初中数学命题与证明的技巧及练习题附解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学命题与证明的技巧及练习题附解析

一、选择题

1.下列命题属于真命题的是()

A.同旁内角相等,两直线平行B.相等的角是对顶角

C.平行于同一条直线的两条直线平行D.同位角相等

【答案】C

【解析】

【分析】

要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.

【详解】

A、同旁内角互补,两直线平行,是假命题;

B、相等的角不一定是对顶角,是假命题;

C、平行于同一条直线的两条直线平行,是真命题;

D、两直线平行,同位角相等,是假命题;

故选C.

【点睛】

本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.

2.下列命题是假命题的是()

A.有一个角为60︒的等腰三角形是等边三角形

B.等角的余角相等

C.钝角三角形一定有一个角大于90︒

D.同位角相等

【答案】D

【解析】

【分析】

【详解】

解:选项A、B、C都是真命题;

选项D,两直线平行,同位角相等,选项D错误,是假命题,

故选:D.

3.下列命题是真命题的是()

A.内错角相等

B.平面内,过一点有且只有一条直线与已知直线垂直

C.相等的角是对顶角

D .过一点有且只有一条直线与已知直线平行

【答案】B

【解析】

【分析】

命题的“真”“假”是就命题的内容而言.任何一个命题非真即假,正确的命题为真命题,错误的命题为假命题.

【详解】

A 、内错角相等,是假命题,故此选项不合题意;

B 、平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故此选项符合题意;

C 、相等的角是对顶角,是假命题,故此选项不合题意;

D 、过一点有且只有一条直线与已知直线平行,是假命题,故此选项不合题意; 故选:B .

【点睛】

此题主要考查了命题与定理,关键是掌握要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.

4.下列命题是真命题的个数是( ).

①64的平方根是8±;

②22a b =,则a b =;

③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;

④三角形三边的垂直平分线交于一点.

A .1个

B .2个

C .3个

D .4个

【答案】C

【解析】

【分析】

分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.

【详解】

①64的平方根是8±,正确,是真命题;

②22a b =,则不一定a b =,可能=-a b ;故错误;

③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;

④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;

故选:C

【点睛】

考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.

5.现给出下列四个命题:

①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的

③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于60°. 其中不正确的命题的个数是( )

A .1个

B .2个

C .3个

D .4个

【答案】C

【解析】①根据等边三角形的性质知,等边三角形是轴对称图形,不是中心对称图形,错误;

②由相似三角形的性质知相似三角形的面积比等于它们的相似比的平方,错误; ③根据菱形的面积公式,错误;

④根据三角形内角和定理可知,三角形的三个内角中至少有一内角不小于60°,正确. 综合以上分析,不正确的命题包括①②③.

故选C .

6.下列命题中,是真命题的是( )

A .若a b =,则a b =

B .若0a b +>,则a ,b 都是正数

C .两条直线被第三条直线所截,同位角相等

D .垂直于同一条直线的两条直线平行

【答案】D

【解析】

【分析】

正确的命题是真命题,根据定义依次判断即可得到答案.

【详解】

A. 若a b =,则a b =±,故A 错误;

B. 若0a b +>,则a ,b 中至少有一个数是正数,且正数绝对值大于负数的绝对值,故B 错误;

C. 两条平行线被第三条直线所截,同位角相等,故C 错误;

D. 垂直于同一条直线的两条直线平行正确,

故选:D.

【点睛】

此题考查判断真假命题,正确掌握命题的分类并理解事件的正确与否是解题的关键.

7.下列命题正确的是( )

A .在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.

B .两个全等的图形之间必有平移关系.

C .三角形经过旋转,对应线段平行且相等.

D .将一个封闭图形旋转,旋转中心只能在图形内部.

【答案】A

【分析】

根据平移的性质:平移后图形的大小、方向、形状均不发生改变结合选项即可得出答案.

【详解】

解:A 、经过旋转后的图形两个图形的大小和形状也不变,半径相等的两个圆是等圆,圆还具有旋转不变性,故本选项正确;

B 、两个全等的图形位置关系不明确,不能准确判定是否具有平移关系,错误;

C 、三角形经过旋转,对应线段相等但不一定平行,所以本选项错误;

D 、旋转中心可能在图形内部,也可能在图形边上或者图形外面,所以本选项错误. 故选:A.

【点睛】

本题考查平移、旋转的基本性质,注意掌握①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.

8.下列命题的逆命题正确的是( )

A .如果两个角是直角,那么它们相等

B .全等三角形的面积相等

C .同位角相等,两直线平行

D .若a b =,则22a b =

【答案】C

【解析】

【分析】

交换原命题的题设与结论得到四个命题的逆命题,然后分别根据直角的定义、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.

【详解】

解:A 、逆命题为:如果两个角相等,那么它们都是直角,此逆命题为假命题; B 、逆命题为:面积相等的两三角形全等,此逆命题为假命题;

C 、逆命题为:两直线平行,同位角相等,此逆命题为真命题;

D 、逆命题为,若a 2=b 2,则a =b ,此逆命题为假命题.

故选:C .

【点睛】

本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.

9.下列命题是真命题的是( )

A .如果一个数的相反数等于这个数本身,那么这个数一定是0

B .如果一个数的倒数等于这个数本身,那么这个数一定是1

C .如果一个数的平方等于这个数本身,那么这个数一定是0

D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0

相关文档
最新文档