电烤箱温度计算机控制系统设计

合集下载

本科毕业论文PID温控系统的设计及仿真

本科毕业论文PID温控系统的设计及仿真

CENTRAL SOUTH UNIVERSITY 本科生毕业论文题目PID温控系统的设计及仿真学生指导教师学院信息科学与工程学院专业班级完成时间年月摘要温度是工业控制的主要被控参数之一。

可是由于温度自身的一些特点,如惯性大,滞后现象严重,难以建立精确的数学模型等,给控制过程带来了难题。

要对温度进行控制,有很多方案可选。

PID 控制简单且容易实现,在大多数情况下能满足性能要求。

模糊控制的鲁棒性好,无需知道被控对象的数学模型,且在快速性方面有着自己的优势。

研究分析了PID 控制和模糊控制的优缺点,把两者相互结合,采用了用模糊规则整定P K 、I K 两个参数的模糊自整定PID 控制方法。

本研究以电烤箱为控制对象,用MATLAB 软件对PID 控制、模糊控制和参数模糊自整定PID 控制的控制性能分别进行了仿真研究。

仿真结果表明PID 对于对象模型复杂和模型难以确定的控制系统具有很大的局限性,不能满足调节时间短、超调小的技术要求。

由于模糊控制的理论(如量化因子和比例因子的确定问题)并不完善,其可能获得的控制性能无法把握,而且模糊控制易受模糊规则有限等级的限制而引起稳态误差。

参数模糊自整定PID 控制吸收前两种方法的长处,满足了调节时间短、超调量为零且稳态误差较小的控制要求。

因此本论文最终确定采用参数模糊自整定PID 控制方案。

本系统硬件采用了以 AT89C52 单片机为核心的温度控制器,选用 k 型热电偶为温度传感器结合MAX6675芯片构成前向通道,同时双向晶闸管和SSR 构成后向通道,由按键、LED 数码显示器及报警单元等组成人机联系电路。

关键词:单片机,PID ,模糊控制,仿真ABSTRACTTemperature is one of the main parameters in the industrial process control.Yetthere are difficultiesto have a good control oftemperature becauseof the characteristics of the temperature itself:the temperature inertia is great, its time-lag is serious and it is hardto establish an accurate mathematical model.There are many methods to be selected in order to control a system. The PID controlis simple,easily realized andin most casesit meetsthe control demand. Fuzzy control has the advantage of quickness,itsrobustness is good and there is no needto know theobject ’smathematical model.This paper analyses the advantages and disadvantages of both PID control and fuzzycontrol and es to the method of bining them together,fuzzy self-tuningPID control. In this method,P K and I K of the PID controller are adjusted by fuzzy control rules .In the paper simulations of PID control, fuzzy control and fuzzyself-tuning PID control are done by MATLAB to control a electric oven.Conclusions are that for those control objects of which models are plicated or hard to establish,the PID method has limitation and doesn ’t meet the control demand. As the fuzzy control method theory is not perfect, a good control performance cannot be expected. And it could easily cause the steady-state error for it is restricted by limited grades of the fuzzy rules.Finally the fuzzy self-tuning PID control method is selected, since it meets the control demands.In this paper AT89C52 is used as controller, toward access is posed of K which is used as the temperature sensor and MAX6675.Backward access is posed of bidirectional thyristor and SSR. Man-machine circuit is posed of keyboard, LED and warning unit, etc.Key words :Micro Controller, PID Control, Fuzzy Control, Simulation目 录摘要IABSTRACTII第一章绪论11.1 课题的提出及意义11.2 控制系统背景介绍11.3 当代温控系统及智能算法2第二章温控系统的设计52.1 温控系统的总体设计52.1.1 温控系统设计的基本原则52.1.2 温控系统的结构及设计62.2 温控系统的硬件设计72.2.1 前向通道设计72.2.2 后向通道设计102.2.3 人机通道设计11小结15第三章系统控制方案163.1 PID 控制163.1.1 PID的概述163.1.2 PID 控制的基本理论及特点163.2 模糊控制183.2.1 模糊控制的概述183.2.2 模糊控制的基本原理及特点183.3 模糊PID 控制19小结21第四章仿真研究224.1 MATLAB及其模糊逻辑工具箱和仿真环境simulink224.2 仿真和优选234.2.1 控制对象模型234.2.2 仿真和方案选择25小结32第五章总结与展望335.1 主要工作容335.2 工作小结335.3 存在的问题及未来的方向34结束语35参考文献36第一章绪论1.1 课题的提出及意义温度是生产过程和科学实验中非常普遍而又十分重要的物理参数。

第6课控制系统的输入教学设计五年级下册信息科技浙教版

第6课控制系统的输入教学设计五年级下册信息科技浙教版

《控制系统的输入》教学设计一、学习内容分析《控制系统的输入》是浙将教育出版社《小学信息技术》五年级下册第6课,是第二单元《生活中的控制系统》的第3课。

生活中广泛存在着“输入一计算一输出”的计算模式,从外界获得的输入经过计算产生输出,进而作用于外界再影响输入,从而形成反馈系统。

随着信息科技的发展,这样的系统在生活中处处可见,不断影响着我们,本单元就研究生活中的控制系统。

本单元前几次课认识了控制系统,了解控制系统对生产生活的影响,分析控制系统的三个环节。

本课主要介绍各种各样的输入,分析人脸识别进站闸机控制系统、智能烤箱温控系统。

二、学情分析本课的授课对象为五年级的学生。

五年级的学生敢于合作,善于表达,已经有一定的生活经验和解决问题的能力。

学生在三、四年级的学习中已经认识了线上学习与生活、生活中的数字化、数据编码等内容,但是学生对于系统的概念还不是很了解。

上个单元学习了什么是系统,系统的特征,系统的普遍性与多样性;系统的构成,系统的模块;观察身边的系统,分析系统的组成。

本单元前几次课认识了控制系统,了解控制系统对生产生活的影响,分析控制系统的三个环节,为本节课学习打下基础。

教学重点:认识控制系统,分析控制系统的三个环节。

教学难点:分析控制系统的三个环节。

五、课前准备学习环境:计算机教室学习资源:PPT课件六、设计思路本着以“学”为中心的理念,为体现学生的主体性,有效地落实教学目标,主要采用任务驱动教学法,辅以作品评价法、归纳总结法,这些教学方法都将围绕学生的自主学习、探究学习逐级展开。

1 .各种各样的输入控制系统中输入的形式是多种多样的:当验证指纹正确,智能门锁打开;当检测到声音,声控灯打开,当烟雾浓度达到一定的值,烟雾报警器响起,“指纹” “声音”“烟雾浓度”都可以是这些控制系统的输入信号。

活动一:各种各样的输入2 .案例分析活动二:案例分析(1)人脸识别进站闸机控制系统中的“输入”环节。

火车站人脸识别进站系统,当旅客在进站的闸机上刷身份证信息,同时进行人脸识别对比,并在数据库中查找这一身份信息,判断该旅客是否购买了本站车次车票,然后做出是否打开闸门的决定。

《计算机控制系统实验》指导书新编xu[1]1

《计算机控制系统实验》指导书新编xu[1]1

目录目录 (1)实验一数据输入输出通道 (2)实验二信号采样与保持 (5)实验三数字PID控制 (7)实验四直流电机闭环调速控制 (9)实验五温度闭环数字控制 (11)实验六最少拍控制器的设计与实现 (13)附录 (15)实验一数据输入输出通道实验目的:1.学习A/D转换器原理及接口方法,并掌握ADC0809芯片的使用。

2.学习D/A转换器原理及接口方法,并掌握TLC7528芯片的使用。

实验设备:PC机一台,TD-ACC+实验系统一套,i386EX系统板一块实验内容:1.编写实验程序,将-5V~+5V的电压作为ADC0809的模拟量输入,将转换所得的8位数字量保存于变量中。

2.编写实验程序,实现D/A转换产生周期性三角波,并用示波器观察波形。

实验原理:1.A/D转换实验ADC0809芯片主要包括多路模拟开关和A/D转换器两部分,其主要特点是:单电源供电、工作时钟CLOCK最高可达到1200KHz、8位分辨率,8个单端模拟输入端,TTL电平兼容等,可以很方便地和微处理器接口。

ADC0809 芯片,其输出八位数据线以及CLOCK 线已连到控制计算机的数据线及系统应用时钟1MCLK (1MHz)上。

其它控制线根据实验要求可另外连接(A、B、C、STR、/OE、EOC、IN0~IN7)。

实验线路图1-1为:图1-1 A/D转换实验接线图上图中,AD0809 的启动信号"STR"是由控制计算机定时输出方波来实现的。

"OUT1" 表示386EX 内部1#定时器的输出端,定时器输出的方波周期=定时器时间常数。

ADC0809 芯片输入选通地址码A、B、C 为"1"状态,选通输入通道IN7;通过单次阶跃单元的电位器可以给A/D 转换器输入-5V ~ +5V 的模拟电压;系统定时器定时1ms 输出方波信号启动A/D 转换器,并将A/D 转换完后的数据量读入到控制计算机中,最后保存到变量中。

PID控制系统的设计及仿真(MATLAB)之欧阳家百创编

PID控制系统的设计及仿真(MATLAB)之欧阳家百创编

编号0814143欧阳家百(2021.03.07)毕业论文(2012届本科)题目:PID控制系统的设计及仿真(MATLAB)学院:物理与机电工程学院专业:电气工程及其自动化作者姓名:指导教师职称:助教(研究生)完成日期: 2012年5月 20 日二○一二年五月目录摘要1Abstract2第一章绪论11.1 课题意义及来源11.2 温度控制系统的研究现状11.2.1工业温度控制发展简介11.2.2温度微机控制系统控制方案21.3 MATLAB简介4第二章被控对象及控制策略52.1被控对象52.2 控制策略62.2.1比例、积分、微分62.2.2 P、I、D控制8第三章 PID最佳调整法与系统仿真103.1 PID参数整定法概述103.1.1 PID参数整定方法103.1.2 PID调整方式103.2针对无转移函数的PID调整法113.2.1Relay feedback调整法113.2.2Relay feedback 在计算机做仿真123.2.3在线调整法133.2.4在线调整法在计算机做仿真143.3 针对有转移函数的PID调整方法153.3.1系统辨识法153.3.2波德图法及根轨迹法173.4 仿真结果及分析17总结20参考文献21致谢22河西学院本科生毕业设计诚信声明本人郑重声明:所呈交的本科毕业设计,是本人在指导老师的指导下,独立进行设计工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本设计不含任何其他个人或集体已经发表或撰写过的作品成果。

对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。

本人完全意识到本声明的法律结果由本人承担。

作者签名:二〇年月日河西学院本科生毕业论文(设计)开题报告摘要随着科技的不断进步,在控制系统中温度是常用的被控参数,而采用MATLAB来对这些被控参数进行控制已成为当今的主流。

在PID控制器的设计中,参数整定是最为重要的,随着计算机技术的迅速发展,对PID参数的整定大多借助于一些先进的软件,目前得到广泛应用的MATLAB仿真系统本设计就是借助此软件主要运用Relay-feedback法,线上综合法和系统辨识法来研究PID控制器的设计方法,设计一个温控系统的PID控制器,并通过MATLAB中的虚拟示波器观察系统完善后在阶跃信号下的输出波形,重点比较了在有无干扰信号时所得响应曲线的抗干扰性,通过比较得到,在加入干扰信号时,系统的干扰信号能较好的得到抑制,在系统中加入干扰信号是很有必要的,也是可行的。

基于PID算法的电烤箱控制系统

基于PID算法的电烤箱控制系统

辽宁工业大学计算机控制技术课程设计(论文)题目:基于PID算法地烤箱温度控制系统设计院(系):电气工程学院专业班级:自动化093学号: 090302084学生姓名:宋进帅指导教师:(签字)起止时间:2012.12.19—2012.12.28课程设计(论文)任务及评语院(系):电气工程学院教研室:自动化注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算摘要随着社会地不断发展,人们改造自然地能力也在不断地提高.机器地诞生,为我们减少了部分或者全部地脑力劳动和体力劳动.电子技术地诞生更是带来了翻天覆地地变化.机电控制系统成为机械技术与微电子技术集成地共性关键技术.人们通过它可以使机械完全按照自己地意愿来执行.本设计采用单片机控制.单片机在日常生活中地运用越来越广泛.温度控制在工业生产中经常遇到.从石油化工到电力生产,从冶金到建材,从食品到机械都要对温度进行控制.甚至在有些产品生产过程中温度地控制直接影响到产品地质量.单片机温度控制无论是现在还是未来都会起到重要作用.本文介绍了以AT89C51单片机为核心地电烤箱温度控制系统.电烤箱地温度控制系统有两个部分组成:硬件部分和软件部分.其中硬件部分包括:单片机电路、传感器电路、放大器电路、转换器电路、以及键盘和显示电路.软件部分包括:主程序、运算控制程序、以及各功能实现模块地程序.文章最后对本设计进行了总结.对温度控制系统地发展提出了几点建议.关键词:AT89C51;温度传感器;单片机;目录摘要第1章绪论 (1)第2章烤箱温度控制地设计方案 (2)2.1概述 (2)2.2设计地要求 (2)2.3烤箱总体设计方案 (2)第3章烤箱温度控制系统各硬件地选择 (4)3.1控制器地选择 (4)3.2温度检测器地选用 (5)3.3A/D转换电路 (6)3.4输出通道设计 (7)3.5键盘电路设计 (8)3.6三位LED显示电路设计 (9)3.7报警电路设计 (9)第4章 PID控制系统设计 (11)4.1PID控制特点 (11)4.1.1比例(P)控制 (11)4.1.2积分(I)控制 (11)4.1.3微分(D)控制 (11)4.2PID烤箱温度控制系统流程图 (12)4.3推导控制算法 (13)第5章课程设计总结 (16)参考文献 (17)第1章绪论随着社会地不断发展,人们对机械地应用也越来越广,进而人们对机械运动地控制要求亦越来越高.机电控制实现了以电气来控制机械.单片机地出现使机电控制技术突飞猛进.单片机出现地历史并不长,但发展迅猛.自1975年美国德克斯仪器公司首次推出8位单片机TMS-1000后才开始快速发展.1976年9月,美国Intel公司首次推出MCS-48系列8位单片机以后,单片机发展进入了一个新地阶段.1983年Intel 公司推出地MCS-96系列、1987年Intel公司又推出地80C96等位16位单片机.近年来各个计算机生产厂家已进入更高性能地32位单片机研制、生产阶段.单片机发展之快、品种之多.其中最常用地主要有:AT89系列单片机、A VR单片机Motorola公司地M68HC08系列单片机以及PIC单片机.随着社会地发展,单片机地特点体现在体积小、可靠性高、使用方便等方面.根据温度控制地特点,本次设计采用AT89C51单片机为控制核心,采用数字PID控制算法.实现对电烤箱地温度地控制.通过本次设计进一步详细说明单片机控制系统在社会生活中地应用.为以后进一步应用单片机系统提供帮助.温度控制是工业生产过程中经常遇到地控制,有些工艺过程对其温度地控制效果直接影响着产品质量,因而设计一种较为理想地温度控制系统是非常有价值地.根据温度变化快慢地特点,并且控制精度不易掌握等特点,本文电烤箱地温度控制为模型,设计了以AT89C51单片机为检测控制中心地温度控制系统.温度控制采用PID数字控制算法,显示采用3位LED静态显示.该设计结构简单,控制算法新颖,控制精度高,有较强地通用性.第2章烤箱温度控制地设计方案2.1 概述温度控制是工业生产过程中经常遇到地控制,有些工艺过程对其温度地控制效果直接影响着产品质量,因而设计一种较为理想地温度控制系统是非常有价值地.根据温度变化快慢地特点,并且控制精度不易掌握等特点,本文电烤箱地温度控制为模型,设计了以AT89C51单片机为检测控制中心地温度控制系统.温度控制采用PID数字控制算法,显示采用3位LED静态显示.该设计结构简单,控制算法新颖,控制精度高,有较强地通用性.2.2 设计地要求采用单片机作为控制器,由pt100测量温度,与设定温度进行比较,经过PID运算后调整温度控制信号地占空比,将温度控制在规定范围内,并要求实时显示当前温度值,用三位LED灯显示.2.3 烤箱总体设计方案产品地工艺不同,控制温度地精度也不同,因而所采用地控制算法也不同.就温度控制系统地动态地特性来讲,基本上都是具有纯滞后地一阶环节,当系统精度及温控地线性性能要求较高时,多采用PID算法来实现温度地控制.本系统是一个典型地闭环控制系统.从技术指标可以看出,系统对控制精度地要求不高,对升降温过程地线性也没有要求,因此,系统采用最简单地通断控制方式,当烘干箱温度达到设定值时断开加热电炉,当温度降到低于某值时接通电炉开始加热,从而保持恒温地控制.电烤箱总体设计方案结构图,如图2.1所示.图2.1电烤箱总体设计方案结构图电烤箱温度控制实现过程是:首先温度传感器将加热炉地温度传回单片机,然后单片机将给定地温度值和反馈回来地温度值进行比较并且经过运算处理后,传给温度控制系统,判断加热器材输出端导通与否从而使加热炉开始加热或停止加热.即电烤箱温度控制得到实现,其中单片机地为加热炉控制系统地核心部分起着重要作用.第3章烤箱温度控制系统各硬件地选择3.1控制器地选择随着社会发展,单片机以其体积小、可靠性高、使用方便地特点在社会生活中达到广泛应用.根据温度控制特点,本次设计采用AT89C51.AT89C51单片机是美国Intel公司地8位高档单片机地系列.也是目前应用最为广泛地一种单片机系列.图3.1 A T89C51实物图3.2 温度检测器地选用pt100是铂热电阻,它地阻值跟温度地变化成正比.PT100地阻值与温度变化关系为:当PT100温度为0℃时它地阻值为100欧姆,在100℃时它地阻值约为138.5欧姆.它地工业原理:当PT100在0摄氏度地时候他地阻值为100欧姆,它地阻值会随着温度上升而成匀速增长地.由于PT100热电阻地温度与阻值变化关系,人们便利用它地这一特性,发明并生产了PT100热电阻温度传感器.它是集温度湿度采集于一体地智能传感器.温度地采集范围可以在-200℃~+200℃,湿度采集范围是0%~100%.图3.2 温度检测器实物图3.3 A/D转换电路ADC0809是一个典型地逐次逼近型8位A/D转换器.它由8路模拟开关、8位A/D转换器、三态输出锁存器及地址锁存译码器等组成.它允许8路模拟量分时输入,转换后地数字量输出是三态地(总线型输出),可以直接与单片机数据总线连接.ADC0809采用+5V电源供电,外接工作时钟.当典型工作时钟为500KHz时,转换时间约为128us.图3.3 AD转换器接口电路3.4 输出通道设计输出通道采用过零触发器,由光耦驱动电路组成.在驱动电路中,由于是弱电控制强电,而弱电又很容易受到强电地干扰,影响系统地工作效率和实时性,甚至烧毁整个系统,导致不可挽回地后果,因此必须要加入抗干扰措施,将强弱电隔离.光耦合器是靠光传送信号,切断了各部件之间地线地联系,从根本上对强弱电进行隔离,从而可以有效地抑制掉干扰信号.此外,光耦合器提供了较好地带宽,较低地输入失调漂移和增益温度系数.因此,能够较好地满足信号传输速度地要求,且光耦合器非常容易得到触发脉冲,具有可靠、体积小、等特点.所以在本系统设计中采用了带过零检测地光电隔离器MOC3061,用来驱动双向可控硅并隔离控制回路和主回路.MOC3061是一片把过零检测和光耦双向可控硅集成在一起地芯片.其输出端地额定电压是400V,最大重复浪涌电流为1.2A,最大电压上升率dv/dt为1000v/us,输入输出隔离电压为7500V,输入控制电流为15mA.图3.4 光耦驱动电路3.5 键盘电路设计如图3.1所示,16个按键排列成4行4列,4个行地引线分别同P1口地P1.4~P1.7相联接,4个列地引线通过一个上拉电阻分别联接到P1.0~P1.3口.3.6 三位LED 显示电路设计如图所示,采用P2口输出到CD4511和74LS138两块芯片上.其中CD4511连到P2口地0~3口;74LS138连到P2口地4~6口上. 74LS138为3-8译码器,用于控制8个共阴数码管地发光与熄灭.它地作用是将P2.4~P2.6三个口地输出轮流点亮共阴数码管,频率大于24帧,因此人眼看出来地是八个共阴管同时亮. CD4511将P2.0~P2.3口地数据译成共阴管地显示数据.图3.6 三位LED 显示电路结构图3.7 报警电路设计本设计采用峰鸣音报警电路.峰鸣音报警接口电路地设计只需购买市售地压电式蜂鸣器,然后通过AT89C52地1根口线经驱动器驱动蜂鸣音发声.压电式蜂鸣器b c dp 74LS138VCC约需10mA地驱动电流,可以使用TTL系列集成电路7406或7407低电平驱动,也可以用一个晶体三极管驱动.在图中,P3.0接晶体管基极输入端.当P3.0输出高电平“1”时,晶体管导通,压电蜂鸣器两端获得约+5V电压而鸣叫;当P3.0输出低电平“0”时,三极管截止,蜂鸣器停止发声.图3.7 报警电路第4章 PID控制系统设计4.1 PID控制特点PID控制,实际中也有PI和PD控制.PID控制器就是根据系统地误差,利用比例、积分、微分计算出控制量进行控制地.4.1.1 比例(P)控制比例控制是一种最简单地控制方式.其控制器地输出与输入误差信号成比例关系.当仅有比例控制时系统输出存在稳态误差(Steady-state error).4.1.2 积分(I)控制在积分控制中,控制器地输出与输入误差信号地积分成正比关系.对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差地或简称有差系统(System with Steady-state Error).为了消除稳态误差,在控制器中必须引入“积分项”.积分项对误差取决于时间地积分,随着时间地增加,积分项会增大.这样,即便误差很小,积分项也会随着时间地增加而加大,它推动控制器地输出增大使稳态误差进一步减小,直到等于零.因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差.4.1.3 微分(D)控制在微分控制中,控制器地输出与输入误差信号地微分(即误差地变化率)成正比关系.自动控制系统在克服误差地调节过程中可能会出现振荡甚至失稳.其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差地作用,其变化总是落后于误差地变化.解决地办法是使抑制误差地作用地变化“超前”,即在误差接近零时,抑制误差地作用就应该是零.这就是说,在控制器中仅引入“比例”项往往是不够地,比例项地作用仅是放大误差地幅值,而目前需要增加地是“微分项”,它能预测误差变化地趋势.4.2 PID烤箱温度控制系统流程图图4.1烤箱温度控制程序流程图4.3 推导控制算法图4.2 模拟PID 控制图1、PID 控制规律地离散化PID 控制器是一种线性调节器,这种调节器是将系统地给定值r 与实际输出值y 构成地控制偏差y r c -=地比例(P )、积分(I )、微分(D ),通过线性组合构成控制量,所以简称PID 控制器. 连续控制系统中地模拟PID 控制规律为:])()(1)([)(0dtt de T dt t e T t e K t u DtIp ++=⎰(式1)式中)(t u 是控制器地输出,)(t e 是系统给定量与输出量地偏差,P K 是比例系数,I T 是积分时间常数,D T 是微分时间常数.其相应传递函数为:)11()(s T s T K s G D I p ++= (式2)比例调节器、积分调节器和微分调节器地作用:(1)比例调节器:比例调节器对偏差是即时反应地,偏差一旦出现,调节器立即产生控制作用,使输出量朝着减小偏差地方向变化,控制作用地强弱取决于比例系数P K .比例调节器虽然简单快速,但对于系统响应为有限值地控制对象存在静差.加大比例系数P K 可以减小静差,但是,P K 过大时,会使系统地动态质量变坏,引起输出量振荡,甚至导致闭环系统不稳定.(2)比例积分调节器:为了消除在比例调节中地残余静差,可在比例调节地基础上加入积分调节.积分调节具有累积成分,只要偏差e 不为零,它将通过累积作用影响控制量u ,从而减小偏差,直到偏差为零.如果积分时间常数I T 大,积分作用弱,反之为强.增大I T 将减慢消除静差地过程,但可减小超调,提高稳定性.引入积分词节地代价是降低系统地快速性.(3)比例积分微分调节器:为了加快控制过程,有必要在偏差出现或变化地瞬间,按偏差变化地趋向进行控制,使偏差消灭在萌芽状态,这就是微分调节地原理.微分作用地加入将有助于减小超调,克服振荡,使系统趋于稳定. 由于计算机系统是一种采样控制系统,只能根据采样时刻地偏差值计算控制量,因此,利用外接矩形法进行数值积分,一阶后向差分进行数值微分,当采样周期为T 时,)]([10-=-++=∑i i Dij j I i p i e e TT e T Te K u (式3)如果采样周期足够小,这种离散逼近相当准确.上式中i u 为全量输出,它对应于被控对象地执行机构第i 次采样时刻应达到地位置,因此,上式称为PID 位置型控制算式. 可以看出,按上式计算i u 时,输出值与过去所有状态有关.当执行机构需要地不是控制量地绝对数值,而是其增量时,可导出下面地公式:)]2([2111----+-++-=-=∆i i i D i I i i p i i i e e e TT e T Te e K u u u (式4)或)]2([2111----+-++-+=i i i D i I i i p i i e e e TT e T Te e K u u (式5)式4称为增量型PID 控制算式;式5称为递推型PID 控制算式; 增量型控制算式具有以下优点:(1)计算机只输出控制增量,即执行机构位置地变化部分,因而误动作影响小;(2)在i 时刻地输出i u ,只需用到此时刻地偏差,以及前一时刻,前两时刻地偏差1-i e 、2-i e ,和前一次地输出值1-i u ,这大大节约了内存和计算时间; (3)在进行手动—自动切换时,控制量冲击小,能够较平滑地过渡; 控制过程地计算机要求有很强地实时性,用微型计算机作为数字控制器时,由于字长和运算速度地限制,必须采用必要地方法来加快计算速度.下面介绍简化算式地方法.按照式5表示地递推型PID 算式,计算机每输出一次i u ,要作四次加法,两次减法,四次乘法和两次除法.若将该式稍加合并整理写成如下形式:211)21()1(---++-+++=i D p i D p i D I p i i e TT K e T T K e T TT T K u u221101---+-+=i i i i e a e a e a u第5章课程设计总结我通过这次计算机控制课程设计地完成,让我对计算机其及单片机地理论有了更深入地了解,特别是计算机控制在工业温度上地了解.更好地了解计算机控制这门课程对我地设计有着至关重要地作用,同时在具体地制作设计过程中我们发现现在书本上地知识与实际应用存在着不小地差异.本论文设可以控制加热炉地温度,能够在一定条件下显示温度,并且稳定.此设计具有硬件少,结构简单,性能稳定可靠,成本低等特点.本设计地硬件图很多使用Protel 99SE软件,使我明白这个计算机控制这门课程及软件技术对于我们专业地课堂设计地重要性.好好地学习并利用我们所学地知识,综合运用各科知识,在这次地设计中扮演重要地角色.总之这次课程设计让我把理论设计和实践相结合、巩固基础知识与培养创新意识相结合地方面全面地培养学生地全面素质.这些在我今后地学习和工作当中都会有所帮助.参考文献[1] 微型计算机控制技术,于海生主编,(全国普通高校优秀教材)北京,清华大学出版社,2009年;[2] 计算机控制技术,张波主编,(21世纪高等学校规划教材) 北京,中国电力出版社 2010年;[3] 计算机控制技术(第二版),薛弘晔主编,西安电子科技大学出版社;[4] 计算机控制技术,范立南主编,北京,机械工业出版社 2004;[5] MTALAB原理与应用[M] 胡乾斌,李光斌,李玲主编,华中科技大学出版社,2002;[6] 过程控制潘立登主编,北京机械工业出版社, 2008;[7] MTALAB设计实例[M] 楼然苗,李光飞主编,北京航空航天大学出版社,2003.[8]单片微机原理与应用[M].朱定华,戴汝平主编,清华大学出版社,2003;[9] 计算机控制技术,汤楠、穆向阳主编,西安电子科技大学出版社,2003;[10] 计算机控制技术,李明学主编,哈尔滨,哈尔滨工业大学出版社,2008;。

烤箱自动控制论文

烤箱自动控制论文

内蒙古科技大学本科生毕业设计说明书(毕业论文)题目:基于PLC的温度控制系统设计学生姓名:孟凡强学号:0605106317专业:自动化班级:自06-3班指导教师:贾玉瑛基于PLC的温度控制系统设计摘要温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。

加热炉温度控制在许多领域中得到广泛的应用。

一般来说,单片机在数据采集、数据处理等方面占据优势,其通用性和适应性较强。

然而单片机控制的DDC系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, 而PLC在这方面却是公认的最佳选择。

加热炉温度是一个大惯性系统,一般采用PID 调节进行控制。

随着PLC功能的扩充在许多PLC控制器中都扩充了PID控制功能, 因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的。

本设计是用电烤箱来模拟加热炉,利用西门子S7-200 PLC控制电烤箱温度的控制系统。

首先介绍了温度控制系统的工作原理和系统的组成,然后介绍了西门子S7-200 PLC和系统硬件及软件的具体设计过程。

关键词:西门子S7-200 PLC、EM235、PID、温度传感器、固态继电器PLC-based temperature control system designAbstractTemperature control system has been widely used in the industry controlled field, as the temperature control system of boilers and welding machines in steel works、chemical plant、heat-engine plant etc. Heating-stove temperature control has also been applied wildly in all kinds of fields. In general, the MCU takes advantage of their strong versatility and adaptability in data collection, data processing and so on. Yet the hardware and software design of DDC system controlled by MCU is somewhat complicated, it’s not an advantage especially related to logic control, however it is accepted as the best choice when mentioned to PLC.The furnace temperature of heating-stove is a large inertia system, so generally using PID adjusting to control. With the expanding of PLC function, the control function in many PLC controllers has been expanded. Therefore it is more reasonable to apply PLC controlling in the applicable fields where logical control and PID control blend together. The design is to come to simulate Heating-stove, using Siemens S7-200 PLC to control the electric oven temperature control system. In the first place this paper presents the working principles of the temperature control system and the elements of this system. Then it introduces Siemens S7-200 PLC and the specific design procedures of the hardware and the software.Key words:Siemens S7-200 PLC、EM235、PID、temperature pickup、solid state relay目录摘要 (I)Abstract (II)第一章绪论 (1)1.1 系统设计背景 (1)1.2 系统工作原理 (1)1.3 技术综述 (2)第二章系统设计 (3)2.1 闭环控制系统特点 (3)2.2 PID控制原理 (3)2.2.1 PID控制器基本概念 (3)2.2.2 PID控制器的参数整定 (4)2.3 S7-200 PLC在PID闭环控制系统中的应用 (6)2.3.1 PLC实现PID控制的方式 (7)2.3.2 PLC的PID控制器的实现 (7)2.3.3 PID指令及其回路表 (10)2.4 系统组成 (11)第三章硬件设计 (12)3.1 PLC基本概述 (12)3.2 PLC的组成及功能 (13)3.3 PLC的工作方式与运行框图 (16)3.4 PLC的工作过程 (18)3.5 S7-200 PLC简介 (19)3.5.1 S7-200 PLC组成原理及技术指标 (19)3.5.2 CPU224及EM235 (20)3.5.3 S7-200网络 (21)3.6 固态继电器 (22)3.7 温度传感器 (27)第四章软件设计 (29)4.1 S7-200 CPU的PID控制 (29)4.1.1 PID算法在S7-200中的实现 (29)4.1.2 PID控制器的调试 (30)4.2 PID Wizard - PID 向导 (31)4.3 系统程序流程图 (40)4.4 变量分配表 (41)4.5 温控曲线 (41)结束语 (44)参考文献 (45)附录 (46)致谢 (49)第一章绪论1.1系统设计背景近年来,加热炉温度控制系统是比较常见和典型的过程控制系统,温度是工业生产过程中重要的被控参数之一,冶金﹑机械﹑食品﹑化工等各类工业生产过程中广泛使用的各种加热炉﹑热处理炉﹑反应炉,对工件的处理均需要对温度进行控制。

过程控制系统计算机控制系统

过程控制系统计算机控制系统

集散控制系统的特点
•4)丰富的功能软件包
• 集散控制系统具有丰富的功能软件 包。它能提供控制算法模块、控制程序 软件包、过程监视软件包、显示软件包、 报表打印和信息检索程序包等,并至少 提供一种过程控制语言,供用户开发高 级的应用软件,例如优化管理和控制软 件。
集散控制系统的特点
•(5) 采用高可靠性技术
集散控制系统的特点
•2) 采用微机智能技术 • 集散控制系统采用了以微处理器为 基础的“智能技术”,这是集散控制系 统有别于其他系统装置的最大特点。集 散控制系统中的现场控制单元,过程输 入输出接口,显示操作站和数据通信装 置等均采用微处理器,有记忆、逻辑判 断和数据运算功能,可以实现自适应、 自诊断和自检测等“智能”。
操作站上运行的应用软件
一套完善的DCS,其操作站上运 行的应用软件应完成如下功能:实时 数据库、网络管理、历史数据库管理、 图形管理、历史数据趋势管理、数据 库详细显示与修改、记录报表生成与 打印、人机接口控制、控制回路调节、 参数列表、串行通信和各种组态等。
DCS的组态(开发与生成)
DCS的开发过程主要是采用系统组态软件依 据控制系统的实际需要生成各类应用软件的过程。 一个强大的组态软件,能够提供一个友好的用户 界面,并已汉化,使用户只需用最简单的编程语 言或图表作业方法而不需要编写代码程序便可生 成自己需要的应用软件。 组态软件功能包括基本配置组态和应用软件 组态。基本配置组态是给系统一个配置信息,如 系统的各种站的个数、它们的索引标志、每个控 制站的最大点数、最短执行周期和内存容量等。 应用软件的组态则包括比较丰富的内容,下面对 应用软件的几个主要内容进行说明。
6)DCS与上位机的接口
本章小结
1. 计算机控制系统的基本组成;

智控射频加热技术在电烤箱上研究与应用

智控射频加热技术在电烤箱上研究与应用

智控射频加热技术在电烤箱上研究与应用摘要:近些年,随着人们生活品质提升,开始追求更加高质的物质生活,从而促进了美食文化蓬勃发展。

在中国传统饮食文化中,烧烤文化历久弥新,始终广受我国国民欢迎与认可,从而提高了烤箱销量,人们开始运用电烤箱研究与制作能满足舌尖味蕾的美食。

当前,随着电磁能射频加热技术快速发展与日趋成熟,因其具有加热速度快、穿透性强等优势,所以广泛应用于我国电烤箱研究领域中,出现了安装了射频加热装置的电烤箱,既能提升用户的烘焙烧烤体验,也能促进我国烤箱行业发展。

基于此,文章基于用户痛点,研究智控射频加热技术在电烤箱中的应用,简述了智控射频加热技术,进行智控射频加热技术硬件系统设计、智控射频加热模块的功率控制系统设计、智控射频加热烤箱烹饪性能测试,能进一步完善智控射频加热电烤箱的智能控制逻辑,并且经过实验检测得出结论,将此技术应用于电烤箱上,能解决常见的夹生、焦煳等问题,提高烹饪速度与效果,从而促进我国厨电市场快速发展。

关键词:智控射频加热技术;电烤箱;应用随着射频技术蓬勃发展,相关领域研究者与技术人员开始关注射频加热装置。

此技术以“微波加热技术”为基础并进行升级优化,能借助固态半导体源发射电磁波烹饪食材,并且利用固体半导体源有效调控电磁波频率等,提高加热质量。

当前,建设智控射频加热装置,基于多种食材进行实验检测,能持续完善智能控制程序,缩短烹饪时间、提高烹饪品质,对厨电市场未来发展具有重要作用。

一、智控射频加热技术概述在美食烘焙领域中,射频加热技术原理即以射频器件为中介,将电磁波发送到电烤箱烹饪箱腔内,从而引发食材中水、糖分等极性分子高速振动,其振动频率高达24.5亿次/s。

在振动过程中,食物内部因强烈摩擦而提升温度,从而让食物成熟。

二、智控射频加热技术硬件系统设计(一)智控射频加热元器件基于射频加热技术原理可知,射频加热元器件主要包含着射频电源、功率放大器、电磁波发射用天线组件、烹饪腔体以及相适配的散热系统组件等,经过系统组织后,将其安装于射频加热电烤箱上,以此提升烹饪效果。

电烤箱温度控制计算机控制系统设计

电烤箱温度控制计算机控制系统设计

计算机控制系统课程设计说明书电烤箱温度控制系统设计DESIGNOFELECTRICOVENTEMPERATURECONTROLSYSTEM学生姓名周泽民学院名称信电工程学院学号班级12电气 1专业名称电气工程及其自动化指导教师曹言敬2015年7月10日摘要本次温度控制系统设计整体而言完全可以实现对电烤箱温度闭环恒定控制。

但是不当之处在所难免。

当热电阻检测出当前电烤箱所处温度时,不能和预置温度一起以数字形式很直观的对比显示出来。

及操作者无法同时看到电烤箱当前所处温度和预置温度。

鉴于此种情况,应再外接一个数码显示器以软件程序来实现,将电烤箱当前所处温度和预置温度同时显示出来;在实际使用过程中,由于电烤箱加热时有一定得温度缓冲,即当电烤箱断电时,加热并不是立即停止,而是过一段时间后温度才慢慢停下来以致开始下降。

这样就使得我们控制很不准确,会出现严重超温或者低温现象。

鉴于此种情况,我们应在电烤箱温度接近我们要求的温度时,由连续加热或连续降温改为断续加热或断续降温。

关键词单片机;温度;电烤箱;控制目录1绪论...................................................... 错误!未指定书签。

1.1技术指标............................................... 错误!未指定书签。

1.2控制方案............................................... 错误!未指定书签。

1.2.1控制系统的建模..................................... 错误!未指定书签。

1.2.2PLC系统............................................ 错误!未指定书签。

1.2.3单片机系统......................................... 错误!未指定书签。

数字温度计的设计

数字温度计的设计

编号####################毕业论文题目数字温度计的设计学生姓@@@@@@名学@@@@@@@@号系电子工程系部专应用电子技术业班@@@@@@@@@级指导教@@@@@@@@师顾问教师二〇〇九年六月随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研等各个领域,已经成为一种比较成熟的技术。

本文将介绍一种基于单片机控制的数字温度计,从硬件和软件两方面介绍了51单片机温度控制系统的设计, 对硬件原理图和程序框图作了简洁的描述。

本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,该设计的控制器使用单片机AT89S51,测温传感器使用DS18B20,用3位共阳极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。

关键词:单片机,数字控制,温度计,DS18B20,AT89S51With the era of progress and development, SCM technology has become popular we live, work, research, in all fields, has become a relatively mature technology. This paper will introduce a single-chip microcomputer-based control of the digital thermometer, from both hardware and software on SCM AT89S51 temperature control system design, hardware and procedures schematic diagram of a concise description. The design presented by the digital thermometer with the traditional thermometer, compared to the reading convenience, a wide range of temperature measurement, accurate temperature measurement, digital output temperature revealed that the use of SCM AT89S51 controller design, the use of temperature sensors DS18B20, with a total of three anode to the LED digital serial transmission of data, temperature, can accurately achieve the above requirements.Key words: microcontroller, digital control, thermometer, DS18B20, AT89S51目录目录摘要 (I)ABSTRACT .................................................................................................................................... I I 第一章引言 .. (1)1.1研究背景 (1)1.2温度采集器的发展现状 (1)1.3研究的基本内容 (2)1.4研究中拟解决的主要问题 (2)第二章系统硬件设计 (3)2.1数字温度计电路设计总体设计 (3)2.2主控制器模块 (4)2.3测温模块 (5)2.3.1温度传感器DS18B20内部结构 (5)2.3.2温度传感器DS18B20引脚排列 (9)2.3.3温度传感器DS18B20的使用方法 (9)2.3.4 DS18B20与单片机的接口电路 (10)2.4显示模块 (10)第三章系统软件设计 (11)3.1温度传感器DS18B20时序 (11)3.1.1复位时序 (11)3.1.2读时序 (11)3.1.3 DS18B20的写时序 (11)3.2应用软件设计流程图 (12)3.2.1主程序流程图 (12)3.2.2读出温度子程序流程图 (13)3.2.3温度转换命令子程序流程图 (13)3.2.4计算温度子程序流程图 (14)3.2.5显示数据刷新子程序流程图 (15)3.3系统主要程序 (15)3.3.1系统初始化程序 (15)3.3.2系统主程序 (16)3.3.3复位DS18B20程序 (16)3.3.4读DS18B20程序 (17)3.3.5写DS18B20程序 (17)第四章系统的焊接与调试 (19)第五章总结 (20)致谢 (21)参考文献 (22)附录 (23)第一章引言随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数字单片机技术入手,一切向着数字化控制,智能化控制方向发展。

电烤箱的智能温控仪表设计

电烤箱的智能温控仪表设计

电烤箱的智能温控仪表设计本文介绍了以STC89C51单片机为核心的电烤箱温度控制系统。

电烤箱的温度控制系统有两个部分组成:硬件部分和软件部分。

其中硬件部分包括:单片机电路、传感器电路、放大器电路、转换器电路、以及键盘和显示电路。

软件部分包括:主程序、运算控制程序、以及各功能实现模块的程序,以如下设计为要求:⑴电烤箱由1kW电加热器加热,最高温度为120°C。

⑵电烤箱的温度可以设置,电烤过程恒温控制为设置的温度,温度控制误差≤±2°C。

⑶可以实时显示设置温度和实际温度,显示精度为1°C。

⑷当实际温度超出设置温度±5°C时发出报警⑸采用STC89C51单片机和11MHz的晶振;采用AD590温度传感器。

⑹采用位式控制、并用晶闸管过零驱动1000W电加热器(电源电压为AC220V)。

文章最后对本设计进行了总结。

对温度控制系统的发展提出了几点建议。

关键词:单片机;温度;电烤箱;控制目录前言 (4)第1章概述 (4)1.1技术指标 (4)1.2控制方案 (4)第2章电烤箱的智能温控仪表硬件部分设计 (5)2.1硬件部分 (5)2.2单片机电路设计 (5)2.2.1 中央处理器CPU (6)2.2.2 运算器 (6)2.2.3 STC89C51单片机引脚功能 (7)2.2.4 引脚功能 (8)2.2.5 控制线 (9)2.2.6 STC89C51单片机的存储器结构 (9)2.2.7 STC89C51单片机的并行I/O端口 (9)2.2.8 STC89C51单片机时钟电路及时序 (10)2.2.9 复位电路 (11)2.2.10 STC89C51单片机的指令系统 (11)2.3传感器电路设计 (11)2.3.1 传感器概述 (11)2.3.2 传感器的基本特性 (12)2.3.3 热电阻的测量电路及应用 (15)2.4A/D转换电路设计 (14)2.4.1 逐次逼近型A/D转换器ADC0809 (16)2.5放大器电路设计 (19)2.5.1 交流放大器电路 (19)2.5.2 直流放大器电路 (20)2.5.3 运算放大器电路 (20)2.6键盘及显示电路的设计 (21)2.6.1 键盘接口电路 (21)2.6.2 LED显示器接口电路 (26)2.7抗干扰电路设计 (28)2.7.1 电磁干扰的形成因素 (28)2.7.2. 干扰的分类 (28)2.7.3 单片机应用系统电磁干扰控制的一般方法 (29)2.7.4 硬件抗干扰措施 (30)第3章软件部分设计 (31)3.1工作流程 (31)3.2功能模块 (31)3.3资源分配 (31)3.4功能软件设计 (31)3.4.1 键盘管理模块 (31)3.4.2 显示模块 (36)3.4.3 温度检测模块 (31)3.4.4 温度控制模块 (39)3.4.5 温度越限报警模块 (41)3.4.6 主程序和中断服务子程序 (43)第4 章结论 (45)参考文献 (46)附录1 (47)附录2 (47)前言随着社会的不断发展,人们对机械的应用也越来越广,进而人们对机械运动的控制要求亦越来越高。

(毕业论文)基于单片机的电烤箱温度控制设计

(毕业论文)基于单片机的电烤箱温度控制设计

本科毕业论文开题报告
拟定论文题目: 基于单片机的电烤箱温度控制设计
学院:物理与电子工程学院
专业:物理学
班级:
学号:
学生姓名:
凯里学院教务处制
2013年9月9 日填写
填表须知
一、本表从凯里学院教务处下载专区下载,不得随意改变表格结构。

二、开题人应逐项认真填写,各部分如不够填写,可自行加页。

三、文字输入部分,一律五号字、宋体、单倍行间距编排。

四、本表以A4纸单面打印,于左侧装订成册。

五、本表一式三份,学生自存一份,教学单位存档一份,教务处存档一份。

凯里学院本科毕业论文开题报告表
1说明: 1.论文题目类型:A—理论研究;B—应用研究;C—设计等;
2.论文题目来源:指来源于科研项目、生产/社会实际、教师选题或其他(学生自拟)等;
3.各项栏目空格不够,可自行扩大。

电烤箱温度控制计算机控制系统设计

电烤箱温度控制计算机控制系统设计

计算机控制系统课程设计说明书电烤箱温度控制系统设计DESIGN OF ELECTRIC OVEN TEMPERATURE CONTROL SYSTEM 学生姓名周泽民学院名称信电工程学院学号20120501153班级12 电气 1专业名称电气工程及其自动化指导教师曹言敬2015 年7 月10 日摘要本次温度控制系统设计整体而言完全可以实现对电烤箱温度闭环恒定控制。

但是不当之处在所难免。

当热电阻检测出当前电烤箱所处温度时,不能和预置温度一起以数字形式很直观的对比显示出来。

及操作者无法同时看到电烤箱当前所处温度和预置温度。

鉴于此种情况,应再外接一个数码显示器以软件程序来实现,将电烤箱当前所处温度和预置温度同时显示出来;在实际使用过程中,由于电烤箱加热时有一定得温度缓冲,即当电烤箱断电时,加热并不是立即停止,而是过一段时间后温度才慢慢停下来以致开始下降。

这样就使得我们控制很不准确,会出现严重超温或者低温现象。

鉴于此种情况,我们应在电烤箱温度接近我们要求的温度时,由连续加热或连续降温改为断续加热或断续降温。

关键词单片机;温度;电烤箱;控制目录1 绪论 .................................................................... (1)1.1 技术指标 ............................................................. (1)1.2 控制方案 .................................................................... (1)1.2.1 控制系统的建模 ...................................................... (1)1.2.2 PLC 系统 ....................................................... (2)1.2.3 单片机系统 ....................................................... (3)1.2.4 选择最优方案 ....................................................... (4)2 硬件部分设计 .................................................................... (5)2.1 C51 单片机简介 .................................................................... (5)2.1.1 中央处理器CPU ...................................................... (5)2.1.3 AT89C51 单片机引脚功能 ...................................................... (6)2.1.4AT89C51单片机时钟电路及时序 (8)2.1.5 AT89C51单片机复位电路 ....................................................... (9)2.2 温度检测电路设计 ............................................................ (10)2.2.1 温度传感器 ...................................................... (10)2.2.2 变送器 ....................................................... (10)2.2.3 A/D 转换 ....................................................... (10)温度控制电路设计 ............................................................2.5 数码管显示电路设计 ............................................................ (16)3 控制程序设计 .................................................................... (19)3.1 工作流程 ............................................................. (19)3.2 功能模块 ............................................................. (19)3.3 资源分配模块 ............................................................. (19)3.4 软件功能设计 ............................................................. (19)3.4.1 键盘管理 ....................................................... (19)3.4.2 显示管理 ....................................................... (20)3.4.3 温度检测模块 .................................................................... (22)3.4.4 温度控制模块 ....................................................... (23)3.4.6 主程序模块 ....................................................... (23)3.5基于 SIMULINK 的 PID 仿真 (24)结论................................................................ (26)II徐州工程学院课程设计说明书致谢 (27)参考文献 (28)附录 (29)附录 1 (29)附录 2 (30)徐州工程学院课程设计说明书1绪论1.1 技术指标温度控制是工业生产过程中经常遇到的控制,有些工艺过程对其温度的控制效果直接影响着产品质量,因而设计一种较为理想的温度控制系统是非常有价值的。

烤箱温度控制系统设计

烤箱温度控制系统设计

目录1 概述 .............................................................................................................................................. 22 设计任务与要求 .......................................................................................................................... 32.1 主要内容 .......................................................................................................................... 32.2 学生应完成任务............................................................................................................... 33 设计方案 ...................................................................................................................................... 43.1 系统整体框图................................................................................................................... 43.2按键模块........................................................................................................................... 53.3 温度检测模块................................................................................................................... 53.4 LED显示模块 ................................................................................................................... 63.5 声光报警模块................................................................................................................... 63.6 时钟电路模块................................................................................................................... 73.7 AD574模数转换模块 ....................................................................................................... 84 程序流程图 .................................................................................................................................. 94.1 烤箱温度控制系统主程序及初始化流程图................................................................... 94.2控制算法流程图............................................................................................................. 104.3警报判断子程序及标度变换子程序流程图................................................................. 114.4 中断行成PWM波流程图................................................................................................. 124.5 按键延时去抖动子程序流程图..................................................................................... 134.6 按键功能处理子程序流程图......................................................................................... 144.7 设定目标温度子程序..................................................................................................... 154.8 设定上限值子程序流程图............................................................................................. 164.9 设定下限值子程序流程图............................................................................................. 174.10 显示处理程序流程图................................................................................................... 184.11 均值滤波子程序流程图及A/D转化流程图............................................................... 19 5系统硬件电路的连接与调试..................................................................................................... 205.1 电路连接 ........................................................................................................................ 205.2 程序调试 ........................................................................................................................ 205.3 电路调试 ........................................................................................................................ 205.4 重复调试程序................................................................................................................. 206 性能检测及分析 ........................................................................................................................ 21 7小组分工 .................................................................................................................................... 22 8总结与体会 ................................................................................................................................ 228.1小组小结......................................................................................................................... 228.2组员心得体会................................................................................................................. 229程序附表 .................................................................................................................................... 22 10参考文献 .................................................................................................................................. 421 概述二十一世纪是科技高速发展的信息时代,二十一世纪是科技高速发展的信息时代,电子技术、电子技术、微型单片机技术的应用更是空前广泛,伴随着科学技术和生产的不断发展,伴随着科学技术和生产的不断发展,需要对各种参数进行温度测需要对各种参数进行温度测量。

电烤箱温度控制系统

电烤箱温度控制系统

电烤箱的炉温控制系统设计作者姓名:作者学号:指导教师:学院名称:专业名称:摘要PID控制用途广泛、使用灵活,已有系列化产品,使用中只需设定三个参数(Kp,Ti和Td)即可。

在很多情况下,并不一定需要全部三个单元,可以取其中的一到两个单元,但比例控制单元是必不可少的。

在工厂,总是能看到许多回路都处于手动状态,原因是很难让过程在“自动”模式下平稳工作。

由于这些不足,采用PID的工业控制系统总是受产品质量、安全、产量和能源浪费等问题的困扰。

PID参数自整定就是为了处理PID参数整定这个问题而产生的。

现在,自动整定或自身整定的PID控制器已是商业单回路控制器和分散控制系统的一个标准单回路温度控制系统主要由计算机,采样板卡,控制箱,加热炉体组成。

是由计算机完成温度采样,控制算法,输出控制,监控画面等主要功能。

控制箱装有温度显示与变送仪表,控制执行机构,控制量显示,手控电路等。

加热炉体由烤箱改装,较为美观适合实验室应用。

计算机控制系统一般由控制计算机、A/D与D/A接口、执行机构、被控对象、检测元件和变送器组成。

本实验控制系统主要由计算机、电烤箱、智能控制仪表、固态继电器、通讯模块、电压数显表等构成,其中智能控制仪表、固态继电器、通讯模块、电压数显表安装于控制箱上。

本设计通过调节PID参数来实现炉温系统的控制。

关键词:单回路温度控制系统,PID控制,加热炉体,智能控制仪表,温度变送器,热电阻,可控硅目录摘要........................................................................................................ 错误!未定义书签。

第1章课程设计目的与任务.................................................................. 错误!未定义书签。

课程设计目的...................................................................................... 错误!未定义书签。

炉温的单闭环控制系统的设计

炉温的单闭环控制系统的设计

过程控制系统课程设计设计题目:炉温的单闭环控制系统的设计摘要温度是工业对象中一种重要的参数,特别在冶金、化工、机械各类工业中,广泛使用各种加热炉、热处理炉和反应炉等。

由于炉子的种类不同,因此所采用的加热方法及燃料也不同,如煤气、天然气、油和电等。

但是就其控制系统本身的动态特性来说,基本上属于一阶纯滞后环节,因而在控制算法上亦基本相同。

随着社会的发展,在生活和工业中已经广泛的使用温度控制,而现代化炉温控制已经开始自动化PID控制时代了。

控制炉温恒定是满足生产、提高效率和节能减耗的关键技术,其具有很多优势,能够进一步提高控制精度,同时使得加热时间大大降低,不短提高能源的利用,因此也是越来越受到重视。

为了更好的确保加热炉的安全运行,因此加强炉温控制系统的设计与实现的研究非常有必要。

基于此本文分析了基于PID算法的炉温控制系统的设计与实现。

关键词:比例;积分;微分;炉温控制目录摘要 (I)一、概述 (1)二、课程设计任务及要求 (2)2.1 设计任务 (2)2.2 设计要求 (2)三、理论设计 (3)3.1方案论证 (3)3.2 系统设计 (3)3.3炉温控制系统硬件工作原理 (6)3.3.1前向通道工作过程 (6)3.3.2 反馈通道工作过程 (6)四、系统设计 (7)4.1 PID算法设计 (7)4.2软件设计 (9)4.2.1 画面的制作 (9)4.2.2 建立数据词典 (10)4.2.3 建立动画连接 (11)五、调试过程与结果 (12)5.1 调解P参数 (12)5.2 调节I参数 (13)5.3 调节D参数 (14)5.4 综合调试P、I、D三个参数 (15)六、实验中所用仪器设备清单 (16)七、收获与体会 (20)一、概述近年来随着热处理工艺广泛应用于加工过程,热处理中温度的控制精度和控制规律的优劣直接影响到热处理工艺的好坏。

电阻炉是热处理工艺中应用最多的加热设备,研究电阻炉温度控制方法具有重要意义。

烘烤箱温度测控系统设计-开题报告

烘烤箱温度测控系统设计-开题报告
国内外关于加热炉自动控制的研究一直备受重视,发展比较快,取得了丰硕的成 果。总的来说,加热炉温度测控技术的发展可以分为以下几个阶段:
第一阶段:经典控制技术阶段。时间为 20 世纪 40-60 年代,称之为“经典控制理 论”时期。经典控制理论现在已经是一门比较成熟的控制理论,主要采用传递函数、 频率特性、根轨迹为基础的频率分析方法解决单输入单输出问题。经典控制技术能够 较好地解决生产过程中的单输入单输出问题,主要用于线性定常系统,是目前工业过 程控制领域中占统治地位的一种控制理论。
自 18 世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。为了高效
地进行生产,必须对生产工艺过程中的主要参数,如温度、压力、流量、速度等进行有
效的控制,其中温度控制在生产过程中占有相当大的比例。准确地测量和有效地控制温
度是优质、高产、低耗和安全生产的重要条件,如冶金工业的加热炉、电力工业的锅炉、
传统的加热炉,加热时间长,温度在上升的过程中容易出现超调。但是在实际加 工中,一些工艺流程往往不容许出现温度超调。同时,传统加热炉没有采用温度控制 算法,只是通过对温度上下限的检测,对电热丝的通断电进行控制,不能做到对温度 的精确控制,对于较为精细的加工过程无能为力。另一方面,控制界面多采用 DOS 操 作系统,缺乏良好的人机界面,给温度的检测和控制带来了不便。
第三阶段:智能控制技术阶段。时间为 20 世纪 70 年代末至今,为“智能控制理 论”阶段。70 年代末,控制理论向着“大系统理论”和“智能控制”方向发展,前者 是控制理论在广度上的开拓,用控制和信息的观点,研究各大系统的结构方案、总体 设计中的分解方法和协调等问题的技术基础理论。后者是控制理论在深度上的挖掘, 研究与模拟人类智能活动及其控制与信息传递过程的规律研制具有某些仿人智能的工 程控制与信息处理系统。

炉温控制系统设计

炉温控制系统设计

过程控制系统课程设计作者姓名:作者学号:指导教师:学院名称:专业名称:温度是工业控制中主要的被控参数之一,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足重轻的作用。

温度控制是控制系统中最为常见的控制类型之一。

最为常见的就是工业上使用电阻炉(本课程设计中的电烤箱即为电阻炉)处理和生产工业产品,最基本的要求是要保持炉内温度的恒定,并且在一定的扰动下,炉内的温度经过一定的调节时间能自动恢复正常值,从而保证所生产的产品质量.本设计基于单回路控制系统和PID控制器,使用计算机、铂电阻Pt100、控制箱、加热炉体和“组态王"软件设计电烤箱的炉温控制系统,使炉内温度基本保持在80℃不变,完成了系统所用到的设备的选型和组装接线,利用“组态王”软件编制上位机监控软件对炉内温度的采集和显示。

文中首先介绍了设计的背景和要求,接着对单回路控制系统做了简单的介绍,大致描述了通过组态王编制采集并绘制温度与时间曲线的步骤,并且介绍了整定PID控制器参数的步骤和结果,最终完成了利用单回路控制系统设计基于电烤箱的炉温控制系统,使其炉内温度经过一定的过渡过程始终维持在80℃。

关键词:电烤箱,单回路控制系统,PID控制,“组态王”软件,Pt100热电阻,CD901智能控制仪表,交流固态继电器摘要 (I)目录 (1)第一章引言 (3)1.1设计目的 (3)1。

2 设计背景及意义 (3)1。

3 设计任务及要求 (4)第二章单回路控制系统 (5)2.1 单回路控制系统简介 (5)2。

2 单回路控制系统的设计 (5)2。

2。

1 被控变量的选择 (6)2.2.2 操纵变量(控制参数)的选择 (6)2.2。

3测量变送问题和执行器的选择 (7)第三章硬件电路设计及原理 (8)3.1 系统设计 (8)3。

1。

1 方案论述 (8)3.1.2 系统原理图及工作原理 (9)3。

2 智能控制仪表设计 (10)3。

2.1 规格型号说明 (10)3。

基于单片机的温度控制系统设计

基于单片机的温度控制系统设计

基于单片机的温度控制系统设计温度控制系统是现代生活中不可或缺的一部分,常见于家庭的的空调、电饭煲、烤箱等家用电器,以及工业生产中的各种自动化设备。

本文基于单片机设计针对室内温度控制系统的实现方法进行说明,包括温度采集、温度控制器的实现和人机交互等方面。

一、温度采集温度采集是温度控制系统的核心部分。

目前比较常见的温度采集器主要有热电偶、热敏电阻和半导体温度传感器。

在本文中我们以半导体温度传感器为例进行说明。

常见的半导体温度传感器有DS18B20、LM35等,本次实验中采用DS18B20进行温度采集。

DS18B20是一种数字温度传感器,可以直接与单片机通信,通常使用仅三根导线连接。

其中VCC为控制器的电源正极,GND为电源负极,DATA为数据传输引脚。

DS18B20通过快速菲涅耳射线(FSR)读取芯片内部的温度数据并将其转换为数字信号。

传感器能够感知的温度范围通常为-55℃至125℃,精度通常为±0.5℃。

为了方便使用,DS18B20可以通过单片机内部的1-Wire总线进行控制和数据传输。

具体实现方法如下:1.首先需要引入相关库文件,如:#include <OneWire.h> //引用1-Wire库#include <DallasTemperature.h> //引用温度传感器库2.创建实例对象,其中参数10代表连接传感器的数字I/O引脚:OneWire oneWire(10); //实例化一个1-Wire示例DallasTemperature sensors(&oneWire); //实例化一个显示温度传感器示例3.在setup中初始化模块:sensors.begin(); // 初始化DS18B204.在主循环中,读取传感器数据并将温度值输出到串口监视器:sensors.requestTemperatures(); //请求温度值float tempC = sensors.getTempCByIndex(0); // 读取温度值Serial.println(tempC); //输出温度值二、温度控制器的实现温度控制器是本次实验的关键部件,主要实现对温度的控制和调节,其基本原理是根据温度变化情况来控制输出电压或模拟脚电平,驱动继电器控制电器设备工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第1章题意分析与解决方案.......................... . (1)1.1 技术指标................................................................................ . (2)1.2 控制方案.............................................................................. (2)第2章硬件设计.............................................................................. . (3)2.1 单片机电路设计............... . (4)2.1.1 A T89C51A T89C51单片机引脚功能........。

(5)2.1.2 A T89C51单片机时钟电路及时序 (5)2.1.3 A T89C51单片机复位电路 (5)2.2 温度检测电路设计................ . (6)2.2.1 温度传感器 (8)2.2.2 变送器....................................... . (8)2.3 温度控制电路设计............. . (8)2.4 键盘及显示电路设计............... . (10)2.4.1 键盘电路设计 (10)2.4.2 数码管显示电路设计 (11)第3 章控制程序设计 (14)3.2 功能模块 (14)3.2 功能模块.................................................... . (14)3.3 资源分配模块.............. ................................................. .. (14)3.3 软件功能设计...... (14)3.4.1 键盘管理..................... (15)3.4.2 显示管理............ (16)3.4.3 温度检测模块 (18)3.4.4 温度控制模块 (19)3.4.5 警告模块 (19)3.4.6 主程序模块................................................................... .. (20)第4 章设计结果分析及问题讨论 (22)4.1 本次温度控制系统设计中存在的问题及其解决方法 (22)4.2 单片机控制系统的发展方向....................................................... . (22)结论 (23)参考文献 (24)附录 (25)附录1 (25)附录2 (25)1 提义分析与解决方案1.1 技术指标电烤箱的具体指标如下:(1)电烤箱为一封闭长方体结构,(2)烤箱内尺寸:0.8m×0.6m×0.4m。

(3)加热器件为一1kw(220v)电热丝。

(4)从室温开始升温到100℃系统调节时间t s≤5分钟,超调量≤10%。

(5)控制温度范围为50~200℃连续可调。

(6)显示实时温度,显示精确到1℃。

(7)温度超出预设温度正负5℃发生报警。

1.2 控制方案产品的工艺不同,控制温度的精度也不同,因而所采用的控制算法也不同,就温度控制系统的动态特性来讲,基本上都是具有纯滞后的一阶环节,当系统精度及温控的线性性能要求较高时,多采用PID算法来实现温度控制。

本系统是一个典型的闭环系统控制。

从技术指标来看,系统对控制精度的要求不高,对升温过程的线性也没有要求,因此,系统采用最简单的通断控制方式,即但烤箱达到设定温度附近(略小于)断开电阻丝加热,当温度降到低于设定值时接通加热,从而实现恒温控制2 硬件部分设计系统的硬件部分包括单片机电路设计、传感器电路设计、A/D转换电路设计、放大器电路设计、键盘及显示电路设计五部分。

图2-1 电烤箱温度控制结构2.1 单片机电路设计单片机的优点:⑴有优异的性能价格比。

⑵集成度高,体积小,可靠性好。

⑶控制能力强。

⑷低功耗,低电压,便于生产便携式产品。

⑸易扩展。

目前,应用广泛的主流机型是80C51系列8位单片机。

该机型具有①性能价格比高;②开发装置多;③国内技术人员熟悉;④芯片功能够用适用;⑤有众多芯片制造厂商加盟,可广泛选择等优点,此次我们采用美国intel公司生产的AT89C51单片机,其中主要包括有CPU、存储器(RAM和ROM)、I\O接口电路及时钟电路等2.1.1 AT89C51单片机引脚功能40个引脚大致可分为4类:电源、时钟、控制和I/O引脚。

图2-3 单片机引脚图⒈电源: ⑴VCC - 芯片电源,接+5V;⑵VSS - 接地端;⒉时钟:XTAL1、XTAL2 - 晶体振荡电路反相输入端和输出端。

⒊控制线:控制线共有4根,⑴ALE/PROG:地址锁存允许/片内EPROM编程脉冲①ALE功能:用来锁存P0口送出的低8位地址②PROG功能:片内有EPROM的芯片,在EPROM编程期间,此引脚输入编程脉冲。

⑵PSEN:外ROM读选通信号。

⑶RST/VPD:复位/备用电源。

①RST(Reset)功能:复位信号输入端。

②VPD功能:在Vcc掉电情况下,接备用电源。

⑷EA/Vpp:内外ROM选择/片内EPROM编程电源。

①EA功能:内外ROM选择端。

②Vpp功能:片内有EPROM的芯片,在EPROM编程期间,施加编程电源Vpp。

4.I/O线80C51共有4个8位并行I/O端口:P0、P1、P2、P3口,共32个引脚。

P3口还具有第二功能,用于特殊信号输入输出和控制信号(属控制总线)。

P3.0 ——RXD:串行口输入端;P3.1 ——TXD:串行口输出端;P3.2 ——INT0:外部中断0请求输入端;P3.3 ——INT1:外部中断1请求输入端;P3.4 ——T0:定时/计数器0外部信号输入端;P3.5 ——T1:定时/计数器1外部信号输入端;P3.6 ——WR:外RAM写选通信号输出端;P3.7 ——RD:外RAM读选通信号输出端。

5.I/O端口结构及工作原理(1)有4个8位并行I/O口,共32条端线:P0、P1、P2和P3口。

每一个I/O口都能用作输入或输出。

用作输入时,均须先写入“1”;用作输出时,P0口应外接上拉电阻。

(2)P0口的负载能力为8个LSTTL门电路;P1~P3口的负载能力为4个LSTTL门电路。

(3)在并行扩展外存储器或I/O口情况下:①P0口用于低8位地址总线和数据总线(分时传送)②P2口用于高8位地址总线,③P3口常用于第二功能,④用户能使用的I/O口只有P1口和未用作第二功能的部分P3口端线。

2.1.2 AT89C51单片机时钟电路及时序图2-4 AT89C51单片机时钟电路图⑴时钟周期。

80C51振荡器产生的时钟脉冲频率的倒数,是最基本最小的定时信号。

⑵机器周期。

80C51单片机工作的基本定时单位,简称机周。

机器周期是时钟周期的12倍。

当时钟频率为12MHz时,机器周期为1S;当时钟频率为6MHz时,机器周期为2S。

2.1.3 AT89C51单片机复位电路图2-5 AT89C51单片机复位电路图复位是通过某种方式,使单片机内各寄存器的值变为初始状态的操作复位条件:RST引脚保持2个机器周期以上的高电平。

2.2 温度检测电路设计这部分包括温度传感器,变送器和A/D转换三部分。

2.2.1 温度传感器定义:利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。

这些呈现规律性变化的物理性质主要有体。

温度传感器是温度测量仪表的核心部分,品种繁多。

按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

种类:目前,国际电工委员会(IEC)推荐了8种类型的热电偶作为标准化热电偶,即为T型、E型、J型、K型、N型、B型、R型和S型。

根据设计要求,温度控制范围为控制温度范围为50~200℃连续可调。

因此我们需要一种,电阻温度系数要大而且稳定,电阻值与温度之间应具有良好的线性关系。

电阻率高,热容量小,反应速度快。

在测温范围内化学物理特性稳定的热电偶,通过查阅资料,品牌:EL 型号:NTC 的热敏电阻符合我们的要求:(1)该产品为电烤箱专用温度传感器(2)具有反应速度快、性能稳定、安装方便等特点。

(3)芯片类型:NTC热敏电阻。

(4)电阻值范围:R=1K~2000KΩ。

(5)B值范围:2800~5000K。

(通常使用参数:R25℃=50K±1%B25/50=3950±1%;(6)R25℃=100K±1%B25/50=3950±1%)。

(7)工作温度范围:-50~+300℃。

(8)热时间常数:<10秒。

(9)绝缘强度:DC500V 100MΩ。

(10)耐电压:AC1500V 5mA 5S。

2.2.2 变送器传感器是能够受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置的总称,通常由敏感元件和转换元件组成。

当传感器的输出为规定的标准信号时,则称为变送器。

变送器将电阻信号转换成与温度成正比的电压,当温度在-50℃~+300℃时变送器输出0~3.5V左右的电压。

2.2.3 A/D转换A/D转换的基本概念:A/D转换的功能是把模拟量电压转换为N位数字量。

设D为N位二进制数字量,UA为电压模拟量,UREF为参考电压,无论A/D或D/A,其转换关系为UA = D×UREF / 2N(其中:D=D0×20+D1×21+ …+DN-1×2N-1)1、A/D转换器的主要性能指标:⑴转换精度。

转换精度通常用分辨率和量化误差来描述。

①分辨率。

分辨率= UREF / 2N表示输出数字量变化一个相邻数码所需输入模拟电压的变化量。

N为A/D转换的位数,N越大,分辨率越高,习惯上分辨率常以A/D转换位数N表示。

②量化误差。

量化误差是指零点和满度校准后,在整个转换范围内的最大误差。

⑵转换时间。

指A/D转换器完成一次A/D转换所需时间。

转换时间越短,适应输入信号快速变化能力越强。

2、A/D转换器分类按转换原理形式可分为逐次逼近式、双积分式和V/F变换式;按信号传输形式可分为并行A/D和串行A/D。

图2-6 AD0809内部电路图及其与51单片机连接图引脚功能和典型连接电路⑴IN0~IN7:8路模拟信号输入端。

⑵C、B、A:8路模拟信号转换选择端。

与低8位地址中A0~A2连接。

相关文档
最新文档