1~t2): 由于此刻Q ==1, 因此放电管 V 饱和导通 , 电容 C 放电 , 放电回路为 C → R2 →放电管 V →地 , 放电时间常数τ2=R 2C( 忽略 V 管的饱和电阻 ), 电容电压 u c 按指数规律下降 , 同时使输出维持在低电平上。

晶振与匹配电容的总结

晶振与匹配电容的总结

晶振与匹配电容的总结 Document number:PBGCG-0857-BTDO-0089-PTT1998匹配电容-----负载电容是指晶振要正常震荡所需要的电容。

一般外接电容,是为了使晶振两端的等效电容等于或接近负载电容。

要求高的场合还要考虑ic输入端的对地电容。

一般晶振两端所接电容是所要求的负载电容的两倍。

这样并联起来就接近负载电容了。

2.负载电容是指在电路中跨接晶体两端的总的外界有效电容。

他是一个测试条件,也是一个使用条件。

应用时一般在给出负载电容值附近调整可以得到精确频率。

此电容的大小主要影响负载谐振频率和等效负载谐振电阻。

3.一般情况下,增大负载电容会使振荡频率下降,而减小负载电容会使振荡频率升高4.负载电容是指晶振的两条引线连接IC块内部及外部所有有效电容之和,可看作晶振片在电路中串接电容。

负载频率不同决定振荡器的振荡频率不同。

标称频率相同的晶振,负载电容不一定相同。

因为石英晶体振荡器有两个谐振频率,一个是串联揩振晶振的低负载电容晶振:另一个为并联揩振晶振的高负载电容晶振。

所以,标称频率相同的晶振互换时还必须要求负载电容一至,不能冒然互换,否则会造成电器工作不正常。

一份电路在其输出端串接了一个22K的电阻,在其输出端和输入端之间接了一个10M的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。

晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,一般在M欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。

和晶振串联的电阻常用来预防晶振被过分驱动。

晶振过分驱动的后果是将逐渐损耗减少晶振的接触电镀,这将引起频率的上升,并导致晶振的早期失效,又可以讲drive level调整用。

进口石英晶体振荡器完整料号

进口石英晶体振荡器完整料号

进口石英晶体振荡器完整料号本文由 编辑整理电子技术日益发达具奇美电内部透露明年所有产品线,包括电视,监视器,平板电脑,手机等产品都要达到20%市占率的目标,智能手机大量出货,可能而知现在电子产品在市场的地位,而支撑这些产品顺利出货的幕后CEO电子元器件贴片晶振是其中之一,每部手机必须用到的32.768K晶体,石英振荡器3225就这二个元件也足以带动整个行业销量.各个品牌手机结构不同设计的电路板也有大同小异,CDMA智能手机必须用到石英晶体3225 26MHZ蓝牙也一样,ATM一般用12MHZ 3225振荡器,振荡器可能有很多人会混淆一连串的字母不知道哪个是哪个,可能有些采购商工程跟他说找有源晶振DSV就给了他这三个字母,而采购又是刚刚上任不久不知道这是什么东西只知道带电压有源晶振,这里列举一些比较常用的进口日产石英晶体振荡器料号.日本株式大真空晶体振荡器DSO开头属于普通振荡器料号(SPXO)料号频率范围产品尺寸封装DSO321SBM 0.7 to 90MHz 3.2×2.5×1.1 3K/盘装DSO321SBN 0.7 to 90MHz 3.2×2.5×1.1 3K/盘装DSO323SD 13.5 to 212.5MHz 3.2×2.5×1.1 3K/盘装DSO323SK 13.5 to 212.5MHz 3.2×2.5×1.1 3K/盘装DSO321SW 3 to 60MHz 3.2×2.5×0.9 3K/盘装DSO211AR 0.4 to 80MHz 2.0×1.6×0.72 3K/盘装DSO221SBM 3.25 to 52MHz 5×2.0×0.815 3K/盘装DSO221SR 0.2 to 167MHz 2.5×2.0×0.815 3K/盘装DSO531SBM 0.7 to 90MHz 5.0×3.2×1.1 1K/盘装DSO533SJ 13.5 to 212.5MHz 5.0×3.2×1.1 1K/盘装DSO533SK 13.5 to 212.5MHz 5.0×3.2×1.1 1K/盘装DSO751SBM 0.7 to 90MHz 7.3×4.9×1.5 1K/盘装DSO751SR 0.2 to 167MHz 7.3×4.9×1.5 1K/盘装DSO753HK 212.5 to 350MHz 7.0×5.0×2.0 1K/盘装DSO753SD 13.5 to 212.5MHz 7.3×4.9×1.5 1K/盘装DSO753SJ 13.5 to 212.5MHz 7.3×4.9×1.5 1K/盘装DSB开头属于温补振荡器(TCXO)料号频率范围产品尺寸封装DSB321SDA 9.6 to 52 MHz 3.2×2.5×0.9 3K/盘装DSB321SCL 9.6 to 52 MHz 3.2×2.5×0.9 3K/盘装DSB211SCL 13 to 52 MHz 2.1×1.7×0.63 3K/盘装DSB211SDB 13 to 52 MHz 2.1×1.7×0.63 3K/盘装DSB221SCL 9.6 to 52 MHz 2.5×2.0×0.8 3K/盘装DSB221SDA 9.6 to 52 MHz 2.5×2.0×0.8 3K/盘装DSB535SD 9.6 to 40 MHz 5.0×3.2×1.05 1K/盘装DSB535SC 10 to 30MHz 5.0×3.2×1.35 1K/盘装DSB535SG 10 to 40 MHz 5.0×3.2×1.35 1K/盘装DSV开头属于压控振荡器(VCXO)料号频率范围产品尺寸封装DSV531SB 5 to 50MHz 5.0×3.2×1.2 1K/盘装DSV531SV 1.25 to 80MHz 5.0×3.2×1.2 1K/盘装DSV532SV 1.25 to 80MHz 5.0×3.2×1.1 1K/盘装DSV753SB 4 to 50MHz 7.0×5.0×2.0 1K/盘装DSV753SK 40 to 170MHz 7.3×4.9×1.5 1K/盘装DSV753SD 80 to 170MHz 7.3×4.9×1.5 1K/盘装DSV321SR 6.75 to 90MHz 3.2×2.5×1.1 3K/盘装DSV323SJ 80 to 170MHz 3.2×2.5×1.1 3K/盘装DSV323SK 40 to 170MHz 3.2×2.5×1.1 3K/盘装DSV221SR 7.5 to 60MHz 2.5×2.0×0.815 3K/盘装DSV221SV 6.75 to 90MHz 2.5×2.0×0.815 3K/盘装DSV211AV 12 to 80MHz 2.0×1.6×0.72 3K/盘装DSA开头属于压控温补振荡器(VC-TCXO)料号频率范围产品尺寸封装DSA211SCL 13 to 52 MHz 2.1×1.7×0.63 3K/盘装DSA221SDA 9.6 to 52 MHz 2.5×2.0×0.8 3K/盘装DSA221SJ 10 to 40 MHz 2.5×2.0×0.8 3K/盘装DSA221SCL 9.6 to 52 MHz 2.5×2.0×0.8 3K/盘装DSA321SDA 9.6 to 52 MHz 3.2×2.5×0.9 3K/盘装DSA321SCL 9.6 to 52 MHz 3.2×2.5×0.9 3K/盘装DSA535SG 10 to 40 MHz 5.0×3.2×1.35 1K/盘装DSA535SC 10 to 30MHz 5.0×3.2×1.35 1K/盘装DSA535SD 9.6 to 40 MHz 5.0×3.2×1.05 1K/盘装日产爱普生振荡器系列TCO开头温补振荡器料号频率范围产品尺寸封装TCO-7087 1.5 to 160.00MHZ 7.0×5.0×1.6 1K/盘装TCO-710X 1.5 to 75MHZ 5.0×3.2×1.0 1K/盘装SG-310 2.0 to 80.0MHZ 3.2×2.5×1.05 3K/盘装TG-5035CE 10.0 to 40.0MHZ 3.2×2.5×0.9 3K/盘装VG开头压控振荡器料号频率范围产品尺寸封装VG-4232CA 60 to 80.0MHZ 7.0×5.0×1.4 1K/盘装VG-4231CB 1.0 to 80.0MHZ 5.0×3.2×1.2 1K/盘装VG-4231CA 1.0 to 60.0MHZ 7.0×5.0×1.4 1K/盘装日产西铁城振荡器系列CSX开头压控振荡器料号频率范围产品尺寸封装CSX532T 12.8 to 26.0MHZ 3.2×2.5×1.0 1K/盘装CSX-750V 2.0 to 4.0MHZ 7.0×5.0×1.6 1K/盘装CSX750F 1.0 to 80.0MHZ 7.0×5.0×1.6 1K/盘装CSX325T 1.0 to 38.0MHZ 3.2×2.5×1.0 3K/盘装CSX325P 1.0 to 125.0MHZ 3.2×2.5×1.0 3K/盘装CSX-252T 19.2 to 38.4MHZ 2.5×2.0×1.0 3K/盘装振荡器根据振荡形式不同又可分很多种,比如石英晶体振荡器,环形振荡器,石英晶体多谐振荡器,通过电容的充电和放电使两个暂稳态相互交替,不用触发来产生自激振荡输出周期性的矩形脉冲信号又含有丰富的谐波分量这种叫做多谐振荡器,多谐振荡器主要利用谐振原理实现的振荡器.而石英晶体振荡器则利用压电效应,在石英晶片受到外加交变电场的作用下产生机械振动,当交变电场的频率与石英晶体的固有频率相同时,振动变得更强烈这就是晶体谐振特性的反应.因此信号发生电路上要产生方波时主要的起振元件大多会采用晶体振荡器.。

石英晶体谐振频率和q值

石英晶体谐振频率和q值

石英晶体谐振频率和q值
石英晶体谐振频率和Q值是石英晶体振荡器的重要参数,它们直接决定了振荡器的性能。

首先,我们来了解一下石英晶体的谐振频率。

石英晶体是一种具有特殊性质的物质,它具有高度的非线性,并且在其特定的温度范围内,其机械性能表现出强烈的弹性。

当外部机械压力作用于石英晶体时,其内部原子结构会产生强烈的振动。

这种振动在特定的频率下会引发谐振,即谐振频率。

对于石英晶体振荡器,其谐振频率通常以兆赫兹(MHz)或千兆赫兹(GHz)为单位。

接下来,我们来看一下Q值。

Q值是衡量石英晶体振荡器性能的一个重要参数,它表示了振荡器的品质因数。

Q值的大小取决于多个因素,包括晶体的切割角度、温度、频率等。

Q值越高,振荡器的频率稳定性和相位噪声性能就越好。

因此,高Q值的石英晶体振荡器通常被用于需要高精度和高稳定性的应用中,如通信、导航和时钟生成等。

在实际应用中,石英晶体振荡器的谐振频率和Q值会受到多种因素的影响。

例如,环境温度的变化、机械冲击、老化等都可能引起这些参数的变化。

因此,对于一些高精度和高稳定性的应用,需要对石英晶体振荡器的谐振频率和Q值进行精确的控制和监测。

总之,石英晶体谐振频率和Q值是衡量石英晶体振荡器性能的重要参数。

了解这些参数的含义及其影响因素有助于我们更好地理解和使用石英晶体振荡器。

对于需要高精度和高稳定性的应用,需要对这些参数进行精确的控制和监测。

随着科技的不断发展,我们期待着更加先进的石英晶体振荡器能够在未来得到广泛应用。

3225石英晶体振荡器的阻抗范围

3225石英晶体振荡器的阻抗范围

文章标题:探究石英晶体振荡器的阻抗范围在现代科技领域中,石英晶体振荡器扮演着至关重要的角色。

它不仅被广泛应用于通信设备、计算机、电子钟表等领域,而且也深刻影响了人类社会的发展进程。

石英晶体振荡器之所以能够如此重要,与其阻抗范围息息相关。

本文将从深度和广度两个方面来探讨石英晶体振荡器的阻抗范围,以便读者能够更全面地理解这一主题。

一、石英晶体振荡器的基本原理要深入理解石英晶体振荡器的阻抗范围,首先需要对其基本原理有所了解。

石英晶体具有压电效应,即受到外界压力或拉伸时会产生电荷。

这一特性使得石英晶体可以用作振荡器的振动元件。

当电压施加于石英晶体上时,它会发生机械振动,产生特定的频率。

而这一频率与石英晶体的物理尺寸和机械特性有关,因此可以通过控制其尺寸和形状来实现不同的振荡频率。

二、阻抗范围对石英晶体振荡器的影响石英晶体振荡器的阻抗范围直接关系到其在电路中的应用。

阻抗范围广泛意味着石英晶体振荡器可以适用于不同的电路和系统,而阻抗范围受限则可能导致其应用范围收缩。

一般来说,石英晶体振荡器的阻抗范围包括了电阻、电感和电容等参数的范围变化。

在实际应用中,需要根据电路的要求选择具有适当阻抗范围的石英晶体振荡器,以确保电路的正常工作。

三、石英晶体振荡器的阻抗范围评估针对石英晶体振荡器的阻抗范围进行全面评估,需要考虑多个方面的因素。

首先是石英晶体振荡器的工作频率范围,它直接决定了石英晶体的振荡频率范围。

其次是石英晶体振荡器的稳定性和精度,这些参数与其阻抗范围密切相关,因为稳定性和精度的要求会对阻抗参数提出更高的要求。

四、石英晶体振荡器的实际应用石英晶体振荡器在通信设备、计算机、电子钟表等领域有着广泛的应用。

在这些应用中,石英晶体振荡器的阻抗范围会受到严格的要求。

在通信设备中,要求石英晶体振荡器具有较宽的阻抗范围,以适应不同的工作环境和电路条件。

在电子钟表中,对石英晶体振荡器的稳定性和精度要求较高,这也对其阻抗范围提出了更高的要求。

晶振的基本原理及特性

晶振的基本原理及特性

晶振的基本原理及特性晶振一般采用如图1a的电容三端式(考毕兹) 交流等效振荡电路;实际的晶振交流等效电路如图1b,其中Cv是用来调节振荡频率,一般用变容二极管加上不同的反偏电压来实现,这也是压控作用的机理;把晶体的等效电路代替晶体后如图1c。

其中Co,C1,L1,RR是晶体的等效电路。

分析整个振荡槽路可知,利用Cv来改变频率是有限的:决定振荡频率的整个槽路电容C=Cbe,Cce,Cv三个电容串联后和Co并联再和C1串联。

可以看出:C1越小,Co越大,Cv变化时对整个槽路电容的作用就越小。

因而能“压控”的频率范围也越小。

实际上,由于C1很小(1E-15量级),Co不能忽略(1E-12量级,几PF)。

所以,Cv变大时,降低槽路频率的作用越来越小,Cv变小时,升高槽路频率的作用却越来越大。

这一方面引起压控特性的非线性,压控范围越大,非线性就越厉害;另一方面,分给振荡的反馈电压(Cbe上的电压)却越来越小,最后导致停振。

采用泛音次数越高的晶振,其等效电容C1就越小;因此频率的变化范围也就越小。

晶振的指标总频差:在规定的时间内,由于规定的工作和非工作参数全部组合而引起的晶体振荡器频率与给定标称频率的最大偏差。

说明:总频差包括频率温度稳定度、频率老化率造成的偏差、频率电压特性和频率负载特性等共同造成的最大频差。

一般只在对短期频率稳定度关心,而对其他频率稳定度指标不严格要求的场合采用。

例如:精密制导雷达。

频率稳定度:任何晶振,频率不稳定是绝对的,程度不同而已。

一个晶振的输出频率随时间变化的曲线如图2。

图中表现出频率不稳定的三种因素:老化、飘移和短稳。

图2 晶振输出频率随时间变化的示意图曲线1是用0.1秒测量一次的情况,表现了晶振的短稳;曲线3是用100秒测量一次的情况,表现了晶振的漂移;曲线4 是用1天一次测量的情况。

表现了晶振的老化。

频率温度稳定度:在标称电源和负载下,工作在规定温度范围内的不带隐含基准温度或带隐含基准温度的最大允许频偏。

高频振荡器实验-石英晶体振荡器

高频振荡器实验-石英晶体振荡器


调整RW1电位器,使IC=2mA

调整时采用间接测量法。 :即用直流电压表测量晶体管发射极对

地电压,并将测量结果记录于表中。

BG1
Re=1K

Vb
Ve
Vce
Ic计算值

四、实验应会技能
实验内容二: 振荡器的频率与幅度调测
实验准备
SW1“右”(LC振荡) SW2“左”(RL=110K)
SW3“左”(C2=330Pf)
fo 1
2 LC
三、实验应知知识
6与.3考毕串兹联电型路相改进电容三端式振荡器(克拉泼电路)
比,电在路电组感成L如上图串示:
联特一点个是电在容考。毕但兹电路的基础上,
它用有一以电下容特C点3与:原电路中的电感L相 1可串、不。振影功荡响用频反主率馈要改系是变以增加回路总电 数容。和减小管子与回路间的耦合来
三点式
三点电容(考毕兹) 三点电感(哈特莱)
改进三 点式
电容串联改进(克拉泼) 电容并联改进(西勒)
串联型
皮尔斯
并联型
密勒
① 放大网络 三、实验应知知识 以有源器件为主体,起能量转换作用,将直流电源提供的能量,通过振荡系统转
换§成4固反定频馈率型的交正流能弦量波,即振构荡成驱器动的系统电。路构成与工作原理


Vo
正反馈网络

Vf




Vf
谐振放大+ 器输出的信号电压经反馈网络产生回授电压uf,作为正回授反馈 到基极。且uf>ui。经放大后再输出,再回授。
振荡器只要满足A*F>1,振荡器则周而复始形成对某单一频率信号放大—回 授,且有uin>ui2>ui1.从而形成振荡过程,实现将直流能量转换成交流信号。

晶振参数详解

晶振参数详解
Au uthor: Jackie Lo ong
晶振 振参数详 详解
晶振是石英 英晶体谐振器 器(quartz cry ystal oscillator r)的简称,也称有源晶 振,它能够产 产生 中央 央处理器(CP PU)执行指令 令所必须的时 时钟频率信号 号,CPU 一切 切指令的执行 行都是建立在 在这个 基础 础上的,时钟 钟信号频率越 越高,通常 CP PU 的运行速 速度也就越快。 只要是包含 含 CPU 的电子 子产品,都至 至少包含一个 个时钟源,就算 算外面看不到 到实际的晶振 振电 路,也是在芯片 片内部被集成 成,它被称为 CPU 的心脏 脏。 如下图所示 示的有源晶振 振, 在外部施加 加适当的电压 压后, 就可以 以输出预先设 设置好的周期性时 钟信 信号,
这个周期性 性输出信号的标称频率( Normal Frequency) ,就是 是晶体元件规 规格书中所指 指定 的频 频率,也是工 工程师在电路 路设计和元件选 选购时首要关 关注的参数。 。晶振常用标 标称频率在 1~ 200M MHz 之间,比如 32768H Hz、8MHz、1 12MHz、24M MHz、125MH Hz 等,更高的 的输出频率也 也常 用P PLL(锁相环) )将低频进行 行倍频至 1G Hz 以上。 输出信号的 的频率不可避 避免会有一定 的偏差,我们 们用频率误差 差(Frequen ncy Tolerance e)或 频率 率稳定度(Fr requency Stability) ,用单 单位 ppm 来表 表示,即百万 万分之一(pa arts per millio on) (1/ /106) ,是相对 对标称频率的 的变化量,此 此值越小表示 示精度越高。 比如,12M MHz 晶振偏差 差为±20ppm ,表示它的频 频率偏差为 12×20Hz=± 240Hz,即频 频率 范围 围是(119997 760~120002 240Hz) 另外,还有 有一个温度频 频差(Frequen ncy Stability vs Temp)表 表示在特定温 温度范围内,工作 偏离,它的单 频率 率相对于基准 准温度时工作 作频率的允许偏 单位也是 ppm。 我们经常还 还看到其它的一些参数,比 比如负载电容 容、谐振电阻 阻、静电容等 等参数,是神马情 体的物理特性 性有关。我们 先了解一下晶 晶体,如下图 图所示 况?这些与晶体

3225石英晶体振荡器的阻抗范围

3225石英晶体振荡器的阻抗范围

3225石英晶体振荡器的阻抗范围摘要:一、石英晶体振荡器简介二、石英晶体振荡器的阻抗范围三、石英晶体振荡器阻抗的影响因素四、石英晶体振荡器的应用正文:石英晶体振荡器是一种电子元件,利用石英晶体的压电效应产生稳定的振荡信号。

在众多应用中,石英晶体振荡器广泛应用于通信、计算机、家电等领域。

本文将详细介绍石英晶体振荡器的阻抗范围及其影响因素。

石英晶体振荡器的阻抗范围在100 欧姆至10000 欧姆之间。

阻抗是石英晶体振荡器的一个重要参数,它反映了石英晶体振荡器在电路中的匹配程度。

合适的阻抗范围可以保证石英晶体振荡器在电路中发挥稳定的性能。

石英晶体振荡器阻抗的影响因素主要有以下几点:1.石英晶体振荡器的材料和结构:石英晶体振荡器的材料和结构对其阻抗有直接影响。

例如,石英晶体的厚度、电极的尺寸和形状等因素都会影响石英晶体振荡器的阻抗。

2.工作频率:石英晶体振荡器的工作频率也会影响其阻抗。

通常情况下,频率越高,阻抗越小。

3.温度:石英晶体振荡器的阻抗随温度的变化而变化。

在一定温度范围内,随着温度的升高,石英晶体振荡器的阻抗会减小。

4.负载电容:石英晶体振荡器在电路中运行时,其负载电容对阻抗也有影响。

负载电容越大,阻抗越小;负载电容越小,阻抗越大。

石英晶体振荡器具有稳定性高、频率精度高、抗干扰能力强等优点,使其在通信、计算机、家电等领域得到广泛应用。

例如,在通信领域,石英晶体振荡器可以作为本地振荡器,为信号传输提供稳定的频率参考;在家电领域,石英晶体振荡器可以用于计时、控制等功能。

总之,石英晶体振荡器的阻抗范围对其性能和应用具有重要意义。

晶振知识大普及

晶振知识大普及

晶振术语解释1、晶振:即所谓石英晶体谐振器和石英晶体时钟振荡器的统称。

不过由于在消费类电子产品中,谐振器用的更多,所以一般的概念中把晶振就等同于谐振器理解了。

后者就是通常所指钟振。

2、分类。

首先说一下谐振器。

谐振器一般分为插件(Dip)和贴片(SMD)。

插件中又分为HC-49U、HC-49U/S、音叉型(圆柱)。

HC-49U一般称49U,有些采购俗称“高型”,而HC-49U/S一般称49S,俗称“矮型”。

音叉型按照体积分可分为3*8,2*6,1*5,1*4等等。

贴片型是按大小和脚位来分类。

例如7*5(0705)、6*3.5(0603),5*3.2(5032)等等。

脚位有4pin和2pin之分。

而振荡器也是可以分为插件和贴片。

插件的可以按大小和脚位来分。

例如所谓全尺寸的,又称长方形或者14pin,半尺寸的又称为正方形或者8pin。

不过要注意的是,这里的14pin和8pin都是指振荡器内部核心IC的脚位数,振荡器本身是4pin。

而从不同的应用层面来分,又可分为OSC(普通钟振),TCXO(温度补偿),VCXO(压控),OCXO(恒温)等等。

3、基本术语。

我想这也是很多采购同学比较模糊的地方。

这里我选了一些常用的谐振器术语拿来做一下解释。

Frequency Tolerance(调整频差):在规定条件下,在基准温度(25±2℃)与标称频率允许的偏差。

一般用PPm(百万分之)表示。

Frequency Stability(温度频差):指在规定的工作温度范围内,与标称频率允许的偏差。

用PPm 表示。

Aging(年老化率):在规定条件下,晶体工作频率随时间而允许的相对变化。

以年为时间单位衡量时称为年老化率。

Shunt Capacitance(静电容):等效电路中与串联臂并接的电容,也叫并电容,通常用C0表示。

Load Capacitance(负载电容):与晶体一起决定负载谐振频率fL的有效外界电容,通常用CL表示。

石英振荡器参数

石英振荡器参数

石英振荡器参数
石英振荡器是一种利用石英晶体的谐振特性来产生稳定的频率信
号的设备。

它具有以下几个重要参数:
1. 频率(Frequency):石英振荡器的输出频率是其最重要的参
数之一,通常以赫兹(Hz)为单位表示。

常见的石英振荡器频率包括
10 MHz、20 MHz等。

2. 稳定度(Stability):石英振荡器的稳定度决定了频率信号
的稳定程度。

稳定度一般以频率偏移或频率漂移来表示,通常在ppm (每百万分之)或ppb(每十亿分之)范围内。

较高的稳定度意味着频率变化较小,信号更稳定。

3. 相位噪声(Phase noise):相位噪声是指振荡器输出信号中
含有非期望的相位变化,通常以dBc/Hz(每赫兹下的相对功率)表示。

相位噪声较低的石英振荡器会产生更干净、噪声较少的信号。

4. 工作电压(Operating voltage):石英振荡器的工作电压指
振荡器所需的电源电压。

常见的工作电压为3.3V或5V,不同工作电压适用于不同的应用场景。

5. 工作温度范围(Operating temperature range):石英振荡
器的工作温度范围是指振荡器能够正常工作的温度范围。

典型的工作
温度范围为-40℃至+85℃,或者更广泛的-55℃至+125℃。

这些参数可以根据具体的应用需求进行选择,以满足频率稳定和
噪声要求。

石英晶体多谐振荡器

石英晶体多谐振荡器

9.5.2 石英晶体多谐振荡器在许多数字系统中,都要求时钟脉冲的频率十分稳定。

上面介绍的用555定时器组成的多谐振荡器,虽然结构简单、调节方便,但因为判决电平易受温度变化和电源波动的影响,电阻、电容的参数易受外部环境的改变而变化,且电路结构本身就易受到干扰,所以造成输出信号振荡频率的稳定性不是很高。

为了提高振荡器的频率稳定性,往往需要使用石英晶体,构成石英晶体多谐振荡器。

一.石英晶体的选频特性图9.5.4为石英晶体的符号和阻抗频率特性。

由图9.5.4(b )可知,石英晶体对频率特别敏感,在其两端加入不同频率的信号时,石英晶体将呈现不同的阻抗特性和阻抗大小。

当信号频率为时,石英晶体呈现纯阻性,且阻抗值最小,接近为0。

当信号频率时,石英晶体呈现电感性; 时,呈现电容性。

并且,其阻抗值随偏离的距离的增大而迅速增大。

根据电路谐振的概念,将称为石英晶体的谐振频率,或者固有频率,它只与石英晶体的切割方向、外形尺寸有关,不受外围电路参数的影响,其稳定性极高,足以满足数字系统对脉冲信号的频率稳定性的要求。

图9.5.4 石英晶体的符号和阻抗频率特性(a )符号 (b )阻抗频率特性二.石英晶体多谐振荡器图9.5.5所示为两种比较典型的石英晶体多谐振荡器,其中,图9.5.5(a )使用的了TTL 反相器,图9.5.5(b )使用了CMOS 反相器。

图9.5.5 石英晶体多谐振荡器(a )TTL 型 (b )CMOS 型0f 0f f >0f f <0f 0f★ 图9.5.5(a )中:电容 是耦合电容,使反相器 之间形成正反馈交流环路,也可以不用,采用直接耦合方式构成电路。

石英晶体构成选频环节,其谐振频率处晶体的阻抗最低,此时反馈信号最强而产生自激振荡,所以石英晶体多谐振荡器的振荡频率必定是,而与所接电容、电阻及门电路的阈值电压无关,具有极强的稳定性。

同时,实际使用时,又常常在输出端使用一个反相器 ,起整形作用,使输出信号更接近矩形波。

石英晶体谐振器原理特点和参数

石英晶体谐振器原理特点和参数

石英晶体谐振器原理特点和参数石英晶体振荡器的基本工作原理及作用(1)石英晶体振荡器(简称晶振)的结构石英晶体振荡器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。

其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。

(2)压电效应若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。

反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。

如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。

在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐振现象十分相似。

它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。

(3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。

当晶体不振动时,可把它看成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。

当晶体振荡时,机械振动的惯性可用电感L來等效。

一般L的值为几十mH到几百mH。

晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。

晶片振动时因摩擦而造成的损耗用R來等效,它的數值约为100Ω。

由于晶片的等效电感很大,而C很小,R也小,因此回路的品质因數Q很大,可达1000~10000。

加上晶片本身的谐振频率基本上只与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。

晶体符号等效电路频率特性曲线图石英晶体振荡器外形图片(4)谐振频率从石英晶体谐振器的等效电路可知,它有两个谐振频率,即a、当L、C、R支路发生串联谐振时,它的等效阻抗最小(等于R)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

石英晶体振荡器的主要参数
标称频率fo:存规定的负载电容下,晶振元件的振荡频率即为标称频率矗。

标称频率足晶体技术条件中规定的频率,通常标识在产品外壳上。

需要注意的是,晶体外壳所标注的频率,既不是串联谐振频率也不足并联谐振频率,而足在外接负载电容时测定的频率,数值介于串联谐振频率与并联谐振频率之间。

所以即使两个晶体外壳所标注的频率是一样的,其实际频率也会有些小的偏差(1.艺引起的离散性)。

常用普通晶振标称频率有48kHz、500kHz、503.5kHz、l -40.50MHz等,对于特殊要求的晶振频率可达到IOOOMHz以上。

负载电容:品振元件相当于电感,组成振荡电路时需配接外部电容,此电容目U负载电容。

负载电容是与晶体一起决定负载谐振频率f的有效外界电容,通常用CL表示。

设计电路时必须按产品手册巾规定的CL值,才能使振荡频率符合晶振的fL。

在应用晶体时,负载电容(C。

)的值是卣接由厂家所提供的,无需冉去计算。

常见的负载电容为8pF、12pF、15pF、20pF、30pF、50pF、lOOpF。

』I要可能就应选lOpF、20pF、30pF、50pF、lOOpF
这样的推荐值。

负载频率不同决定振荡器的振荡频率不同。

标称频率相同的晶振,负载电容不一定相同。

因为石英品体振荡器有两个谐振频率:一个是串联谐振品振的低负载电容晶振:另一个为并联谐振晶振的高负载电容晶振。

所以,标称频率相同的晶振互换时还必须要求贞载电容一致,不能冒然互换,否则会造成电器工作不止常。

调整频差:在规定条件下,基准温度(25℃±2℃)时工作频率相对于标称频率所允许的偏若。

温度频差:在规定条件下,在工作温度范围内相对于基准温度(25℃t2℃)时工作频率的允许偏差。

老化率:在规定条件下,晶体T作频率随时间向允许的相对变化。

以年为时间单位衡量时称为年老化率。

静电容:等效电路中与串联臂并接的电容,通常用c。

表示(如图8-3所示)。

负载谐振频率(ti,):在规定条件卜,晶体与一个负载电容相串联或相并联,其组合阻抗呈现为电阻性时的两个频率巾的一个频率。

在串联负载电容时,负载谐振频率是两个频率中较低的一个;在并联负载电容时,则足两个频率中较高的一个。

动态电阻:串联谐振频率下的等效电阻,用R1表示。

负载谐振电阻:在负载谐振频率时呈现的等效电阻,用RL表示。

在通常情况下,RL=R1(1十甜Ci),2。

激励电平(功率):晶振工作时会消耗的有效功率。

在振荡回路中,激励电平应大小适中,既不能过激励(容易振到高次谐波上),也不能欠激励(不容易起振)。

常见的激励电平有2mW、ImW、0.5mW、0.2mW、O.lmW、50vw、20ptW、lOLr,W、1}r,W、O.I LiW等。

选择晶体时至少应考虑负载谐振频率、负载电容、激励电平、温度频差及长期稳定性等情况。

频率精度和频率稳定度:由于普通晶振的性能基本都能达到一般电器的要求,故对于高档设备还需要有一定的频率精度和频率稳定度。

频率精度从10-4—10-10量级不等。

稳定度从±1~+lOOppm不等。

要根据具体的设备需要而选择合适的晶振,如通信网络、无线数据传输等系统就需要更高要求的石英晶体振荡器。

因此,晶振的参数决定了晶振的品质和性能。

在实际应用中要根据具体要求选择适当的晶振,因不同性能的晶搌,其价格不同。

要求越商,价格也越贵,一般j{要满足要求即可。

相关文档
最新文档