人教版初中数学命题与证明的知识点

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②在同一平面内,若 , ,则 ,正确;
③若 ,则 表示原点或坐标轴,错误;
④ 的算术平方根是3,错误;
故选:A.
ቤተ መጻሕፍቲ ባይዱ【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
13.下列命题中正确的有()个
①平分弦的直径垂直于弦;②经过半径的外端且与这条半径垂直的直线是圆的切线;③在同圆或等圆中,圆周角等于圆心角的一半;④平面内三点确定一个圆;⑤三角形的外心到三角形的各个顶点的距离相等.
【分析】
先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法.
【详解】
假设命题中的结论不成立,即命题“四边形中至少有一个角是钝角或直角”不成立,即“四边形中的四个角都不是钝角或直角”,即“四边形中的四个角都是锐角”故选B.
【详解】
A、完全重合的两条弧是等弧,错误;
B、正五边形不是中心对称图形,错误;
C、垂直于弦的直径平分弦,正确;
D、三角形的外心到三个顶点的距离相等,错误;
故选:C.
【点睛】
此题考查命题与定义,正多边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.
9.下列定理中,逆命题是假命题的是( )
A.在一个三角形中,等角对等边
B.若 ,则a,b中至少有一个数是正数,且正数绝对值大于负数的绝对值,故B错误;
C.两条平行线被第三条直线所截,同位角相等,故C错误;
D.垂直于同一条直线的两条直线平行正确,
故选:D.
【点睛】
此题考查判断真假命题,正确掌握命题的分类并理解事件的正确与否是解题的关键.
7.下列命题中是假命题的是().
A.同旁内角互补,两直线平行
15.下列命题中,是真命题的是()
A.同位角相等B.若两直线被第三条直线所截,同旁内角互补
C.同旁内角相等,两直线平行D.平行于同一直线的两直线互相平行
【答案】D
【解析】
【分析】
根据平行线的判定、平行线的性质判断即可.
【详解】
A、两直线平行,同位角相等,是假命题;
B、若两条平行线被第三条直线所截,同旁内角互补,是假命题;
C、同旁内角互补,两直线平行,是假命题;
D、平行于同一直线的两条直线互相平行,是真命题;
故选:D.
【点睛】
此题考查命题与定理,解题关键在于掌握正确的命题叫真命题,错误的命题叫做假命题.
16.下列命题是假命题的是()
A.有一个角是60°的等腰三角形是等边三角形
B.等边三角形有3条对称轴
C.有两边和一角对应相等的两个三角形全等
【详解】
A、两个锐角分别相等的两个直角三角形不一定全等,故A选项错误;
B、根据SAS可得,两条直角边分别相等的两个直角三角形全等,故B选项正确;
C、一个命题是真命题,它的逆命题不一定是真命题.故C选项错误;
D、经过旋转,对应线段相等,故D选项错误;
故选:B.
【点睛】
此题考查命题与定理,解题关键在于掌握判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
B、平面内,过一点有且只有一条直线与已知直线垂直,是真命题,故此选项符合题意;
C、相等的角是对顶角,是假命题,故此选项不合题意;
D、过一点有且只有一条直线与已知直线平行,是假命题,故此选项不合题意;
故选:B.
【点睛】
此题主要考查了命题与定理,关键是掌握要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
5.下列命题是假命题的是( )
A.对顶角相等B.两直线平行,同旁内角相等
C.平行于同一条直线的两直线平行D.同位角相等,两直线平行
【答案】B
【解析】
解:A.对顶角相等是真命题,故本选项正确,不符合题意;
B.两直线平行,同旁内角互补,故本选项错误,符合题意;
C.平行于同一条直线的两条直线平行是真命题,故本选项正确,不符合题意;
C.在一个三角形中,任意两边之差小于第三边
D.同弧所对的圆周角和圆心角相等
【答案】D
【解析】
【分析】
根据相关的知识点逐个分析.
【详解】
解:A.任意多边形的外角和为 ,是真命题;
B.在 和 中,若 , , ,则 ≌ ,根据HL,是真命题;
C.在一个三角形中,任意两边之差小于第三边,是真命题;
D.同弧所对的圆周角等于圆心角的一半,本选项是假命题.
试题分析:A.四个角相等的四边形是矩形,为真命题,故A选项不符合题意;
B.对角线相等的平行四边形是矩形,为真命题,故B选项不符合题意;
C.对角线垂直的平行四边形是菱形,为假命题,故C选项符合题意;
D.对角线垂直的平行四边形是菱形,为真命题,故D选项不符合题意.
故选C.
考点:命题与定理.
4.下列命题是真命题的是( )
根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.
【详解】
解:A、平行四边形的对角线互相平分,正确;
B、两直线平行,内错角相等,正确;
C、等腰三角形的两个底角相等,正确;
D、若两实数的平方相等,则这两个实数相等或互为相反数,故D错误;
故选:D.
【点睛】
本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.
根据垂直的性质和平行线的性质,可知“若 , ,那么 ”,是真命题.
故选C.
8.下列命题中,正确的命题是()
A.度数相等的弧是等弧
B.正多边形既是轴对称图形,又是中心对称图形
C.垂直于弦的直径平分弦
D.三角形的外心到三边的距离相等
【答案】C
【解析】
【分析】
根据等弧或垂径定理,正多边形的性质一一判断即可;
D.线段垂直平分线上的点到线段两端的距离相等
【答案】C
【解析】
【分析】
根据等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质一一判断即可.
【详解】
A.正确;有一个角是60°的等腰三角形是等边三角形;
B.正确.等边三角形有3条对称轴;
C.错误,SSA无法判断两个三角形全等;
C、逆命题为:如果一个三角形是等边三角形,那么它是一个等腰三角形而且有一个内角等于60°,逆命题正确,是真命题;
D、逆命题为:两个角相等的三角形是等腰三角形,逆命题正确,是真命题;
故选:B.
【点睛】
本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题.
10.下列命题是真命题的是()
A.方程 的二次项系数为3,一次项系数为-2
14.下列说法正确的是()
A.两锐角分别相等的两个直角三角形全等
B.两条直角边分别相等的两直角三角形全等
C.一个命题是真命题,它的逆命题一定也是真命题
D.经过旋转,对应线段平行且相等
【答案】B
【解析】
【分析】
A,B利用斜边和一条直角边对应相等的两个直角三角形全等,判定直角三角形全等时,也可以运用其它的方法.C利用命题与定理进行分析即可,D.利用旋转的性质即可解答;
12.下列命题中:①若 =﹣ ,则 =﹣ ;②在同一平面内,若a⊥b,a⊥c,则b∥c;③若ab=0,则P(a,b)表示原点;④ 的算术平方根是9.是真命题的有()
A.1个B.2个C.3个D.4个
【答案】A
【解析】
【分析】
根据立方根、平行线的判定和算术平方根判断即可.
【详解】
解:①若 ,则 ,而 ≥0,﹣ ≤0,则 =﹣ 不一定成立,错误;
B.全等三角形对应角相等
C.有一个角是60度的等腰三角形是等边三角形
D.等腰三角形两个底角相等
【答案】B
【解析】
【分析】
先把一个命题的条件和结论互换就得到它的逆命题,再进行判断即可.
【详解】
解:A、逆命题为:在一个三角形中等边对等角,逆命题正确,是真命题;
B、逆命题为:对应角相等的三角形是全等三角形,逆命题错误,是假命题;
D.正确.线段垂直平分线上的点到线段两端的距离相等.
故选:C.
【点睛】
本题考查了命题与定理,等边三角形的判定方法、等边三角形的性质、全等三角形的判定、线段垂直平分线的性质等知识,解题的关键是熟练掌握基本概念,属于中考常考题型.
17.下列命题中,是假命题的是
A.任意多边形的外角和为
B.在 和 中,若 , , ,则 ≌
B.四个角都是直角的两个四边形一定相似
C.某种彩票中奖的概率是1%,买100张该种彩票一定会中奖
D.对角线相等的四边形是矩形
【答案】A
【解析】
【分析】
根据所学的公理以及定理,一元二次方程的定义,概率等知识,对各小题进行分析判断,然后再计算真命题的个数.
【详解】
A、正确.
B、错误,对应边不一定成比例.
A.1B.2C.3D.4
【答案】B
【解析】
【分析】
根据垂径定理的推论对①进行判断;根据切线的判定定理对②进行判断;根据圆周角定理对③进行判断;根据确定圆的条件对④进行判断;根据三角形外心的性质对⑤进行判断.
【详解】
①平分弦(非直径)的直径垂直于弦,错误;
②经过半径的外端且与这条半径垂直的直线是圆的切线,正确;
D.同位角相等,两直线平行是真命题,故本选项正确,不符合题意.
故选B.
6.下列命题中,是真命题的是()
A.若 ,则
B.若 ,则a,b都是正数
C.两条直线被第三条直线所截,同位角相等
D.垂直于同一条直线的两条直线平行
【答案】D
【解析】
【分析】
正确的命题是真命题,根据定义依次判断即可得到答案.
【详解】
A.若 ,则 ,故A错误;
A.内错角相等
B.平面内,过一点有且只有一条直线与已知直线垂直
C.相等的角是对顶角
D.过一点有且只有一条直线与已知直线平行
【答案】B
【解析】
【分析】
命题的“真”“假”是就命题的内容而言.任何一个命题非真即假,正确的命题为真命题,错误的命题为假命题.
【详解】
A、内错角相等,是假命题,故此选项不合题意;
C、错误,不一定中奖.
D、错误,对角线相等的四边形不一定是矩形.
故选:A.
【点睛】
此题考查命题与定理,熟练掌握基础知识是解题关键.
11.下列命题错误的是()
A.平行四边形的对角线互相平分
B.两直线平行,内错角相等
C.等腰三角形的两个底角相等
D.若两实数的平方相等,则这两个实数相等
【答案】D
【解析】
【分析】
【详解】
“两条直线相交只有一个交点”的题设是两条直线相交.
故选D.
【点睛】
本题考查的知识点是命题和定理,解题关键是理解题设和结论的关系.
3.下列命题是假命题的是()
A.四个角相等的四边形是矩形
B.对角线相等的平行四边形是矩形
C.对角线垂直的四边形是菱形
D.对角线垂直的平行四边形是菱形
【答案】C
【解析】
故选D.
【点睛】
本题考核知识点:判断命题的真假.解题关键点:熟记相关性质或定义.
18.利用反证法证明命题“四边形中至少有一个角是钝角或直角”时,应假设( )
A.四边形中至多有一个内角是钝角或直角
B.四边形中所有内角都是锐角
C.四边形的每一个内角都是钝角或直角
D.四边形中所有内角都是直角
【答案】B
【解析】
人教版初中数学命题与证明的知识点
一、选择题
1.下列选项中,可以用来说明命题“若 ,则 ”是假命题的反例是()
A. B. C. D.
【答案】B
【解析】
分析:根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.
详解:∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.
③在同圆或等圆中,同弧所对的圆周角等于圆心角的一半,错误;
④平面内不共线的三点确定一个圆,错误;
⑤三角形的外心到三角形的各个顶点的距离相等,正确;
故正确的命题有2个
故答案为:B.
【点睛】
本题考查了判断命题真假的问题,掌握垂径定理的推论、切线的判定定理、圆周角定理、确定圆的条件、三角形外心的性质是解题的关键.
B.直线 ,则 与 相交所成的角为直角
C.如果两个角互补,那么这两个角是一个锐角,一个钝角
D.若 , ,那么
【答案】C
【解析】
根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;
根据垂直的定义,可知“直线 ,则 与 相交所成的角为直角”,是真命题;
根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;
故选B.
点睛:本题考查的是命题与定理,要说明数学命题的错误,只需举出一个反例即可.这是数学中常用的一种方法.
2.“两条直线相交只有一个交点”的题设是()
A.两条直线B.相交
C.只有一个交点D.两条直线相交
【答案】D
【解析】
【分析】
任何一个命题,都由题设和结论两部分组成.题设,是命题中的已知事项,结论,是由已知事项推出的事项.
相关文档
最新文档