人教版数学七年级上册全册单元试卷专题练习(解析版)
人教版七年级上册数学全册单元试卷测试卷(含答案解析)
人教版七年级上册数学全册单元试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若 P 点表示的数是 0,①运动 1 秒后,求 CD 的长度;②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,①当 C=-3 时,CP=4,此时 P=1;②当 C=-1 时,P=3.【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。
(2)①由点A、B表示的数及点C、D的运动速度和方向,可得出运动1秒后点C、D分别表示的数,再求出CD的长;②当点D在BP上时,根据t的取值范围,分别用含t的代数式表示出AC、CD的长,就可得出AC、CD的数量关系。
(3)根据t的值及CD的长,就可得出点C表示的数,从而就可求出点P所表示的数。
2.如图(1),AB∥CD,试求∠BPD与∠B、∠D的数量关系,说明理由.(1)填空:解:过点P作EF∥AB,∴∠B+∠BPE=180°∵AB∥CD,EF∥AB∴________(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∠EPD+________=180°∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(2)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D 的数量关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B、∠D的数量关系,不用说明理由.【答案】(1)CD∥EF;∠D(2)解:猜想∠BPD=∠B+∠D,理由:过点P作EP∥AB,∵EP∥AB,∴∠B=∠BPE(两直线平行,内错角相等),∵AB∥CD,EP∥AB,∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠EPD=∠D,∴∠BPD=∠B+∠D(3)图③结论:∠D=∠BPD+∠B,理由是:过点P作EP∥AB,∵EP∥AB,∴∠B=∠BPE(两直线平行,内错角相等),∵AB∥CD,EP∥AB,∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠EPD=∠D,∴∠BPD=∠B+∠D;图④结论∠B=∠BPD+∠D,理由是:∵EP∥AB,∴∠B=∠BPE(两直线平行,内错角相等),∵AB∥CD,EP∥AB,∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠EPD=∠D,∴∠B=∠BPD+∠D【解析】【解答】(1)过点P作EF∥AB,∴∠B+∠BPE=180°,∵AB∥CD,EF∥AB,∴CD∥EF(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠EPD+∠D=180°,∴∠B+∠BPE+∠EPD+∠D=360°,∴∠B+∠BPD+∠D=360°,故答案为:CD∥EF,∠D;【分析】(1)过点P作EF∥AB,根据平行线的性质,可证得∠B+∠BPE=180°,再证明CD∥EF,就可证得∠EPD+∠D=180°,两式相加,就可得出∠BPD与∠B、∠D的数量关系。
人教版七年级上册数学全册单元试卷达标检测卷(Word版 含解析)
人教版七年级上册数学全册单元试卷达标检测卷(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为8,B是数轴上一点,且AB=14.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数________ ,点P表示的数________(用含t的代数式表示);(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(3)若M为AP的中点,N为PB的中点.点P在运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长;(4)若点D是数轴上一点,点D表示的数是x,请你探索式子|x+6|+|x﹣8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由.【答案】(1)点B表示的数是﹣6;点P表示的数是8﹣5t(2)解:设点P运动x秒时,在点C处追上点Q (如图)则AC=5x,BC=3x,∵AC﹣BC=AB∴5x﹣3x=14…解得:x=7,∴点P运动7秒时,在点C处追上点Q(3)解:没有变化.分两种情况:①当点P在点A.B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB=7…②当点P运动到点B的左侧时:MN=MP﹣NP= AP﹣ BP= (AP﹣BP)= AB=7…综上所述,线段MN的长度不发生变化,其值为7…(4)解:式子|x+6|+|x﹣8|有最小值,最小值为14.…【解析】【分析】(1)由于A点表示的数是8,故OA=8,又AB=14,从而得出OB=AB-OA=6,由于点B表示的数在原点的左边,故B点表示的数是-6,根据路程等于速度乘以时间得出AP=5t,从而得出P点表示的数是8-5t;(2)设点P运动x秒时,在点C处追上点Q (如图)格努路程定于速度乘以时间得出AC=5x,BC=3x,然后由AC﹣BC=AB列出方程求解即可得出x的值;(3)没有变化.根据线段中点的定义得出PM=AP,NP=BP,分两种情况:①当点P在点A.B两点之间运动时,由MN=MP+NP= AP+ BP= (AP+BP)= AB得出答案;②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP)= AB得出答案,综上所述即可得出答案;(4)式子|x+6|+|x﹣8|有最小值,最小值为14,点D是数轴上一点,点D表示的数是x,那么|x+6|表示点D,B两点间的距离,|x﹣8|表示点D,A两点间的距离,要|x+6|+|x﹣8|其实质就是DB+AD的和,要DB+AD的和最小,只有在D为线段AB上的时候,DB+AD的和最小=AB,即可得出答案。
人教版七年级数学上册全册单元试卷练习(Word版 含答案)
人教版七年级数学上册全册单元试卷练习(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,已知:点不在同一条直线, .(1)求证: .(2)如图②,分别为的平分线所在直线,试探究与的数量关系;(3)如图③,在(2)的前提下,且有,直线交于点,,请直接写出 ________.【答案】(1)证明:过点C作,则,∵∴∴(2)解:过点Q作,则,∵,∴∵分别为的平分线所在直线∴∴∵∴(3):1:2:2【解析】【解答】解:(3)∵∴∴∵∴∵∴∴∴∴ .故答案为: .【分析】(1)过点C作,则,再利用平行线的性质求解即可;(2)过点Q作,则,再利用平行线的性质以及角平分线的性质得出,再结合(1)的结论即可得出答案;(3)由(2)的结论可得出,又因为,因此,联立即可求出两角的度数,再结合(1)的结论可得出的度数,再求答案即可.2.如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m+n=90°.(1)①若m=50,则射线OC的方向是________,②图中与∠BOE互余的角有________,与∠BOE互补的角有________.(2)若射线OA是∠BON的角平分线,则∠SOB与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.【答案】(1)北偏东40°;∠BOS,∠EOC;∠BOW(2)解:∠AOC= ∠SOB.理由如下:∵OA平分∠BON,∴∠NOA= ∠NOB,又∵∠BON=180°-∠SOB,∴∠NOA= ∠BON=90°- ∠SOB,∵∠NOC=90°-∠EOC,由(1)知∠BOS=∠EOC,∴∠NOC=90°-∠SOB,∠AOC=∠NOA-∠NOC=90°- ∠SOB-(90°-∠SOB),即∠AOC= ∠SOB.【解析】【解答】解:(1)①∵m+n=90°,m=50°,∴n=40°,∴射线OC的方向是北偏东40°;②∵∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,∴图中与∠BOE互余的角有∠BOS,∠EOC;∠BOE+∠BOW=180°,∴图中与∠BOE互补的角有∠BOW,故答案为:①北偏东40°;②∠BOS,∠EOC;∠BOW.【分析】(1)①由m+n=90°,m=50°可求得n值,从而可得射线OC的方向.②根据余角定义可知∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,从而可得图中与∠BOE互余的角;由补角定义可得∠BOE+∠BOW=180°,从而可得图中与∠BOE互补的角.(2)∠AOC=∠SOB.理由如下:由角平分线定义和领补角定义可得∠NOA= ∠BON=90°-∠SOB,结合(1)中条件可得∠NOC=90°-∠SOB;由∠AOC=∠NOA-∠NOC即可求得它们之间的数量关系.3.如图,已知点A、点B是直线上的两点,AB=12厘米,点C在线段AB上.点P、点Q 是直线上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.(1)当点P、Q分别在线段AC、BC的中点时,线段PQ=________厘米;(2)若AC=6厘米,点P、点Q分别从点C、点B同时出发沿射线BA方向运动,当运动时间为2秒时,求PQ的长;(3)若AC=4厘米,点P、Q分别从点C、点B同时出发在直线AB上运动,则经过多少时间后线段PQ的长为5厘米.【答案】(1)6(2)解:如图2,当t=2时,BQ=2×2=4,则CQ=6-4=2.因为CP=2×1=2,所以PQ=CP+CQ=2+2=4(厘米)(3)解:设运动时间为t秒.①如图3,当点P、Q沿射线BA方向运动,若点Q在点P的后面,得:t+8-2t=5,解得t=3,②如图4,当点P、Q沿射线BA方向运动,若点Q在点P前面,得:2t-8-t=5,解得t=13.③如图5,当点P、Q在直线上相向运动,点P、Q在相遇前,得:t+2t=3,解得t=1.④如图6,当点P、Q在直线上相向运动,点P、Q在相遇后,得:t+2t=13,解得t= .综合可得t=1,3,13, .所以经过1,3,13,秒后PQ的长为5厘米.【解析】【解答】(1)如图1,因为AB=12厘米,点C在线段AB上,所以,当点P、Q分别在线段AC、BC的中点时,线段PQ= AB=6.故答案为:6;【分析】(1)由线段中点的定义可得CP= AC,CQ= CB,所以PQ= AC+ CB= AB,把AB的值代入计算即可求解;(2)由路程=速度时间可求出BQ和CQ、CP的值,则PQ=CP+CQ可求解;(3)由题意可分4种情况求解:① 当点P、Q沿射线BA方向运动,若点Q在点P的后面,由图可列关于时间的方程求解;②当点P、Q沿射线BA方向运动,若点Q在点P前面,由图可列关于时间的方程求解;③当点P、Q在直线上相向运动,点P、Q在相遇前,由图可列关于时间的方程求解;④ 当点P、Q在直线上相向运动,点P、Q在相遇后,由图可列关于时间的方程求解。
人教版七年级上册数学全册单元试卷测试卷(含答案解析)
人教版七年级上册数学全册单元试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若 P 点表示的数是 0,①运动 1 秒后,求 CD 的长度;②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,①当 C=-3 时,CP=4,此时 P=1;②当 C=-1 时,P=3.【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。
(2)①由点A、B表示的数及点C、D的运动速度和方向,可得出运动1秒后点C、D分别表示的数,再求出CD的长;②当点D在BP上时,根据t的取值范围,分别用含t的代数式表示出AC、CD的长,就可得出AC、CD的数量关系。
(3)根据t的值及CD的长,就可得出点C表示的数,从而就可求出点P所表示的数。
2.如图(1),AB∥CD,试求∠BPD与∠B、∠D的数量关系,说明理由.(1)填空:解:过点P作EF∥AB,∴∠B+∠BPE=180°∵AB∥CD,EF∥AB∴________(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)∠EPD+________=180°∴∠B+∠BPE+∠EPD+∠D=360°∴∠B+∠BPD+∠D=360°(2)依照上面的解题方法,观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D 的数量关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,直接写出图中的∠BPD与∠B、∠D的数量关系,不用说明理由.【答案】(1)CD∥EF;∠D(2)解:猜想∠BPD=∠B+∠D,理由:过点P作EP∥AB,∵EP∥AB,∴∠B=∠BPE(两直线平行,内错角相等),∵AB∥CD,EP∥AB,∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠EPD=∠D,∴∠BPD=∠B+∠D(3)图③结论:∠D=∠BPD+∠B,理由是:过点P作EP∥AB,∵EP∥AB,∴∠B=∠BPE(两直线平行,内错角相等),∵AB∥CD,EP∥AB,∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠EPD=∠D,∴∠BPD=∠B+∠D;图④结论∠B=∠BPD+∠D,理由是:∵EP∥AB,∴∠B=∠BPE(两直线平行,内错角相等),∵AB∥CD,EP∥AB,∴CD∥EP(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠EPD=∠D,∴∠B=∠BPD+∠D【解析】【解答】(1)过点P作EF∥AB,∴∠B+∠BPE=180°,∵AB∥CD,EF∥AB,∴CD∥EF(如果两条直线都和第三条直线平行,那么这两条直线也互相平行),∴∠EPD+∠D=180°,∴∠B+∠BPE+∠EPD+∠D=360°,∴∠B+∠BPD+∠D=360°,故答案为:CD∥EF,∠D;【分析】(1)过点P作EF∥AB,根据平行线的性质,可证得∠B+∠BPE=180°,再证明CD∥EF,就可证得∠EPD+∠D=180°,两式相加,就可得出∠BPD与∠B、∠D的数量关系。
人教版七年级数学上册全册单元试卷测试卷(解析版)
人教版七年级数学上册全册单元试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)请求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由.【答案】(1)解:∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°-∠AOB=180°-120°=60°(2)解:∠DOC= ×∠BOC= ×70°=35°,∠AOE= ×∠AOC= ×50°=25°.∠DOE与∠AOB互补,理由:∵∠DOE=∠DOC+∠COE=35°+25°=60°,∴∠DOE+∠AOB=60°+120°=180°,故∠DOE与∠AOB互补【解析】【分析】(1)由∠BOC、∠AOC的度数,求出∠AOB=∠BOC+∠AOC的度数,再求出∠AOB补角的度数;(2)根据角平分线定义求出∠DOC、∠AOE的度数,再由(1)中的度数得到∠DOE与∠AOB互补.2.如图①,点O为直线AB上一点,过点O作射线OC,将一直角三角板如图摆放(∠MON=90 ).(1)将图①中的三角板绕点O旋转一定的角度得图②,使边OM恰好平分∠BOC,问:ON是否平分∠AOC?请说明理由;(2)将图①中的三角板绕点O旋转一定的角度得图③,使边ON在∠BOC的内部,如果∠BOC=60 ,则∠BOM与∠NOC之间存在怎样的数量关系?请说明理由.【答案】(1)解:ON平分∠AOC.理由如下:∵OM平分∠BOC,∴∠BOM=∠MOC.∵∠MON=90°,∴∠BOM+∠AON=90°.又∵∠MOC+∠NOC=90°∴∠AON=∠NOC,即ON平分∠AOC(2)解:∠BOM=∠NOC+30°.理由如下:∵∠BOC=60°,即:∠NOC+∠NOB=60°,又因为∠BOM+∠NOB=90°,所以:∠BOM=90°﹣∠NOB=90°﹣(60°﹣∠NOC)=∠NOC+30°,∴∠BOM与∠NOC之间存在的数量关系是:∠BOM=∠NOC+30°.【解析】【分析】(1)ON平分∠AOC.理由如下:根据角平分线的定义得出∠BOM=∠MOC ,根据平角的定义得出∠BOM+∠AON=90°.又∠MOC+∠NOC=90°,根据等角的余角相等即可得出∠AON=∠NOC,即ON平分∠AOC ;(2)∠BOM=∠NOC+30°.理由如下:根据角的和差得出∠NOC+∠NOB=60°,又因为∠BOM+∠NOB=90°,利用整体替换得出∠BOM=90°﹣∠NOB=90°﹣(60°﹣∠NOC)=∠NOC+30°。
七年级数学上册全册单元试卷专题练习(解析版)
七年级数学上册全册单元试卷专题练习(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.2.已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点(1)试求a和b的值(2)点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?(3)点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.【答案】(1)解:a=-3,b=9(2)解:设3秒后,点C对应的数为x则CA=|x+3|,CB=|x-9|∵CA=3CB∴|x+3|=3|x-9|=|3x-27|当x+3=3x-27,解得x=15,此时点C的速度为当x+3+3x-27=0,解得x=6,此时点C的速度为(3)解:设运动的时间为t点D对应的数为:t点P对应的数为:-3-5t点Q对应的数为:9+20t点M对应的数为:-1.5-2t点N对应的数为:4.5+10t则PQ=25t+12,OD=t,MN=12t+6∴为定值.【解析】【分析】(1)根据几个非负数之和为0,则每一个数都是0,建立关于a、b的方程,求出a、b的值,就可得出点A、B所表示的数。
最新人教版七年级数学上册单元测试题及答案全册
最新人教版七年级数学上册单元测试题及答案全册最新人教版七年级数学上册单元测试题及答案全册第一章有理数末章综合检测时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.有理数-4的相反数是()A.4B.-4C.4D.-42.比较-3,1,-2的大小,下列排序正确的是()A.-3<-2<1B.-2<-3<1C.1<-2<-3D.1<-3<-23.为了市民出行更加方便,某市政府大力发展交通,2016年某市公共交通客运量约为1 608 000 000人次,将1 608 000 000用科学记数法表示为()A.160.8×107B.16.08×108C.1.608×109D.0.1608×10104.某市一天上午的气温是10℃,下午上升了2℃,半夜(24时)下降了15℃,则半夜的气温是()A.3℃B.-3℃C.4℃D.-2℃5.杨梅开始采摘啦!每筐杨梅以5 kg为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图1-1,则4筐杨梅的总质量是()A.19.7 kgB.19.9 kgC.20.1 kgD.20.3 kg6.(-3)的倒数是()A.3B.-2C.3D.27.下列运算错误的是()A.-8×2×6=-96B.(-1)2014+(-1)2015=0C.-(-3)2=-9D.2÷4÷3×3=28.如图1-2,A,B两点在数轴上表示的数分别为a,b,下列式子成立的是()A.ab>0B.a+b0 D.(b-1)(a-1)>09.若|a-1|+(b+3)2=0,则ba=()A.1B.-1C.3D.-310.规定一种新的运算“*”:对于任意有理数x,y满足x*y=x-y+xy.例如,3*2=3-2+3×2=7,则2*1=()A.4B.3C.2D.1二、填空题(每小题4分,共32分)11.一个点从数轴上表示-1的点开始,先向右平移6个单位长度,再向左平移8个单位长度,则此时这个点表示的数是_____。
人教版七年级数学上册全册单元试卷测试卷(解析版)
人教版七年级数学上册全册单元试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知点C在线段AB上,AC=2BC,点D、E在直线AB上,点D在点E的左侧(1)若AB=18,DE=8,线段DE在线段AB上移动①如图1,当E为BC中点时,求AD的长;②点F(异于A,B,C点)在线段AB上,AF=3AD,CE+EF=3,求AD的长;(2)若AB=2DE,线段DE在直线AB上移动,且满足关系式,则________.【答案】(1)解:①又 E为BC中点;②设,因点F(异于A、B、C点)在线段AB上,可知:,和当时,此时可画图如图2所示,代入得:解得:,即AD的长为3当时,此时可画图如图3所示,代入得:解得:,即AD的长为5综上,所求的AD的长为3或5;(2) .【解析】【解答】(2)①若DE在如图4的位置设,则又(不符题设,舍去)②如DE在如图5的位置设,则又代入得:解得:则 .【分析】(1)①根据AB的长和可求出AC和BC,根据中点的定义可得CE,再由可得CD,最后根据计算即可得;②设,因点F(异于A、B、C点)在线段AB上,可知,和,所以需分2种情况进行讨论:和,如图2、3(见解析),先根据已知条件判断点E、F位置,再将EF和CE用含x的式子表示出来,最后代入求解即可;(2)设,先判断出DE在AB上的位置,再根据得出x和y 满足的等式,然后将其代入化简即可得.2.已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点(1)试求a和b的值(2)点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?(3)点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.【答案】(1)解:a=-3,b=9(2)解:设3秒后,点C对应的数为x则CA=|x+3|,CB=|x-9|∵CA=3CB∴|x+3|=3|x-9|=|3x-27|当x+3=3x-27,解得x=15,此时点C的速度为当x+3+3x-27=0,解得x=6,此时点C的速度为(3)解:设运动的时间为t点D对应的数为:t点P对应的数为:-3-5t点Q对应的数为:9+20t点M对应的数为:-1.5-2t点N对应的数为:4.5+10t则PQ=25t+12,OD=t,MN=12t+6∴为定值.【解析】【分析】(1)根据几个非负数之和为0,则每一个数都是0,建立关于a、b的方程,求出a、b的值,就可得出点A、B所表示的数。
人教版数学七年级上册全册单元试卷测试与练习(word解析版)
人教版数学七年级上册全册单元试卷测试与练习(word解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知:O是直线AB上的一点,是直角,OE平分.(1)如图1.若.求的度数;(2)在图1中,,直接写出的度数(用含a的代数式表示);(3)将图1中的绕顶点O顺时针旋转至图2的位置,探究和的度数之间的关系.写出你的结论,并说明理由.【答案】(1)解:∵是直角,,,,∵OE平分,,.(2)解:是直角,,,,∵OE平分,,(3)解:,理由是:,OE平分,,,,,即【解析】【分析】(1)根据平角的定义得出∠BOD,∠COB的度数,根据角平分线的定义得出∠BOE=∠BOC=75°,根据角的和差,由∠DOE=∠BOE−∠BOD即可算出答案;(2)根据平角的定义得出∠BOD90°−a ,∠COB180°−a ,根据角平分线的定义得出∠BOE=∠BOC=90°−a,根据角的和差,由∠DOE=∠BOE−∠BOD即可算出答案;(3)∠AOC=2∠DOE ,根据平角的定义得出∠BOC=180°−∠AOC,根据角平分线的定义得出∠BOE=∠BOC=90°−∠AOC ,根据角的和差得出∠BOD=90°−∠BOC=90°−(180°−∠AOC)=∠AOC−90° ,∠DOE=∠BOD+∠BOE,再整体替换即可得出答案。
2.如图,已知∠AOB=120°,OC⊥OB,按下列要求利用量角器过点O作出射线OD、OE;(1)在图①中作出射线OD满足∠COD=50°,并直接写出∠AOD的度数是________;(2)在图②中作出射线OD、OE,使得OD平分∠AOC,OE平分∠BOD,并求∠COE的度数;(3)如图③,若射线OD从OA出发以每秒10°的速度绕点O顺时针方向旋转,同时射线OE从OC出发以每秒5°的速度绕点O顺时针方向旋转,设旋转的时间为t秒,在旋转过程中,当OB第一次恰好平分∠DOE时,求出t的值,并作出此时OD、OE的大概位置.【答案】(1)20°或80°(2)解:如图,∵CO⊥BO ∴∠COB=90°∵∠AOB=120°∴∠AOC=120°-90°=30°∵OD平分∠AOC ∴∠COD= ∠AOC=15°∴∠BOD=90°+15°=105°, ∵OE是∠BOD的平分线∴∠EOD= ∠BOD=52.5°∴∠COE=52.5°-15°=37.5°.(3)解:如图,根据题意有:30°+5t+(90°-5t)×2=10t 解得:t=14.【解析】【解答】解:(1)有两种情况分别是:①当OD在∠AOB内部时,如图,∵CO⊥BO∴∠COB=90°∵∠AOB=120°∴∠AOC=120°-90°=30°∵∠COD=50°,∴∠AOD=50°+30°=80°;.②当OD在∠AOB外部时,如图,∵CO⊥BO∴∠COB=90°∵∠AOB=120°∴∠AOC=120°-90°=30°∵∠COD=50°,∴∠AOD=50°-30°=20°【分析】(1)有两种情况分别是:①当OD在∠AOB内部时,如图,根据垂直的定义及角的和差,由∠AOC=∠AOB-∠BOC即可算出∠AOC的度数,最后根据∠AOD=∠AOC+∠COD即可算出答案;②当OD在∠AOB外部时,如图,根据垂直的定义及角的和差,由∠AOC=∠AOB-∠BOC即可算出∠AOC的度数,最后根据∠AOD=∠COD-∠COA即可算出答案;(2)根据垂直的定义及角的和差,由∠AOC=∠AOB-∠BOC即可算出∠AOC的度数,根据角平分线的定义得出∠COD= ∠AOC算出∠COD的度数,根据角的和差,由∠BOD=∠COD+∠BOC算出∠BOD的度数,再根据角平分线的定义得出∠EOD= ∠BOD得出∠EOD的度数,最后根据∠COE=∠EOD- ∠COD算出答案;(3)根据题意∠AOD=10t,∠COE=5t,根据角的和差得出∠BOD=∠AOD-∠AOB=10t-120°,∠BOE=∠COB-∠COE=90°-5t,然后根据角平分线的定义得出∠BOD=∠BOE,从而列出方程,求解即可。
人教版七年级上册数学单元测试试卷《第一章-有理数》(含答案解析)
人教版七年级上册数学单元测试试卷第一章《有理数》第Ⅰ卷考试时间:120分钟总分:100分得分:一、选择题(共10题,每小题2分,共20分)1.(2分)用科学记数法表示2500000000是()A.2.5×109B.0.25×10C.2.5×1010D.0.25×10102.(2分)-2022的倒数是()A.-2022B.2022C.12022-D.120223.(2分)下列各组数中,互为相反数的是()A.43和34-B.13和0.333-C.a 和a -D.14和44.(2分)温度由﹣3℃上升8℃是()A.5℃B.﹣5℃C.11℃D.﹣11℃5.(2分)下列说法错误的是()A.开启计算器使之工作的按键是ONB.输入 5.8-的按键顺序是C.输入0.58的按键顺序是58⋅D.按键6987-=能计算出6987--的结果6.(2分)小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25000千米左右,将数据25000用科学记数法表示为()A.32510⨯B.42.510⨯C.52.510⨯D.50.2510⨯7.(2分)若a 、b 为有理数,0a <,0b >,且a b >,那么a ,b ,a -,b -的大小关系是()A.b a b a -<<<-B.b b a a <-<<-C.a b b a<-<<-D.a b b a<<-<-8.(2分)a、b 两数在数轴上的位置如图所示,下列结论正确的是()A.a>b B.|a|=﹣a C.a<﹣b D.|a|>|b|9.(2分)小明家的汽车在阳光下暴晒后车内温度达到了60℃,打开车门后经过8min 降低到室外同温32℃,再启动空调关车门,若每分钟降低4℃,降到设定的20℃共用时间是()A.13minB.12minC.11minD.10min10.(2分)已知4,5x y ==,且x y >,则2x y -的值为()A.13-B.13+C.3-或13+D.3+或13-二、填空题(共10题;每题2分,共20分)11.(2分)45-的倒数是.12.(2分)比较大小:15-16-(填“>”“<”或“=”)13.(2分)如果向东走35米记作+35米,那么向西走50米记作米。
七年级数学上册全册单元测试卷测试卷(含答案解析)精选全文
精选全文完整版(可编辑修改)七年级数学上册全册单元测试卷测试卷(含答案解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知 (本题中的角均大于且小于 )(1)如图1,在内部作,若,求的度数;(2)如图2,在内部作,在内,在内,且,,,求的度数;(3)射线从的位置出发绕点顺时针以每秒的速度旋转,时间为秒( 且 ).射线平分,射线平分,射线平分 .若,则 ________秒.【答案】(1)解:∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴(2)解:,设,则,则,(3) s或15s或30s或45s【解析】【解答】(2)解:当OI在直线OA的上方时,有∠MON=∠MOI+∠NOI= (∠AOI+∠BOI))= ∠AOB= ×120°=60°,∠PON= ×60°=30°,∵∠MOI=3∠POI,∴3t=3(30-3t)或3t=3(3t-30),解得t= 或15;当OI在直线AO的下方时,∠MON═(360°-∠AOB)═ ×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°- )或180°-3t=3( -60°),解得t=30或45,综上所述,满足条件的t的值为 s或15s或30s或45s【分析】(1)利用角的和差进行计算便可;(2)设,则,,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON在不同情况下的定值,再根据角的和差确定t的不同方程进行解答便可.2.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是多少.②数轴上表示﹣2和﹣6的两点之间的距离是多少.③数轴上表示﹣4和3的两点之间的距离是多少.(2)归纳:一般的,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,求a的值.②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值.③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.(3)拓展:某一直线沿街有2014户居民(相邻两户居民间隔相同):A1, A2, A3,A4, A5,…A2014,某餐饮公司想为这2014户居民提供早餐,决定在路旁建立一个快餐店P,点P选在什么线段上,才能使这2014户居民到点P的距离总和最小.【答案】(1)解:①数轴上表示5和2的两点之间的距离是3.②数轴上表示﹣2和﹣6的两点之间的距离是4.③数轴上表示﹣4和3的两点之间的距离是7.(2)解:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,a=10或﹣4.②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4+3﹣a=7;③当a=1时,|a+4|+|a﹣1|+|a﹣3|取最小值,|a+4|+|a﹣1|+|a﹣3|最小=5+0+2=7,理由是:a=1时,正好是3与﹣4两点间的距离.(3)解:点P选在A1007A1008这条线段上【解析】【分析】(1)根据两点间的距离公式:数轴上表示数m和数n的两点之间的距离等于|m﹣n|,分别计算可得出答案。
(人教版)初中数学七年级上册 全册测试卷一(附答案)
(人教版)初中数学七年级上册全册测试卷一(附答案)第一章综合测试一、选择题(每小题4分,共28分) 1.(舟山中考)6-的绝对值是( ) A.6B.6-C.16D.16-2.(台州中考)在12,0,1,2-这四个数中,最小的数是( )A.12B.0C.1D.2-3.下列各数:0.8-,123-,8.2--(), 2.7+-(),17-+(), 2 012+-.其中负数的个数是( ) A.6B.5C.4D.34.下列运算结果等于1的是( ) A.33-+-()() B.33---()() C.33-⨯-()D.33-÷-()()5.(福州中考)2010年某市启动了历史上规模最大的轨道交通投资建设,预计某市轨道交通投资将达到51 800 000 000元人民币.将51 800 000 000用科学记数法表示正确的是( ) A.105.1810⨯ B.951.810⨯ C.110.51810⨯D.851810⨯6.(吉林中考)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准的是( )ABCD7.(舟山中考)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,被截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( )A.2 010B.2 011C.2 012D.2 013二、填空题(每小题5分,共25分) 8.3-的倒数是_______.9.(河南中考)计算:212-+-=()_______.10.用“<”“>”或“=”填空: (1)0.02-_______1;(2)45-_______56-;(3)34⎛⎫-- ⎪⎝⎭_______[(0.75)]-+-.11.绝对值大于1而小于4的整数有_______,其和为_______. 12.若a ,b 互为相反数,x ,y 互为倒数,则()xa b xy y+-=_______ 三、解答题(共47分)13.(14分)(1)2432232(2)(4)5⨯-÷---⨯;(2)2531324524864⎡⎛⎫⎤-+-⨯÷ ⎪⎢⎥⎣⎝⎭⎦.14.(10分)“十一”黄金周期间,某商场家电部大力促销,收银情况一直看好.下表为当天与前一天的营业额的涨跌情况(单位:万元).已知9月30日的营业额为26万元:(1)黄金周内营业额最低的是哪一天?那天的营业额是多少?(直接回答,不必写过程) (2)黄金周内平均每天的营业额是多少?15.(11分)有一出租车在一条南北走向直的公路上进行出租运营服务,如果规定向北为正,向南为负,出租车运营8次的行车里程如下(单位:千米):13+,7-,11+,10-,5-,9+,12-,8+.(1)将最后一位乘客送到目的地时,该出租车在出发点的什么方向?距离出发点多远? (2)若出租车耗油量为a 升/千米,则以上8次出租运营服务共耗油多少升?16.(12分)(中山中考)阅读下列材料:112(123012)3⨯=⨯⨯-⨯⨯,123(234123)3⨯=⨯⨯-⨯⨯,134(345234)3⨯=⨯⨯-⨯⨯,由以上三个等式相加,可得1122334345203⨯+⨯+⨯=⨯⨯⨯=.读完以上材料,请你计算下列各题:(1)1223341011⨯+⨯+⨯+⋯+⨯(写出过程); (2)122334(1)n n ⨯+⨯+⨯+⋯+⨯+=_______; (3)123234345789⨯⨯+⨯⨯+⨯⨯+⋯+⨯⨯=_______.第一章综合测试答案解析一、 1.【答案】A 2.【答案】【解析】正数大于0,负数小于0,正数大于负数,所以上述四个数中最小的数是2-. 3.【答案】C 4.【答案】D【解析】因为336-+-=-()(); 330---=()(); 339-⨯-=();331÷-=(-)().5.【答案】A6.【答案】C7.【答案】D 二、8.【答案】13- 9.【答案】5 10.【答案】(1)< (2)> (3)=【解析】(1)因为负数小于正数,所以0.02-<1.(2)因为40.85-=,50.836-≈,又因为5465-->,所以4556-->.(3)因为330.7544⎛⎫--== ⎪⎝⎭,[(0.75)]0.75-+-=, 所以3[(0.75)]4⎛⎫--=-+- ⎪⎝⎭.11.【答案】23±±, 0 12.【答案】1- 三、13.【答案】(1)原式2916(8)165=⨯-÷--⨯18280=+- 60=-(2)原式253131242424248645⎛⎫-⨯-⨯+⨯⨯ ⎪⎝⎭= 2519418245⎛⎫=--+⨯ ⎪⎝⎭ 2515245⎛⎫=+⨯ ⎪⎝⎭25115551124552424=⨯+⨯=+=.14.【答案】(1)10月7日的营业额最低,营业额是26万元.(2)30333535343126732++++++÷=(),即黄金周内每天的平均营业额是32万元. 15.【答案】(1)137111059128+-+--+-+ 131198710512=++++----()()4134=- 7=(千米).答:将最后一位乘客送到目的地时,该出租车在出发点向北方向,距离出发点有7千米. (2)()1371111059128175a a ++-+++-+-+++-++⨯=(升). 答:以上8次出租运营服务共耗油75a 升. 16.【答案】(1)1223341011⨯+⨯+⨯+⋯+⨯111(123012)(23412 3) (10111291011)333=⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯L 11011124403=⨯⨯⨯=. (2)1(1)(2)3n n n ++(3)123234345789⨯⨯+⨯⨯+⨯⨯++⨯⨯L1111(23451234)(12340123)(789106789)444=⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯L 178910 1 2604=⨯⨯⨯⨯=.第二章综合测试一、选择题(每小题4分,共28分) 1.下列说法正确的是( ) A.x 的指数是0B.x 的系数是0C.3-是一次单项式D.23ab -的系数是23-2.下列式子中,整式的个数为( )1x a +,abc ,225b ab -,πy x+,2xy -,5- A.3B.4C.5D.63.若A 是3次多项式,B 也是3次多项式,则A B +一定是( ) A.6次多项式B.次数不低于3次的多项式C.次数不高于3次的整式D.以上答案都不正确4.单项式233πxy z -的系数和次数分别是( )A.π-,5B.1-,6C.3x -,6D.3-,7 5.四个连续偶数中,最小的一个为22n -(),则最大的一个是( ) A.2(2)3n -+ B.2(1)n + C.23n +D.2(2)n +6.()223422x x x x --+=-,括号内应填( )A.2532x x --B.23x x -+C.232x x -++D.232x x -+-7.(衢州中考)如图,边长为3m +()的正方形纸片剪出一个边长为m 的正方形之后剩余部分又剪拼成一个长方形(不重叠无缝隙).若拼成的长方形一边长为3,则另一边长是( )A.23m +B.26m +C.3m +D.6m +二、填空题(每小题5分,共25分)8.已知单项式312n a b +与223m a b --是同类项,则23m n +=______. 9.254143a b ab --+是______次______项式,常数项为______. 10.若40.5m x y -与36m x y 的次数相同,则m =______. 11.(绥化中考)若2345x x --的值为7,则2453x x --的值为______. 12.如图所示,它是一个程序计算器,用字母及符号把它的程序表达出来为______,如果输入3m =,那么输出______.三、解答题(共47分)13.(10分)试说明把一个两位数的十位上的数字与个位上的数字互换位置后所得的新两位数与原两位数之和可被11整除。
七年级数学上册全册单元测试卷测试卷(解析版)
七年级数学上册全册单元测试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.2.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间【答案】(1)解:因为,所以2a+4=0,b-6=0,所以a=−2,b=6;所以AB的距离=|b−a|=8;(2)解:设数轴上点C表示的数为c.因为AC=2BC,所以|c−a|=2|c−b|,即|c+2|=2|c−6|.因为AC=2BC>BC,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−2<c<6,得c+2=2(6−c),解得c= ;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c=14.故当AC=2BC时,c= 或c=14;(3)解:①因为甲球运动的路程为:1×t=t,OA=2,所以甲球与原点的距离为:t+2;乙球到原点的距离分两种情况:(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,因为OB=6,乙球运动的路程为:2×t=2t,所以乙球到原点的距离为:6−2t;(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6;②当0<t⩽3时,得t+2=6−2t,解得t= ;当t>3时,得t+2=2t−6,解得t=8.故当t= 秒或t=8秒时,甲乙两小球到原点的距离相等.【解析】【分析】(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.3.将一副三角板中的两块直角三角尺的直角顶点 O 按如图方式叠放在一起.(1)如图 1 ,若∠BOD=35°,则∠AOC=________;若∠AOC=135°,则∠BOD=________;(2)如图2,若∠AOC=140°,则∠BOD=________;(3)猜想∠AOC 与∠BOD 的大小关系,并结合图1说明理由.(4)三角尺 AOB 不动,将三角尺 COD 的 OD 边与 OA 边重合,然后绕点 O 按顺时针或逆时针方向任意转动一个角度,当∠A OD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD 角度所有可能的值,不用说明理由.【答案】(1)145°;45°(2)40°(3)解:∠AOC 与∠BOD 互补.∵∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC 与∠BOD 互补(4)解:OD⊥AB 时,∠AOD=30°,CD⊥OB 时,∠AOD=45°,CD⊥AB 时,∠AOD=75°,OC⊥AB 时,∠AOD=60°,即∠AOD 角度所有可能的值为:30°、45°、60°、75°【解析】【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;( 2 )如图 2,若∠AOC=140°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=40°;故答案为:(1)145°,45°;(2)40°.【分析】(1)根据∠AOC=∠AOB+∠COD﹣∠BOD,就可求出∠AOC的度数;再由∠BOD=∠AOB+∠COD﹣∠AOC,可求出∠BOD的度数。
人教版七年级数学上册全册单元试卷测试卷(解析版)
人教版七年级数学上册全册单元试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.2.一副三角板OAC、OBD如图(1)放置,(∠BDO=30°、∠CAO=45°)(1)若OM、ON分别平分∠BOA、∠DOC,求∠MON的度数;(2)将三角板OBD从图(1)绕O点顺时针旋转如图(2),若OM、ON分别平分∠BOA、∠DOC,则在旋转过程中∠MON如何变化?(3)若三角板OBD从图(1)绕O点逆时针旋转如图(3),若其它条件不变,则(2)的结论是否成立?(4)若三角板OBD从图(1)绕O点逆时针旋转,其它条件不变,在旋转过程中,∠MON是否一直不变,在备用图中画图说明.【答案】(1)解:∵OM、ON分别平分∠BOA、∠DOC∴∠AOM=∠BOA,∠AON=∠AOC∵∠MON=∠AOM+∠AON=(∠BOA+∠AOC)∵∠BDO=30°、∠CAO=45°∴∠AOB=90°,∠AOC=45°∴∠MON= (90°+45°)=67.5°答:∠MON的度数为67.5°.(2)解:设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α则:2x+α=90°,2y+α=45°,∴2x+2y+2α=135°,∴∠MON=x+y+α=67.5°(3)解:(2)的结论成立理由:设∠AOM=∠BOM=x,∠CON=∠DON=y,∠AOD=α则:2x-α=90°,2y-α=45°,∴2x+2y-2α=135°,∴∠MON=x+y-α=67.5°∠MON=x+y-α=67.5°(4)解:在变化,有时∠MON=112.5°。
人教版七年级上册数学全册单元试卷测试题(Word版 含解析)
人教版七年级上册数学全册单元试卷测试题(Word版含解析)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,,点E是直线AC上一个动点(不与A,C重合),点F是BC边上一个定点,过点E作,交直线AB于点D,连接BE,过点F作,交直线AC于点G.(1)如图①,当点E在线段AC上时,求证:.(2)在(1)的条件下,判断这三个角的度数和是否为一个定值?如果是,求出这个值,如果不是,说明理由.(3)如图②,当点E在线段AC的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.(4)当点E在线段CA的延长线上时,(2)中的结论是否仍然成立?如果不成立,请直接写出之间的关系.【答案】(1)解:∵∴∵∴∴(2)解:这三个角的度数和为一个定值,是过点G作交BE于点H∴∵∴∴∴即(3)解:过点G作交BE于点H∴∵∴∴∴即故的关系仍成立(4)不成立| ∠EGF-∠DEC+∠BFG=180°【解析】【解答】解:(4)过点G作交BE于点H∴∠DEC=∠EGH∵∴∴∠HGF+∠BFG=180°∵∠HGF=∠EGF-∠EGH∴∠HGF=∠EGF-∠DEC∴∠EGF-∠DEC+∠BFG=180°∴(2)中的关系不成立,∠EGF、∠DEC、∠BFG之间关系为:∠EGF-∠DEC+∠BFG=180°故答案为:不成立,∠EGF-∠DEC+∠BFG=180°【分析】(1)根据两条直线平行,内错角相等,得出;两条直线平行,同位角相等,得出,即可证明.(2)过点G作交BE于点H,根据平行线性质定理,,,即可得到答案.(3)过点G作交BE于点H,得到,因为,所以,得到,即可求解.(4)过点G作交BE于点H,得∠DEC=∠EGH,因为,所以,推得∠HGF+∠BFG=180°,即可求解.2.如图1,已知∠MON=140°,∠AOC与∠BOC互余,OC平分∠MOB,(1)在图1中,若∠AOC=40°,则∠BOC=°,∠NOB=°.(2)在图1中,设∠AOC=α,∠NOB=β,请探究α与β之间的数量关系(必须写出推理的主要过程,但每一步后面不必写出理由);(3)在已知条件不变的前提下,当∠AOB绕着点O顺时针转动到如图2的位置,此时α与β之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出此时α与β之间的数量关系.【答案】(1)解:如图1,∵∠AOC与∠BOC互余,∴∠AOC+∠BOC=90°,∵∠AOC=40°,∴∠BOC=50°,∵OC平分∠MOB,∴∠MOC=∠BOC=50°,∴∠BOM=100°,∵∠MON=40°,∴∠BON=∠MON-∠BOM=140°-100°=40°,(2)解:β=2α-40°,理由是:如图1,∵∠AOC=α,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,又∵∠MON=∠BOM+∠BON,∴140°=180°-2α+β,即β=2α-40°;(3)解:不成立,此时此时α与β之间的数量关系为:2α+β=40°,理由是:如图2,∵∠AOC=α,∠NOB=β,∴∠BOC=90°-α,∵OC平分∠MOB,∴∠MOB=2∠BOC=2(90°-α)=180°-2α,∵∠BOM=∠MON+∠BON,∴180°-2α=140°+β,即2α+β=40°,答:不成立,此时此时α与β之间的数量关系为:2α+β=40.【解析】【分析】(1)先根据余角的定义计算∠BOC=50°,再由角平分线的定义计算∠BOM=100°,根据角的差可得∠BON的度数;(2)同理先计算∠MOB=2∠BOC=2(90°-α)=180°-2α,再根据∠BON=∠MON-∠BOM列等式即可;(3)同理可得∠MOB=180°-2α,再根据∠BON+∠MON=∠BOM列等式即可.3.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.4.如图,O是直线AB上一点,OD平分∠AOC.(1)若∠AOC=60°,请求出∠AOD和∠BOC的度数.(2)若∠AOD和∠DOE互余,且∠AOD= ∠AOE,请求出∠AOD和∠COE的度数.【答案】(1)解:∠AOD= ×∠AOC= ×60°=30°,∠BOC=180°﹣∠AOC=180°﹣60°=120°(2)解:∵∠AOD和∠DOE互余,∴∠AOE=∠AOD+∠DOE=90°,∴∠AOD= ∠AOE= ×90°=30°,∴∠AOC=2∠AOD=60°,∴∠COE=90°﹣∠AOC=30°【解析】【分析】(1)①由角平分线的定义可得:∠AOD=∠COD= ∠AOC即可求解;②由邻补角的定义可得:∠BOC+∠AOC= 180°,所以∠BOC= 180° -∠AOC即可求解;(2)①由互为余角的定义和图形可得∠AOE=∠AOD+∠DOE= 90°,所以∠AOD= ∠AOE 可求解;②由①可得∠AOD的度数,由角平分线的定义可得∠AOC=2∠AOD,所以∠COE=∠AOE-∠AOC,把∠AOE和∠AOC的度数代入计算即可求解。
【新】人教版初中数学七年级上册全册测试卷(含答案)
第一章单元测试卷(满分:100分时间:60分钟)姓名:得分:一、选择题(每小题3分,共30分)1.如果表示增加,那么表示()A.增加B.增加C.减少D.减少2.有理数在数轴上表示的点如图所示,则的大小关系是()A.B.C.D.3.下列说法正确的个数是()①一个有理数不是整数就是分数;②一个有理数不是正数就是负数;③一个整数不是正的,就是负的;④一个分数不是正的,就是负的.A.1B.2C.3D.44.(2021·江西中考)下列四个数中,最小的数是()A.1-2B.0C.-2D.25.有理数、在数轴上对应的位置如图所示,则()A.<0 B.>0 C.-0 D.->06.在-5,-101,-3.5,-0.01,-2,-212各数中,最大的数是()A.-212 B.-101C .-0.01 D.-57.(2021•福州中考)地球绕太阳公转的速度约是110000千米/时,将110000用科学记数法表示为()A.11⨯104B.1.1⨯105C.1.1⨯104D.0.11⨯1068.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)9.小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第四次测验的成绩是()A.90分B.75分C.91分D.81分10.若规定“!”是一种数学运算符号,且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,七年级数学(上)(人教版)第5题图⋯,则!98!100的值为() A.4950 B. C. D.二、填空题(每小题3分,共24分)11.31-的倒数是____;321的相反数是____.12.在数轴上,点所表示的数为2,那么到点的距离等于3个单位长度的点所表示的数是.13.若0<<1,则a ,2a ,1a 的大小关系是.14.+5.7的相反数与-7.1的绝对值的和是.15.已知每辆汽车要装4个轮胎,则51只轮胎至多能装配辆汽车.16.-9、6、-3这三个数的和比它们绝对值的和小.17.一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑台.18.规定﹡,则(-4)﹡6的值为.三、解答题(共46分)19.(6分)计算下列各题:(1)10⨯31⨯0.1⨯6;(2)()216141-+⨯12;(3)[(-4)2-(1-32)⨯2]÷22.20.(8分)比较下列各对数的大小:(1)54-与43-;(2)54+-与54+-;(3)25与52;(4)232⨯与2)32(⨯.21.(6分)10袋小麦以每袋150千克为准,超过的千克数记为正数,不足的千克数记为负数,分别记为:,与标准质量相比较,这10袋小麦总计超过或不足多少千克?10袋小麦总质量是多少千克?每袋小麦的平均质量是多少千克?22.(6分)若,求32---+-x y y x 的值.23.(6分)小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:cm):.问:(1)小虫是否回到出发点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1cm奖励一粒芝麻,则小虫共可得到多少粒芝麻?24.(6分)同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离.试探索:(1)求|5-(-2)|=______.(2)找出所有符合条件的整数,使得=7,这样的整数是_____.25.(8分)一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后向西走了10千米,到达小华家,最后又向东走了6千米结束行程.(1)如果以超市为原点,以向东为正方向,用1个单位长度表示1千米,请你在下面的数轴上表示出小明家、小兵家和小华家的具体位置.第25题图(2)请你通过计算说明货车最后回到什么地方?(3)如果货车行驶1千米的用油量为0.25升,请你计算货车从出发到结束行程共耗油多少升?第一章参考答案1.C 解析:在一对具有相反意义的量中,把其中的一个量规定为“正”的,那么与它意义相反的量就是“负”的.“正”和“负”相对,所以如果表示增加,那么表示减少.2.D 解析:由数轴可知,所以其在数轴上的对应点如图所示,3.B 解析:整数和分数统称为有理数,所以①正确;有理数包括正数、负数和零,所以②③不正确;分数包括正分数和负分数,所以④正确.故选B.4.C 解析:依据“正数大于0,0大于负数,正数大于负数”可知,这四个数中,最小的一定是负数,再根据“两个负数,绝对值大的反而小”可得-2<1-2 5.A 解析:是负数,是正数,离原点的距离比离原点的距离大,所以,故选A.6.C 解析:可将这些数标在数轴上,最右边的数最大.也可以根据:负数比较大小,绝对值大的反而小.故选C.7.B 解析:科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.表示时关键要正确确定a 的值以及n 的值,110000=1.1⨯105.8.C解析:C 应该是0.050.9.C 解析:小明第四次测验的成绩是故选C.10.C解析:根据题意可得:100!=100×99×98×97× ×1,98!=98×97× ×1,∴1××97×981××98×99×100!98!100 ==100×99=9900,故选C .11.解析:根据倒数和相反数的定义可知的倒数为的相反数是.12.解析:点所表示的数为2,到点的距离等于3个单位长度的点所表示的数有两个,分别位于点的两侧,分别是13解析:当0<<1时,14.1.4解析:的相反数为,的绝对值为7.1,所以+5.7的相反数与-7.1的绝对值的和是15.12解析:51÷4=12 3.所以51只轮胎至多能装配12辆汽车.16.24解析:,,所以.17.50解析:将调入记为“+”,调出记为“-”,则根据题意有所以这个仓库现有电脑50台.18.-9解析:根据﹡,得(-4)﹡6.19.分析:(1)根据乘法交换律先交换位置,再利用乘法法则计算即可;(2)利用乘法分配律(a +b +c )m =am +bm +cm 计算即可;(3)根据运算顺序,有括号先算括号里面的(先算括号里面的乘方,再算乘除,最后算加减),最后就能算出结果.=2.20.解:(1)所以(2)=1,=9,所以<.(3)(4)21.分析:将十个数相加,若和为正,则为超过的千克数,若和为负,则为不足的千克数;若将这个数加1500,则为这10袋小麦的总千克数;再将10袋小麦的总千克数除以10,就为每袋小麦的平均质量.解:∵∴与标准质量相比较,这10袋小麦总计少了2kg.10袋小麦的总质量是1500-2=1498(kg ).每袋小麦的平均质量是22.解:当所以原式=-1.23.分析:(1)若将爬过的路程(向右爬行记为正,向左爬行记为负)相加和为0,则小虫回到出发点.(2)可画图直观看出.(3)将所给数的绝对值相加即为所奖励的芝麻数.解:(1)∵,∴小虫最后回到出发点O .(2)12㎝.(3)5+3-+10++8-+6-+12++10-=54,∴小虫可得到54粒芝麻.24.分析:(1)直接去括号,再按照去绝对值的方法去绝对值就可以了.(2)要求的整数值可以进行分段计算,令或时,分为3段进行计算,最后确定的值.解:(1)7.(2)令或,则或.当时,,∴,∴.当时,,∴,,∴.当2时,,∴,,∴.∴综上所述,符合条件的整数有:-5,-4,-3,-2,-1,0,1,2.25.(1)根据已知,以超市为原点,以向东为正方向,用1个单位长度表示1千米.一辆货车从超市出发,向东走了1千米,到达小明家,继续向东走了3千米到达小兵家,然后向西走了10千米,到达小华家,最后又向东走了6千米结束行程,则小明家、小兵家和小华家在数轴上的位置如图所示.(2)这辆货车一共行走的路程,实际上就是1+3+10+6=20(千米),货车从出发到结束行程共耗油量=货车行驶每千米耗油量×货车行驶所走的总路程.解:(1)小明家、小兵家和小华家在数轴上的位置如图所示.第25题答图(2)由题意得(+1)+(+3)+(-10)+(+6)=0,因而货车回到了超市.(3)由题意得,1+3+10+6=20,货车从出发到结束行程共耗油0.25×20=5(升).答:(1)参见上图;(2)货车最后回到了超市;(3)货车从出发到结束行程共耗油5升.第二章单元测试卷(满分:100分时间:60分钟)姓名:得分:七年级数学(上)(人教版)参考答案期中测试卷(满分:120分时间:120分钟)姓名:得分:一、选择题(本大题共8小题,每小题4分,共32分)1.在-1,-2,0,1四个数中最小的数是()A .-1B .-2C .0D .12.有下列各式:231122,,2,,,,2235x x y a m x x +---,其中单项式有()A .5个B .4个C .3个D .2个3.某县12月份某一天的天气预报为气温-2~5℃,该天的温差为()A .-3℃B .-7℃C .3℃D .7℃4.作家莫言获得诺贝尔文学奖之后,他的代表作品《蛙》的销售量比获奖之前增长了180倍,达到2100000册,将2100000用科学记数法表示为()A .80.2110⨯B .62110⨯C .62.110⨯D .72.110⨯5.用四舍五入法按需求对0.05019分别取近似值,其中错误的是()A .0.1(精确到0.1)B .0.05(精确到千分位)C .0.05(精确到百分位)D .0.0502(精确到0.0001)6.下列计算正确的是()A .651a a -=B .2323a a a +=C .()ab a b --=-+D .2()2a b a b+=+7.已知0a b +<,且0ab >,则下列成立的是()A .0,0a b ><B .0,0a b >>C .0,0a b <>D .0,0a b <<8.一个点在数轴上距原点3个单位长度,先把这个点向右移动4个单位长度,再向左移动1个单位长度,此时这个点表示的数是()A .0或6B .0C .-6或0D .6二、填空题(本大题共6小题,每小题3分,共18分)七年级数学(上)(人教版)9.把(5)(6)(5)(4)---+---写成省略括号和加号的形式为___________________.10.比较大小:0__________-1;12-_________13-(填“>”或“<”).11.若单项式23x y 与2212b x y -是同类项,则b 的值为___________.12.图1是一个简单的数值运算程序,当输入x 的值为-3时,输出的数值为________.13.有三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队的树的一半少6棵,三个小队共植树_________棵.14.已知“!”是一种数学运算符号,并且规定:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,…,计算100!98!=____________.三、解答题(共70分)15.(6分)在数轴上表示下列各数,并用“>”连接起来。
数学七年级上册全册单元试卷测试与练习(word解析版)
数学七年级上册全册单元试卷测试与练习(word解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.2.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若 P 点表示的数是 0,①运动 1 秒后,求 CD 的长度;②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,①当 C=-3 时,CP=4,此时 P=1;②当 C=-1 时,P=3.【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。
人教版七年级数学上册全册单元试卷测试卷(含答案解析)
∴ ∠ BPN=1800-2t,
∠ CPD=3600-∠ DPB-∠ BPN-∠ NPA-∠ CPA=900-t,
∴ 【解析】【分析】(1)利用含有 30゜、60゜的三角板得出∠ DPC=180°-∠ CPA-∠ DPB,代 入计算即可;
( 2 ) 根 据 角 平 分 线 的 定 义 得 出 ∠ DPF= ∠ APD,∠ DPE= ∠ CPD , 根 据 角 的 和 差 得 出 APD=180°−30°−α=150°−α ,∠ CPD=180°−30°−60°−α=90°−α ,从而得出∠ DPF 及,∠ DPE 的度 数,最后根据 EPF=∠ DPF−∠ DPE 算出结果;
的度数;
(2)过点 O 作射线
,求
的度数.
【答案】 (1)解:
,
,
:
:3,
;
(2)解:
,
,
,
OF 在
的内部时,
,
,
,
OF 在
的内部时, ,
,
,
综上所述
或
【解析】【分析】(1)根据对顶角相等得出
, 然后根据
:
:3 即可算出∠ BOE 的度数;
人教版数学七年级上册全册单元试卷测试卷(解析版)
人教版数学七年级上册全册单元试卷测试卷(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.如图AB∥CD,点H在CD上,点E、F在AB上,点G在AB、CD之间,连接FG、GH、HE,HG⊥HE,垂足为H,FG⊥HG,垂足为G.(1)求证:∠EHC+∠GFE=180°.(2)如图2,HM平分∠CHG,交AB于点M,GK平分∠FGH,交HM于点K,求证:∠GHD=2∠EHM.(3)如图3,EP平分∠FEH,交HM于点N,交GK于点P,若∠BFG=50°,求∠NPK的度数. 【答案】(1)解:∵HG⊥HE,FG⊥HG∴FG∥EH,∴∠GFE+∠HEF=180°,∵AB∥CD∴∠BEH=∠CHE∴∠EHC+∠GFE=180°(2)解:设∠EHM=x,∵HG⊥HE,∴∠GHK=90°-x,∵MH平分∠CHG,∴∠EHC=90°-2x,∵AB∥CD∴∠HMB=90°-x,∴∠HMB=∠MHG=90°-x,∵AB∥CD,∴∠BMH+∠DHM=180°,即∠BMH+∠GHM+∠GHD =180°,∴90°-x+90°-x+∠GHD =180°,解得,∠GHD =2x,∴∠GHD=2∠EHM;(3)解:延长FG,GK,交CD于R,交HE于S,如图,∵AB∥CD,∠BFG=50°∴∠HRG=50°∵FG⊥HG,∴∠GHR=40°,∵HG⊥HE,∴∠EHG=90°,∴∠CHE=180°-90°-40°=50°,∵AB∥CD,∴∠FEH=∠CHE=50°,∵EP是∠HEF的平分线,∴∠SEP= ∠FEH=25°,∵GH平分∠HGF,∴∠HGS= ∠HGF=45°,∴∠HSG=45°,∵∠SEP+∠SPE=∠HSP=45°,∴∠EPS=20°,即∠NPK=20°.【解析】【分析】(1)根据HG⊥HE,FG⊥HG可证明FG∥EH,从而得∠GFE+∠HEF=180°,再根据AB∥CD可得∠BEH=∠CHE,进而可得结论;(2)设∠EHM=x,根据MH是∠CHG的平分线可得∠MHG=90°-x,∠EHC=90°-2x,根据平行线的性质得∠HMB=90°-x,从而得∠HMB=∠MHG,再由平行线的性质得∠BMH+∠DHM=180°,从而可得结论;(3)分别延长FG,GK,交CD于R,交HE于S,由AB∥CD得∠HRG=50°,由FG⊥HG得∠GHR=40°,由MH平分∠CHG得∠CHE=50°,由AB∥CD得∠MEH=∠CHE=50°,可得∠SEP=25°,最后由三角形的外角可得结论.3.已知:如图(1)∠AOB和∠COD共顶点O,OB和OD重合,OM为∠AOD的平分线,ON为∠BOC的平分线,∠AOB=α,∠COD=β.(1)如图(2),若α=90°,β=30°,求∠MON;(2)若将∠COD绕O逆时针旋转至图(3)的位置,求∠MON(用α、β表示);(3)如图(4),若α=2β,∠COD绕O逆时针旋转,转速为3°/秒,∠AOB绕O同时逆时针旋转,转速为1°/秒,(转到OC与OA共线时停止运动),且OE平分∠BOD,请判断∠COE与∠AOD的数量关系并说明理由.【答案】(1)解:∵OM为∠AOD的平分线,ON为∠BOC的平分线,α=90°,β=30°∴∠MOB=∠AOB=45°∠NOD=∠BOC=15°∴∠MON=∠MOB+∠NOD=45°+15°=60°.(2)解:设∠BOD=γ,∵∠MOD= = ,∠NOB= =∴∠MON=∠MOD+∠NOB-∠DOB= + -γ=(3)解:① 为定值,设运动时间为t秒,则∠DOB=3t-t=2t,∠DOE= ∠DOB=t,∴∠COE=β+t,∠AOD=α+2t,又∵α=2β,∴∠AOD=2β+2t=2(β+t).∴【解析】【分析】(1)根据角平分线的定义,分别求出∠MOB和∠NOD,再根据∠MON=∠MOB+∠NOD,可求出∠MON的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版数学七年级上册全册单元试卷专题练习(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.2.数轴上A, B, C, D四点表示的有理数分别为1, 3, -5, -8(1)计算以下各点之间的距离:①A、B两点, ②B、C两点,③C、D两点,(2)若点M、N两点所表示的有理数分别为m、n,求M、N两点之间的距离.【答案】(1)AB=3-1=2;BC=3-(-5)=8;CD=-5-(-8)=-5+8=3.(2)MN=【解析】【分析】(1)数轴上两点间的距离等于数值较大的数减去数值较小的数,据此计算即可;(2)因为m、n的大小未知,则M、N两点间的距离为它们所表示的有理数之差的绝对值.3.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若 P 点表示的数是 0,①运动 1 秒后,求 CD 的长度;②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,①当 C=-3 时,CP=4,此时 P=1;②当 C=-1 时,P=3.【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。
(2)①由点A、B表示的数及点C、D的运动速度和方向,可得出运动1秒后点C、D分别表示的数,再求出CD的长;②当点D在BP上时,根据t的取值范围,分别用含t的代数式表示出AC、CD的长,就可得出AC、CD的数量关系。
(3)根据t的值及CD的长,就可得出点C表示的数,从而就可求出点P所表示的数。
4.如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°,且m+n=90°.(1)①若m=50,则射线OC的方向是________,②图中与∠BOE互余的角有________,与∠BOE互补的角有________.(2)若射线OA是∠BON的角平分线,则∠SOB与∠AOC是否存在确定的数量关系?如果存在,请写出你的结论以及计算过程;如果不存在,请说明理由.【答案】(1)北偏东40°;∠BOS,∠EOC;∠BOW(2)解:∠AOC= ∠SOB.理由如下:∵OA平分∠BON,∴∠NOA= ∠NOB,又∵∠BON=180°-∠SOB,∴∠NOA= ∠BON=90°- ∠SOB,∵∠NOC=90°-∠EOC,由(1)知∠BOS=∠EOC,∴∠NOC=90°-∠SOB,∠AOC=∠NOA-∠NOC=90°- ∠SOB-(90°-∠SOB),即∠AOC= ∠SOB.【解析】【解答】解:(1)①∵m+n=90°,m=50°,∴n=40°,∴射线OC的方向是北偏东40°;②∵∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,∴图中与∠BOE互余的角有∠BOS,∠EOC;∠BOE+∠BOW=180°,∴图中与∠BOE互补的角有∠BOW,故答案为:①北偏东40°;②∠BOS,∠EOC;∠BOW.【分析】(1)①由m+n=90°,m=50°可求得n值,从而可得射线OC的方向.②根据余角定义可知∠BOE+∠BOS=90°,∠BOE+∠EOC=90°,从而可得图中与∠BOE互余的角;由补角定义可得∠BOE+∠BOW=180°,从而可得图中与∠BOE互补的角.(2)∠AOC=∠SOB.理由如下:由角平分线定义和领补角定义可得∠NOA= ∠BON=90°-∠SOB,结合(1)中条件可得∠NOC=90°-∠SOB;由∠AOC=∠NOA-∠NOC即可求得它们之间的数量关系.5.如图(1)观察思考如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用8位同学参加班上组织的象棋比赛,比赛采用单循环制(即每两位同学之间都要进行一场比赛),那么一共要进行多少场比赛?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【答案】(1)解:∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段(2)解:,理由:设线段上有m个点,该线段上共有线段x条,则x=(m-1)+(m-2)+(m-3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m-3)+(m-2)+(m-1),∴2x= =m(m-1),∴x=(3)解:把8位同学看作直线上的8个点,每两位同学之间的一场比赛看作为一条线段,直线上8个点所构成的线段条数就等于比赛的场数,因此一共要进行场比赛【解析】【分析】(1)线段AB上共有4个点A、B、C、D,得到线段共有4×(4-1)÷2条;(2)根据规律得到该线段上共有m(m-1)÷2条线段;(3)由每两位同学之间进行一场比赛,得到要进行8×(8-1)÷2场比赛.6.如图1,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积为________,边长为________.(2)如图2,以数轴的单位长度的线段为边作一个直角三角形,以数轴上表示的﹣1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是________ .(3)如图3,网格中每个小正方形的边长为1,若把阴影部分剪拼成一个正方形,那么新正方形的边长是 ________.【答案】(1)5;;(2)(3)【解析】【解答】解:(1)5个小正方形拼成一个大正方形后,面积不变,所以拼成的正方形的面积是:5×1×1=5,边长= ,(2)根据勾股定理可求出图中直角三角形的斜边长= ,然后根据线段和差关系求出A点表示的数是,(3)根据图可知:阴影部分的面积是6个小正方形的面积,即为6,所以拼成的新正方形的面积是6,则新正方形的边长= .【分析】(1)剪拼前后两个图形的形状发生了变化,但总面积不会变化,从而得出拼成的正方形的面积,再根据正方形的面积等于边长的平方即可算出其边长;(2)直角三角形的最大的边就是斜边,根据勾股定理可以算出其斜边的长度是,根据同圆的半径相等得出表示-1的点到A点的距离是,利用线段的和差得OA=-1,从而得出A点所表示的数;(3)利用三角形的面积计算方法可以算出图中阴影部分的面积是6个小正方形的面积,剪拼前后两个图形的形状发生了变化,但总面积不会变化,从而得出拼成的正方形的面积,再根据正方形的面积等于边长的平方即可算出其边长。
7.阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是点是【A,B】的好点.(1)如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D________【A,B】的好点,但点D________【B,A】的好点.(请在横线上填是或不是)知识运用:(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2.数________所表示的点是【M,N】的好点;(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当经过________秒时,P、A和B中恰有一个点为其余两点的好点?【答案】(1)不是;是(2)0(3)5或10【解析】【解答】解:(1)如图1,∵点D到点A的距离是1,到点B的距离是2,根据好点的定义得:DB=2DA,那么点D不是【A,B】的好点,但点D是【B,A】的好点;⑵如图2,4﹣(﹣2)=6,6÷3×2=4,即距离点M4个单位,距离点N2个单位的点就是所求的好点0;∴数0所表示的点是【M,N】的好点;⑶如图3,由题意得:PB=4t,AB=40+20=60,PA=60﹣4t,点P走完所用的时间为:60÷4=15(秒),当PB=2PA时,即4t=2(60﹣4t),t=10(秒),当PA=2PB时,即2×4t=60﹣4t,t=5(秒),∴当经过5秒或10秒时,P、A和B中恰有一个点为其余两点的好点;故答案:(1)不是,是;(2)0;(3)5或10.【分析】(1)根据定义发现:好点表示的数到【A,B】中,前面的点A是到后面的数B 的距离的2倍,从而得出结论;(2)点M到点N的距离为6,分三等分为份为2,根据定义得:好点所表示的数为0;(3)根据题意得:PB=4t,AB=40+20=60,PA=60﹣4t,由好点的定义可知:分两种情况列式:①PB=2PA;②PA=2PB;可以得出结论.8.如图,已知∠AOB=α°,∠COD在∠AOB内部且∠COD=β°.(1)①若α,β满足|α-2β|+(β-60)2=0,则①α=________;②试通过计算说明∠AOD与∠COB有何特殊关系________;(2)在(1)的条件下,如果作OE平分∠BOC,请求出∠AOC与∠DOE的数量关系;(3)若α°,β°互补,作∠AOC,∠DOB的平分线OM,ON,试判断OM与ON的位置关系,并说明理由.【答案】(1)120°;解:∵∠AOB=α°=120°,∠COD=β°=60°,∴∠AOD=∠AOB-∠DOB=120°-∠DOB,∠COB=∠COB+∠DOB=60°+∠DOB,∴∠AOD+∠COB=180°,即∠AOD与∠COB互补(2)解:设∠AOC=θ,则∠BOC=120°-θ.∵OE平分∠BOC,∴∠COE= ∠BOC= (120°-θ)=60°- θ,∴∠DOE=∠COD-∠COE=60°-60°+ θ= θ= ∠AOC;(3)解:OM⊥ON.理由如下:∵OM,ON分别平分∠AOC,∠DOB,∴∠COM= ∠AOC,∴∠DON= ∠BOD,∴∠MON=∠COM+∠COD+∠DON= ∠AOC+ ∠BOD+∠COD= (∠AOC+∠BOD)+∠COD= (∠AOB-∠COD)+∠COD= (∠AOB+∠COD)= (α°+β°)∵α°,β°互补,∴α°+β°=180°,∴∠MON=90°,∴OM⊥ON【解析】【解答】(1)①由题意得:α-2β=0,β=60°,解得:α=120°;【分析】(1)①由绝对值和偶次方的非负性可得α-2β=0,β-60°=0,解方程可求得α和β的度数;②由①可知α和β的度数分别为:β=60°,α=120°;即所以∠AOB+∠COD=α+β=180°;而由图中角的构成可得∠AOD=∠AOB-∠BOD;∠COB=∠COD+∠BOD,所以∠∠AOD+∠COB=∠AOB-∠BOD+∠COD+∠BOD=∠AOB+∠COD=180°;(2)由角平分线的定义可得∠COE=∠BOE= ∠BOC,由图中角的构成可得∠DOE=∠COD-∠EOC,代入整理结合(1)中求得的度数即可得解;(3)由角平分线的定义可得∠COM= ∠AOC,∠DON= ∠BOD,由图中角的构成和已知条件可求得∠MON=90°;由垂线的定义即可判断OM⊥ON。