初中数学命题与证明的图文解析(1)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.平行四边形的对角线互相垂直平分
B.矩形的对角线相等
C.菱形的面积等于两条对角线乘积的一半
D.对角线相等的菱形是正方形
【答案】A
【解析】
【分析】
不正确的命题是假命题,根据定义依次判断即可.
【详解】
A.平行四边形的对角线互相平分,故是假命题;
B.矩形的对角线相等,故是真命题;
C.菱形的面积等于两条对角线乘积的一半,故是真命题;
【详解】
A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A选项错误;
B、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B选项错误;
C、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C选项错误;
D、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D选项正确.
【答案】B
【解析】
【分析】
正确的命题是真命题,根据定义判断即可.
【详解】
解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;
B、一组数据的众数可以不唯一,故正确;
C、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;
D、已知a、b、c是Rt△ABC的三条边,当∠C=90°时,则a2+b2=c2,故此选项错误;
14.下列命题中,是真命题的是()
A.同位角相等B.若两直线被第三条直线所截,同旁内角互补
C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行
【答案】D
【解析】
【分析】
根据平行线的判定、平行线的性质判断即可.
【详解】
A、两直线平行,同位角相等,是假命题;
B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;
B.在同一平面内,垂直于同一直线的两条直线平行,是真命题;
【答案】B
【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.
【详解】①对顶角相等的逆命题是相等的角是对顶角,逆命题错误;
②全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确;
③如果两个实数是正数,它们的积是正数的逆命题是如果两个数的积为正数,那么这两个数也是正数,逆命题错误,也可以有都是负数,
【答案】C
【解析】
【分析】
首先写出各个命题的逆命题,然后进行判断即可.
【详解】
A、逆命题是:对顶角相等.正确;
B、逆命题是:同旁内角互补,两直线平行,正确;
C、逆命题是:对角线相等的四边形是矩形,错误;
D、逆命题是:对角线互相平分的四边形是平行四边形,正确.
故选:C.
【点睛】
本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.
2.“两条直线相交只有一个交点”的题设是()
A.两条直线B.相交
C.只有一个交点D.两条直线相交
【答案】D
【解析】
【分析】
任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.
【详解】
“两条直线相交只有一个交点”的题设是两条直线相交.
故选D.
【点睛】
本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.
7.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设
A.三角形的三个外角都是锐角
B.三角形的三个外角中至少有两个锐角
C.三角形的三个外角中没有锐角
D.三角形的三个外角中至少有一个锐角
【答案】B
【解析】
【分析】
反证法的步骤中,第一步是假设结论不成立,反面成立.
【详解】
解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,
D.对角线相等的菱形是正方形,故是真命题,
故选:A.
【点睛】
此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.
17.下列命题中是假命题的是( )
A.一个三角形中至少有两个锐角
B.在同一平面内,垂直于同一直线的两条直线平行
C.同角的补角相等
D.如果a为实数,那么
【答案】D
【解析】
A.一个三角形中至少有两个锐角,是真命题;
故选B.
【点睛】
考查了反证法,解此题关键要懂得反证法的意义及步骤 在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
8.以下说法中:(1)多边形的外角和是 ;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为()
【解析】
【分析】
根据等弧或垂径定理,正多边形的性质一一判断即可;
【详解】
A、完全重合的两条弧是等弧,错误;
B、正五边形不是中心对称图形,错误;
C、垂直于弦的直径平分弦,正确;
D、三角形的外心到三个顶点的距离相等,错误;
故选:C.
【点睛】
此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
真命题有2个,
故来自百度文库:C.
【点睛】
考查了命题与定理的知识,解题的关键是了解多边形的外角和定理、平行线的性质及三角形的内角和定理,难度不大.
9.下列命题是真命题的是( )
A.中位数就是一组数据中最中间的一个数
B.一组数据的众数可以不唯一
C.一组数据的标准差就是这组数据的方差的平方根
D.已知a、b、c是Rt△ABC的三条边,则a2+b2=c2
所以逆命题成立的只有一个,
故选B.
【点睛】本题考查了互逆命题,真命题与假命题,真命题要运用相关知识进行推导,假命题要通过举反例来进行否定.
6.下列命题中,正确的命题是()
A.度数相等的弧是等弧
B.正多边形既是轴对称图形,又是中心对称图形
C.垂直于弦的直径平分弦
D.三角形的外心到三边的距离相等
【答案】C
12.下列命题为真命题的是()
A.三角形的一个外角大于任何一个和它不相邻的内角
B.两直线被第三条直线所截,同位角相等
C.垂直于同一直线的两直线互相垂直
D.三角形的外角和为
【答案】A
【解析】
【分析】
根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.
【详解】
三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;
故选:B.
【点睛】
此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.
10.下列各命题的逆命题成立的是()
A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等
C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等
【答案】C
【解析】
试题分析:首先写出各个命题的逆命题,再进一步判断真假.
4.下列各命题的逆命题是真命题的是
A.对顶角相等B.全等三角形的对应角相等
C.相等的角是同位角D.等边三角形的三个内角都相等
【答案】D
【解析】
【分析】
分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.
【详解】
A、两个锐角分别相等的两个直角三角形不一定全等,故A选项错误;
B、根据SAS可得,两条直角边分别相等的两个直角三角形全等,故B选项正确;
C、一个命题是真命题,它的逆命题不一定是真命题.故C选项错误;
D、经过旋转,对应线段相等,故D选项错误;
故选:B.
【点睛】
此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
【详解】
A、若a>b,则不一定有a2>b2,比如a=0,b=﹣1,故本选项错误;
B、若三条线段的长a、b、c满足a+b>c,则以a、b、c为边不一定能组成三角形,故本选项错误;
C、两直线平行,同旁内角互补,故本选项错误;
D、三角形的外角和为360°,故本选项正确;
故选:D
【点睛】
本题考查真假命题的判断,解题的关键是根据相关知识对命题进行分析判断.
3.下列命题是真命题的是( )
A.内错角相等
B.平面内,过一点有且只有一条直线与已知直线垂直
C.相等的角是对顶角
D.过一点有且只有一条直线与已知直线平行
【答案】B
【解析】
【分析】
命题的“真”“假”是就命题的内容而言.任何一个命题非真即假,正确的命题为真命题,错误的命题为假命题.
【详解】
A、内错角相等,是假命题,故此选项不合题意;
C、同旁内角互补,两直线平行,是假命题;
D、平行于同一直线的两条直线互相平行,是真命题;
故选:D.
【点睛】
此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.
15.下列四个命题中:
①在同一平面内,互相垂直的两条直线一定相交
②有且只有一条直线垂直于已知直线
③两条直线被第三条直线所截,同位角相等
④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
其中真命题的个数为()
A.1个B.2个C.3个D.4个
【答案】A
【解析】分析:利用平行公理及其推论和垂线的定义、点到直线的距离的定义分别分析求出即可.
详解:①在同一平面内,互相垂直的两条直线一定相交,正确;
②在同一个平面内,有且只有一条直线垂直于已知直线,此选项错误;
初中数学命题与证明的图文解析(1)
一、选择题
1.下列说法正确的是()
A.若a>b,则a2>b2
B.若三条线段的长a、b、c满足a+b>c,则以a、b、c为边一定能组成三角形
C.两直线平行,同旁内角相等
D.三角形的外角和为360°
【答案】D
【解析】
【分析】
利用特例对A进行分析,利用三角形三边关系、平行线的性质、三角形外角的性质分别对B、C、D进行分析判断.
A.0B.1C.2D.3
【答案】C
【解析】
【分析】
利用多边形的外角和定理、平行线的性质及三角形的内角和定理分别判断后即可确定正确的选项.
【详解】
解:(1)多边形的外角和是360°,正确,是真命题;
(2)两条平行线被第三条直线所截,内错角相等,故错误,是假命题;
(3)三角形的3个内角中,至少有2个角是锐角,正确,是真命题,
故选D.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.
5.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )
A.0个B.1个C.2个D.3个
A.两锐角分别相等的两个直角三角形全等
B.两条直角边分别相等的两直角三角形全等
C.一个命题是真命题,它的逆命题一定也是真命题
D.经过旋转,对应线段平行且相等
【答案】B
【解析】
【分析】
A,B利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C利用命题与定理进行分析即可,D.利用旋转的性质即可解答;
B、平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故此选项符合题意;
C、相等的角是对顶角,是假命题,故此选项不合题意;
D、过一点有且只有一条直线与已知直线平行,是假命题,故此选项不合题意;
故选:B.
【点睛】
此题主要考查了命题与定理,关键是掌握要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
解:A、逆命题是三个角对应相等的两个三角形全等,错误;
B、绝对值相等的两个数相等,错误;
C、同位角相等,两条直线平行,正确;
D、相等的两个角都是45°,错误.
故选C.
11.下列命题的逆命题不正确的是()
A.相等的角是对顶角B.两直线平行,同旁内角互补
C.矩形的对角线相等D.平行四边形的对角线互相平分
两条平行线被第三条直线所截,同位角相等,B是假命题;
在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;
三角形的外角和为360°,D是假命题;
故选A.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
13.下列说法正确的是()
③两条平行直线被第三条直线所截,同位角相等,错误;
④从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,错误;
真命题有1个.
故选A.
点睛:本题考查了命题与定理.其中真命题是由题设得出结论,如果不能由题设得出结论则称为假命题.题干中②、③、④,均不能由题设得出结论故不为真命题.
16.下列命题中,假命题是()
B.矩形的对角线相等
C.菱形的面积等于两条对角线乘积的一半
D.对角线相等的菱形是正方形
【答案】A
【解析】
【分析】
不正确的命题是假命题,根据定义依次判断即可.
【详解】
A.平行四边形的对角线互相平分,故是假命题;
B.矩形的对角线相等,故是真命题;
C.菱形的面积等于两条对角线乘积的一半,故是真命题;
【详解】
A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A选项错误;
B、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B选项错误;
C、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C选项错误;
D、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D选项正确.
【答案】B
【解析】
【分析】
正确的命题是真命题,根据定义判断即可.
【详解】
解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;
B、一组数据的众数可以不唯一,故正确;
C、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;
D、已知a、b、c是Rt△ABC的三条边,当∠C=90°时,则a2+b2=c2,故此选项错误;
14.下列命题中,是真命题的是()
A.同位角相等B.若两直线被第三条直线所截,同旁内角互补
C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行
【答案】D
【解析】
【分析】
根据平行线的判定、平行线的性质判断即可.
【详解】
A、两直线平行,同位角相等,是假命题;
B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;
B.在同一平面内,垂直于同一直线的两条直线平行,是真命题;
【答案】B
【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.
【详解】①对顶角相等的逆命题是相等的角是对顶角,逆命题错误;
②全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确;
③如果两个实数是正数,它们的积是正数的逆命题是如果两个数的积为正数,那么这两个数也是正数,逆命题错误,也可以有都是负数,
【答案】C
【解析】
【分析】
首先写出各个命题的逆命题,然后进行判断即可.
【详解】
A、逆命题是:对顶角相等.正确;
B、逆命题是:同旁内角互补,两直线平行,正确;
C、逆命题是:对角线相等的四边形是矩形,错误;
D、逆命题是:对角线互相平分的四边形是平行四边形,正确.
故选:C.
【点睛】
本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.
2.“两条直线相交只有一个交点”的题设是()
A.两条直线B.相交
C.只有一个交点D.两条直线相交
【答案】D
【解析】
【分析】
任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.
【详解】
“两条直线相交只有一个交点”的题设是两条直线相交.
故选D.
【点睛】
本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.
7.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设
A.三角形的三个外角都是锐角
B.三角形的三个外角中至少有两个锐角
C.三角形的三个外角中没有锐角
D.三角形的三个外角中至少有一个锐角
【答案】B
【解析】
【分析】
反证法的步骤中,第一步是假设结论不成立,反面成立.
【详解】
解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,
D.对角线相等的菱形是正方形,故是真命题,
故选:A.
【点睛】
此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.
17.下列命题中是假命题的是( )
A.一个三角形中至少有两个锐角
B.在同一平面内,垂直于同一直线的两条直线平行
C.同角的补角相等
D.如果a为实数,那么
【答案】D
【解析】
A.一个三角形中至少有两个锐角,是真命题;
故选B.
【点睛】
考查了反证法,解此题关键要懂得反证法的意义及步骤 在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
8.以下说法中:(1)多边形的外角和是 ;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为()
【解析】
【分析】
根据等弧或垂径定理,正多边形的性质一一判断即可;
【详解】
A、完全重合的两条弧是等弧,错误;
B、正五边形不是中心对称图形,错误;
C、垂直于弦的直径平分弦,正确;
D、三角形的外心到三个顶点的距离相等,错误;
故选:C.
【点睛】
此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
真命题有2个,
故来自百度文库:C.
【点睛】
考查了命题与定理的知识,解题的关键是了解多边形的外角和定理、平行线的性质及三角形的内角和定理,难度不大.
9.下列命题是真命题的是( )
A.中位数就是一组数据中最中间的一个数
B.一组数据的众数可以不唯一
C.一组数据的标准差就是这组数据的方差的平方根
D.已知a、b、c是Rt△ABC的三条边,则a2+b2=c2
所以逆命题成立的只有一个,
故选B.
【点睛】本题考查了互逆命题,真命题与假命题,真命题要运用相关知识进行推导,假命题要通过举反例来进行否定.
6.下列命题中,正确的命题是()
A.度数相等的弧是等弧
B.正多边形既是轴对称图形,又是中心对称图形
C.垂直于弦的直径平分弦
D.三角形的外心到三边的距离相等
【答案】C
12.下列命题为真命题的是()
A.三角形的一个外角大于任何一个和它不相邻的内角
B.两直线被第三条直线所截,同位角相等
C.垂直于同一直线的两直线互相垂直
D.三角形的外角和为
【答案】A
【解析】
【分析】
根据三角形的外角性质、平行线的性质、平行公理的推论、三角形外角和定理判断即可.
【详解】
三角形的一个外角大于任何一个和它不相邻的内角,A是真命题;
故选:B.
【点睛】
此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.
10.下列各命题的逆命题成立的是()
A.全等三角形的对应角相等B.如果两个数相等,那么它们的绝对值相等
C.两直线平行,同位角相等D.如果两个角都是45°,那么这两个角相等
【答案】C
【解析】
试题分析:首先写出各个命题的逆命题,再进一步判断真假.
4.下列各命题的逆命题是真命题的是
A.对顶角相等B.全等三角形的对应角相等
C.相等的角是同位角D.等边三角形的三个内角都相等
【答案】D
【解析】
【分析】
分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.
【详解】
A、两个锐角分别相等的两个直角三角形不一定全等,故A选项错误;
B、根据SAS可得,两条直角边分别相等的两个直角三角形全等,故B选项正确;
C、一个命题是真命题,它的逆命题不一定是真命题.故C选项错误;
D、经过旋转,对应线段相等,故D选项错误;
故选:B.
【点睛】
此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
【详解】
A、若a>b,则不一定有a2>b2,比如a=0,b=﹣1,故本选项错误;
B、若三条线段的长a、b、c满足a+b>c,则以a、b、c为边不一定能组成三角形,故本选项错误;
C、两直线平行,同旁内角互补,故本选项错误;
D、三角形的外角和为360°,故本选项正确;
故选:D
【点睛】
本题考查真假命题的判断,解题的关键是根据相关知识对命题进行分析判断.
3.下列命题是真命题的是( )
A.内错角相等
B.平面内,过一点有且只有一条直线与已知直线垂直
C.相等的角是对顶角
D.过一点有且只有一条直线与已知直线平行
【答案】B
【解析】
【分析】
命题的“真”“假”是就命题的内容而言.任何一个命题非真即假,正确的命题为真命题,错误的命题为假命题.
【详解】
A、内错角相等,是假命题,故此选项不合题意;
C、同旁内角互补,两直线平行,是假命题;
D、平行于同一直线的两条直线互相平行,是真命题;
故选:D.
【点睛】
此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.
15.下列四个命题中:
①在同一平面内,互相垂直的两条直线一定相交
②有且只有一条直线垂直于已知直线
③两条直线被第三条直线所截,同位角相等
④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.
其中真命题的个数为()
A.1个B.2个C.3个D.4个
【答案】A
【解析】分析:利用平行公理及其推论和垂线的定义、点到直线的距离的定义分别分析求出即可.
详解:①在同一平面内,互相垂直的两条直线一定相交,正确;
②在同一个平面内,有且只有一条直线垂直于已知直线,此选项错误;
初中数学命题与证明的图文解析(1)
一、选择题
1.下列说法正确的是()
A.若a>b,则a2>b2
B.若三条线段的长a、b、c满足a+b>c,则以a、b、c为边一定能组成三角形
C.两直线平行,同旁内角相等
D.三角形的外角和为360°
【答案】D
【解析】
【分析】
利用特例对A进行分析,利用三角形三边关系、平行线的性质、三角形外角的性质分别对B、C、D进行分析判断.
A.0B.1C.2D.3
【答案】C
【解析】
【分析】
利用多边形的外角和定理、平行线的性质及三角形的内角和定理分别判断后即可确定正确的选项.
【详解】
解:(1)多边形的外角和是360°,正确,是真命题;
(2)两条平行线被第三条直线所截,内错角相等,故错误,是假命题;
(3)三角形的3个内角中,至少有2个角是锐角,正确,是真命题,
故选D.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.
5.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )
A.0个B.1个C.2个D.3个
A.两锐角分别相等的两个直角三角形全等
B.两条直角边分别相等的两直角三角形全等
C.一个命题是真命题,它的逆命题一定也是真命题
D.经过旋转,对应线段平行且相等
【答案】B
【解析】
【分析】
A,B利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C利用命题与定理进行分析即可,D.利用旋转的性质即可解答;
B、平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故此选项符合题意;
C、相等的角是对顶角,是假命题,故此选项不合题意;
D、过一点有且只有一条直线与已知直线平行,是假命题,故此选项不合题意;
故选:B.
【点睛】
此题主要考查了命题与定理,关键是掌握要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
解:A、逆命题是三个角对应相等的两个三角形全等,错误;
B、绝对值相等的两个数相等,错误;
C、同位角相等,两条直线平行,正确;
D、相等的两个角都是45°,错误.
故选C.
11.下列命题的逆命题不正确的是()
A.相等的角是对顶角B.两直线平行,同旁内角互补
C.矩形的对角线相等D.平行四边形的对角线互相平分
两条平行线被第三条直线所截,同位角相等,B是假命题;
在同一平面内,垂直于同一直线的两直线互相平行,C是假命题;
三角形的外角和为360°,D是假命题;
故选A.
【点睛】
本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
13.下列说法正确的是()
③两条平行直线被第三条直线所截,同位角相等,错误;
④从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,错误;
真命题有1个.
故选A.
点睛:本题考查了命题与定理.其中真命题是由题设得出结论,如果不能由题设得出结论则称为假命题.题干中②、③、④,均不能由题设得出结论故不为真命题.
16.下列命题中,假命题是()