人教版初中数学命题与证明的知识点

合集下载

中考数学知识点总结:命题、定理与证明

中考数学知识点总结:命题、定理与证明

中考数学知识点总结:命题、定理与证明1、命题与定理定义1:判断一件事情的语句,叫做命题。

命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项。

数学中的命题常可以写成“如果……,那么……”的形式。

“如果”后接的部分是题设,“那么”后接的部分是结论。

定义2:如果题设成立,那么结论一定成立,这样的命题叫做真命题。

定义3:题设成立时,不能保证结论一定成立,这样的命题叫做假命题。

定义4:如果一个命题的正确性是经过推理证实的,这样得到的真命题叫做定理。

定义5:两个命题的题设和结论正好相反,我们把这样的两个命题叫做互为逆命题。

其中一个叫做原命题,另外一个叫做逆命题。

如果定理的逆命题是正确的,那么它也是一个定理,我们把这个定理叫做原定理的逆定理。

2、证明一个命题的正确性需要经过推理才能作出判断,这个推理过程叫做证明。

1、通过具体实例,了解定义、命题、定理、推论的意义。

2、结合具体实例,会区分命题的条件和结论,了解原命题及其逆命题的概念。

会识别两个互逆的命题,知道原命题成立其逆命题不一定成立。

3、知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达形式,会综合法证明的格式。

4、了解反例的作用,知道利用反例可以判断一个命题是错误的。

1、命题及命题真伪的判断。

2、命题的条件和结论的区分。

3、写出命题的逆命题。

1、下列语句中,属于命题的是( )A、直线AB和CD垂直吗B、过线段AB的中点C画AB的垂线C、同旁内角不互补,两直线不平行D、连结A、B两点2、下列语句不是命题的是( )A、两点之间线段最短B、不平行的两条直线有一个交点C、x与y的和等于0吗?D、对顶角不相等3、命题“垂直于同一条直线的两条直线互相平行”的题设是( )A、垂直B、两条直线C、同一条直线D、两条直线垂直于同一条直线4、命题“直角都相等”的题设是,结论是。

5、把命题“有三个角是直角的四边形是矩形”改写成“如果……那么……”的形式:6、命题:①对顶角相等;②等式两边都加同一个数,结果仍是等式;③相等的角是对顶角;④同位角相等。

中考数学复习考点知识与题型专题讲解28---命题与证明(解析版)

中考数学复习考点知识与题型专题讲解28---命题与证明(解析版)

中考数学复习考点知识与题型专题讲解专题28 命题与证明【知识要点】命题的概念:像这样判断一件事情的语句,叫做命题。

命题的形式:“如果…那么…”。

(如果+题设,那么+结论)真命题的概念:如果题设成立,那么结论一定成立,这样的命题叫做真命题。

假命题的概念:如果题设成立,不能保证结论一定成立,这样的命题叫做假命题。

如何说明一个命题是假命题:只需要举出一个反例即可。

定义、命题、公理和定理之间的关系:这四者都是句子,都可以判断真假,即定义、公理和定理也是命题,不同的是定义、公理和定理都是真命题,都可以作为进一步判断其他命题真假的依据,而命题不一定是真命题,因而它不一定能作为进一步判断其它命题真假的依据。

一个命题的正确性需经过推理,才能作出判断,这个推理过程叫做证明。

证明的依据:可以是已知条件,也可以是学过的定义、基本事实或定理等。

【考查题型】考查题型一判断是否命题及命题真假典例1.(2021·广西贵港市·中考真题)下列命题中真命题是( )A 的算术平方根是2B .数据2,0,3,2,3的方差是65C .正六边形的内角和为360°D .对角线互相垂直的四边形是菱形【答案】B【分析】A.根据算术平方根解题;B.根据方差、平均数的定义解题;C.根据多边形的内角和为180(n 2)︒⨯-解题;D.根据菱形、梯形的性质解题.【详解】A. 2=,2,故A 错误;B. 数据2,0,3,2,3的平均数是20323=25++++,方差是 2222216(22)(02)(32)(22)(32)55⎡⎤-+-+-+-+-=⎣⎦,故B 正确; C. 正六边形的内角和为180(62)720︒⨯-=︒,故C 错误;D. 对角线互相垂直的四边形不一定是菱形,可能是梯形,故D 错误,故选:B .【点睛】本题考查判断真命题,其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识,是基础考点,难度较易,掌握相关知识是解题关键.变式1-1.(2021·四川雅安市·中考真题)下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c =【答案】B【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【详解】解:由题意可知,A 、对顶角相等,故选项是命题;B 、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C 、三角形任意两边之和大于第三边,故选项是命题;D 、如果a b a c ==,,那么b c =,故选项是命题;故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.变式1-2.(2021·内蒙古通辽市·中考真题)从下列命题中,随机抽取一个是真命题的概率是( ) (1)无理数都是无限小数;(2)因式分解()()211ax a a x x -=+-; (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ;(4)弧长是20cm π,面积是2240cm π的扇形的圆心角是120︒.A .14B .12C .34D .1 【答案】C分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解()()211ax a a x x -=+-,是真命题, (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ,是真命题,(4)设扇形半径为r ,圆心角为n ,∵弧长是20cm π,则180n r π=20π,则3600nr =,∵面积是2240cm π,则2360n r π=240π,则2nr =360×240, 则2360240243600nr r nr ⨯===,则n=3600÷24=150°, 故扇形的圆心角是150︒,是假命题, 则随机抽取一个是真命题的概率是34, 故选C.【点睛】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.变式1-3.(2021·湖北宜昌市·中考真题)能说明“锐角α,锐角β的和是锐角”是假命题的例证图是( ).A .B .C .D .【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案.【详解】解:A 、如图1,∠1是锐角,且∠1=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;B 、如图2,∠2是锐角,且∠2=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;C 、如图3,∠3是钝角,且∠3=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是假命题,故本选项符合题意;D 、如图4,∠4是锐角,且∠4=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意.故选:C .【点睛】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.变式1-4.(2021·安徽中考真题)已知点,,A B C 在O 上.则下列命题为真命题的是( ) A .若半径OB 平分弦AC .则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形.则120ABC ∠=︒C .若120ABC ∠=︒.则弦AC 平分半径OBD .若弦AC 平分半径OB .则半径OB 平分弦AC【答案】B【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.【详解】A .∵半径OB 平分弦AC ,∴OB ⊥AC ,AB=BC ,不能判断四边形OABC 是平行四边形,假命题;B .∵四边形OABC 是平行四边形,且OA=OC,∴四边形OABC 是菱形,∴OA=AB=OB ,OA ∥BC ,∴△OAB 是等边三角形,∴∠OAB=60º,∴∠ABC=120º,真命题;C .∵120ABC ∠=︒,∴∠AOC=120º,不能判断出弦AC 平分半径OB ,假命题;D .只有当弦AC 垂直平分半径OB 时,半径OB 平分弦AC ,所以是假命题,故选:B .【点睛】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假.考查题型二写一个命题的逆命题典例2.(2021·广东广州市·九年级二模)下列命题的逆命题成立的是()A.全等三角形的对应角相等B.两个角都是45,则这两个角相等C.有两边相等的三角形是等腰三角形D.菱形的对角线互相垂直【答案】C【分析】写出每个命题的逆命题,然后逐一判断逆命题的真假,即可.【详解】A.全等三角形的对应角相等的逆命题是:“对应角相等的三角形是全等三角形”,不成立;B. 两个角都是45,则这两个角相等的逆命题是:“两个角相等,则这两个角都是45°”不成立;C. 有两边相等的三角形是等腰三角形的逆命题是:“等腰三角形有两边相等”,成立D. 菱形的对角线互相垂直的逆命题是:“对角形相互垂直的四边形是菱形”,不成立故选C.【点睛】本题主要考查命题的逆命题,熟练掌握全等三角形的性质,等腰三角形的定义,菱形的性质,是解题的关键.变式2-1.(2021·莆田擢英中学九年级零模)下列命题中,逆命题为真命题的是()A.对顶角相等B.邻补角互补C.两直线平行,同位角相等D.互余的两个角都小于90°【答案】C【分析】先写出各个命题的逆命题,再进一步判断真假,即可.【详解】A.对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题;B.邻补角互补的逆命题是互补的角是邻补角,逆命题是假命题;C.两直线平行,同位角相等逆命题是同位角相等,两直线平行,逆命题是真命题;D.互余的两个角都小于90°的逆命题是都小于90°的角互余,逆命题是假命题;故选:C.【点睛】本题主要考查逆命题与真假命题,能写出原命题的逆命题是解题的关键.变式2-2.数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a >2,那么a2>4.下列命题中,具有以上特征的命题是()A.两直线平行,同位角相等B.如果|a|=1,那么a=1C.全等三角形的对应角相等D.如果x>y,那么mx>my【答案】C【分析】分别判断原命题和其逆命题的真假后即可确定正确的选项.【详解】解:A、原命题正确,逆命题为同位角相等,两直线平行,正确,为真命题,不符合题意;B 、原命题错误,是假命题;逆命题为如果a =1,那么|a |=1,正确,是真命题,不符合题意;C 、原命题正确,是真命题;逆命题为:对应角相等的三角形全等,错误,是假命题,符合题意;D 、当m =0时原命题错误,是假命题,不符合题意,故选:C .【点睛】考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,难度不大. 考查题型三 用反证法证明命题典例3.(2021·河北九年级二模)求证:两直线平行,内错角相等如图1,若//AB CD ,且AB 、CD 被EF 所截,求证:AOF EO D '∠=∠以下是打乱的用反证法证明的过程①如图2,过点O 作直线A B '',使A OF EO D ''∠=∠,②依据理论依据1,可得//A B CD '',③假设AOF EO D '∠≠∠,④AOF EO D '∴∠=∠.⑤与理论依据2矛盾,∴假设不成立.证明步骤的正确顺序是( )A .①②③④⑤B .①③②⑤④C .③①④②⑤D .③①②⑤④【答案】D【分析】根据反证法的证明步骤分析即可.【详解】解:假设AOF EO D '∠≠∠,如图2,过点O 作直线A B '',使A OF EO D ''∠=∠,∴//A B CD '',这与平行公理“过直线外一点,有且只有一条直线与已知直线平行”矛盾,∴假设不成立,∴AOF EO D '∠=∠.故选:D【点睛】本题考查了反证法,反证法的证明步骤一般先假设与要求证结的相反的命题,再根据已知条件进行正面,最后得出的结论与已知或数学定理矛盾,从而说明要求证命题正确.变式3-1.(2021·浙江九年级其他模拟)能说明命题“若a >b ,则3a >2b “为假命题的反例为( )A .a =3,b =2B .a =﹣2,b =﹣3C .a =2,b =3D .a =﹣3,b =﹣2【答案】B【分析】本题每一项代入题干命题中,不满足题意即为反例.【详解】解:当a =﹣2,b =﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),即a >b 时,3a =2b ,∴命题“若a >b ,则3a >2b ”为假命题,故选:B .【点睛】本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.变式3-2.(2021·浙江杭州市·八年级其他模拟)用反证法证明“ABC 中,若A B C ∠∠∠>>,则A 60∠>”,第一步应假设()A .A 60∠=B .A 60∠<C .A 60∠≠D .A 60∠≤【答案】D【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断;需注意的是∠A >60°的反面有多种情况,应一一否定.【详解】解:∠A 与60°的大小关系有∠A >60°,∠A=60°,∠A <60°三种情况,因而∠A >60°的反面是∠A≤60°.因此用反证法证明“∠A >60°”时,应先假设∠A≤60°.故选:D变式3-3.(2021·河北唐山市·中考模拟)已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②【答案】B【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC ,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B <90°,原题正确顺序为:③④①②,故选B .【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.变式3-4.(2021·浙江宁波市·九年级一模)能说明命题“若一次函数经过第一、二象限,则k+b >0”是假命题的反例是( )A .y 2x 3=+B .y 2x 3=-C .y 3x 2=--D .y 3x 2=-+【答案】D【分析】利用命题与定理,首先写出假命题进而得出答案.【详解】解:一次函数y=kx+b的图象经过第一、二象限,则k>0,b>0或k<0,b>0,故选D.【点睛】此题主要考查了反证法的证明举例,训练了学生对举反例法的掌握情况.。

《命题与证明》知识讲解

《命题与证明》知识讲解

《命题与证明》知识讲解宋老师【学习目标】1.了解定义、命题、真命题、假命题的含义,会区分命题的题设(条件)和结论,会判断一个命题的真假;2.了解综合法的证明步骤和书写格式.3.运用平行线的判定与性质、三角形的内角和定理及其推论去解决一些简单的问题,用几何语言进行简单的推理论证.4.了解逆命题的概念,会识别两个互逆命题,并知道原命题成立,逆命题不一定成立.会判断一个命题的逆命题的真假.【要点梳理】)要点一、定义、命题、真命题、假命题定义:对名称或术语的含义进行描述或做出规定,就是给它们的定义.命题:判断一件事情的句子叫命题.真命题:如果条件成立,那么结论成立,这样的命题叫做真命题.假命题:如果条件成立时,不能保证结论总是正确的,也就是说结论不成立,这样的命题叫做假命题.要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.其中命题的题设是已知事项,结论是由已知事项推出的事项.当证明一个命题是假命题时只要举出一个反例就可以,即只需列出一个具备条件而不具备结论的例子即可.要说明一个真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理,证明它的正确性.要点二、证明(根据已知真命题,确定某个命题的真实性的过程,叫做证明.经过证明的真命题称为定理.证明过程必须做到言必有据.证明过程通常包含几个推理,每个推理都应包括因、果和有因得果的依据.其中,“因”是已知事项,“果”是推出的结论;“有因得果的依据”是基本事实、定义、已学过的定理以及等式性质、不等式性质.证明的步骤:1.根据题意,画出图形;2.根据命题的条件、结论,结合图形,写出已知、求证;3.写出证明过程.要点诠释:推理和证明是有区别的,推理是证明的组成部分,一个证明过程往往包含多个推理.要点三、三角形的内角和定理及其推论》三角形的内角和定理:三角形的三个内角的和等于180°.推论:三角形的外角等于与它不相邻的两个内角和.要点诠释:(1)三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.(3)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(4)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(5)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.·要点四、互逆命题在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题是另一个命题的逆命题.把一个命题的条件与结论互换,就得到它的逆命题,我们能够判断一个命题及其它的逆命题的真假.证明一个命题是假命题,只需举出一个反例就可以了.要点诠释:每一个命题都有对应的逆命题,一个真命题的逆命题不一定是真命题,同样一个假命题的逆命题也不一定仍为假命题.反例就是复合命题的条件,但不符合命题的结论的例子,它可以是数值、图形,也可以是文字说明.一个命题的反例可以有很多个,解题时只需要举出其中最易懂的一个即可.【典型例题】类型一、逆命题与逆定理\1. 下列命题是真命题的是()A.如果|a|=1,那么a=1B.有两条边相等的三角形是等腰三角形C.如果a为实数,那么a是有理数D.相等的角是对顶角.;【答案】B.【解析】如果|a|=1,那么a=±1,故A错误;如果a为有理数,那么a是实数,故C错误;两个直角三角形中的两个直角相等,但不是对顶角,故D错误;而B根据等腰三角形的定义可判断正确;—【总结升华】主要考查命题的真假,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义.举一反三:【变式】(2016春•东平县期中)下列句子中,不是命题的是()A.三角形的内角和等于180°B.对顶角相等C.过一点作已知直线的平行线D.两点确定一条直线【答案】C.C不是可以判断真假的陈述句,不是命题;}A、B、D均是用语言表达的、可以判断真假的陈述句,都是命题.故选C.2.下列命题中,逆命题正确的是()A.对顶角相等B.直角三角形两锐角互余C.全等三角形面积相等D.全等三角形对应角相等【答案】B.【解析】A选项逆命题是相等的角是对顶角,不对;B选项逆命题是两个锐角互余的三角形是直角三角形,对的;C选项逆命题是面积相等的三角形是全等三角形显然不对;D选项的逆命题是对应角相等的三角形是全等三角形,不一定,也可能是相似三角形.(【总结升华】判断逆命题是否正确,能举出反例即可.举一反三:【变式】试将下列各个命题的题设和结论相互颠倒,得到新的命题,并判断这些命题的真假.(1)对顶角相等;(2)两直线平行,同位角相等;(3)若a=0,则ab=0;(4)两条直线不平行,则一定相交;【答案】(1)对顶角相等(真);相等的角是对顶角(假);(2)两直线平行,同位角相等(真);同位角相等,两直线平行(真);(3)若a=0,则ab=0(真);若ab=0,则a=0(假);(4)两条直线不平行,则一定相交(假);两条直线相交,则一定不平行(真);3. 对于同一平面内的三条直线a、b、c,给出下列五个论断:①a∥b;②b∥c;③a⊥b;④a∥c;⑤a⊥c,请你以其中两个作为题设,另一个作为结论,用“如果…,那么…”的形式,写出两个正确的命题.*【思路点拨】同一平面内,根据垂直于同一直线的两直线平行;平行于同一直线的两直线平行,则可由③⑤得到②;由①②得到④.【答案与解析】解:如果③a⊥b,⑤a⊥c,那么②b∥c;如果①a∥b,②b∥c,那么④a∥c.【总结升华】本题考查了命题:判断事物的语句叫命题,正确的命题叫真命题,错误的命题为假命题;命题分为题设与结论两部分.也考查了平行线的性质.类型二、证明举例(1)平行线的性质与判定进行几何证明:4. (2015春•姜堰市期末)如图,直线AB和直线CD、直线BE和直线CF都被直线BC所截.已知AB⊥ BC、CD⊥ BC,BE∥ CF,,求证:∠ 1=∠ 2.(【思路点拨】由于AB⊥ BC、CD⊥ BC得到AB∥ CD,利用平行线的性质得到∠ ABC=∠ DCB,又BE∥CF,则∠ EBC=∠ FCB,可得到∠ ABC﹣∠ EBC=∠ DCB﹣∠ FCB,即有∠ 1=∠ 2.【答案与解析】证明:∵ AB⊥ BC、CD⊥ BC,∴AB∥ CD,∴∠ ABC=∠ CB,又∵ BE∥ CF,∴∠ EBC=∠ FCB,、∴∠ ABC﹣∠ EBC=∠ DCB﹣∠ FCB,∴∠ 1=∠ 2.【总结升华】本题考查的是平行线的判定和性质的综合应用.举一反三:【变式】如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.【答案】∠A=∠F.^证明:∵∠AGB=∠DGF,∠AGB=∠EHF,∴∠DGF=∠EHF,∴BD∥CE;∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴DF∥AC;:∴∠A=∠F.(2)与三角形有关的几何证明:5.如图,已知三角形ABC的三个内角平分线交于点I,IH⊥BC于H,试比较∠CIH和∠BID的大小.【思路点拨】根据角平分线的定义、三角形内角和定理可知∠BAD+∠ABI+∠HCI=90°.又因为∠BAD+∠ABI=∠BID,90°-∠HCI=∠CIH,所以∠BID=∠CIH.【答案与解析】证明:∵AI、BI、CI为三角形ABC的角平分线,、∴∠BAD=12∠BAC,∠ABI=12∠ABC,∠HCI=12∠ACB.∴∠BAD+∠ABI+∠HCI=12∠BAC+12∠ABC+12∠ACB=12(∠BAC+∠ABC+∠ACB)=12×180°=90°.∴∠BAD+∠ABI=90°-∠HCI.,∵IH⊥BC,∴∠IHC=90°∴90°-∠HCI=∠CIH,∴∠CIH=∠BAD+∠ABI∵∠BID=∠BAD+∠ABI(三角形的一个外角等于与其不相邻的两个内角的和)∴∠BID=∠CIH.【总结升华】考查了角平分线的定义及三角形内角和定理:三角形三个内角的和为180°,在推导角的关系时,一定不要忘记与三角形有关的角中还有一个特别重要的性质:三角形的一个外角等于与其不相邻的两个内角的和.(3)文字命题的证明:6、求证:等边三角形内部任一点到三边的距离之和为定值.【思路点拨】先画图,设等边三角形的边长为a,高为h,再利用三角形的面积公式来求,原三角形分成三个大小不等的三个三角形,三个三角形的面积和与原三角形的面积相等,即S△AB C=S△PAB+S△PBC+S△PA C;可得h=PE+PF+PD.【答案与解析】已知:如图,△ABC是等边三角形,P是三角形内任一点,PE⊥AB,PG⊥AC,PF⊥BC.垂足分别为E、G、F,求证:PE+PG+PF为定值.证明:设等边三角形△ABC的边长为a,面积为S.连结PA、PB、PC,则S△APB=12a•PE,S△CPB=12a•PF,S△APC=12a•PG,于是S△APB+S△CPB+S△APC=12a•PE+12a•PF+12a•PG,即12a•PE+12a•PF+12a•PG=S,PE+PF+PG=2Sa,为定值.【总结升华】对于文字命题的证明,要根据文字所描述的内容写出已知和求证,然后证明.。

命题与证明定义命题

命题与证明定义命题

04 命题的真假判定
真值表判定法
01
列出命题的所有可能取值情况 ,并判断每个取值下命题的真 假。
02
真值表可以清晰地展示命题的 真假情况,有助于判断命题的 真假。
03
真值表适用于简单的命题,但 对于复杂的复合命题,可能存 在较多的取值情况,导致真值 表难以完全列举。
归结推理判定法
01
将复合命题转化为简单命题,通过逻辑推理判断其真假。
03 反证法适用于一些难以直接证明的命题,但需要 有一定的推理技巧和逻辑思维能力。
05 命题的应用与实例分析
数学中的应用
几何学
在几何学中,命题通常用来描述图形的性质和关系,如“ 等腰三角形的两底角相等”或“两点之间线段最短”。
代数
在代数中,命题常用来描述数和代数式的性质,如“负数 的平方是正数”或“任何数的零次方等于1(除了0的0次 方)”。
推理的定义与分类
定义
推理是从一个或多个命题得出另一个命题的思维过程。
分类
根据不同的标准,推理可以分为不同的类型,如演绎推理、归纳推理、类比推理等。
推理的逻辑结构
前提
推理所依据的前提是已知的事实 或命题。
结论
由前提推导出的结果或命题。
逻辑形式
推理的逻辑形式是指推理过程中 前提与结论之间的结构关系。正 确的逻辑形式能够保证推理的有 效性。
归纳推理
通过观察一系列实例,总结出一般规律的推理过程。例如,观察到许多正方形都有四个相等的边和四 个相等的角,可以归纳出所有正方形都有这些性质。
日常生活中的应用
科学决策
在日常生活中,我们经常需要根据已知 的信息和经验做出决策。这些已知的信 息和经验可以看作是命题。例如,根据 天气预报的命题(今天会下雨),我们 可以决定带伞出门。

人教版七年级数学下《命题、定理、证明》知识全解

人教版七年级数学下《命题、定理、证明》知识全解

《命题、定理、证明》知识全解1.教材分析第一课时本小节教科书通过列举学过的一些对某一件事情作出判断的语句引入新课内容,所举的例子包括了命题叙述的几种不同情况:“如果…,那么…”形式;条件、结论明显的简化叙述;条件、结论不明显的简化叙述等.让学生从这些学过的语句中找出它们的共同特点——对某一件事情作出了判断,进而给出命题的概念和命题的结构.分清命题的题设和结论,是今后学习推理论证的必备知识之一.如何分清命题的题设和结论呢?教科书对此分情况进行了说明.对于“如果…,那么…”形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论;对于题设和结论不明显的命题,可以通过将命题改写成“如果…,那么…”的形式来分析命题的题设和结论。

由于命题有真、假之分,所以教科书最后给出真命题和假命题的定义.学生已经熟悉很多真命题,对假命题比较生疏,所以教科书专门列举了一些假命题的例子.教学时要注意结合真、假命题的例子对照讲解,让学生理解真、假命题的区别.第二课时本小节教科书主要介绍基本事实、定理、证明的概念以及什么是证明,判断一个命题是假命题的方法.教材首先从以前学过的一些图形的性质出发,针对这些真命题,通过分类,举例说明什么是基本事实;什么样的真命题叫做定理,使学生明白基本事实的正确性是直接承认的,而定理的正确性是经过推理证实的.并指出定理也可以作为继续推理的依据.由于一些命题的正确性需要经过推理才能作出判断,从而给出证明的概念.之后通过一个实例让学生了解什么是证明.在这个证明过程中,学生可以了解用符号语言表达的规范的证明过程,以及证明过程要步步有据.由于命题有真、假之分,所以教科书最后说明了如何判断一个命题是假命题,即举反例,以及举反例应符合什么条件,并通过实例说明举反例是判断一个命题为假命题的常用方法.本节课的教学重点是理解证明过程要步步有据,填写证明的关键步骤和理由;教学难点是举反例判断一个简单的命题是假命题.2、教学目标(1)知道命题的意义.(2)了解命题的结构,会区分一个命题的题设和结论.(3)知道什么是真命题,什么是假命题,会区分简单的真、假命题.(4)了解基本事实和定理的意义;(5)知道证明的意义和证明的必要性,知道证明要合乎逻辑.(6)了解反例的作用,知道利用反例可以判断一个命题是错误的.3.教学目标解析(1)知道命题的意义,即知道什么是“判断”,能够根据具体的例子区分什么是命题,什么不是命题.了解命题的几种不同的叙述方式.(2)了解命题的结构,即了解一个命题由题设(条件)和结论两部分构成;会找出一个给定命题的题设和结论;会把一些题设与结论不明显的简单命题改写成“如果…,那么…”的形式.(3)知道真、假命题的意义,即要求明确,任意一个命题在题设成立时,其结论要么正确,要么不正确.对题设成立时结论正确的命题叫做真命题,而题设成立时结论不正确的命题叫做假命题.区分简单的真、假命题,即要求学生能够结合生活实际与已有知识,判断一个常见命题的正确性.(4)对于基本事实、定理,要了解它们的含义;能够列举出前面学过的一些基本事实和定理;(5)证明是在前面的“说理”、“简单推理”的基础上更进一步的要求,这里体现一个循序渐进的过程,目的在于培养学生言之有据的习惯,由此将完成由实验几何到论证几何、由直观感知到理性证明的过渡.对于证明,要知道什么是证明,为什么要证明;知道证明是一个过程,了解证明和推理的区别;知道证明的书写格式;能填写一些证明的关键步骤和理由,知道这些理由可以是已知条件,也可以是学过的定义、基本事实、定理等.目前暂不要求学生能进行完整的证明.(6)明白举出反例是判断一个命题是假命题的常用方法;对易搞错的命题,如“如果两个角是同位角,那么它们相等”,“如果两个角是同旁内角,那么它们互补”等,能通过举反例说明它们是假命题.4.重难点突破(1)找出命题的题设与结论突破建议:①熟悉命题的叙述方式.根据情况找出命题的题设和结论,大体有以下几种情况:ⅰ)命题是用“如果…,那么…”形式叙述的.比如,“如果两条直线都平行于第三条直线,那么这两条直线平行”这个命题中,“如果”后接的部分是题设,“那么”后接的部分是结论;ⅱ)没有写出“如果…,那么…”形式的命题,如“等角的补角相等”这样的命题,它的题设和结论不明显,为了分清它的题设和结论,首先要明确它是由两个部分(题设和结论)组成的;其次要分析这个命题是什么已知事项推出了什么结论;最后将其改写成“如果…,那么…”的形式.因为“等角的补角相等”是研究两个相等的角,它们的补角具有相等这一性质,因此,将其改写为“如果…,那么…”形式是:“如果两个角相等,那么这两个角的补角也相等”.ⅲ)对于“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”这个命题,“如果”前面这句话“两条直线被第三条直线所截”实际上是命题的前提条件,这个前提条件和“如果”后接的部分一并是题设,“这两条直线平行”是结论.这类命题,只要画出图形,“题设”和“结论”就可以用符号语言简明地表示出来。

人教版初中数学命题与证明的知识点总复习

人教版初中数学命题与证明的知识点总复习

人教版初中数学命题与证明的知识点总复习一、选择题1.下列命题中正确的有()个①平分弦的直径垂直于弦;②经过半径的外端且与这条半径垂直的直线是圆的切线;③在同圆或等圆中,圆周角等于圆心角的一半;④平面内三点确定一个圆;⑤三角形的外心到三角形的各个顶点的距离相等.A.1 B.2 C.3 D.4【答案】B【解析】【分析】根据垂径定理的推论对①进行判断;根据切线的判定定理对②进行判断;根据圆周角定理对③进行判断;根据确定圆的条件对④进行判断;根据三角形外心的性质对⑤进行判断.【详解】①平分弦(非直径)的直径垂直于弦,错误;②经过半径的外端且与这条半径垂直的直线是圆的切线,正确;③在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;④平面内不共线的三点确定一个圆,错误;⑤三角形的外心到三角形的各个顶点的距离相等,正确;故正确的命题有2个故答案为:B.【点睛】本题考查了判断命题真假的问题,掌握垂径定理的推论、切线的判定定理、圆周角定理、确定圆的条件、三角形外心的性质是解题的关键.2.下列命题中正确的是().A.所有等腰三角形都相似B.两边成比例的两个等腰三角形相似C.有一个角相等的两个等腰三角形相似D.有一个角是100°的两个等腰三角形相似【答案】D【解析】【分析】根据相似三角形进行判断即可.【详解】解:A、所有等腰三角形不一定都相似,原命题是假命题;B、两边成比例的两个等腰三角形不一定相似,原命题是假命题;C、有一个角相等的两个等腰三角形不一定相似,原命题是假命题;D、有一个角是100°的两个等腰三角形相似,是真命题;故选:D.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.3.下列命题中,是假命题的是()A.对顶角相等B.同位角相等C.同角的余角相等D.全等三角形的面积相等【答案】B【解析】【分析】根据对顶角得性质、平行线得性质、余角得等于及全等三角形得性质逐一判断即可得答案.【详解】A.对顶角相等是真命题,故该选项不合题意,B.两直线平行,同位角相等,故该选项是假命题,符合题意,C.同角的余角相等是真命题,故该选项不合题意,D.全等三角形的面积相等是真命题,故该选项不合题意.故选:B.【点睛】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4.下列命题是假命题的是( )A.对顶角相等B.两直线平行,同旁内角相等C.平行于同一条直线的两直线平行D.同位角相等,两直线平行【答案】B【解析】解:A.对顶角相等是真命题,故本选项正确,不符合题意;B.两直线平行,同旁内角互补,故本选项错误,符合题意;C.平行于同一条直线的两条直线平行是真命题,故本选项正确,不符合题意;D.同位角相等,两直线平行是真命题,故本选项正确,不符合题意.故选B.5.用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设()A.三角形的三个外角都是锐角B.三角形的三个外角中至少有两个锐角C.三角形的三个外角中没有锐角D.三角形的三个外角中至少有一个锐角【答案】B【解析】反证法的步骤中,第一步是假设结论不成立,反面成立.【详解】解:用反证法证明“三角形的三个外角中至多有一个锐角”,应先假设三角形的三个外角中至少有两个锐角,故选B.【点睛】.在假设结论不成立时要注意考虑结考查了反证法,解此题关键要懂得反证法的意义及步骤论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.6.以下说法中:(1)多边形的外角和是360︒;(2)两条直线被第三条直线所截,内错角相等;(3)三角形的3个内角中,至少有2个角是锐角.其中真命题的个数为()A.0 B.1 C.2 D.3【答案】C【解析】【分析】利用多边形的外角和定理、平行线的性质及三角形的内角和定理分别判断后即可确定正确的选项.【详解】解:(1)多边形的外角和是360°,正确,是真命题;(2)两条平行线被第三条直线所截,内错角相等,故错误,是假命题;(3)三角形的3个内角中,至少有2个角是锐角,正确,是真命题,真命题有2个,故选:C.【点睛】考查了命题与定理的知识,解题的关键是了解多边形的外角和定理、平行线的性质及三角形的内角和定理,难度不大.7.下列命题是真命题的是()A.方程2--=的二次项系数为3,一次项系数为-23240x xB.四个角都是直角的两个四边形一定相似C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖D.对角线相等的四边形是矩形【答案】A【解析】【分析】根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.A 、正确.B 、错误,对应边不一定成比例.C 、错误,不一定中奖.D 、错误,对角线相等的四边形不一定是矩形.故选:A .【点睛】此题考查命题与定理,熟练掌握基础知识是解题关键.8.下列命题中是真命题的是( )A .两个锐角的和是锐角B .两条直线被第三条直线所截,同位角相等C .点(3,2)-到x 轴的距离是2D .若a b >,则a b ->-【答案】C【解析】【分析】根据角的定义、平行线的性质、点的坐标及不等式的性质对各选项进行分析判断,即可得解.【详解】A. 两个锐角的和是锐角是假命题,例如80°+80°=160°,是钝角,不是锐角,故本选项错误;B. 两条直线被第三条直线所截,同位角相等是假命题,两条平行线被第三条直线所截,同位角才相等,故本选项错误;C. 点(3,2)-到x 轴的距离是2是真命题,故本选项正确;D. 若a b >,则a b ->-是假命题,正确结果应为a b -<-,故本选项错误.故选:C .【点睛】本题考查真假命题的判断,解题关键是认真判断由条件是否能推出结论,如果能举出一个反例,或由条件推出的结论与题干结论不一致,则为假命题.9.下列命题中真命题是( )A 2一定成立B .位似图形不可能全等C .正多边形都是轴对称图形D .圆锥的主视图一定是等边三角形【答案】C【解析】【分析】根据二次根式的性质、位似图形的定义、正多边形的性质及三视图的概念逐一判断即可得.【详解】A )2,当a <0时不成立,假命题;B 、位似图形在位似比为1时全等,假命题;C 、正多边形都是轴对称图形,真命题;D 、圆锥的主视图不一定是等边三角形,假命题,故选C .【点睛】本题考查了真命题与假命题,涉及到二次根式的性质、位似图形、正多边形、视图等知识,熟练掌握相关知识是解题的关键.10.下列说法正确的是( )A .相等的角是对顶角B .在平面内,经过一点有且只有一条直线与已知直线平行C .两条直线被第三条直线所截,内错角相等D .在平面内,经过一点有且只有一条直线与已知直线垂直【答案】D【解析】【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:相等的角不一定是对顶角,故A 错误;在平面内,经过直线外一点有且只有一条直线与已知直线平行,故B 错误;两直线平行,内错角相等,故C 错误;在平面内,经过一点有且只有一条直线与已知直线垂直,故D 正确;故答案为D.【点睛】此题主要考查了命题的真假判断,掌握定理并灵活运用是解题的关键.11.下列命题中哪一个是假命题( )A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等【答案】C【解析】【分析】利用立方根的定义、一次函数的性质、菱形的性质及圆周角定理分别判断后即可确定正确的选项.【详解】A 、8的立方根是2,正确,是真命题;B 、在函数3y x 的图象中,y 随x 增大而增大,正确,是真命题;C、菱形的对角线垂直且平分,故错误,是假命题;D、在同圆中,相等的圆心角所对的弧相等,正确,是真命题,故选C.【点睛】考查了命题与定理的知识,能够了解立方根的定义、一次函数的性质、菱形的性质及圆周角定理等知识是解题关键.12.下列说法正确的是()A.两锐角分别相等的两个直角三角形全等B.两条直角边分别相等的两直角三角形全等C.一个命题是真命题,它的逆命题一定也是真命题D.经过旋转,对应线段平行且相等【答案】B【解析】【分析】A,B利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C利用命题与定理进行分析即可,D.利用旋转的性质即可解答;【详解】A、两个锐角分别相等的两个直角三角形不一定全等,故A选项错误;B、根据SAS可得,两条直角边分别相等的两个直角三角形全等,故B选项正确;C、一个命题是真命题,它的逆命题不一定是真命题.故C选项错误;D、经过旋转,对应线段相等,故D选项错误;故选:B.【点睛】此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.13.下列命题属于真命题的是()A.同旁内角相等,两直线平行B.相等的角是对顶角C.平行于同一条直线的两条直线平行D.同位角相等【答案】C【解析】【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.【详解】A、同旁内角互补,两直线平行,是假命题;B、相等的角不一定是对顶角,是假命题;C 、平行于同一条直线的两条直线平行,是真命题;D 、两直线平行,同位角相等,是假命题;故选C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式. 2、有些命题的正确性是用推理证实的,这样的真命题叫做定理.14.下列命题的逆命题是真命题的是( )A .若a b =,则a b =B .ABC ∆中,若222AC BC AB +=,则ABC ∆是Rt ∆C .若0a =,则0ab =D .四边相等的四边形是菱形【答案】D【解析】【分析】先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.【详解】解:A 、该命题的逆命题为:若|a|=|b|,则a=b ,此命题为假命题;B 、该命题的逆命题为:若△ABC 是Rt △,则AC 2+BC 2=AB 2,此命题为假命题;C 、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;D 、该命题的逆命题为:菱形的四边相等,此命题为真命题;故选:D .【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.15.下列命题的逆命题不正确的是( )A .全等三角形的对应边相等B .两直线平行,同位角相等C .等腰三角形的两个底角相等D .矩形的对角线相等.【答案】D【解析】【分析】根据求逆命题的原则,把原命题的结论作为条件,原命题的条件作为结论得到的命题是原命题的逆命题,逐一判断逆命题的正误即可.【详解】解:A 的逆命题是:对应边相等的三角形是全等三角形,正确;B 的逆命题是:同位角相等,两直线平行,正确;C 的逆命题是:两底角相等的三角形是等腰三角形,正确;D 的逆命题是:对角线相等的四边形是矩形,错误故选:D【点睛】本题考查逆命题、全等三角形的判定、平行线的判定、等腰三角形的判定、矩形的判定,解题的关键是正确找出各选项的逆命题.16.下列命题中,是假命题的是( )A .任意多边形的外角和为360oB .在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C VC .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析.【详解】解:A. 任意多边形的外角和为360o ,是真命题;B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C V ,根据HL ,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D .【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.17.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等;②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行;④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的.其中真命题的个数是( )A .2个B .3个C .4个D .5个【答案】B【解析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数, 进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B .【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.18.下列命题中,真命题的序号为( )①相等的角是对顶角;②在同一平面内,若//a b ,//b c ,则//a c ;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A .①②B .①③C .①②④D .②④【答案】D【解析】【分析】根据对顶角的性质、平行线的判定、平行线的性质、角平分线的性质判断即可.【详解】①相等的角不一定是对顶角,是假命题;②在同一平面内,若a ∥b ,b ∥c ,则a ∥c ,是真命题;③两直线平行,同旁内角互补; 是假命题;④互为邻补角的两角的角平分线互相垂直,是真命题;故选:D .【点睛】此题考查命题的真假判断,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.19.下列命题错误的是( )A .平行四边形的对角线互相平分B .两直线平行,内错角相等C .等腰三角形的两个底角相等D .若两实数的平方相等,则这两个实数相等【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A 、平行四边形的对角线互相平分,正确;B 、两直线平行,内错角相等,正确;C 、等腰三角形的两个底角相等,正确;D 、若两实数的平方相等,则这两个实数相等或互为相反数,故D 错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.20.下列命题的逆命题正确的是( )A .如果两个角是直角,那么它们相等B .全等三角形的面积相等C .同位角相等,两直线平行D .若a b =,则22a b =【答案】C【解析】【分析】交换原命题的题设与结论得到四个命题的逆命题,然后分别根据直角的定义、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.【详解】解:A 、逆命题为:如果两个角相等,那么它们都是直角,此逆命题为假命题; B 、逆命题为:面积相等的两三角形全等,此逆命题为假命题;C 、逆命题为:两直线平行,同位角相等,此逆命题为真命题;D 、逆命题为,若a 2=b 2,则a =b ,此逆命题为假命题.故选:C .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.。

命题与证明--知识讲解

命题与证明--知识讲解
不一定成立; 3.能用基本的逻辑术语、几何证明的步骤、格式和规范进行演绎证明.
【要点梳理】 要点一、命题、公理、定理、推论 1.命题
判断一件事情的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫 做假命题.
命题通常由题设、结论两个部分组成,通常可以写成“如果……那么……”的形式. 要点诠释:
命题与证明--知识讲解
撰稿:张晓新 审稿:孙景艳 【学习目标】 1.了解命题、定义、公理、定理、证明及推论的含义,会区分命题的题设(条件)和结论,
会在简单情况下判断一个命题的真假,理解证明的必要性,体会证明的过程要步步有据; 2.理解逆命题、逆定理的概念,会识别互逆命题与互逆定理,并知道原命题成立时其逆命题
【总结升华】判断逆命题是否正确,能举出反例即可.
举一反三:
【变式】试将下列各个命题的题设和结论相互颠倒,得到新的命题,并判断这些命题的真 假. (1)对顶角相等; (2)两直线平行,同位角相等; (3)若 a=0,则 ab=0; (4)两条直线不平行,则一定相交; 【答案】(1)对顶角相等(真);相等的角是对顶角(假);
(2)两直线平行,同位角相等(真);同位角相等,两直线平行(真); (3)若 a=0,则 ab=0(真);若 ab=0,则 a=0(假); (4)两条直线不平行,则一定相交(假);两条直线相交,则一定不平行(真); 类型二、证明举例 (1)平行线的性质与判定进行几何证明:
5.已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB 于 H.问 CD 与 AB 有什么关系?
DG DF
∴△EDG≌△EDF(S.A.S) ∴EG=EF
在△FDC 与△GDB 中
CD BD 1 2 DF DG
∴△FDC≌△GDB(S.A.S) ∴CF=BG ∵BG+BE>EG ∴BE+CF>EF 【总结升华】因为 D 是 BC 的中点,按倍长中线法,倍长过中点的线段 DF,使 DG=DF,证明

人教版初中数学命题与证明的知识点总复习附解析

人教版初中数学命题与证明的知识点总复习附解析
D.同弧所对的圆周角和圆心角相等
【答案】D
【解析】
【分析】
根据相关的知识点逐个分析.
【详解】
解:A.任意多边形的外角和为 ,是真命题;
B.在 和 中,若 , , ,则 ≌ ,根据HL,是真命题;
C.在一个三角形中,任意两边之差小于第三边,是真命题;
D.同弧所对的圆周角等于圆心角的一半,本选项是假命题.
命题②两点之间,线段最短,正确,为真命题;
命题③相等的角是对顶角,错误,为假命题;
命题④直角三角形的两个锐角互余,正确,为真命题;
命题⑤同角或等角的补角相等,正确,为真命题,
故答案选B.
考点:命题与定理.
3.下列语句中真命题有( )①点到直线的垂线段叫做点到直线的距离;②内错角相等;③两点之间线段最短;④过一点有且只有一条直线与已知直线平行;⑤在同一平面内,若两条直线都与第三条直线垂直,则这两条直线互相平行.
12.下列命题的逆命题是真命题的是()
A.若 ,则
B. 中,若 ,则 是
C.若 ,则
D.四边相等的四边形是菱形
【答案】D
【解析】
【分析】
先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.
【详解】
解:A、该命题的逆命题为:若|a|=|b|,则a=b,此命题为假命题;
【详解】
A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,
B.矩形的对角线不一定平分每一组对角,故该选项是假命题,
C.全等三角形的对应边相等,故该选项是真命题,
D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,
故选:C.
【点睛】

人教版初中数学《命题、定理、证明》PPT全文课件

人教版初中数学《命题、定理、证明》PPT全文课件

人教版初中数学《命题、定理、证明 》上课 实用课 件(PPT 优秀课 件)
改写成“如果……那么……”的形式。 并指出下列各命题的题设和结论, 1、两条平行线被第三直线所截,同位角相等; 2、同平行于一直线的两直线平行; 3、直角三角形的两个锐角互余; 4、等角的补角相等; 5、正数与负数的和为0。
如:画线段AB=CD。 a、b两条直线平行吗?
练习: 判断下列语句是不是命题?
√ (1)两点之间,线段最短;(

(2)请画出两条互相平行的直线;( )
(3)过直线外一点作已知直线的垂线;( )
√ (4)如果两个角的和是90º,那么这两个角
互余.(

√ (5)内错角相等(

二、命题的形式、构成:
人教版初中数学《命题、定理、证明 》上课 实用课 件(PPT 优秀课 件)
人教版初中数学《命题、定理、证明 》上课 实用课 件(PPT 优秀课 件)
小结
本节课你学到了什么知识?
命题
形式
如果…,那么… 题设 结论
真假性
真命题 假命题
人教版初中数学《命题、定理、证明 》上课 实用课 件(PPT 优秀课 件)
人教版初中数学《命题、定理、证明 》上课 实用课 件(PPT 优秀课 件)
人教版初中数学《命题、定理、证明 》上课 实用课 件(PPT 优秀课 件)
公理举例:
1、直线公理:经过两点有且只有一条直线。
2、线段公理:两点之间,线段最短。
3、平行公理:经过直线外一点,有且只有一条 直线与已知直线平行。
人教版初中数学《命题、定理、证明 》上课 实用课 件(PPT 优秀课 件)
成立,这样的命题叫做假命题.
正确的命题叫真命题,错误的命题叫假命题。

人教版七年级数学下册5.3.2《命题、定理、证明》说课稿

人教版七年级数学下册5.3.2《命题、定理、证明》说课稿

人教版七年级数学下册5.3.2《命题、定理、证明》说课稿一. 教材分析《人教版七年级数学下册5.3.2<命题、定理、证明>》这一节主要让学生了解命题、定理和证明的概念。

通过学习,学生能理解命题的含义,区分定理和证明,并学会运用证明的方法来解决数学问题。

教材通过丰富的实例和具有启发性的问题,引导学生主动探索、发现和证明数学结论,培养学生的逻辑思维能力和数学素养。

二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,例如了解四则运算、几何图形的性质等。

但部分学生可能对抽象的逻辑推理和证明过程感到困难,对定理和证明的概念理解不深。

因此,在教学过程中,要关注学生的个体差异,引导他们通过观察、思考、讨论和动手操作等方式,逐步理解和掌握知识。

三. 说教学目标1.知识与技能:使学生了解命题、定理和证明的概念,学会运用证明的方法来解决数学问题。

2.过程与方法:通过观察、思考、讨论和动手操作等方式,培养学生的逻辑思维能力和数学素养。

3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、坚持真理的精神。

四. 说教学重难点1.重点:命题、定理和证明的概念,证明的方法。

2.难点:对命题、定理和证明的理解,证明方法的运用。

五. 说教学方法与手段1.采用问题驱动的教学方法,引导学生主动探索、发现和证明数学结论。

2.运用多媒体课件、实物模型等教学手段,辅助学生直观地理解概念和证明过程。

3.小组讨论,让学生在合作交流中提高逻辑思维能力。

4.注重实践操作,让学生动手动脑,增强对知识的理解和运用能力。

六. 说教学过程1.导入:通过一个有趣的数学故事,引发学生对命题、定理和证明的好奇心,激发他们的学习兴趣。

2.新课导入:介绍命题、定理和证明的概念,引导学生理解它们之间的关系。

3.实例讲解:分析具体的数学问题,讲解证明的方法,让学生学会如何运用证明来解决实际问题。

4.小组讨论:学生进行小组讨论,让他们分享自己的理解和方法,互相学习和借鉴。

命题与证明知识点总结

命题与证明知识点总结

命题与证明知识点总结命题与证明是数学中基础且重要的一部分,它涉及到逻辑推理、推断和论证等一系列思维活动。

在整个数学学科中,命题与证明贯穿始终,无处不在。

本文将系统总结命题与证明的相关知识点,包括命题逻辑、证明方法、常见证明技巧等内容。

一、命题逻辑命题逻辑是研究命题之间的逻辑关系的一门学科,其中命题是陈述句,它要么为真,要么为假。

在命题逻辑中,我们通常使用符号来表示命题,并通过符号之间的逻辑连接来表达命题之间的关系。

常见的逻辑连接包括合取(∧)、析取(∨)、蕴含(→)、双条件(↔)等。

1.合取合取是指命题p和q同时为真时,合取命题p∧q为真,否则为假。

合取命题p∧q的真值表如下:p q p∧qT T TT F FF T FF F F2.析取析取是指命题p和q中至少有一个为真时,析取命题p∨q为真,否则为假。

析取命题p∨q的真值表如下:p q p∨qT T TT F TF T TF F F3.蕴含蕴含是指当p为真而q为假时,蕴含命题p→q为假,否则为真。

蕴含命题p→q的真值表如下:p q p→qT T TT F FF T TF F T4.双条件双条件是指命题p和q同时为真或同时为假时,双条件命题p↔q为真,否则为假。

双条件命题p↔q的真值表如下:p q p↔qT T TT F FF T FF F T二、证明方法在数学中,我们常常需要证明一个命题的真假,为此我们需要采用合适的证明方法来论证。

常见的证明方法包括直接证明法、间接证明法、数学归纳法等。

1.直接证明法直接证明法是指通过一系列逻辑推理来证明一个命题的方法。

通常情况下,我们能够找到一条直接的逻辑推理路径,从已知的事实得出结论。

举例:证明“所有的偶数都是2的倍数”。

我们可以直接证明该命题,因为偶数的定义就是2的倍数。

2.间接证明法间接证明法是指通过反证法来证明一个命题的方法。

我们假设该命题的反命题为真,然后通过一系列逻辑推理得出矛盾,从而证明原命题为真。

命题、定理与证明(教学课件)七年级数学下册(人教版)

命题、定理与证明(教学课件)七年级数学下册(人教版)

在同一平面内,如果一条直线垂直于两条平行线中的一条,那么它也垂直于 另一条. 例3.如图,已知直线b∥c,a⊥b. 求证a⊥c. 证明:∵ a⊥b (已知) ∴ ∠1=90°(垂直的定义) 又∵ b∥c (已知) ∴ ∠1=∠2 (两直线平行,同位角相等) ∴ ∠2=∠1=90°(等量代换) ∴ a⊥c (垂直的定义)
一般地,命题由题设和结论两部分组成. 题设:是已知事项; 结论:是由已知事项推出的事项. 数学中的命题常可以写成“如果……,那么……”的形式,这时“如果” 后接的部分是_题__设__,“那么”后接的部分是_结__论__. 例如,命题(1)中,“两条直线都与第三条直线平行”是_题__设__,“这两条 直线也互相平行”是_结__论__. (1)如果两条直线都与第三条直线平行,那么这两条直线也互相平行;
如图,直线AB和直线CD,直线BE和直线CF都被直线BC所截. 在下面四个式
子中,请你选择其中三个作为题设,剩下的一个作为结论,组成一个真命题
并证明.①AB⊥BC; ②CD⊥BC; ③BE//CF; ④∠1=∠2.
题设(已知):_____②__③__④_______. 结论(求证):_______①_________.
有些命题的题设和结论不明显,要经过分析才能找出题设和结论,从而将它 写成“如果……,那么……”的形式.例如,命题(3)“对顶角相等”可以写 成“如果两个角是对顶角,那么这两个角相等”.
(2)两条平行线被第三条直线所截,同旁内角互补; _如__果__两__条__平__行__线__被__第__三__条__直__线__所__截__,__那__么__同__旁__内__角__互__补__._______________ (4)等式两边加同一个数,结果仍是等式. _如__果__等__式__两__边__加__同__一__个__数__,__那__么__结__果__仍__是__等__式__._______________________

八年级命题与证明知识点

八年级命题与证明知识点

八年级命题与证明知识点
为了更好地帮助八年级的学生复习和掌握数学知识,本文将总结八年级命题与证明的重要知识点。

这些知识点是建立在初中数学基础上的,包括代数公式、等式的性质、角的定义、垂直角、平行线与夹角、三角形与四边形的基本概念和性质、勾股定理、相似三角形等内容。

以下是详细介绍:
一、代数公式
1.展开式和因式分解
2.二次根式简化
3.分式的基本操作和简化
二、等式的性质
1.等式两边加减相等数仍相等
2.等式两边乘除相等数仍相等
3.移项变形原则
三、角的定义
1.角的度量单位
2.角的分类
3.角平分线
四、垂直角
1.垂直角的定义和判定
2.垂直角的性质
3.全等图形中垂直角相等
五、平行线与夹角
1.平行线的定义和判定
2.平行线的性质
3.同位角、内错角、同旁内角
六、三角形的基本概念和性质
1.三角形的边和角
2.三角形的分类
3.三角形的周长和面积公式
七、四边形的基本概念和性质
1.四边形的性质
2.平行四边形的性质
3.矩形、菱形和正方形的性质
八、勾股定理
1.勾股定理的证明
2.勾股三元数的判别式
3.利用勾股定理解决问题
九、相似三角形
1.相似三角形的定义和判定
2.相似三角形的性质
3.相似三角形的应用
以上就是八年级命题与证明的重要知识点。

这些知识点不仅是掌握初中数学的基础,而且在高中和大学的数学学习中也是必要的。

希望学生们能够重视这些知识点的学习,认真思考、理解和应用,取得更好的成绩。

最新人教版初中数学下册5.3.2 命题、定理、证明1

最新人教版初中数学下册5.3.2 命题、定理、证明1

5.3.2命题、定理、证明1.理解命题的概念,能区分命题的条件和结论,并把命题写成“如果……那么……”的形式;(重点)2.了解真命题和假命题的概念,能判断一个命题的真假性,并会对命题举反例.(难点)一、情境导入2015年10月,屠呦呦因发现青蒿素治疗疟疾的新疗法获诺贝尔生理学或医学奖.屠呦呦是第一位获得诺贝尔科学奖项的中国本土科学家、第一位获得诺贝尔生理医学奖的华人科学家.青蒿素是从植物黄花蒿茎叶中提取的有过氧基团的倍半萜内酯药物.其对鼠疟原虫红内期超微结构的影响,主要是疟原虫膜系结构的改变,该药首先作用于食物泡膜、表膜、线粒体、内质网,此外对核内染色质也有一定的影响.青蒿素的作用方式主要是干扰表膜-线粒体的功能.可能是青蒿素作用于食物泡膜,从而阻断了营养摄取的最早阶段,使疟原虫较快出现氨基酸饥饿,迅速形成自噬泡,并不断排出虫体外,使疟原虫损失大量胞浆而死亡.要读懂这段报道,你认为要知道哪些名称和术语的含义?二、合作探究探究点一:命题的定义与结构【类型一】命题的判断下列语句中,不是命题的是()A.两点之间线段最短B.对顶角相等C.不是对顶角不相等D.过直线AB外一点P作直线AB的垂线解析:根据命题的定义,看其中哪些选项是判断句,其中只有D选项不是判断句.故选D.方法总结:①命题必须是一个完整的句子,而且必须做出肯定或否定的判断.疑问句、感叹句、作图过程的叙述都不是命题;②命题常见的关键词有“是”“不是”“相等”“不相等”“如果……那么……”.【类型二】把命题写成“如果……那么……”的形式把下列命题写成“如果……那么……”的形式.(1)内错角相等,两直线平行;(2)等角的余角相等.解:(1)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;(2)如果两个角是相等的角,那么它们的余角相等.方法总结:把命题写成“如果……那么……”的形式时,应添加适当的词语,使语句通顺.【类型三】命题的条件和结论写出命题“平行于同一条直线的两条直线平行”的条件和结论.解析:先把命题写成“如果……那么……”的形式,再确定条件和结论.解:把命题写成“如果……那么……”的形式:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以命题的条件是“两条直线都与第三条直线平行”,结论是“这两条直线也互相平行”.方法总结:每一个命题都一定能用“如果……那么……”的形式来叙述.在“如果”后面的部分是“条件”,在“那么”后面的部分是“结论”.探究点二:真命题与假命题下列命题中,是真命题的是()A.若a·b>0,则a>0,b>0B.若a·b<0,则a<0,b<0C.若a·b=0,则a=0且b=0D.若a·b=0,则a=0或b=0解析:选项A中,a·b>0可得a、b同号,可能同为正,也可能同为负,是假命题;选项B中,a·b<0可得a、b异号,所以错误,是假命题;选项C中,a·b=0可得a、b中必有一个字母的值为0,但不一定同时为零,是假命题;选项D中,若a·b=0,则a=0或b =0或二者同时为0,是真命题.故选D.方法总结:判断一个命题是真命题还是假命题,就是判断一个命题是否正确,即由条件能否得出结论.如果命题正确,就是真命题;如果命题不正确,就是假命题.探究点三:证明与举反例【类型一】命题的证明求证:两条直线平行,一组内错角的平分线互相平行.解析:按证明与图形有关的命题的一般步骤进行.要证明两条直线平行,可根据平行线的判定方法来证明.解:如图,已知AB∥CD,直线AB,CD被直线MN所截,交点分别为P,Q,PG平分∠BPQ ,QH 平分∠CQP ,求证:PG ∥HQ.证明:∵AB ∥CD (已知),∴∠BPQ =∠CQP (两直线平行,内错角相等).又∵PG 平分∠BPQ ,QH 平分∠CQP (已知),∴∠GPQ =12∠BPQ ,∠HQP =12∠CQP (角平分线的定义), ∴∠GPQ =∠HQP (等量代换),∴PG ∥HQ (内错角相等,两直线平行).方法总结:证明与图形有关的命题时,正确分清命题的条件和结论是证明的关键.应先结合题意画出图形,再根据图形写出已知与求证,然后进行证明.【类型二】 举反例举反例说明下列命题是假命题.(1)若两个角不是对顶角,则这两个角不相等;(2)若ab =0,则a +b =0.解析:分清题目的条件和结论,所举的例子满足条件但不满足结论即可.解:(1)两条直线平行形成的内错角,这两个角不是对顶角,但是它们相等;(2)当a =5,b =0时,ab =0,但a +b ≠0.方法总结:举反例时,所举的例子应当满足题目的条件,但不满足题目的结论.举反例时常见的几种错误:①所举例子满足题目的条件,也满足题目的结论;②所举例子不满足题目的条件,但满足题目的结论;③所举例子不满足题目的条件,也不满足题目的结论.三、板书设计命题⎩⎪⎨⎪⎧概念结构真、假命题证明与举反例本节课通过命题及其证明的学习,让学生感受到要说明一个定理成立,应当证明;要说明一个命题是假命题,可以举反例.同时让学生感受到数学的严谨,初步养成学生言之有理、落笔有据的推理习惯,发展初步的演绎推理能力。

人教版初中数学命题、定理、证明ppt精品课件1

人教版初中数学命题、定理、证明ppt精品课件1
在分析的过程中,如果发现所需要的条件,都已 具备或可从已知条件中推得.那么证明就很容易了.
例2 如图,∠1=∠2,试说明直线AB、CD平行?
分析:要证明AB、CD平行,就需要
同位角相等的条件,图中∠1与∠3就是 同位角. 我们只要找到:能说明它俩相等的条件 就行了.
从图中,我们可以发现:∠2与 ∠3是对顶角,所以∠3=∠2.这样我们 就找到了∠1与∠3相等的确切条件了.
例3 已知:b∥c, a⊥b .
求证:a⊥c.
b
c
证明: ∵ a ⊥b(已知),
1
2
a
∴ ∠1=90°(垂直的定义).
∵ b ∥ c(已知),
∴ ∠2=∠1=90°(两直线平行,同位角相等).
∴ a ⊥ c(垂直的定义).
六、举反例
思考:如何判定一个命题是假命题呢? 判断下列四个语句中,哪个是命题, 哪个不是命题?并说明理由:
假命题
4.举反例说明下列命题是假命题. (1)若两个角不是对顶角,则这两个角不相等; (2)若ab=0,则a+b=0.
解:(1)两条直线平行形成的内错角,这两个角不 是对顶角,但是它们相等;
(2)当a=5,b=0时,ab=0,但a+b≠0.
5.在下面的括号内,填上推理的依据.
如图,AB ∥ CD,CB ∥ DE ,
(5)取线段AB的中点C;( × )
(6)画两条相等的线段( × )
二、命题的结构 观察下列命题,你能发现这些命题有什么共同的结构特 征?与同伴交流. (1)如果两个三角形的三条边相等,那么这两个三角
形的周长相等; (2)如果两个数的绝对值相等,那么这两个数也相等; (3)如果一个数的平方等于9,那么这个数是3.
5.3.2 命题、定理、证明

(完整版)命题与证明的知识点总结

(完整版)命题与证明的知识点总结

命题与证明的知识点总结一、知识结构梳理二、知识点归类知识点一定义的概念对于一个概念特征性质的描述叫做这个概念的定义。

如:“两点之间线段的长度,叫做这两点之间的距离”是“两点之间的距离”的定义。

注意:定义必须严密的,一般避免使用含糊不清的语言,例如“一些”、“大概”、“差不多”等不能在定义中出现。

知识点二命题的概念叙述一件事情的句子(陈述句),要么是真的,要么是假的,那么称这个陈述句是一个命如“你是一个学生”、“我们所使用是教科书是湘教版的”等。

注意:(1)命题必须是一个完整的句子。

(2)这个句子必须对某事情作出肯定或者否定的判断,二者缺一不可。

知识点三命题的结构每个命题都有条件和结论两部分组成。

条件是已知的事项,结论是由已知事项推断出的事项。

一般地,命题都可以写出“如果------,那么-------”的形式。

有的命题表面上看不具有“如果------,那么-------”的形式,但可以写成这种形式。

如:“对顶角相等”,改写成“如果两个角是对顶角,那么这两个角相等”。

例把下列命题改写成“如果------,那么-------”的形式,并指出条件与结论。

1、同角的余角相等2、两点确定一条直线知识点四真命题与假命题如果一个命题叙述的事情是真的,那么称它是真命题;如果一个命题叙述的事情是假的,那么称它是假命题注意:真、假命题的区别就在于其是否是正确的,在判断命题的真假时,要注意把握这点。

知识点五证明及互逆命题的定义1、从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,这个过程叫作证明。

注意:证明一个命题是假命题的方法是举反例,即找出一个例子,它符合命题条件,但它不满足命题的结论,从而判断这个命题是假命题。

2、一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题称为互逆的命题,其中的一个命题叫作另一个命题的逆命题。

注意:一个命题为真不能保证它的逆命题为真,逆命题是否为真,需要具体问题具体分析。

七年级数学知识点命题证明

七年级数学知识点命题证明

七年级数学知识点命题证明在七年级数学学习中,命题证明是一个非常重要的环节。

它不仅能够帮助我们加深对知识点的理解,还能够训练我们的逻辑思维和推理能力。

在本文中,我们将对七年级数学知识点命题证明进行探究。

一、命题证明的基本要素命题证明是通过一系列推理步骤来推导出结论的过程。

在命题证明中,有以下三个基本要素:1. 命题:命题是一种陈述性语句,它要求被证明或推翻。

在命题中,一般包含了主题和谓语两个部分。

2. 假设:假设是针对命题提出的一种假说,它是命题证明中的关键因素。

假设可以从已知条件中推导出来。

3. 推理过程:推理过程是命题证明中最为关键的一步。

通过推理过程,我们可以从已知条件中推导出结论。

二、命题证明的类型在七年级的数学学习中,命题证明可以分为以下三种类型:1. 直接证明:直接证明是通过一系列推理步骤来证明已知命题的真实性。

在直接证明中,我们先假设命题为真,然后从已知条件中推导出结论。

例如,证明“两个内角相等的角一定是等角”。

假设:∠A = ∠B (已知两个内角相等)推理过程:由角度相等得到∠A = 180 - ∠C,∠B = 180 - ∠D。

∴∠A = ∠B,所以∠C = ∠D结论:两个内角相等的角一定是等角。

2. 归谬证明:归谬证明是通过反证法来证明已知命题的真实性。

在归谬证明中,我们先假设命题为假,然后通过推理过程来得出矛盾结论,从而证明命题为真。

例如,证明“根号2是一个无理数”。

假设:根号2是一个有理数。

推理过程:有理数可以表示为分数形式:a/b(a,b是整数)。

因为根号2不是分数,所以它不是一个有理数。

结论:根号2是一个无理数。

3. 反证证明:反证证明是指通过推导出与已知命题相悖的结论,在推导出结论矛盾的同时,证明原命题是成立的。

例如,证明“两条平行线上的任意两个点的连线也是平行的”。

假设:任意两个点的连线不平行。

推理过程:设两条平行线为A、B,任取线段CD与线段EF在C、D点和E、F点切线。

人教版初中数学图形的性质命题与证明知识点总结(超全)

人教版初中数学图形的性质命题与证明知识点总结(超全)

(每日一练)人教版初中数学图形的性质命题与证明知识点总结(超全)单选题1、下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与己知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.其中真命题有()个A.1B.2C.3D.4答案:A解析:依据对顶角、同位角、平行公理以及点到直线的距离的概念进行判断,即可得出结论.解:①相等的角不一定是对顶角,故说法错误;②同位角不一定相等,故说法错误;③过直线外一点有且只有一条直线与已知直线平行,故说法错误;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,故说法正确;故选:A.小提示:本题主要考查了对顶角、同位角、平行公理以及点到直线的距离的概念,点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.2、下列命题中,假命题是()A.正方形都相似B.对角线和一边对应成比例的矩形相似C.等腰直角三角形都相似D.底角为60°的两个等腰梯形相似答案:B解析:根据命题的定义判断真假即可;B没说清楚一边是矩形的长还是宽;故答案选B.小提示:本题主要考查了命题的知识点,准确判断是解题的关键.3、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有()A.1个B.2个C.3个D.4个答案:C解析:根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.解:①平面内,垂直于同一条直线的两直线平行,是真命题;②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;③垂线段最短,是真命题;④两直线平行,同旁内角互补,是假命题,∴真命题有3个,故选C.小提示:本题主要考查了判断命题真假,熟知相关知识是解题的关键.4、下列五个说法:①近似数3.60万精确到百分位;②三角形的外心一定在三角形的外部;③内错角相等;的自变量x的取值范围是x≥−2且x≠1.其中正确的个数有④90°的角所对的弦是直径;⑤函数y=√x+2x−1()A.0个B.1个C.2个D.3个答案:B解析:根据近似数3.60万精确到百位可判断①,根据三角形的外心是三角形外接圆的圆心,是三角形三边中垂线的交点,锐角三角形在形内,直角三角形在斜边中点上,钝角三角形在形外可判断②,根据两直线平行,内错根式函数要求被开方数非负,分式函数分母不为角相等可判断③; 90°的圆周角性质可判断④,函数y=√x+2x−10,可判断⑤即可得出答案.解:①近似数3.60万精确到百位,故①近似数3.60万精确到百分位错误;②三角形的外心是三角形外接圆的圆心,是三角形三边中垂线的交点,锐角三角形在形内,直角三角形在斜边中点上,钝角三角形在形外,故②三角形的外心一定在三角形的外部错误;③两直线平行,内错角相等;故③内错角相等错误;④90°的圆周角性质是90°的圆周角所对的弦是直径,故④90°的角所对的弦是直径不正确;;,⑤函数y=√x+2x−1{x+2≥0x−1≠0,解得x≥−2且x≠1,的自变量x的取值范围是x≥−2且x≠1正确.⑤函数y=√x+2x−1正确的个数有一个⑤.故选择:B.小提示:本题考查基本技能,精确度,三角形外心,内错角,90°圆周角的性质,函数的自变量取值范围,熟练掌握精确度,三角形外心,内错角,90°圆周角的性质,函数的自变量取值范围是解题关键.5、给出的下列四个命题中,假命题的个数是()①在平面直角坐标系中的点可以用有序数对来表示;②若a>0,b不大于0,则P(−b,a)在第一象限;③在x轴上的点,其纵坐标都为0;④当m≤0时,点P(m2,−m)在第一象限或x轴正半轴或y轴正半轴.A.2个B.3个C.1个D.4个答案:C解析:根据坐标平面内点的性质分别判断后即可确定正确的选项.解:①在平面直角坐标系中的点可以用有序数对来表示,正确,是真命题,不符合题意;②若a>0,b不大于0,则P(-b,a)在第二象限内或x轴的负半轴上,故原命题错误,是假命题,符合题意;③在x轴上的点,其纵坐标都为0,正确,是真命题,不符合题意;④当m≤0时,点P(m2,−m)在第一象限或x轴正半轴或y轴正半轴,正确,是真命题,不符合题意,假命题的个数只有1个,故选:C.小提示:本题考查了命题与定理的知识,平面直角坐标系内点的坐标特点,熟练掌握平面直角坐标系的相关知识是解题的关键.6、下列说法:①三角形的外角大于任何一个内角;②等腰三角形底边上的高就是它的对称轴;③a0=1;④分式值为零,则分子为零;⑤任何三角形的高所在直线必交于一点.其中正确的有()A.1B.2C.3D.4答案:A解析:利用三角形的性质、分式、零指数幂进行对应判断即可.解:①三角形的外角大于任何一个不相邻的内角,故错误;②等腰三角形底边上的高所在的直线就是它的对称轴;故错误;③a0=1,当a=0时不成立,故错误;④分式值为零,则分子为零,且分母不等于零,故错误;⑤任何三角形的高所在直线必交于一点,故正确;故选:A.小提示:本题考查了三角形的性质、分式、零指数幂,解题的关键是:掌握相关的知识点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
A、两个锐角分别相等的两个直角三角形不一定全等,故A选项错误;
B、根据SAS可得,两条直角边分别相等的两个直角三角形全等,故B选项正确;
C、一个命题是真命题,它的逆命题不一定是真命题.故C选项错误;
D、经过旋转,对应线段相等,故D选项错误;
故选:B.
【点睛】
此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
③在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;
④平面内不共线的三点确定一个圆,错误;
⑤三角形的外心到三角形的各个顶点的距离相等,正确;
故正确的命题有2个
故答案为:B.
【点睛】
本题考查了判断命题真假的问题,掌握垂径定理的推论、切线的判定定理、圆周角定理、确定圆的条件、三角形外心的性质是解题的关键.
【详解】
“两条直线相交只有一个交点”的题设是两条直线相交.
故选D.
【点睛】
本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.
3.下列命题是假命题的是()
A.四个角相等的四边形是矩形
B.对角线相等的平行四边形是矩形
C.对角线垂直的四边形是菱形
D.对角线垂直的平行四边形是菱形
【答案】C
【解析】
C.在一个三角形中,任意两边之差小于第三边
D.同弧所对的圆周角和圆心角相等
【答案】D
【解析】
【分析】
根据相关的知识点逐个分析.
【详解】
解:A.任意多边形的外角和为 ,是真命题;
B.在 和 中,若 , , ,则 ≌ ,根据HL,是真命题;
C.在一个三角形中,任意两边之差小于第三边,是真命题;
D.同弧所对的圆周角等于圆心角的一半,本选项是假命题.
D.正确.线段垂直平分线上的点到线段两端的距离相等.
故选:C.
【点睛】
本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.
17.下列命题中,是假命题的是
A.任意多边形的外角和为
B.在 和 中,若 , , ,则 ≌
根据垂直的性质和平行线的性质,可知“若 , ,那么 ”,是真命题.
故选C.
8.下列命题中,正确的命题是()
A.度数相等的弧是等弧
B.正多边形既是轴对称图形,又是中心对称图形
C.垂直于弦的直径平分弦
D.三角形的外心到三边的距离相等【Leabharlann 案】C【解析】【分析】
根据等弧或垂径定理,正多边形的性质一一判断即可;
②在同一平面内,若 , ,则 ,正确;
③若 ,则 表示原点或坐标轴,错误;
④ 的算术平方根是3,错误;
故选:A.
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
13.下列命题中正确的有()个
①平分弦的直径垂直于弦;②经过半径的外端且与这条半径垂直的直线是圆的切线;③在同圆或等圆中,圆周角等于圆心角的一半;④平面内三点确定一个圆;⑤三角形的外心到三角形的各个顶点的距离相等.
15.下列命题中,是真命题的是()
A.同位角相等B.若两直线被第三条直线所截,同旁内角互补
C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行
【答案】D
【解析】
【分析】
根据平行线的判定、平行线的性质判断即可.
【详解】
A、两直线平行,同位角相等,是假命题;
B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;
A.1B.2C.3D.4
【答案】B
【解析】
【分析】
根据垂径定理的推论对①进行判断;根据切线的判定定理对②进行判断;根据圆周角定理对③进行判断;根据确定圆的条件对④进行判断;根据三角形外心的性质对⑤进行判断.
【详解】
①平分弦(非直径)的直径垂直于弦,错误;
②经过半径的外端且与这条半径垂直的直线是圆的切线,正确;
B.全等三角形对应角相等
C.有一个角是60度的等腰三角形是等边三角形
D.等腰三角形两个底角相等
【答案】B
【解析】
【分析】
先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.
【详解】
解:A、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;
B、逆命题为:对应角相等的三角形是全等三角形,逆命题错误,是假命题;
14.下列说法正确的是()
A.两锐角分别相等的两个直角三角形全等
B.两条直角边分别相等的两直角三角形全等
C.一个命题是真命题,它的逆命题一定也是真命题
D.经过旋转,对应线段平行且相等
【答案】B
【解析】
【分析】
A,B利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C利用命题与定理进行分析即可,D.利用旋转的性质即可解答;
12.下列命题中:①若 =﹣ ,则 =﹣ ;②在同一平面内,若a⊥b,a⊥c,则b∥c;③若ab=0,则P(a,b)表示原点;④ 的算术平方根是9.是真命题的有()
A.1个B.2个C.3个D.4个
【答案】A
【解析】
【分析】
根据立方根、平行线的判定和算术平方根判断即可.
【详解】
解:①若 ,则 ,而 ≥0,﹣ ≤0,则 =﹣ 不一定成立,错误;
B.四个角都是直角的两个四边形一定相似
C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖
D.对角线相等的四边形是矩形
【答案】A
【解析】
【分析】
根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.
【详解】
A、正确.
B、错误,对应边不一定成比例.
C、同旁内角互补,两直线平行,是假命题;
D、平行于同一直线的两条直线互相平行,是真命题;
故选:D.
【点睛】
此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.
16.下列命题是假命题的是()
A.有一个角是60°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
D.线段垂直平分线上的点到线段两端的距离相等
【答案】C
【解析】
【分析】
根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.
【详解】
A.正确;有一个角是60°的等腰三角形是等边三角形;
B.正确.等边三角形有3条对称轴;
C.错误,SSA无法判断两个三角形全等;
D.同位角相等,两直线平行是真命题,故本选项正确,不符合题意.
故选B.
6.下列命题中,是真命题的是()
A.若 ,则
B.若 ,则a,b都是正数
C.两条直线被第三条直线所截,同位角相等
D.垂直于同一条直线的两条直线平行
【答案】D
【解析】
【分析】
正确的命题是真命题,根据定义依次判断即可得到答案.
【详解】
A.若 ,则 ,故A错误;
【详解】
A、完全重合的两条弧是等弧,错误;
B、正五边形不是中心对称图形,错误;
C、垂直于弦的直径平分弦,正确;
D、三角形的外心到三个顶点的距离相等,错误;
故选:C.
【点睛】
此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
9.下列定理中,逆命题是假命题的是( )
A.在一个三角形中,等角对等边
C、错误,不一定中奖.
D、错误,对角线相等的四边形不一定是矩形.
故选:A.
【点睛】
此题考查命题与定理,熟练掌握基础知识是解题关键.
11.下列命题错误的是()
A.平行四边形的对角线互相平分
B.两直线平行,内错角相等
C.等腰三角形的两个底角相等
D.若两实数的平方相等,则这两个实数相等
【答案】D
【解析】
【分析】
B、平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故此选项符合题意;
C、相等的角是对顶角,是假命题,故此选项不合题意;
D、过一点有且只有一条直线与已知直线平行,是假命题,故此选项不合题意;
故选:B.
【点睛】
此题主要考查了命题与定理,关键是掌握要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
故选B.
点睛:本题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可.这是数学中常用的一种方法.
2.“两条直线相交只有一个交点”的题设是()
A.两条直线B.相交
C.只有一个交点D.两条直线相交
【答案】D
【解析】
【分析】
任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.
人教版初中数学命题与证明的知识点
一、选择题
1.下列选项中,可以用来说明命题“若 ,则 ”是假命题的反例是()
A. B. C. D.
【答案】B
【解析】
分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.
详解:∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.
故选D.
【点睛】
本题考核知识点:判断命题的真假.解题关键点:熟记相关性质或定义.
18.利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设( )
相关文档
最新文档