《三角函数》单元测试卷含答案

合集下载

三角函数综合测试题(含答案)

三角函数综合测试题(含答案)

三角函数综合测试题(含答案)三角函数综合测试题一、选择题(共18小题,每小题3分,共54分)1.(08全国一6)函数y=(sinx-cosx)-1的最小正周期为π的奇函数。

2.(08全国一9)为得到函数y=cos(x+π/3)的图象,只需将函数y=sinx的图像向左平移π/3个长度单位。

3.(08全国二1)若sinα0,则α是第二象限角。

4.(08全国二10)函数f(x)=sinx-cosx的最大值为2.5.(08安徽卷8)函数y=sin(2x+π/3)图像的对称轴方程可能是x=-π/6.6.(08福建卷7)函数y=cosx(x∈R)的图象向左平移π/2个单位后,得到函数y=g(x)的图象,则g(x)的解析式为-sinx。

7.(08广东卷5)已知函数f(x)=(1+cos2x)sinx,则f(x)是以π为最小正周期的奇函数。

8.(08海南卷11)函数f(x)=cos2x+2sinx的最小值为-2,最大值为3/3π。

9.(08湖北卷7)将函数y=sin(x-θ)的图象F向右平移π/3个单位长度得到图象F′,若F′的一条对称轴是直线x=5π/12,则θ=π/4.10.(08江西卷6)函数f(x)=(sinx+2sin2x)/x的最小正周期为2π的偶函数。

11.若动直线x=a与函数f(x)=sinx和g(x)=cosx的图像分别交于M,N两点,则MN的斜率为tan(a-π/4)。

19.若角 $\alpha$ 的终边经过点 $P(1,-2)$,则$\tan2\alpha$ 的值为 ________。

20.函数 $f(x)=\cos(\omega x-\frac{\pi}{6})$ 的最小正周期为 $\frac{\pi}{5}$,其中 $\omega>0$,则 $\omega=$ ________。

21.设 $x\in\left(0,\frac{\pi}{2}\right)$,则函数$y=\frac{2\sin2x+1}{\cos x}$ 的最小值为 ________。

天津耀华嘉诚国际中学必修第一册第五单元《三角函数》测试卷(含答案解析)

天津耀华嘉诚国际中学必修第一册第五单元《三角函数》测试卷(含答案解析)

一、选择题1.已知()0,πα∈,2sin cos 1αα+=,则cos 21sin 2αα=-( )A .2425-B .725- C .7- D .17-2.若角α的终边过点(3,4)P -,则cos2=α( )A .2425-B .725C .2425D .725-3.在ABC 中,已知sin 2sin()cos C B C B =+,那么ABC 一定是( )A .等腰三角形B .直角三角形C .等边三角形D .形状无法确定4.已知函数()()2sin ,0,2f x x x x π=∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,则()f x 的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,4⎡⎤⎢⎥⎣⎦π C .0,3π⎡⎤⎢⎥⎣⎦D .0,2π⎡⎤⎢⎥⎣⎦5.cos45sin15sin 45cos15︒︒-︒︒=( ).A .1B .12-C .2D .126.将函数()f x 的图象向左平移02πϕϕ⎛⎫<<⎪⎝⎭个单位后得到函数()sin 2g x x =的图象,若对满足()()122f x g x -=的1x ,2x ,有12min3x x π-=,则ϕ=( ) A .512π B .3π C .4π D .6π7.设129sin 292a =-,b =22tan161tan 16c =+,则有( ) A .a b c >> B .b c a >>C .c a b >>D .c b a >>8.已知3πin 325s α⎛⎫+= ⎪⎝⎭,0απ<<,则tan α=( ) A .43-B .34-C .34D .439.已知()1sin 2=-f x x x ,则()f x 的图象是( ).A .B .C .D .10.已知将向量13,2a ⎛= ⎝⎭绕起点逆时针旋转4π得到向量b ,则b =( ) A .626244⎛-⎝⎭B .626244⎛⎝⎭C .266244⎛⎫⎪ ⎪⎝⎭D .262644⎛ ⎝⎭11.已知函数()()log 330,1a y x a a =-+>≠的图象恒过点P ,若角α的终边经过点P ,则sin 2α的值等于( )A .2425-B .35C .2425D .3512.已知2cos 432θπ⎛⎫= ⎪⎝⎭-,则sin θ=( ) A .79 B .19C .-19D .-79二、填空题13.设函数22(1)sin(2)()(2)1x x f x x -+-=-+的最大值为M ,最小值为m ,则M m +=_________.14.已知函数sin cos y x x =-,其图象的对称轴中距离y 轴最近的一条对称轴方程为x =________.15.设()sin 2cos2f x a x b x =+,0ab ≠,若()6f x f π⎛⎫≤⎪⎝⎭对任意x ∈R 成立,则下列命题中正确的命题是______.(填序号) ①11012f π⎛⎫=⎪⎝⎭;②7105f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;③()f x 不具有奇偶性;④()f x 的单调增区间是()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z ;⑤可能存在经过点(),a b 的直线与函数的图象不相交. 16.已知函数()22sin cos 23cos f x x x x ωωω=-,且()f x 图象的相邻对称轴之间的距离为π4,则当π0,4x ⎡⎤∈⎢⎥⎣⎦时,()f x 的最小值为______. 17.如下图所示,某农场有一块扇形农田,其半径为100m ,圆心角为3π,现要按图中方法在农田中围出一个面积最大的内接矩形用于种植,则围出的矩形农田的面积为___________2m .18.方程21sin 3sin cos 2x x x =在[0,]4π上的解为___________19.已知函数()cos 2f x x =,若12,x x 满足12|()()|2f x f x -=,则12||x x -的一个取值为________.20.已知50sin 24ππαα⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭,,tan α=__________. 三、解答题21.已知函数()π322sin cos 6f x x x x ⎛⎫=-- ⎪⎝⎭. (1)求()f x 的单调增区间. (2)当ππ,44x ⎡⎤∈-⎢⎥⎣⎦,求()f x 的值域. 22.已知函数2()2sin 23cos 1f x x x x =++.求: (1)()f x 的最小正周期; (2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最值. 23.已知函数2()23cos )f x x x =--. (1)求4f π⎛⎫⎪⎝⎭的值和()f x 的最小正周期;(2)求函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 24.函数[)()()sin()0,0,0,2f x A x A ωϕωϕπ=+>>∈的图象如图所示:(1)求()f x 的解析式;(2)若[]0,x π∈且6()2f x ≥,求x 的取值范围. 25.已知函数25()23cos()2cos (0)32f x wx wx wx w π=+-+>的图像上相邻的两个最低点的距离为π. (1)求w 的值;(2)求函数()f x 的单调递增区间.26.已知函数2()2sin 23)sin ()2f x x x x x ππ⎛⎫=+-+∈ ⎪⎝⎭R . (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)求()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用22sin cos 1αα+=以及2sin cos 1αα+=解出sin α,cos α的值,再利用二倍角公式化简即可求解. 【详解】因为2sin cos 1αα+=,所以cos 12sin αα=-, 代入22sin cos 1αα+=得()22sin 12sin 1αα+-=, 因为()0,πα∈,所以4sin 5α,所以43cos 12sin 1255αα=-=-⨯=-,所以4324sin 22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭, 2247cos 212sin 12525αα⎛⎫=-=-⨯=- ⎪⎝⎭cos 211sin 2717252425αα-==--⎛⎫- ⎪⎭-⎝, 故选:D 【点睛】关键点点睛:本题的关键点是熟记同角三角函数基本关系,以及三角函数值在每个象限内的符号,熟记正余弦的二倍角公式,计算仔细.2.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.3.A解析:A 【分析】先用诱导公式变形,然后再由两角和的正弦公式展开,再由两角差的正弦公式化简后可得. 【详解】∵在ABC 中,已知sin 2sin()cos C B C B =+,∴sin sin()2sin cos C A B A B =+=,∴sin cos cos sin 2sin cos A B A B A B +=,in 0()s A B -=, 又,(0,)A B π∈,∴0A B -=,A B =,三角形为等腰三角形.故选:A .4.A解析:A 【分析】根据三角恒等变换公式化简()f x ,结合x 的范围,可得选项. 【详解】因为()()2sin ,0,2f x x xx π=+∈⎛⎫⎡⎤ ⎪⎢⎥⎣⎦⎝⎭,所以 ()()222sin sin cos +3cos f x x xx x x x +==222cos +12cos 2+22sin 2+26x x x x x π⎛⎫=+=+=+ ⎪⎝⎭,因为0,2x π⎡⎤∈⎢⎥⎣⎦,所以72+,666x πππ∈⎡⎤⎢⎥⎣⎦,所以由2+662x πππ≤≤,解得06x π≤≤, 所以()f x 的单调递增区间是06,π⎡⎤⎢⎥⎣⎦,故选:A.5.B解析:B 【分析】根据两角差的正弦公式,准确运算,即可求解. 【详解】由()1cos 45sin15sin 45cos15sin 1545sin 302︒︒-︒︒=︒-︒=-︒=-. 故选:B.6.D解析:D 【分析】利用三角函数的最值,取自变量1x 、2x 的特值,然后判断选项即可. 【详解】因为函数()sin 2g x x =的周期为π,由题意可得:()()sin 2x f x ϕ=-⎡⎤⎣⎦, 若()()122f x g x -=,两个函数的最大值与最小值的差等于2,有12min3x x π-=,所以不妨取24x π=,则1712x π=,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在1712x π=取得最小值, 所以77121s 12in 2f ϕππ⎛⎫=-=- ⎪⎡⎤⎛⎫⎪⎢⎝⎥⎭⎣⎦⎭⎝,此时5+,6k k Z πϕπ=∈,又02πϕ<<,所以此时不符合题意, 取24x π=,则112x π=-,即()()sin 2x f x ϕ=-⎡⎤⎣⎦在112x π=-取得最小值, 所以12sin 21ϕπ⎡⎤⎛⎫-=- ⎪⎢⎥⎝⎭⎣⎦-,此时,6k k Z πϕπ=-∈,当0k =时,6π=ϕ满足题意,故选:D . 【点睛】本题考查三角函数的图象的平移,三角函数性质之最值,关键在于取出2x ,得出1x ,再利用正弦函数取得最小值的点,求得ϕ的值,属于中档题.7.B解析:B 【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,a b c ,然后由正弦函数的单调性得出结论. 【详解】129si sin(6029)si 3n 2912n a =︒-︒=︒=-, b =sin 33==︒,2222sin162tan16cos162sin16sin 161tan 161c cos16sin 32os 16c ===︒︒︒︒=︒︒︒++,显然sin31sin32sin33︒<︒<︒,所以a c b <<. 故选:B . 【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.8.A解析:A 【分析】根据诱导公式,可得cos α的值,根据同角三角函数的关系,结合α的范围,可求得sin α的值,即可求得答案. 【详解】因为3πin 325s α⎛⎫+=⎪⎝⎭,所以3cos 5α=-,所以4sin5α===±,又0πα<<,所以α为第二象限角,所以4sin5α所以sintans43coααα==-.故选:A.9.B解析:B【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项.【详解】()()1sin2f x x x f x-=-+=-,()f x∴为奇函数,∴图象关于原点对称,故排除A,D;当π2x=时,ππ1024f⎛⎫=-<⎪⎝⎭,故排除C.故选:B.【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手:(1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项;(3)代入特殊点求函数值,排除某些选项.10.C解析:C【分析】先求出a与x轴正方向的夹角为3πθ=,即可得b与x轴正方向的夹角为73412πππα=+=,再利用向量坐标的定义即可求解.【详解】设a的起点是坐标原点,a与x轴正方向的夹角为θ,1a=由13,2a⎛=⎝⎭可得2tan12θ==3πθ=,设b 与x 轴正方向的夹角为α,则73412πππα=+=且1b =因为7sinsin sin cos cos sin 124343434y πππππππ⎛⎫==+=⨯+⨯=⎪⎝⎭,7coscos cos cos sin sin 124343434x πππππππ⎛⎫==+=⨯-⨯=⎪⎝⎭,故2,44b ⎛⎫-= ⎪ ⎪⎝⎭, 故选:C.11.C解析:C 【分析】由已知求出点P 的坐标,再利用三角函数的定义求出sin ,cos αα的值,进而可得到sin 2α的值 【详解】解:因为函数()()log 330,1a y x a a =-+>≠的图象恒过(4,3), 所以点P 的坐标为(4,3) 因为角α的终边经过点P , 所以34sin ,cos 55αα====, 所以3424sin 22sin cos 25525ααα==⨯⨯=, 故选:C12.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】因为2cos 432θπ⎛⎫= ⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C二、填空题13.2【分析】可考虑向左平移2个单位对函数解析式进行化简根据左右平移值域不变求解【详解】令则定义域为R 且故是奇函数故其最大值与最小值的和为零所以函数的最大值与最小值的和为2故在函数中解析:2 【分析】可考虑向左平移2个单位对函数解析式进行化简,根据左右平移值域不变求解. 【详解】22(1)sin(2)()(2)1x x f x x -+-=-+222(1)sin 2sin (2)111x x x xf x x x +++∴+==+++,令22sin ()1x xg x x +=+,则定义域为R ,且()()g x g x -=-,故()g x 是奇函数,故其最大值与最小值的和为零, 所以函数(2)y f x =+的最大值与最小值的和为2, 故在函数()f x 中,2M m +=.14.【分析】函数令求解【详解】已知函数令解得所以其图象的对称轴中距离轴最近的一条对称轴方程为故答案为: 解析:4π-【分析】函数4y x π⎛⎫=- ⎪⎝⎭,令42x k πππ-=+求解.【详解】已知函数sin cos 4y x x x π⎛⎫=-=- ⎪⎝⎭,令,42x k k Z πππ-=+∈,解得 3,4x k k Z ππ=+∈, 所以其图象的对称轴中距离y 轴最近的一条对称轴方程为x =4π-. 故答案为:4π-15.①③【分析】由题可知直线与函数的图象的一条对称轴可求得可化简函数的解析式为计算出的值可判断①的正误;计算可判断②的正误;利用特殊值法可判断③的正误;取利用正弦函数的单调性可判断④的正误;假设命题⑤正解析:①③ 【分析】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可求得3ab ,可化简函数()f x 的解析式为()2sin 26f x b x π⎛⎫=+ ⎪⎝⎭.计算出1112f π⎛⎫⎪⎝⎭的值,可判断①的正误;计算710f π⎛⎫⎪⎝⎭、5f π⎛⎫⎪⎝⎭,可判断②的正误;利用特殊值法可判断③的正误;取0b >,利用正弦函数的单调性可判断④的正误;假设命题⑤正确,求出直线的方程,结合函数()f x 的最值可判断⑤的正误.【详解】 由题可知,直线6x π=与函数()f x 的图象的一条对称轴,可得162f b π⎛⎫=+= ⎪⎝⎭,整理可得2230a b -+=,即()20a -=,a ∴=.()sin 2cos 22sin 26f x x b x b x π⎛⎫∴=+=+ ⎪⎝⎭.对于命题①,11112sin 2012126f b πππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,①正确; 对于命题②,7747172sin 22sin 2sin 101063030f b b b ππππππ⎛⎫⎛⎫⎛⎫=⨯+==+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭17172sin 2sin 3030b b ππ=-=,172sin 22sin 55630f b b ππππ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以,7105f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,②不正确; 对于命题③,2sin 66f b b ππ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,2sin 262f b b ππ⎛⎫== ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭且66f f ππ⎛⎫⎛⎫-≠- ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 不具有奇偶性,③正确; 对于命题④,当()2,63x k k k ππππ⎡⎤∈++∈⎢⎥⎣⎦Z 时,则()3222262k x k k Z πππππ+≤+≤+∈,当0b >时,函数()f x 在区间()2,63k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z 上单调递减,④错误; 对于命题⑤,假设经过点(),a b 的直线与函数()f x 的图象不相交,则该直线与x 轴平行,此时该直线的方程为y b =,则2b b >,由于0b ≠,矛盾,⑤错误.故答案为:①③. 【点睛】关键点点睛:本题考查正弦型函数()()sin f x A x =+ωϕ的单调性、奇偶性、三角函数值的计算,解题的关键就是从()6f x f π⎛⎫≤⎪⎝⎭分析得出直线6x π=与函数()f x 的图象的一条对称轴,进而借助辅助角公式化简得出a 、b 的倍数关系.16.【分析】先将函数化简整理根据相邻对称轴之间距离求出周期确定再根据正弦函数的性质结合给定区间即可求出最值【详解】因为由题意知的最小正周期为所以即所以当时所以因此所以函数的最小值为故答案为:解析:-【分析】先将函数化简整理,根据相邻对称轴之间距离求出周期,确定2ω=,再根据正弦函数的性质,结合给定区间,即可求出最值. 【详解】因为()21cos 22sin cos sin 22xf x x x x x ωωωωω+=-=- πsin 222sin 23x x x ωωω⎛⎫=-=-- ⎪⎝⎭由题意知()f x 的最小正周期为ππ242⨯=,所以2ππ22ω=,即2ω=,所以()π2sin 43f x x ⎛⎫=-⎪⎝⎭当π0,4x ⎡⎤∈⎢⎥⎣⎦时,ππ2π4,333x ⎡⎤-∈-⎢⎥⎣⎦,所以π2sin 423x ⎛⎫⎡⎤-∈ ⎪⎣⎦⎝⎭,因此()π2sin 423f x x ⎛⎫⎡=-- ⎪⎣⎝⎭,所以函数()f x 的最小值为-.故答案为:-17.【分析】设利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长表示出矩形的面积为借助于三角函数辅助角公式求出最大值即可【详解】解:如图:做的角平分线交于设则在中由正弦定理可知:则所以矩形农田的面 解析:()1000023-【分析】设EOA θ∠=,利用直角三角形的边角关系和正弦定理分别求出矩形各边的边长,表示出矩形的面积为()2sin 302sin S R R θθ=-⋅,借助于三角函数辅助角公式求出最大值即可. 【详解】解:如图:做AOB ∠的角平分线交BE 于D ,设EOA θ∠=,则()22sin 30DE R θ=-,150OFE ∠=,在OFE △中,由正弦定理可知:sin sin150EF Rθ= ,则2sin EF R θ= 所以矩形农田的面积为:()22sin 302sin 4sin sin(30)S R R R θθθθ=-⋅=- 22132sin 2cos 232R R θθ⎛⎫=+- ⎪ ⎪⎝⎭()222sin 2603R R θ=+-当()sin 2601θ+=时,即15θ=时,S 有最大值为()223R-又100R =,所以面积的最大值为()1000023-. 故答案为:()1000023-.【点睛】本题考查在扇形中求矩形面积的最值,属于中档题. 思路点睛:(1)在扇形中求矩形的面积,关键是设出合适的变量,一般情况下是以角度为变量; (2)合理的把长和宽放在三角形中,利用角度表示矩形的长和宽; (3)对三角函数合理变形,从而求出面积.18.【分析】由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论【详解】由得得∴又∴故答案为:【点睛】方法点睛:本题考查求解三角方程解题方法:(1)利用三角函数的恒等变换公式化方程为的形式然后解析:12π 【分析】 由二倍角公式和两角差的正弦公式化简变形后由正弦函数性质得出结论. 【详解】由21sin cos 2x x x =得1cos 212222x x -+=,得sin 206x π⎛⎫-= ⎪⎝⎭,∴26x k ππ-=,,212k x k Z ππ=+∈, 又0,4x π⎡⎤∈⎢⎥⎣⎦,∴12x π=. 故答案为:12π.【点睛】方法点睛:本题考查求解三角方程,解题方法:(1)利用三角函数的恒等变换公式化方程为sin()x k ωϕ+=的形式,然后由正弦函数的定义得出结论.(2)用换元法,如设sin x t =,先求得方程()0f t =的解0t ,然后再解方程0sin x t =.19.(答案不唯一)【分析】根据的值域为可知若满足则必有的值分别为再根据三角函数的性质分析即可【详解】因为的值域为故若满足则必有的值分别为故的最小值当且仅当为相邻的两个最值点取得此时为的半个周期即故答案为解析:π2(答案不唯一) 【分析】根据()cos2f x x =的值域为[]1,1-可知若12,x x 满足()()122f x f x -=则必有()()12,f x f x 的值分别为±1,再根据三角函数的性质分析即可.【详解】因为()cos2f x x =的值域为[]1,1-,故若12,x x 满足()()122f x f x -=则必有()()12,f x f x 的值分别为±1,故12x x -的最小值当且仅当12,x x 为()cos2f x x =相邻的两个最值点取得.此时12x x -为()cos2f x x =的半个周期,即12222ππ⨯=. 故答案为:2π【点睛】关键点点睛:相邻的两个最值点的横坐标的距离为半个周期是解题的突破点.20.3【分析】由平方关系求出用两角和的正弦公式求得再得然后可得【详解】∵∴∴∴故答案为:3【点睛】关键点点睛:本题考查平方关系两角和的正弦公式三角函数求值问题需确定已知角和未知角的关系以确定先用的公式象解析:3 【分析】由平方关系求出cos 4πα⎛⎫-⎪⎝⎭,用两角和的正弦公式求得sin α,再得cos α,然后可得tan α.【详解】 ∵0,2πα⎛⎫∈ ⎪⎝⎭,∴,444πππα⎛⎫-∈- ⎪⎝⎭,cos 4πα⎛⎫-==⎪⎝⎭, ∴sin sin sin cos cos sin 444444525220ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-=+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∴cos 10α==, sin tan 3cos ααα==. 故答案为:3. 【点睛】 关键点点睛:本题考查平方关系,两角和的正弦公式.三角函数求值问题,需确定已知角和未知角的关系,以确定先用的公式.象本题观察得到44ππαα⎛⎫=-+ ⎪⎝⎭,需要用用两角和的正弦(余弦)公式求值,因此先用平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,这就要确定4πα-的范围.以确定余弦值的正负.三、解答题21.(1)π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(2)11,2⎡⎤-⎢⎥⎣⎦.【分析】(1)由恒等变换得()πsin 23f x x ⎛⎫=- ⎪⎝⎭,进而根据πππ2π22π232k x k -+≤-≤+解得()f x 的增区间为π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z ;(2)由ππ,44x ⎡⎤∈-⎢⎥⎣⎦得5πππ2636x -≤-≤,进而得π11sin 232x ⎛⎫-≤-≤ ⎪⎝⎭,即()f x 的值域为11,2⎡⎤-⎢⎥⎣⎦.【详解】 解:(1)()11π2cos 2sin 2sin 2cos 2sin 222223f x x x x x x x ⎫⎛⎫=--=-=-⎪ ⎪⎪⎝⎭⎭, ∵πππ2π22π232k x k -+≤-≤+,()k ∈Z , ∴π5πππ1212k x k -+≤≤+,()k ∈Z , ∴()f x 的增区间为π5ππ,π1212k k ⎡⎤-++⎢⎥⎣⎦()k ∈Z .(2)∵ππ44x -≤≤, ∴5πππ2636x -≤-≤, ∴π11sin 232x ⎛⎫-≤-≤ ⎪⎝⎭, ∴()f x 的值域为11,2⎡⎤-⎢⎥⎣⎦.【点睛】本题解题的关键是根据三角恒等变换得()πsin 23f x x ⎛⎫=- ⎪⎝⎭,进而根据整体换元的思想求函数的单调区间与值域,考查运算求解能力,是中档题. 22.(1)π;(2)最小值为1,最大值为4. 【分析】(1)由二倍角降幂,由两角差的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质可求得最小正周期; (2)求出26x π-的范围,然后由正弦函数性质得最值.【详解】(1)因为2()2sin cos 1f x x x x =++1cos2cos 1x x x =-++2cos 22x x =-+2sin 226x π⎛⎫=-+ ⎪⎝⎭,所以()f x 的最小正周期22T ππ==. (2)因为02x π≤≤,所以52666x πππ-≤-≤. 所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭. 所以()2sin 22[1,4]6f x x π⎛⎫=-+∈ ⎪⎝⎭.即()f x 的最小值为1,最大值为4. 【点睛】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解.23.(1π;(2)最小值1-;最大值2. 【分析】(1)由二倍角公式,两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质求得周期; (2)求得26x π+的范围后,由正弦函数性质得最值.【详解】(1)因为2()2cos )f x x x =--()2223sin cos cos x x x x =-+-()22212sin212sin 2x x x x =-+=-cos 222sin 26x x x π⎛⎫==+ ⎪⎝⎭所以22sin 22sin 4463f ππππ⎛⎫⎛⎫=⋅+==⎪ ⎪⎝⎭⎝⎭所以()f x 的周期为22||2T πππω===. (2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,252,,2,33666x x πππππ⎡⎤⎡⎤∈-+∈-⎢⎥⎢⎥⎣⎦⎣⎦所以当6x π=-时,函数取得最小值16f π⎛⎫-=- ⎪⎝⎭.当6x π=时,函数取得最大值26f π⎛⎫=⎪⎝⎭. 【点睛】关键点点睛:本题考查求三角函数的周期,最值.解题方法是利用二倍角公式,诱导公式,两角和与差的正弦(或余弦)公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质求解.24.(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2){}0,6ππ⎡⎤⋃⎢⎥⎣⎦.【分析】(1)由图可得:A =724123T πππω=-=可求ω的值,再令2(21)3k πϕπ⨯+=+()k Z ∈结合[)0,2ϕπ∈可求ϕ的值,进而可求()f x 的解析式;(223x π⎛⎫+≥ ⎪⎝⎭,可得sin 23x π⎛⎫+≥ ⎪⎝⎭,所以结合正弦函数的图象和[]0,x π∈即可求解.【详解】(1)由题意知:A =741234T πππ=-=, 所以2T ππω==即=2ω,所以2(21)3k πϕπ⨯+=+,02ϕπ≤<,所以=3πϕ,所以()23f x x π⎛⎫=+ ⎪⎝⎭,(2232x π⎛⎫+≥ ⎪⎝⎭,即sin 232x π⎛⎫+≥ ⎪⎝⎭, 所以()2222333k x k k Z πππππ+≤+≤+∈, 令0k =可得22333x πππ≤+≤,解得06x π≤≤,令1k =可得2222333x πππππ+≤+≤+,解得:76x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或x π=,即{}0,6x ππ⎡⎤∈⋃⎢⎥⎣⎦ 【点睛】关键点点睛:利用五点法求函数解析式,关键是3x π=是下降零点,所以2(21)3k πϕπ⨯+=+,结合[)0,2ϕπ∈即可求ϕ23x π⎛⎫+≥ ⎪⎝⎭()2222333k x k k Z πππππ+≤+≤+∈对k 取值,再与[]0,x π∈求交集即可. 25.(1)1;(2)()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.【分析】本题考查三角函数的图像和性质、三角恒等变换,根据三角恒等变换公式()f x 化简函数解析式,根据图像和性质求单调递增区间. 【详解】(1)5()(cos cossin sin )(1cos 2)332f x wx wx wx wx ππ=--++23sin 23sin cos 222wx wx wx =--+1cos 2323cos 222wx wx wx -=-⨯-+12cos 22wx wx =+ sin(2)6wx π=+又因为()f x 图象上相邻的两个最低点间的距离为π,0w >, 所以22w,解得1w =.(2)据(1)求解知,()sin(2)6f x x π=+令222()262k x k k Z πππππ-+≤+≤+∈,所以()36k x k k Z ππππ-+≤≤+∈,所以所求的单调递增区间是()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.【点睛】思路点睛:三角恒等变换综合应用的解题思路:(1)利用降幂、升幂公式将()f x 化为sin cos a x b x 的形式;(2)构造())f x x x +;(3)和差公式逆用,得())f x x ϕ=+ (其中ϕ为辅助角,tan b aϕ=);(4)利用())f x x ϕ=+研究三角函数的性质; (5)反思回顾,查看关键点、易错点和答题规范. 26.(1)最小正周期为π;(2)单调递减区间为5,36k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z ;(3)[0,3].【分析】(1)逆用二倍角公式化简整理可得()2sin 216f x x π⎛⎫=-+ ⎪⎝⎭,再利用2T ωπ=即可求得()f x 的最小正周期;(2)令26z x π=-,利用函数2sin 1y z =+的图像与性质,列出不等式,即可求得()f x 的单调递减区间;(3)由20,3x π⎡⎤∈⎢⎥⎣⎦,可得72,666x πππ⎡⎤-∈-⎢⎥⎣⎦,结合正弦函数的图像与性质,即可求得()f x 的取值范围.【详解】 (1)由已知可得()1cos 2cos f x x x x =-+2cos 21x x =-+2sin 216x π⎛⎫=-+ ⎪⎝⎭.所以()f x 的最小正周期为22T ππ==. (2)令26z x π=-,函数2sin 1y z =+的单调递减区间是32,222k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z .所以3222262k x k πππππ+≤-≤+,k ∈Z 得536k x k ππππ+≤≤+,k ∈Z . 所以()f x 的单调递减区间为5,36k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈Z .(3)因为20,3x π⎡⎤∈⎢⎥⎣⎦,所以72,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1sin 2,162x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 所以()[0,3]f x ∈,即()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的取值范围是[0,3]. 【点睛】本题考查二倍角公式的逆用,辅助角公式的应用,正弦型函数的单调区间、周期和值域问题,综合性较强,考查计算化简,数形结合的能力,考查整体性的思想,属基础题.。

必修4三角函数单元测试题(含答案)

必修4三角函数单元测试题(含答案)

必修4三角函数单元测试题(含答案) 三角函数单元测试1.sin210的值是多少?A。

3/2B。

-3/2C。

1/2D。

-1/22.终边相同的角是哪一组?A。

π或kπB。

(2k+1)π或(4k±1)π(k∈Z)C。

kπ±π/3或π/3k(k∈Z)D。

kπ±π/6或kπ±π/6(k∈Z)3.已知cosθ·tanθ<0,那么角θ在哪两个象限之间?A。

第一或第二象限角B。

第二或第三象限角C。

第三或第四象限角D。

第一或第四象限角4.已知弧度数为2的圆心角所对的弦长是2,则这个圆心角所对的弧长是多少?A。

2sin1B。

sin2C。

2D。

π5.要得到函数y=2sin(xπ/36),x∈R的图像,只需把函数y=2sinx,x∈R的图像上所有的点:A。

向左平移π/36个单位长度,再把所得各点的横坐标不变,纵坐标伸长到原来的3倍B。

向右平移π/36个单位长度,再把所得各点的横坐标不变,纵坐标伸长到原来的3倍C。

向左平移π/36个单位长度,再把所得各点的横坐标不变,纵坐标缩短到原来的1/3D。

向右平移π/36个单位长度,再把所得各点的横坐标不变,纵坐标缩短到原来的1/36.设函数f(x)=sin((x+π/3)/3)(x∈R),则f(x)在区间:A。

(2π/7,2π/3)上是增函数B。

(-π,2π/3)上是减函数C。

(π,8π/4)上是增函数D。

(-π,2π/3)上是增函数7.函数y=Asin(ωx+φ)(ω>0,φ<π)的部分图象如图所示,则函数表达式是:A。

y=-4sin(x+π/4)B。

y=4sin(x-π/4)C。

y=-4sin(x-π/4)D。

y=4sin(x+π/4)8.函数y=sin(3x-π/4)的图象是中心对称图形,其中它的一个对称中心是:A。

(-π/4,0)B。

(-π,0)C。

(π,0)D。

(11π/12,0)9.已知f(1+cosx)=cos2x,则f(x)的图象是下图的:(删除明显有问题的段落)4.A5.D6.C7.B8.A9.C10.B二、填空题11.012.513.1/214.-sin(15π/4)三、解答题15.cosα=√(1-sin²α)=√(1-1/4)=√(3/4)=±√3/216.M={θ|θ∈[0,π/4]},N={θ|θ∈[π/4,π]}17.(1)sin²θ+cos²θ+sinθ+cosθ+2sinθcosθ=1+sinθ+cosθsinθ+cosθ+2sinθcosθ=sinθ+cosθ2sinθcosθ=0sinθ=0或cosθ=0θ=kπ或θ=kπ±π/2 (k∈Z)2)将sinθ和cosθ代入原方程得m=1/218.(1)f(x)=sin(3x-π/2)2)a=2,b=419.最大值为1/√3,最小值为-120.(I)π/2II)g(x)=2cos(2x-π/2)-sin(2x)二、填空题11.412.013.414.20三、解答题15.已知 $A(-2,a)$ 是角 $\alpha$ 终边上的一点,且$\sin\alpha=-\dfrac{a}{\sqrt{a^2+16}}$,求 $\cos\alpha$ 的值。

高中数学必修一 第五章 三角函数 单元测试 (17)(含答案解析)

高中数学必修一 第五章  三角函数 单元测试 (17)(含答案解析)

高中数学必修一第五章三角函数单元测试 (17) 一、选择题(本大题共10小题,共50.0分)1.已知f(x)=cos(ωx+φ)(ω>0,|φ|<π2)的图象关于直线x=5π24对称,把f(x)的图象向左平移π4个单位后所得的图象关于点(π12,0)对称,则ω的最小值为()A. 2B. 3C. 4D. 62.已知f(x)=sin(2x−φ)(0<φ<π2)在[0,π3]上是增函数,且f(x)在(0,7π8)有最小值,则φ的取值范围是()A. [π6,π2) B. [π6,π4) C. [π3,π2) D. [π4,π3)3.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分图象如图所示,若存在0≤x1<x2≤π,满足f(x1)=f(x2)=34,则cos(x1−x2)=()A. −√74B. √74C. 34D. −344.已知α∈(0,π2),tanα=√2cosα,则sinα=()A. √33B. √63C. √22D. √325.sin(−19π6)=()A. −√32B. −12C. 12D. √326.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π2)的部分图象如图所示,则下列说法错误的是()A. 函数f(x)的最小正周期为πB. 直线x=−5π12为函数f(x)的一条对称轴C. 点(−2π3,0)为函数f(x)的一个对称中心D. 函数f(x)的图象向右平移π3个单位后得到y=√2sin2x的图象7.已知函数f(x)=2cosωx2(sinωx2+cosωx2)(ω>0)(ω>0),若函数f(x)在区间(−ω,ω)内单调递增,且函数f(x)的图象关于直线x=ω对称,将f(x)的图象向左平移√π6个单位长度后得到函数g(x)的图象,则函数g(x)任意两个不同零点之差的绝对值得最小值为()A. √πB. πC. 3√πD. 3π8.若cos(π4−α)=√55,则sin2α=()A. −35B. 35C. −45D. 459.已知函数f(x)=2sin(2x+π3),函数g(x)的图象由f(x)图象向右平移π4个单位长度得到,则下列关于函数g(x)的说法正确的是()A. g(x)的图象关于直线x=π6对称 B. g(x)的图象关于点(π3,0)对称C. g(x)在[−π24,5π24]单调递增 D. g(x)在[−π6,π3]单调递减10.将函数y=sin3x的图象向右平移π4个单位长度后,所得函数图象的解析式为()A. y=sin(3x+π4) B. y=sin(3x+3π4)C. y=sin(3x−π4) D. y=sin(3x−3π4)二、填空题(本大题共2小题,共10.0分)11.若点P(cosα,sinα)在直线y=2x上,则cos(2α+π2)的值等于______.12.已知函数y=√32sinπx+12cosπx在x∈[23,t](t>23)时的最小值为m,最大值为M,若2M+m=0,则(m+M)t的取值范围为______.三、解答题(本大题共8小题,共96.0分)13.已知函数f(x)=2cosxcos(x−π6)−√3sin2x+sinxcosx.(Ⅰ)求f(x)的最小正周期和单调递增区间;(Ⅱ)将函数y=f(x)的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位长度,得到函数y=g(x)的图象,若关于x的方程[g(x)]2−(2+a)g(x)+2a=0在[−3π4,π4]上恰有2个根,求a的取值范围.14.已知sinα=13,tanα<0.(Ⅰ)求sin2α的值;(Ⅱ)在平面直角坐标系中,若α的顶点在原点,始边为x轴的非负半轴,将角α的终边绕原点顺时针旋转π4后与单位圆交于点Q,求点Q的坐标.15.已知α∈(π2,π),且sinα=35.(1)求tan(α−π4)的值;(2)求sin(α2+2019π)的值.16.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π2),其部分图象如图所示.(1)求函数f(x)的解析式;(2)若α∈(0,π2),且sin(α−π2)=−13,求f(α)的值.17.已知函数f(x)=cos4x+2sinxcosx−sin4x.(1)求f(x)的最小正周期;(2)当x∈[0,π2]时,求f(x)的最大值和最小值以及对应的x的值.18.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P(−4,3).(1)求cosα的值;(2)若角β满足sin(α−β)=513,求sinβ的值.19.已知函数f(x)=√3sinx⋅cosx−cos2x−12.(Ⅰ)求函数f(x)的单调递增区间及其图象的对称中心;(Ⅱ)当x∈[−π12,5π12]时,求函数f(x)的值域.20.已知α∈(0,π2).(Ⅰ)若sinα=√55,求sin(α+π6)的值;(Ⅱ)若cos(α+π6)=√55,求sinα的值.-------- 答案与解析 --------1.答案:C解析:解:∵已知f(x)=cos(ωx+φ)(ω>0,|φ|<π2)的图象关于直线x=5π24对称,把f(x)的图象向左平移π4个单位后所得的图象关于点(π12,0)对称,而π12+π4=π3,可得f(x)的图象既关于直线x=5π24对称,又关于点(π3,0)对称,∴2k+14⋅2πω=(π3−5π24),∴ω=8k+4,k∈Z,则ω的最小值为4,故选:C.由题意利用正弦函数的图象和性质,函数y=Asin(ωx+φ)的图象变换规律,得出结论.本题主要考查正弦函数的图象和性质,函数y=Asin(ωx+φ)的图象变换规律,属于中档题.2.答案:B解析:解:由x∈[0,π3],可得2x−φ∈[−φ,2π3−φ],结合0<φ<π2,由f(x)在[0,π3]上是增函数,可得2π3−φ≤π2,所以π6≤φ<π2①.当x∈(0,7π8)时,2x−φ∈(−φ,7π4−φ),由f(x)在(0,7π8)有最小值,可得7π4−φ>3π2,即φ<π4②,结合①②可得,π6≤φ<π4,故选:B.由题意利用正弦函数的最值、定义域和值域,求得φ的取值范围.本题主要考查正弦函数的最值、定义域和值域,属于中档题.3.答案:C解析:解:由图象知函数的周期T=2×(13π12−7π12)=2×6π12=π,即2πω=π,得ω=2,f(7π12+13π122)=f(10π12)=sin(2×10π12+φ)=−1,即5π3+φ=2kπ+3π2,即φ=2kπ−π6,k∈Z,当k =0时,φ=−π6, 即f(x)=sin(2x −π6),∵存在0≤x 1<x 2≤π,满足f(x 1)=f(x 2)=34, ∴−π6≤2x 1−π6≤11π6,则θ1=2x 1−π6,θ2=2x 2−π6关于π2对称,即2x 1−π6+2x 2−π62=π2,得x 2=2π3−x 1,且sin(2x 1−π6)=34 则cos(x 1−x 2)=cos(2x 1−2π3),设2x 1−π6=α,则2x 1=π6+α,即sinα=34 则cos(x 1−x 2)=cos(2x 1−2π3)=cos(π6+α−2π3)=cos(α−π2)=sinα=34故选:C .根据图象求出函数解析式,结合对称性求出x 2=2π3−x 1,然后利用三角函数的诱导关系进行转化求解即可.本题主要考查三角函数值的计算,结合条件求出函数的解析式,利用三角函数的对称性以及三角函数的诱导关系进行转化是解决本题的关键.有一定的难度. 4.答案:C解析:解:∵α∈(0,π2),tanα=√2cosα, ∴sinαcosα=√2cosα,即cos 2α=2又∵sin 2α+cos 2α=1, ∴sin 2α√2=1,即√2sin 2α+sinα−√2=0,解得sinα=√22,负值舍去.故选:C .由已知利用同角三角函数基本关系式可求cos 2α=√2sin 2α+cos 2α=1,可得解sinα的值.本题主要考查了同角三角函数基本关系式在三角函数化简求值中的应用,考查了方程思想,属于基础题. 5.答案:C解析:解:sin(−19π6)=sin(−3π−π6)=sin π6=12.故选:C .由已知利用诱导公式,特殊角的三角函数值即可求解.本题主要考查了诱导公式,特殊角的三角函数值在三角函数化简求值中的应用,属于基础题. 6.答案:D解析:解:函数f(x)=Asin(ωx +φ)(A >0,ω>0,0<φ<π2)的部分图象, 可得A =√2,14⋅2πω=7π12−π3,∴ω=2,∴最小正周期为T =2π2=π,故A 正确.再根据五点法作图,可得2×π3+φ=π,∴φ=π3, 故函数f(x)=√2sin(2x +π3).令x =−5π12,求得f(x)=−√2,为最小值,故直线x =−5π12为函数f(x)的一条对称轴,故B 正确. 令x =−2π3,求得f(x)=0,故点(−2π3,0)为函数f(x)的一个对称中心,故C 正确.把函数f(x)的图象向右平移π3个单位后得到y =√2sin(2x −π3)的图象,故D 不正确,故选:D .由题意利用由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用正弦函数的图象和性质,函数y =Asin(ωx +φ)的图象变换规律,得出结论. 本题主要考查由函数y =Asin(ωx +φ)的部分图象求解析式,由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出φ的值,正弦函数的图象和性质,函数y =Asin(ωx +φ)的图象变换规律,属于中档题. 7.答案:A解析:解:∵函数f(x)=2cos ωx 2(sinωx 2+cosωx 2)(ω>0)=sinωx +cosωx +1=√2sin(ωx +π4)+1(ω>0),若函数f(x)在区间(−ω,ω)内单调递增,ωx +π4∈(−ω2+π4,ω2+π4), ∴−ω2+π4≥−π4,ω2+π4≤π2,求得ω≤√π2.又函数f(x)的图象关于直线x =ω对称,∴ω2+π4=kπ+π2,即ω=√kπ+π4,∴ω=√π2,f(x)=√2sin(√π2x +π4)+1.将f(x)的图象向左平移√π6个单位长度后得到函数g(x)=√2sin(√π2x +π12+π4)+1=√2sin(√π2x +π3)+1的图象. 令g(x)=0,求得sin(√π2x +π3)=−√22,则函数g(x)任意两个不同零点之差的绝对值得最小值为T4=14√π2=√π,故选:A .由题意利用三角恒等变换化简f(x)的解析式,再根据函数y =Asin(ωx +φ)的图象变换规律,得到g(x)的解析式,结合正弦函数的周期性和零点,求出函数g(x)任意两个不同零点之差的绝对值得最小值.本题主要考查三角恒等变换,函数y =Asin(ωx +φ)的图象变换规律,正弦函数的周期性和零点,属于中档题. 8.答案:A解析:解:法一:根据已知,有sin2α=cos(π2−2α)=2cos 2(π4−α)−1=2×(√55)2−1=−35.法二:由cos(π4−α)=√55得cosα+sinα=√105,两边平方得1+2sinαcosα=25,所以2sinαcosα=−35,即sin2α=−35.故选:A .法一:结合诱导公式及二倍角的余弦公式即可求解;法二:由已知结合两角差的余弦公式展开后,利用同角平方关系即可求解.本小题主要考查诱导公式、余弦的二倍角公式、三角函数求值等基础知识;考查运算求解能力;考查化归与转化思想. 9.答案:C解析:解:函数f(x)=2sin(2x +π3),把由f(x)图象向右平移π4个单位长度得到g(x)=2sin(2x −π6)的图象,关于函数g(x),令x =π6,可得g(x)=1,不是最值,故排除A ; 令x =π3,求得g(x)=2,为最大值,故排除B ;在[−π24,5π24]上,2x −π6∈[−π4,π4],故g(x)在[−π24,5π24]单调递增,故C 正确; 在[−π6,π3]上,2x −π6∈[−π2,π2],故g(x)在在[−π6,π3]上单调递增,故D 错误,故选:C .由题意利用函数y =Asin(ωx +φ)的图象变换规律,正弦函数的性质,得出结论. 本题主要考查函数y =Asin(ωx +φ)的图象变换规律,正弦函数的性质,属于中档题. 10.答案:D解析:解:函数y =sin3x 的图象向右平移π4个单位长度, 得到y =sin3(x −π4)=sin(3x −3π4),即所得的函数解析式是y =sin(3x −3π4).故选:D .根据三角函数的图象平移关系进行求解即可.本题主要考查三角函数解析式的求解,结合三角函数的图象平移关系是解决本题的关键,属于基础题.11.答案:−45解析:解:∵点P(cosα,sinα)在直线y =2x 上, ∴sinα=2cosα,又sin 2α+cos 2α=1, 解得:cos 2α=15;∴cos(2α+π2)=−sin2α=−2sinαcosα=−4cos 2α=−45.故答案为:−45.根据点P 在直线上,得到sinα和cosα之间的关系,利用同角三角函数基本关系式公式和诱导公式化简得出答案.本题考查了诱导公式的应用,同角三角函数的关系,属于基础题.12.答案:[−1,−23]解析:解:y =√32sinπx +12cosπx =sin(πx +π6)∵x ∈[23,t],∴πx +π6∈[56π,πt +π6],∵当x =23时,y =12,∴M ≥12或−1≤m <12,即−1≤−2M <12,∴−14<M ≤12, ∴M =12,m =−1.由正弦函数的图象可知,πt +π6∈[32π,136π],解得t ∈[43,2].∴(m +M)t =(−1+12)t ∈[−1,−23].故答案为:[−1,−23].先根据辅助角公式将函数y 化简为y =sin(πx +π6),从而得πx +π6∈[56π,πt +π6],当x =23时,y =12,由此可推出M ≥12或−1≤m <12,进而得到M =12,m =−1.再结合正弦函数的图象可知,πt +π6∈[32π,136π],解之得t 的取值范围,故而得解.本题考查三角函数与三角恒等变换的综合应用,涉及辅助角公式、正弦函数的图象与性质,考查学生的数形结合思想、逻辑推理能力和运算能力,属于中档题.13.答案:解:(Ⅰ)f(x)=2cosxcos(x −π6)−√3sin 2x +sinxcosx=√3cos 2x +sinxcosx −√3sin 2x +sinxcosx =√3cos2x +sin2x =2sin(2x +π3),所以,f(x)的最小正周期为T=2π2=π.令2kπ−π2≤2x+π3≤2kπ+π2,得kπ−5π12≤x≤kπ+π12(k∈Z).所以f(x)的单调递增区间为[kπ−5π12,kπ+π12](k∈Z).(Ⅱ)由(Ⅰ)知f(x)=2sin(2x+π3),将函数y=f(x)的图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到y=2sin(x+π3)的图象;再将得到的图象向左平移π4个单位长度,得到函数y=g(x)的图象,所以g(x)=2sin(x+π3+π4)=2sin(x+7π12).由[g(x)]2−(2+a)g(x)+2a=0,得g(x)=2,或g(x)=a.当x∈[−3π4,π4]时,x+7π12∈[−π6,5π6].当且仅当x+7π12=π2,即x=−π12时,g(x)=2.由题意,g(x)=a仅有一个根,因为2sin(−π6)=−1,2sin5π6=1,所以,a的取值范围是[−1,1).解析:(Ⅰ)由题意利用三角恒等变换化简函数的解析式,再利用正弦函数的周期性、单调性,得出结论.(Ⅱ)由题意利用函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再结合三角函数的图象与性质,求得a的范围.本题考查三角恒等变换、正弦函数的周期性和单调性,定义域和值域,函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象与性质,属于中档题.14.答案:解:(Ⅰ)∵tanα<0,且sinα=13,∴cosα=−√1−sin2α=−2√23,∴sin2α=2sinαcosα=2×13×(−2√23)=−4√29.(Ⅱ)由三角函数的定义可知,终边旋转后得到的角为α−π4.∵cos(α−π4)=cosαcosπ4+sinαsinπ4=−2√23×√22+13×√22=√2−46,sin(α−π4)=sinαcosπ4−cosαsinπ4=13×√22+2√23×√22=√2+46,∴点Q的坐标为(√2−46,√2+46).解析:(Ⅰ)由题意利用同角三角函数的基本关系求得sin2α的值.(Ⅱ)由题意利用任意角三角函数的定义,两角和差的三角公式,求得点Q的坐标.本题考查任意角三角函数的定义,同角三角函数的基本关系,两角和差的三角公式,属于基础题.15.答案:解:(1)因为α∈(π2,π),且sinα=35.所以:cosα=2α=−45;∴tanα=−34;∴tan(α−π4)=tanα−tanπ41+tanα⋅tanπ4=−34−11+(−34)×1=−7;(2)因为α∈(π2,π),∴α2∈(π4,π2);又cosα=−45=1−2sin2α2⇒sinα2=3√1010;∴sin(α2+2019π)=−sinα2=−3√1010.解析:(1)根据三角函数的定义先求出cosα,即可得到结论.(2)利用三角函数的诱导公式进行化简进行求解即可.本题主要考查三角函数的定义以及三角函数的诱导公式的应用,属于基础题目.16.答案:解:(1)易知A=1,T=4(7π12−π3)=π,故ω=2ππ=2.故此时f(x)=sin(2x+φ),将(π3,0)代入得sin(2π3+φ)=0,因为此处函数递减,故2π3+φ=π+2kπ,k∈Z,结合φ的范围,当k=0时,得φ=π3,故f(x)=sin(2x+π3).(2)sin(α−π2)=−13,得cosα=13,sinα=2√23.所以f(α)=sin(2α+π3)=sin(2α)cosπ3+cos2αsinπ3=2sinαcosα×12+(2cos2α−1)×√32 =2×2√23×13×12+(2×(13)2−1)×√32=4√2−7√318.解析:(1)根据最高点与最低点的坐标求出A 的值,再根据最低点、零点间的距离求出周期,进而求出ω的值,最后结合最小值点求出φ值;(2)先根据sin(α−π2)=−13,求出cosα的值,然后根据倍角公式求出结论.本题考查三角函数的图象与性质,据图求式时,利用零点求φ值时,要注意零点处的增减性.属于中档题. 17.答案:解:(1)∵f(x)=cos 4x +2sinxcosx −sin 4x ,=(cos 2x −sin 2x)(cos 2x +sin 2x)+sin2x ,=cos2x +sin2x ,=√2sin(2x +π4), 故f(x)的最小正周期T =π;(2)由x ∈[0,π2]可得2x +π4∈[π4,5π4], 当2x +π4=π2即x =π8时,函数取得最大值√2,当得2x +π4=5π4即x =π2时,函数取得最小值−1.解析:(1)先利用同角平方关系及二倍角公式,辅助角公式进行化简,即可求解;(2)由x 的范围先求出2x +π4的范围,结合正弦函数的性质即可求解.本题主要考查了二倍角公式,辅助角公式在三角函数化简中的应用,还考查了正弦函数的最值的求解,属于基础试题.18.答案:解:(1)角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P(−4,3). 所以cosα=−45.(2)由于α为第二象限角,所以cosα=−45,sinα=35.由于sin(α−β)=513,所以cos(α−β)=±1213当cos(α−β)=1213时,所以sinβ=sin[α−(α−β)]=sinαcos(α−β)−cosαsin(α−β)=5665.当cos(α−β)=−1213时,所以sinβ=sin[α−(α−β)]=sinαcos(α−β)−cosαsin(α−β)=−1665故结果为5665或−1665.解析:(1)直接利用三角函数定义的应用求出结果.(2)利用三角函数关系式的变换和角的变换的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,三角函数定义的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.19.答案:解:(Ⅰ)由于f(x)=√32sin2x−1+cos2x2−12=√32sin2x−12cos2x−1=sin(2x−π6)−1,令2kπ−π2≤2x−π6≤2kπ+π2,求得kπ−π6≤x≤kπ+π3,k∈Z,可得f(x)的单调递增区间是[kπ−π6,kπ+π3],k∈Z.令2x−π6=kπ,求得x=kπ2+π12,可得它的图象的对称中心是(12kπ+π12,−1),k∈Z.(Ⅱ)∵−π12≤x≤5π12,∴−π3≤2x−π6≤2π3,∴−√32≤sin(2x−π6)≤1,从而−1−√32≤sin(2x−π6)−1≤0,则f(x)的值域是[−1−√32,0].解析:(Ⅰ)利用三角恒等变换花简函数f(x)的解析式,再利用正弦函数的单调性,求得它的单调递增区间及其图象的对称中心.(Ⅱ)由题意利用正弦函数的定义域和值域,求得结果.本题主要考查三角恒等变换,正弦函数的单调性、图象的对称性、定义域和值域,属于中档题.20.答案:解:(Ⅰ)因为sinα=√55,α∈(0, π2),所以cosα=2√55,所以sin(α+π6)=√32sinα+12cosα,=√1510+2√510=√15+2√510.(Ⅱ)因为α∈(0, π2),所以α+π6∈(π6, 2π3),又因为cos(α+π6)=√55,所以sin(α+π6)=2√55,所以sinα=sin[(α+π6)−π6]=√32sin(α+π6)−12cos(α+π6),=2√1510−√510=2√15−√510.解析:(I)由已知结合同角平方关系可求cosα,然后结合两角和的正弦公式即可求解;(II)由已知结合两角差的正弦公式即可求解.本题主要考查了同角基本关系及和差角公式在三角化简求值中的应用,属于基础试题.。

第五章三角函数单元测试卷及参考答案

第五章三角函数单元测试卷及参考答案

第五章 三角函数单元测试卷一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知角α的终边经过点(,3)P x -,且3tan 4α=-,则cos α=( ) A .35±B .45±C .45-D .452.已知3cos 4x =,则cos2x =( ) A .14-B .14C .18-D .183.如果函数y =3cos (2x +φ)的图象关于点(43π,0)中心对称,那么|φ|的最小值为( ) A .6πB .4π C .3π D .2π4.已知函数()sin 3f x x x =,则在下列区间使函数()f x 单调递减的是( )A .3,24ππ⎛⎫⎪⎝⎭B .0,4π⎛⎫⎪⎝⎭C .5,4ππ⎛⎫ ⎪⎝⎭D .,24ππ⎛⎫-- ⎪⎝⎭5.若,αβ为锐角,45sin ,cos()513ααβ=+=,则sin β等于( ) A .1665B .5665C .865D .47656.函数()sin()(0,0)f x A x A ωϕω=+>>的部分图象如图所示,则下列说法中错误的是( )A .()f x 的最小正周期是2πB .()f x 在1931,1212ππ⎡⎤⎢⎥⎣⎦上单调递增 C .()f x 在175,1212ππ⎡⎤--⎢⎥⎣⎦上单调递增D .直线1712x π=-是曲线()y f x =的一条对称轴7.已知7sin 6πα⎛⎫+=⎪⎝⎭2cos 23πα⎛⎫- ⎪⎝⎭=( ) A .23-B .13-C .23D .138.将函数()2sin 2cos 2cos sin sin 22f x x x ππθθθθ⎛⎫=+--<< ⎪⎝⎭的图象向右平移()0ϕϕ>个单位长度后得到函数()g x 的图象,若()f x ,()g x 的图象都经过点P ⎛ ⎝⎭,则ϕ的值可以是( ) A .53πB .56π C .2π D .6π 二、多选题(每题有多个选项为正确答案,每题5分,共20分) 9.设函数()sin 23f x x π⎛⎫=+⎪⎝⎭,给出下列命题,不正确的是( ). A .()f x 的图象关于直线3x π=对称B .()f x 的图象关于点,012π⎛⎫⎪⎝⎭对称 C .把()f x 的图象向左平移12π个单位长度,得到一个偶函数的图象D .()f x 的最小正周期为π,且在06,π⎡⎤⎢⎥⎣⎦上为增函数10.设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x ( ) A .是偶函数 B .在区间0,2π⎛⎫⎪⎝⎭上单调递增 C .最大值为2 D .其图象关于点,04π⎛⎫⎪⎝⎭对称 11.如图是函数sin()()y A x x R ωϕ=+∈在区间5,66ππ⎡⎤-⎢⎥⎣⎦上的图象.为了得到这个函数的图象,只要将sin ()y x x R =∈的图象上所有的点( ).A .向左平移3π个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变 B .向左平移6π个单位长度,再把所得各点的横坐标仲长到原来的12,纵坐标不变C .把所得各点的横坐标缩短到原来的12,纵坐标不变,再向左平移6π个单位长度D .向左平移3π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变12.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图像如图所示,将函数()f x 的图像向左平移3π个单位长度后得到()y g x =的图像,则下列说法正确的是( )A .函数()g x 为奇函数B .函数()g x 的最小正周期为πC .函数()g x 的图像的对称轴为直线()6x k k ππ=+∈ZD .函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z三、填空题(每题5分,共20分)13.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限. 14.函数()f x =sin 6x π⎛⎫-⎪⎝⎭cos x 的最小值为_________.15.已知1sin 34πα⎛⎫+=⎪⎝⎭,则cos 6πα⎛⎫-= ⎪⎝⎭______.16.已知函数()tan(),(0,0)2f x x πωϕωϕ=+><<的相邻两个对称中心距离为32π,且()f π=,将其上所有点的再向右平移3π个单位,纵坐标不变,横坐标变为原来的13,得()g x 的图像,则()g x 的表达式为_______四、解答题(17题10分,其余每题12分,共70分) 17.已知1tan 42πα⎛⎫+=⎪⎝⎭. (Ⅰ)求tan α的值;(Ⅱ)求()()22sin 22sin 21cos 2sin παπαπαα⎛⎫+-- ⎪⎝⎭--+的值.18.已知函数()24f x x π⎛⎫- ⎝=⎪⎭.(1)求函数()f x 的最小值和最大值及相应自变量x 的集合; (2)求函数()f x 的单调递增区间;(3)画出函数()y f x =区间[]0,π内的图象.19.已知()2sin cos cos 44f x x x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭ (1)求函数()f x 的单调递减区间;(2)若关于x 的函数()()()22sin 2g x f x k x =-+在区间,122ππ⎡⎤⎢⎥⎣⎦上有唯一零点,求实数k 的取值范围.20.一半径为2米的水轮如图所示,水轮圆心O 距离水面1米;已知水轮按逆时针做匀速转动,每3秒转一圈,如果当水轮上点P 从水中浮现时(图中点0P )开始计算时间. (1)以水轮所在平面与水面的交线为x 轴,以过点O 且与水面垂直的直线为y 轴,建立如图所示的直角坐标系,试将点P 距离水面的高度h (单位:米)表示为时间t (单位:秒)的函数;(2)在水轮转动的任意一圈内,有多长时间点P 距水面的高度超过2米?21.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的图象在y 轴右侧的第一个最高点和第一个最低点的坐标分别为()02x ,和()0,2x +π-.若将函数()f x 的图象向左平移3π个单位长度后得到的图象关于原点对称. (1)求函数()f x 的解析式;(2)若函数()()10y f kx k =+>的周期为23π,当0,3x π⎡⎤∈⎢⎥⎣⎦时,方程()1f kx m +=恰有两个不同的解,求实数m 的取值范围.22.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>≤⎪⎝⎭的图象如图所示.(1)求函数()f x 的单调递增区间; (2)将函数()y f x =的图象向右平移6π个单位长度得到曲线C ,把C 上各点的横坐标伸长到原来的2倍,纵坐标不变,得到的曲线对应的函数记作()y g x =. (i )求函数()()2x h x f g x ⎛⎫=⎪⎝⎭的最大值; (ii )若函数()2()()2F x g x mg x m R π⎛⎫=-+∈ ⎪⎝⎭在()()0,n n N π+∈内恰有2015个零点,求m 、n 的值.参考答案: 一、单选题 1.【答案】D【解析】角α的终边经过点(),3P x -,由3tan 4α=-,可得334x -=-,所以4x =. 所以4cos 5α==.故选D.2.【答案】D【解析】由3cos 4x =得2231cos 22cos 12148x x ⎛⎫=-=⨯-= ⎪⎝⎭,故选D .. 3.【答案】A【解析】∵函数y =3cos (2x +φ)的图象关于点4,03π⎛⎫⎪⎝⎭中心对称. ∴4232k ππϕπ⋅+=+∴13()6πϕπ=-∈k k Z 当2k =时,有min ||6πϕ=.故选:A. 4.【答案】C【解析】依题意,函数()2sin(3)3f x x π=-,令3232,232k x k k Z πππππ+≤-≤+∈, 解得52211,183318k k x k Z ππππ+≤≤+∈, 所以函数 在3,24ππ⎛⎫⎪⎝⎭ 上先增后减,在0,4π⎛⎫ ⎪⎝⎭ 上单调递增,在5,4ππ⎛⎫⎪⎝⎭上单调递减, 在,24ππ⎛⎫-- ⎪⎝⎭ 上先增后减.故选C . 5.【答案】A【解析】由角的关系可知根据同角三角函数关系式,可得()312cos ,sin 513ααβ=+= ()sin sin βαβα=+-⎡⎤⎣⎦ ()()sin cos cos sin αβααβα=+-+ 12354135135=⨯-⨯ 1665=所以选A 6.【答案】C【解析】由图可知,2A =,该三角函数的最小正周期7233T πππ=-=,故A 项正确; 所以21Tπω==,则()2sin()f x x ϕ=+. 因为563f f ππ⎛⎫⎛⎫= ⎪⎝ ⎝⎭⎭⎪,所以该函数的一条对称轴为5736212x πππ+==, 将7,212π⎛⎫⎪⎝⎭代入2sin()y x ϕ=+,则72()122k k ππϕπ+=+∈Z ,解得2()12k k πϕπ=-+∈Z ,故()2sin 22sin 1212f x x k x πππ⎛⎫⎛⎫=-+=- ⎪ ⎪⎝⎭⎝⎭.令22()2122k x k k πππππ--+∈Z ,得5722()1212k x k k ππππ-≤≤+∈Z , 令1k =,则1931,1212x ππ⎡⎤∈⎢⎥⎣⎦故函数()f x 在1931,1212ππ⎡⎤⎢⎥⎣⎦上单调递增.故B 项正确; 令322()2122k x k k πππππ+≤-≤+∈Z , 得71922()1212k x k k ππππ+≤≤+∈Z , 令1k =-,175,1212x ππ⎡⎤∈--⎢⎥⎣⎦ 故函数()f x 在175,1212ππ⎡⎤--⎢⎥⎣⎦上单调递减.故C 项错误; 令()122x k k πππ-=+∈Z ,得7()12x k k ππ=+∈Z ,令2k =-,1712x π=-故直线1712x π=-是()f x 的一条对称轴.故D 项正确.故选C. 7.【答案】B【解析】由题意7sin sin sin 666πππαπαα⎛⎫⎛⎫⎛⎫+=++=-+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以sin 63πα⎛⎫+=⎪⎝⎭, 所以2cos 2cos 2cos 2cos 23336ππππαπααα⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-+=-+=-+⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦ 2212sin 121633πα⎛⎛⎫=+-=⨯--=- ⎪ ⎝⎭⎝⎭. 故选B . 8.【答案】B 【解析】易得()()2sin 2cos 2cos sin sin sin 2cos cos2sin sin 2f x x x x x x θθθθθθ=+-=+=+.因为函数()f x 的图象过点P ⎛ ⎝⎭,22ππθ-<<,所以代入函数解析式得3πθ=. 所以()sin 23f x x π⎛⎫=+⎪⎝⎭.根据题意,得()()sin 23g x x πϕ⎡⎤=-+⎢⎥⎣⎦,又因为()g x 的图象也经过点P ⎛ ⎝⎭,所以代入得sin 23πϕ⎛⎫-=⎪⎝⎭将53πϕ=、56π、2π或6π代入sin 23πϕ⎛⎫-=⎪⎝⎭只有56π成立. 故选B. 二、多选题 9.【答案】ABD【解析】因为sin 03f ππ⎛⎫== ⎪⎝⎭,所以A 不正确; 因为sin 1122f ππ⎛⎫==⎪⎝⎭,所以B 不正确;因为函数()f x 的最小正周期为π,但sin 112226f f πππ⎛⎫⎛⎫==>=⎪ ⎪⎝⎭⎝⎭,所以D 不正确;把函数()f x 的图象向左平移12π个单位长度,得到函数sin 2sin 2cos21232y x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,函数cos 2y x =为偶函数,所以C 正确. 故选:ABD. 10.【答案】AD【解析】()sin 2cos 2224444f x x x x x ππππ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ .选项A :()2))()f x x x f x -=-== ,它是偶函数,正确;选项B :0,2x π⎛⎫∈ ⎪⎝⎭,所以()20,x π∈,因此()f x 是单调递减,错误;选项C :()2f x x =,错误;选项D :函数的对称中心为(,0)24k ππ+ ,k Z ∈,当0k =,图象关于点,04π⎛⎫⎪⎝⎭对称, 错误. 故选:AD 11.【答案】AC【解析】由图象知,A=1,T=π,所以ω=2,y=sin (2x+ϕ),将(6π-,0)代入得:sin(ϕ3π-)=0,所以ϕ3π-=kπ,k z ∈,取ϕ=3π,得y=sin (2x+3π),sin y x =向左平移3π,得sin 3y x π⎛⎫=+ ⎪⎝⎭.然后各点的横坐标缩短到原来的12,得sin 23y x π⎛⎫=+ ⎪⎝⎭.故A 正确.sin y x =各点的横坐标缩短到原来的12,得sin 2y x =.然后向左平移6π个单位,得sin 26y x π⎛⎫=+ ⎪⎝⎭sin 23x π⎛⎫=+ ⎪⎝⎭.故C 正确.故选:AC 12.【答案】BD 【解析】由图象可知3A =,33253441234ππππω⎛⎫=⋅=--= ⎪⎝⎭T , ∴2ω=,则()3sin(2)f x x ϕ=+.将点5,312π⎛⎫ ⎪⎝⎭的坐标代入()3sin(2)f x x ϕ=+中,整理得5sin 2112πϕ⎛⎫⨯+= ⎪⎝⎭, ∴522,Z 122k k ππϕπ⨯+=+∈,即2,Z 3k k πϕπ=-∈.||2ϕπ<,∴3πϕ=-,∴()3sin 23f x x π⎛⎫=-⎪⎝⎭. ∵将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象, ∴()3sin 23sin 2,333πππ⎡⎤⎛⎫⎛⎫=+-=+∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦g x x x x R . ∴()g x 既不是奇函数也不是偶函数,故A 错误; ∴()g x 的最小正周期22T ππ==,故B 正确. 令2,32x k k πππ+=+∈Z ,解得,122k x k ππ=+∈Z .则函数()g x 图像的对称轴为直线,122k x k ππ=+∈Z .故C 错误; 由222,232k x k k πππππ-++∈Z ,可得5,1212k x k k ππππ-+∈Z ,∴函数()g x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦.故D 正确. 故选:BD.三、填空题 13.【答案】二【解析】因为点P (tanα,cosα)在第三象限,所以tanα<0,cosα<0, 则角α的终边在第二象限,故答案为二. 14.【答案】34-【解析】由函数()211sin()cos (sin cos )cos cos cos 62222f x x x x x x x x x π=-=-=-1112(1cos 2)sin(2)44264x x x π=-+=--, 当sin(2)16x π-=-时,即,6x k k Z ππ=-+∈时,函数取得最小值34-. 15.【答案】14【解析】因为1sin()34πα+=,则1cos()sin(())sin()62634ππππααα-=--=+=. 16.【答案】2()tan()9g x x π=+. 【解析】由题意,函数()tan()f x x ωϕ=+的相邻两个对称中心距离为1322w ππ⋅=,解得13w =,且()f π=,即tan()3πϕ+=,因为02πϕ<<,解得3πϕ=,所以1()tan()33f x x π=+,将()f x 图象上的点向右平移3π个单位,可得112()tan[()]tan()33339f x x x πππ=-+=+, 再把所得图象的纵坐标不变,横坐标变为原来的13,可得2()tan()9f x x π=+的图象, 即函数()g x 的解析式为2()tan()9f x x π=+. 故答案为:2()tan()9f x x π=+. 四、解答题17.【答案】(Ⅰ)1tan =-3α;(Ⅱ)15-19.【解析】解:(Ⅰ)tantan 1tan 14tan()41tan 21tantan 4παπααπαα+++===--,解得;(Ⅱ)22sin(22)sin ()21cos(2)sin παπαπαα+----+=22sin 2cos 1cos 2sin αααα-++ 2222sin cos cos 2cos sin ααααα-=+22tan 1152tan 19αα-==-+. 18.【答案】(1,取得最大值时相应x 的集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭; 最小值为,取得最小值时相应x 的集合为,8x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭; (2)3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(3)图象见解析. 【解析】(1)()f x ,当2242x k πππ-=+,即38x k ππ=+时,等号成立, ∴()f x 取得最大值时相应x 的集合为3,8x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭()f x 的最小值为,当2242x k πππ-=-+,即8x k ππ=-+时,等号成立,∴()f x 取得最大值时相应x 的集合为,8x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭(2)由222242k x k πππππ-+≤-≤+求得388k x k ππππ-+≤≤+, ∴()f x 的单调递增区间是3,88k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈(3)列表:()f x 图像如图所示:19.【答案】(1)()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)14k k ⎧⎪<≤⎨⎪⎩或12k ⎫=-⎬⎭. 【解析】(1)()2sin cos cos 44f x x x x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭sin 222sin 23x x x π⎛⎫=+=+ ⎪⎝⎭令3222232k x k πππππ+++,k Z ∈,解得71212k xk ππππ++,k Z ∈, ∴()f x 的单调递减区间()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(2)由(1)知,函数()2sin 23f x x π⎛⎫=+⎪⎝⎭()g x 在,122ππ⎡⎤⎢⎥⎣⎦有零点等价于()()2sin 2f x k x =+在,122ππ⎡⎤⎢⎥⎣⎦有唯一根,∴可得2sin 2sin 23k x x π⎛⎫=+- ⎪⎝⎭1sin 22cos 226x x x π⎛⎫=-+=+ ⎪⎝⎭设()cos 26h x x π⎛⎫=+⎪⎝⎭,,122x ππ⎡⎤∈⎢⎥⎣⎦则72,636x πππ⎡⎤+∈⎢⎥⎣⎦ 根据函数()h x 在,122x ππ⎡⎤∈⎢⎥⎣⎦上的图象, ∵2y k =与()y h x =有唯一交点,∴实数k 应满足1222k -<≤或21k =- ∴144k -<≤或12k =-.故实数k 的取值范围1{|4k k<或1}2k =-.20.【答案】(1)()22sin 1036t h t ππ⎛⎫=-+≥⎪⎝⎭;(2)有1s 时间点P 距水面的高度超过2米. 【解析】(1)设水轮上圆心O 正右侧点为A ,y 轴与水面交点为B ,如图所示:设()sin h a t b ωϕ=++,由1OB =,2OP =,可得03BOP π∠=,所以06AOP π∠=.2a ∴=,1b =,6πϕ=-,由题意可知,函数2sin 16h t πω⎛⎫=-+ ⎪⎝⎭的最小正周期为3T =,223T ππω∴==, 所以点P 距离水面的高度h 关于时间t 的函数为()22sin 1036t h t ππ⎛⎫=-+≥⎪⎝⎭;(2)由22sin 1236t h ππ⎛⎫=-+>⎪⎝⎭,得21sin 362t ππ⎛⎫->⎪⎝⎭, 令[]0,3t ∈,则211,3666t ππππ⎡⎤-∈-⎢⎥⎣⎦, 由256366t ππππ<-<,解得1322<<t ,又31122-=, 所以在水轮转动的任意一圈内,有1s 时间点P 距水面的高度超过2米. 21.【答案】(1)()2sin 3f x x π⎛⎫=-⎪⎝⎭;(2))1,3 【解析】(1)由题意可知函数()f x 的周期2T π=,且2A =,所以21Tπω==,故()()2sin f x x ϕ=+.将函数()f x 的图象向左平移3π个单位长度后得到的图象对应的函数解析式为2sin 3y x ϕπ⎛⎫=++ ⎪⎝⎭,因为函数2sin 3y x ϕπ⎛⎫=++ ⎪⎝⎭的图象关于原点对称,所以()3k k ϕπ+=π∈Z ,即()3k k ϕπ=π-∈Z . 又2πϕ<,所以3πϕ=-,故()2sin 3f x x π⎛⎫=- ⎪⎝⎭.(2)由(1)得函数()12sin 13y f kx kx π⎛⎫=+=-+ ⎪⎝⎭,其周期为23π, 又0k >,所以2323k π==π.令33t x π=-,因为0,3x π⎡⎤∈⎢⎥⎣⎦,所以2,33t ππ⎡⎤∈-⎢⎥⎣⎦, 若sin t s =在2,33ππ⎡⎤⎢⎥⎣⎦-上有两个不同的解,则s ⎫∈⎪⎪⎣⎭,所以当)1,3m ∈时,方程()1f kx m +=在0,3x π⎡⎤∈⎢⎥⎣⎦上恰有两个不同的解,即实数m的取值范围是)1,3.22.【答案】(1)5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈;(2)(i )34;(ii )1m =-,1343n =. 【解析】(1)由图象可得1A =,最小正周期721212T πππ⎛⎫=⨯-=⎪⎝⎭,则22T πω==,由77sin 211212f ππϕ⎛⎫⎛⎫=⨯+=-⎪ ⎪⎝⎭⎝⎭,所以523k πϕπ=-+,k Z ∈,又2πϕ≤,则易求得3πϕ=,所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭,由222232k x k πππππ-+≤+≤+,k Z ∈,得51212k x k ππππ-+≤≤+,k Z ∈, 所以单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈.(2)(i )由题意得()sin g x x =,()()sin sin 23x h x f g x x x π⎛⎫⎛⎫==+ ⎪ ⎪⎝⎭⎝⎭112cos 2444x x =-+ 11sin 2264x π⎛⎫=-+ ⎪⎝⎭, 所以()()2x h x f g x ⎛⎫=⎪⎝⎭的最大值为34; (ii )令()0F x =,可得22sin sin 10x m x --=,令[]sin 1,1t x =∈-, 得2210t mt --=,易知>0∆,方程必有两个不同的实数根1t 、2t , 由1212t t =-,则1t 、2t 异号, ①当11t >且210t -<<或者101t <<且21t <-时,则方程1sin x t =和2sin x t =在区间()0,n π均有偶数个根,不合题意,舍去;②当101t <<且0201t <<时,则方程1sin x t =和2sin x t =在区间()0,n π均有偶数个根,不合题意,舍去; ③当11t =且212t =-,当()0,2x π∈时,1sin x t =,只有一根,2sin x t =有两根, 所以,关于x 的方程22sin sin 1x m x --在()0,2x π∈上有三个根,由于201536712=⨯+,则方程22sin sin 10x m x --=在()0,1342π上有2013个根,由于方程1sin x t =在区间()1342,1343ππ上只有一个根,方程2sin x t =在区间()1343,1344ππ上两个根,因此,不合题意,舍去;④当11t =-时,则212t =,当()0,2x π∈时,1sin x t =只有一根,2sin x t =有两根, 所以,关于x 的方程22sin sin 10x m x --=在()0,2x π∈上有三个根,由于201536712=⨯+,则方程22sin sin 10x m x --=在()0,1342π上有2013个根,由于方程2sin x t =在区间()1342,1343ππ上有两个根,方程1sin x t =在区间()1343,1344ππ上有一个根,此时,满足题意;因此,1343n =,21121022m ⎛⎫⎛⎫⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭, 得1m =-,综上,1m =-,1343n =.。

三角函数测试题及答案

三角函数测试题及答案

三角函数测试题及答案一、选择题1. 已知角A的正弦值为\( \sin A = \frac{1}{2} \),则角A的余弦值\( \cos A \)是:A. \( \frac{1}{2} \)B. \( \frac{\sqrt{3}}{2} \)C. \( -\frac{1}{2} \)D. \( -\frac{\sqrt{3}}{2} \)2. 函数\( y = \sin x + \cos x \)的周期是:A. \( \pi \)B. \( 2\pi \)C. \( \pi/2 \)D. \( 4\pi \)3. 已知\( \cos x = \frac{1}{3} \),且\( x \)在第一象限,求\( \sin x \)的值:A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{5}}{3} \)C. \( \frac{4\sqrt{2}}{9} \)D. \( \frac{4\sqrt{5}}{9} \)二、填空题4. 根据正弦定理,如果三角形ABC的边a和角A相对,且\( a = 5 \),\( \sin A = \frac{3}{5} \),则边b的长度为______(假设\( \sin B = \frac{4}{5} \))。

5. 已知\( \tan x = -1 \),求\( \sin 2x \)的值。

三、解答题6. 求以下列三角方程的解:\( \sin^2 x + \cos^2 x = 1 \)7. 证明:\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \)。

四、应用题8. 在直角三角形ABC中,角C为直角,已知AB = 10,AC = 6,求BC 的长度。

答案:一、选择题1. C2. B3. B二、填空题4. 45. 1 或 -1三、解答题6. 该方程对所有\( x \)都成立,因为它是三角恒等式。

人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)

人教版高中数学必修第一册第五单元《三角函数》测试题(含答案解析)

一、选择题1.将函数sin 4y x π⎛⎫=- ⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),再将所得的图像向左平移π6个单位,则所得图像对应的解析式为( ) A .sin 212y x π⎛⎫=+ ⎪⎝⎭B .sin 212y x π⎛⎫=- ⎪⎝⎭C .sin 26x y π⎛⎫=-⎪⎝⎭ D .sin 212x y π⎛⎫=-⎪⎝⎭ 2.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭( )A .5-B .19-C .5 D .193.如图,为测塔高,在塔底所在的水平面内取一点C ,测得塔顶的仰角为θ,由C 向塔前进30米后到点D ,测得塔顶的仰角为2θ,再由D 向塔前进103米后到点E ,测得塔顶的仰角为4θ,则塔高为( )米.A .10B .2C .15D .1524.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43- C .53- D .45-5.若角α的终边过点(3,4)P -,则cos2=α( ) A .2425- B .725 C .2425D .725-6.计算cos21cos9sin 21sin9︒︒-︒︒的结果是( ).A .3B .12-C .32D .127.2cos 232cos()4θθθ=-,则sin 2θ=( )A .13B .23C .23-D .13-8.设31cos 29sin 2922a =-,1cos662b -=、22tan161tan 16c =+,则有( ) A .a b c >>B .b c a >>C .c a b >>D .c b a >>9.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若2sin 3α=,则()cos αβ-=( ) A .19B .459C .19-D .459-10.已知()1sin 2=-f x x x ,则()f x 的图象是( ). A . B .C .D .11.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 12.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .35二、填空题13.在半径为2米的圆形弯道中,56π角所对应的弯道为_________. 14.已知()3sin 23cos sin 1f x x x x =-⋅+,若()32f a =,则()f a -=______.15.角θ的终边经过点(1,P ,则sin 6πθ⎛⎫+= ⎪⎝⎭____________. 16.已知函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点.下述四个结论:①()f x 在(0,2)π上有且仅有3个极大值点;②()f x 在(0,2)π上有且仅有2个极小值点:③()f x 在(0,2)π上单调递增;④ω的取值范围是1229,510⎡⎫⎪⎢⎣⎭.其中结论正确的是______.(填写所有正确结论的序号).17.已知1tan 43πθ⎛⎫-= ⎪⎝⎭,则cos2θ的值为_______.18.将函数()cos 2f x x =图象上的所有的点向左平移4π个单位长度后,得到函数g (x )的图象,如果g (x )在区间[0]a ,上单调递减,那么实数a 的最大值为_________. 19.已知tan 34πα⎛⎫+= ⎪⎝⎭,则2sin sin 2αα+=______. 20.对任意闭区间I ,用I M 表示函数sin y x =在I 上的最大值,若有且仅有一个正数a 使得[][]0,,2a a a M kM =成立,则实数k 的取值范围是_________.三、解答题21.已知函数)(cos cos 2f x x x x =+.(1)求)(f x 的最小正周期和值域.(2)求)(f x 的单调区间.22.已知函数()sin (0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫⎪⎝⎭上有最小值,无最大值,且满足63f f ππ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. (1)求()f x 的最小正周期;(2)将函数()f x 的图象向右平移06πϕϕ⎛⎫<< ⎪⎝⎭个单位后得到函数()g x 的图象,若对满足()()122f x g x -=的1x 、2x 有12min7x x π-=,求ϕ的值.23.若函数223sin cos 2cos y x x x =+. (1)求这个函数的单调递增区间.(2)求这个函数的最值及取得最值时的x 集合. 24.已知()()3sin f x x a ωϕ=++0,2πωϕ⎛⎫>< ⎪⎝⎭的图象过点,12a π⎛⎫⎪⎝⎭,且图象的相邻两条对称轴的距离为2π. (1)求函数()f x 的单调区间; (2)若()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为3,求实数a 的值. 25.已知函数()sin (sin 3cos )1f x x x x =+-. (1)若(0,)2πα∈,且1sin 2α=,求()f α的值;(2)求函数()f x 的最小正周期及单调递增区间.26.如图,扇形ABC 是一块半径为2千米,圆心角为60的风景区,P 点在弧BC 上,现欲在风景区中规划三条商业街道,要求街道PQ 与AB 垂直,街道PR 与AC 垂直,线段RQ 表示第三条街道.(1)如果P 位于弧BC 的中点,求三条街道的总长度;(2)由于环境的原因,三条街道PQ 、PR 、RQ 每年能产生的经济效益分别为每千米300万元、200万元及400万元,问:这三条街道每年能产生的经济总效益最高为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据正弦型函数的图像的变换规律进行求解即可. 【详解】 将函数sin 4y x π⎛⎫=-⎪⎝⎭的图像上所有点的横坐标变为原来的2倍(纵坐标不变),所得到的函数的解析式为:sin 24x y π⎛⎫=- ⎪⎝⎭,将sin 24x y π⎛⎫=- ⎪⎝⎭的图像向左平移π6个单位,得到的函数的解析式为:1sin[]264y x ππ⎛⎫=+- ⎪⎝⎭,化简得:sin 26x y π⎛⎫=- ⎪⎝⎭. 故选:C2.D解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算.【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 3.C解析:C 【分析】由,2,4PCA PDA PEA θθθ∠=∠=∠=,得PDE △是等腰三角形,且可求得230θ=︒,在直角PEA 中易得塔高PA . 【详解】由题知,2CPD PCD DPE PDE θθ∠=∠=∠=∠=∴30PE DE PD CD ==== ∴等腰EPD △的230θ︒=,∴460θ︒= ∴Rt PAE 中,AE =15PA =.故选:C .4.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .5.D解析:D 【分析】先利用任意角三角函数的定义求sin α和cos α,再利用二倍角的余弦公式计算即可. 【详解】由角α的终边过点(3,4)P -知,4sin 5α,3cos 5α=-,故229167cos 2cos sin 252525ααα=-=-=-. 故选:D.6.C解析:C 【分析】 直接化简求值即可. 【详解】解: cos21cos9sin 21sin9︒︒-︒︒()cos 219=︒+︒cos30=︒2=. 故选:C.7.B解析:B 【分析】由二倍角公式和差的余弦公式化简得出()2cos sin 2θθθ-=,再平方即可求出. 【详解】)22cos sin2cos()cos cos sin sin444θθθπππθθθ-=-+()cos sin cos sin2cos sinθθθθθθ+-==-,()2cos sin2θθθ∴-=,两边平方得()241sin23sin2θθ-=,解得sin22θ=-(舍去)或2sin23θ=.故选:B.【点睛】关键点睛:本题考查三角恒等变换的化简问题,解题的关键是能正确利用二倍角公式和差的余弦公式将已知等式化简为()2cos sin2θθθ-=,再平方求解.8.B解析:B【分析】由两角差的正弦公式,余弦和正正弦的二倍角公式化简,,ab c,然后由正弦函数的单调性得出结论.【详解】129si sin(6029)si3n29122na =︒-︒=︒=-,b=sin33==︒,2222sin162tan16cos162sin16sin161tan161ccos16sin32os16c===︒︒︒︒=︒︒︒++,显然sin31sin32sin33︒<︒<︒,所以a c b<<.故选:B.【点睛】关键点点睛:本题考查三角函数值的比较大小,解题方法是首先化简各函数,应用三角函数恒等变换公式化简函数,注意转化为同一个三角函数,并且把角转化到三角函数的同一单调区间上,然后由三角函数的单调性得大小关系.9.C解析:C【分析】由对称写出两角的关系,然后利用诱导公式和二倍角公式计算. 【详解】由题意2,k k Z αβππ+=+∈,即2k βππα=+-,2221cos()cos(22)cos(2)cos 22sin 12139k αβαπππααα⎛⎫-=--=-=-=-=⨯-=-⎪⎝⎭.故选:C .10.B解析:B 【分析】先判断函数的奇偶性,然后计算特殊点的函数值确定选项. 【详解】()()1sin 2f x x x f x -=-+=-,()f x ∴为奇函数,∴图象关于原点对称,故排除A ,D ;当π2x =时,ππ1024f ⎛⎫=-< ⎪⎝⎭,故排除C . 故选:B. 【点睛】根据函数解析式选择函数图象问题的一般可从以下几点入手: (1)判断函数的定义域;(2)判断原函数的奇偶性,根据图象的对称性排除某些选项; (3)代入特殊点求函数值,排除某些选项.11.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭.因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 12.B解析:B 【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B二、填空题13.【分析】根据扇形的弧长公式即可求解【详解】由题意根据扇形的弧长公式可得所对应的弯道为故答案为: 解析:53π 【分析】根据扇形的弧长公式,即可求解. 【详解】由题意,根据扇形的弧长公式,可得所对应的弯道为55263ππ⨯=. 故答案为:53π. 14.【分析】令求出再由奇函数的性质求解【详解】令易证为奇函数所以所以故答案为: 解析:12【分析】令()3sin 23cos sin g x x x x =-⋅,求出()12g a =,再由奇函数的性质求解()f a -. 【详解】令()3sin 23cos sin g x x x x =-⋅,易证()g x 为奇函数.()()312f a g a =+=,所以()12g a =,所以()()()1112f ag a g a -=-+=-+=.故答案为:1215.【分析】利用正弦函数定义求得再由正弦函数两角和的公式计算【详解】由题意所以故答案为:解析:12-【分析】利用正弦函数定义求得sin θ,再由正弦函数两角和的公式计算 【详解】 由题意3sin 2θ=-,1cos 2θ=,所以,31sin sin cos 62πθθθ⎛⎫+=+ ⎪⎝⎭311442=-+=-, 故答案为:12-16.①④【分析】作出函数的图象根据在有且仅有5个零点再逐项判断【详解】如图所示:由图象可知在上有且仅有3个极大值点故①正确;在上可能有3个极小值点故②错误;因为函数在有且仅有5个零点所以解得故④正确;因解析:①④ 【分析】作出函数的图象,根据()f x 在[0,2]π有且仅有5个零点,再逐项判断. 【详解】 如图所示:由图象可知()f x 在(0,2)π上有且仅有3个极大值点,故①正确; ()f x 在(0,2)π上可能有3个极小值点,故②错误;因为函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭在[0,2]π有且仅有5个零点,所以2429255πππωω≤<,解得1229510ω≤<,故④正确;因为()0,2x π∈,所以,2555x πππωπω⎛⎫+∈+ ⎪⎝⎭,若()f x 在(0,2)π上单调递增,则252πππω+<,解得320ω<,不符合1229510ω≤<,故③错误;故答案为:①④ 【点睛】关键点点睛:本题的关键是作出函数的图象,根据零点的个数确定ω的范围.17.【分析】利用三角恒等变换公式得到求出后进而求出cos2即可【详解】由题意可知解得则故答案为 解析:35【分析】利用三角恒等变换公式,得到tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,求出tan θ后,进而求出cos2θ即可 【详解】由题意可知,tan 11tan 41tan 3πθθθ-⎛⎫-== ⎪+⎝⎭,解得tan 2θ=,则222222cos sin 1tan 3cos 2cos sin 1tan 5θθθθθθθ--===-++ 故答案为35. 18.【分析】求出的平移后的解析式再利用函数在区间上是单调递减函数从而得到的最大值【详解】由题意将函数的图象向左平移个单位长度得到函数的图象因为函数在区间上是单调递减所以解得所以实数的最大值为故答案为:解析:4π【分析】求出()y g x =的平移后的解析式,再利用函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上是单调递减函数,从而得到a 的最大值.【详解】由题意,将函数()cos 2f x x =的图象向左平移4x个单位长度,得到函数()cos 2+n 4si 2g x x x π⎡⎤⎛⎫==- ⎪⎢⎥⎝⎭⎣⎦的图象,因为函数()g x 在区间[0]a ,上是单调递减,所以022a π<≤,解得04a π<≤,所以实数a 的最大值为4π. 故答案为:4π. 19.1【分析】首先根据已知条件求得再结合齐次方程求得【详解】由已知得解得所以故答案为:1解析:1 【分析】首先根据已知条件求得tan α,再结合齐次方程求得2sin sin 2αα+. 【详解】 由已知得1tan 31tan αα+=-,解得1tan 2α=.所以22222211sin 2sin cos tan 2tan 4sin sin 211sin cos tan 114αααααααααα++++====+++. 故答案为:120.【分析】讨论的范围得出的表达式求出的值域即可【详解】①当时由得所以此时即则即;②当时由得此时即;③当时由得所以此时则即;④当时则由得不成立此时不存在;⑤当时由得所以此时则即;⑥当时由得综上实数的取值解析:1,2⎡⎫+∞⎪⎢⎣⎭【分析】讨论a 的范围得出k 的表达式,求出()k f a =的值域即可. 【详解】①当0,4πa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]20,,sin ,sin 22a a a πa M a M a ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin sin 2a k a =,所以12cos k a=,此时cos 12a ≤≤2cos 2a ≤≤,则1122cos a ≤≤12k ⎡∈⎢⎣⎦;②当,42ππa ⎡⎤∈⎢⎥⎣⎦时,[0,][,2]2,,sin ,12a a a πa πM a M ⎡⎤∈==⎢⎥⎣⎦,由[][]0,,2a a a M kM =,得sin k a =,此时sin 12a ≤≤,即2k ⎤∈⎥⎣⎦; ③当,2a ππ⎛⎫∈⎪⎝⎭时,()[0,][,2]2,2,1,sin a a a a M M a ππ∈==, 由[][]0,,2a a a M kM =,得1sin k a =,所以1sin k a=, 此时0sin 1a <<,则11sin a>,即()1,k ∈+∞; ④当a π=时,22a π=,则[0,][,2]1,0a a a M M ==, 由[][]0,,2a a a M kM =,得10=不成立,此时k 不存在; ⑤当5,4πa π⎛⎫∈ ⎪⎝⎭时,[0,][,2]522,,1,sin 22a a a a ππM M a ⎛⎫∈== ⎪⎝⎭, 由[][]0,,2a a a M kM =,得1sin 2k a =,所以1sin 2k a=, 此时0sin 21a <<,则11sin 2a>,即()1,k ∈+∞; ⑥当5,+4a π⎡⎫∈∞⎪⎢⎣⎭时,[0,][,2]52,,1,12a a a a πM M ⎡⎫∈+∞==⎪⎢⎣⎭, 由[][]0,,2a a a M kM =,得1k =, 综上,实数k 的取值范围是1,2⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查三角函数最值的求解,解题的关键是分段讨论a 的范围,根据a 的不同取值范围得出k 的表达式,再利用三角函数的性质求解.三、解答题21.(1)周期为π,值域为]2,2⎡-⎣;(2)单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣.【分析】(1)利用二倍角公式和辅助角公式化简可得)(2sin 26f x x π⎛⎫=+⎪ ⎭⎝,则可求出周期和值域;(2)解不等式)(222262k x k k Z πππππ-≤+≤+∈可得单调递增区间,解不等式)(3222262k x k k Z πππππ+≤+≤+∈可得单调递减区间. 【详解】(1)∵)(cos 222sin 26f x x x x π⎛⎫==+⎪ ⎭⎝, 所以,函数)(y f x =的周期为22T ππ==,值域为]2,2⎡-⎣. (2)解不等式)(222262k x k k Z πππππ-≤+≤+∈,得)(36k k k Z ππππ-≤+∈, 所以,函数)(y f x =的单调递增区间为)(,36k k k Z ππππ⎡⎤-+∈⎢⎥⎦⎣,解不等式)(3222262k x k k Z πππππ+≤+≤+∈,得)(263k x k k Z ππππ+≤≤+∈, 因比,函数)(y f x =的单调递减区间为)(2,63k k k Z ππππ⎡⎤++∈⎢⎥⎦⎣. 22.(1)37π;(2)14π. 【分析】(1)题意说明周期6T π≥,4x π=是最小值点,由最小值点得ω表达式,由6T π≥得ω的范围,从而得ω的值;(2)()()122f x g x -=∣∣说明()()12,f x g x 中一个对应最大值,一个对应最小值.对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π,由此可得. 【详解】(1)由()sin ,(0)3f x x πωω⎛⎫=+> ⎪⎝⎭,在,63ππ⎛⎫ ⎪⎝⎭上有最小值,无最大值, 可知:236T πππω-≤=,故有012ω<≤.又6x π=与3x π=在一个周期内,且63f f ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;4x π∴=时,函数取到最小值.2,()432k k Z πππωπ∴+=-+∈ 故有1083k ω=-+, 又因为012ω<≤,所以143ω=. 所以函数()f x 的最小正周期为37π. (2)由()()122f x g x -=∣∣可知的()()12,f x g x 中一个对应最大值,一个对应最小值. 对于函数()f x 其最大值与最小值对应的x 的距离为半个周期314π. ∴有12min314x x πϕ-+=. 即314714πππϕ=-=.【点睛】关键点点睛:本题考查三角函数的周期,解题关键是由足()()122f x g x -=得出12,x x 是函数的最值点,一个是最大值点,一个是最小值点,由此分析其其差的最小值与周期结合可得结论. 23.(1),,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2)函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【分析】(1)根据二倍角公式和辅助角公式化简得2sin 216y x π⎛⎫=++ ⎪⎝⎭,再根据整体代换法求函数的单调递增区间即可;(2)根据三角函数的性质求解即可. 【详解】解:(1)2cos 2cos 2cos 212sin 216y x x x x x x π⎛⎫=+=++=++ ⎪⎝⎭, 因为函数sin y x =在区间2,2,22k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增, 所以222,262k x k k Z πππππ-≤+≤+∈,解得,36k x k k Z ππππ-≤≤+∈,所以函数2cos 2cos y x x x =+的单调递增区间为,,36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(2)由(1)得2sin 216y x π⎛⎫=++ ⎪⎝⎭, 所以函数的最大值为max 3y =,当且仅当22,62x k k Z πππ+=+∈,即:,6x k k Z ππ=+∈时取得;函数的最小值为min 1y =-,当且仅当22,62x k k Z πππ+=-+∈,即:,3x k k Z ππ=-+∈时取得;所以函数的最大值为max 3y =,取得最大值时的x 集合为,6x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭;函数的最小值为min 1y =-,取得最小值时的x 集合为,3x x k k Z ππ⎧⎫=-+∈⎨⎬⎩⎭【点睛】关键点点睛:本题解题的关键在于根据题意,结合二倍角公式和辅助角公式将已知三角函数表达式化简整理得2sin 216y x π⎛⎫=++ ⎪⎝⎭,考查运算求解能力,是中档题. 24.(1)单调递增区间为,()63k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,单调递减区间为5,()36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)34. 【分析】(1)根据图象上相邻两条对称轴的距离为2π可知周期为π,可确定2ω=,然后将点,12a π⎛⎫⎪⎝⎭代入求解出ϕ的值,利用整体法求解原函数的单调区间即可. (2)由(1)中的结果可知()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上的单调性,确定出()f x 在,122ππ⎡⎤-⎢⎥⎣⎦上,得到关于a 的方程求解即可. 【详解】(1)由函数()f x 图象的相邻两条对称轴间的距离为2π, 得函数()f x 的最小正周期T π=, ∴22πωπ==.又函数()f x 的图象过点,12a π⎛⎫⎪⎝⎭,∴21212f a a ππϕ⎛⎫⎛⎫=⨯++=⎪ ⎪⎝⎭⎝⎭, ∴sin 2012πϕ⎛⎫⨯+= ⎪⎝⎭,6k πϕπ+=.∵||2ϕπ<,∴6πϕ=-,则()26f x x a π⎛⎫=-+ ⎪⎝⎭.令222262k x k πππππ-≤-≤+,解得63x k πππ-≤≤+,()k ∈Z ,3222262k x k πππππ+≤-≤+, 解得536k x k ππππ+≤≤+,()k ∈Z ∴函数()f x 的单调递增区间为,()63k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z ,单调递减区间为5,(k )36k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)由(1)知,函数()f x 在,123ππ⎡⎤-⎢⎥⎣⎦上单调递增,在,32ππ⎛⎤⎥⎝⎦上单调递减,又3122f a π⎛⎫-=-+ ⎪⎝⎭,3f a π⎛⎫= ⎪⎝⎭,22f a π⎛⎫=+ ⎪⎝⎭,∴()f x 在区间,122ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值之和为32a a -++=∴34a =. 【点睛】本题考查三角函数图象性质的综合应用,解答时只要方法如下:(1)求解三角函数单调区间时一般采用整体代换法,将自变量部分的代数式当做一个整体,利用正弦函数、余弦函数的单调性列出不等式求解即可;(2)求解三角函数在某固定区间上的最值或值域时,关键是分析清楚原函数在所给区间上的单调性,利用单调性确定取得最大值或最小值的点,确定最值;也可以采用换元法,将函数()sin y A ωx φ=+的最值转化为求sin y A t =的最值问题,只需根据格据正弦函数的图像性质确定即可. 25.(1)12;(2)T π=;调递增区间为[,]63k k ππππ-+,k Z ∈. 【分析】先把函数()f x 化简,(1)根据条件即可求出角α的大小,代入解析式即可求解.(2)根据周期定义即可求出周期,再利用整体代换思想代入正弦函数的递增区间求出x 的范围即可求解. 【详解】21()sin (sin )1sin cos 1sin(2)62f x x x x x x x x π=-=-=--,(1)由(0,)2πα∈,1sin 2α=,可得6πα=,所以1()sin(2)sin 66662f ππππ=⨯-==,(2)函数周期为22T ππ==, 令2[2,2]622x k k πππππ-∈-+,k Z ∈, 解得[,]63x k k ππππ∈-+,k Z ∈, 所以函数()f x 的单调递增区间为[,]63k k ππππ-+,k Z ∈.26.(1)2+(千米);(2). 【分析】(1)根据P 位于弧BC 的中点,则P 位于BAC ∠的角平分线上,然后分别在,,Rt APQ Rt APR 正AQR 中求解.(2)设PAB θ∠=,060θ<<︒,然后分别在,Rt APQ Rt APR 表示 PQ ,PR ,在AQR 中由余弦定理表RQ ,再由300200400W PQ PR RQ =⨯+⨯+⨯求解.【详解】(1)由P 位于弧BC 的中点,在P 位于BAC ∠的角平分线上, 则1||||||sin 2sin30212PQ PR PA PAB ==∠=⨯︒=⨯=,||cos 2AQ PA PAB =∠== 由60BAC ∠=︒,且AQ AR =,∴QAR 为等边三角形,则||RQ AQ ==三条街道的总长||||||112l PQ PR RQ =++=++ ; (2)设PAB θ∠=,060θ︒<<︒, 则sin 2sin PQ AP θθ==,PR AP =()()sin 602sin 603cos sin θθθθ-=-=-, cos 2cos AQ AP θθ==,||||cos(60)2cos(60)cos AR AP θθθθ=-=-=+,由余弦定理可知:2222cos60RQ AQ AR AQ AR =+-,22(2cos )(cos )22cos (cos )cos 603θθθθθθ=+-⨯+=,则|RQ =设三条街道每年能产生的经济总效益W ,300200400W PQ PR RQ =⨯+⨯+⨯,3002sin sin )200θθθ=⨯+-⨯+,400sin θθ=++200(2sin )θθ=++)θϕ=++tan ϕ=,当()sin 1θϕ+=时,W 取最大值,最大值为 【点睛】方法点睛:解三角形应用题的两种情形:(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解;(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.。

人教版高中数学必修第一册第五单元《三角函数》测试(含答案解析)

人教版高中数学必修第一册第五单元《三角函数》测试(含答案解析)

一、选择题1.函数()2sin(2)33f x x π=-+的最小正周期为( )A .2π B .πC .2πD .4π2.函数()sin()(0)f x x ωϕω=+>的一段图象如图所示,则ω=( )A .14B .2π C .4π D .123.在ABC 中,tan sin cos A B B <,则ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不确定4.将函数()sin 2cos 2f x x x =+的图象向左平移12π个单位长度后,得到函数()g x 的图象,则函数()g x 图象的一条对称轴方程为( ) A .6x π=B .12x π=C .3x π=D .24x π=5.已知函数()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,则( )A .()f x 的最小正周期为πB .()f x 的单调递增区间为(),26212k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z C .()f x 的图象关于直线6x π=对称D .()f x 的图象关于点,024π⎛⎫⎪⎝⎭对称 6.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( )A .sin 23y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭ C .sin 26y x π⎛⎫=-⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭7.sin15cos15+=( ) A .12B .22C .3 D .6 8.已知函数()()ππ36sin 0f x A x A ⎛⎫=>⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,则A 等于( ). A .1B .2C .2.5D .49.已知sin()cos(2)()cos()tan x x f x x xπππ--=--,则313f π⎛⎫- ⎪⎝⎭的值为( ) A .12B .13 C .12-D .13-10.已知某扇形的弧长为32π,圆心角为2π,则该扇形的面积为( ) A .4π B .6π C .2π D .94π 11.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 12.已知2cos 432θπ⎛⎫=⎪⎝⎭-,则sin θ=( )A .79B .19C .-19D .-79二、填空题13.如图,在山脚A 测得山顶P 的仰角为60°,沿倾斜角为15°的斜坡向上走200米到B ,在B 处测得山顶P 的仰角为75°,则山高h =______米.14.已知3sin 2cos()sin 2παπαα⎛⎫++-=⎪⎝⎭,则2sin sin cos ααα+=__________. 15.已知角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,则cos ϕ=__________________. 16.方程2sin 2cos 20x x ++=的解集为________.17.已知tan 212πα⎛⎫+=- ⎪⎝⎭,则tan 3πα⎛⎫+= ⎪⎝⎭_________. 18.将函数sin(2)y x ϕ=+的图像向左平移12π个单位后所得函数图像关于原点中心对称,则sin 2ϕ=_________. 19.已知50sin 24ππαα⎛⎫⎛⎫∈-= ⎪ ⎪⎝⎭⎝⎭,,tan α=__________. 20.若πcos cos 24αα⎛⎫-= ⎪⎝⎭,则sin 2α=________. 三、解答题21.已知函数()sin 31f x x x =++. (Ⅰ)设[0,2π]α∈,且()1f α=,求α的值; (Ⅱ)将函数(2)y f x =的图像向左平移π6个单位长度,得到函数()y g x =的图像. 当ππ[,]22x ∈-时,求满足()2g x ≤的实数x 的集合.22.函数[)()()sin()0,0,0,2f x A x A ωϕωϕπ=+>>∈的图象如图所示:(1)求()f x 的解析式; (2)若[]0,x π∈且6()2f x ≥,求x 的取值范围. 23.已知()()sin23cos2f x x x x R =∈(1)求56f π⎛⎫⎪⎝⎭的值; (2)若0,4x π⎡⎤∈⎢⎥⎣⎦,求函数()f x 的取值范围. 24.已知函数2()sin(2)2cos 1(0)6f x x x πωωω=-+->的最小正周期为π,(1)求ω的值 (2)求()f x 在区间70,12π⎡⎤⎢⎥⎣⎦上的最大值和最小值.25.已知()cos2cos 23f x x x π⎛⎫=+- ⎪⎝⎭. (1)求()f x 的单调递增区间; (2)若323f α⎛⎫=⎪⎝⎭,求12f πα⎛⎫- ⎪⎝⎭的值. 26.已知π0π2αβ<<<<,且5sin()13αβ+=,1tan 22α=. (1)求cos α的值; (2)求sin β.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用函数()sin y A ωx φ=+的周期公式2T ωπ=即可求解.【详解】22T ππ==, 故函数()2sin(2)33f x x π=-+的最小正周期为π,故选:B2.B解析:B 【分析】根据函数的图象,求得函数的最小正周期,结合三角函数周期的公式,即可求解. 【详解】由题意,函数()sin()(0)f x x ωϕω=+>的一段图象, 可得2114T=-=,所以4T =,又由24w π=,解得2w π=. 故选:B.3.C解析:C 【详解】∵tan sin cos A B B <,∴sin sin cos cos A BB A<,若A 是钝角,此不等式显然成立,三角形为钝角三角形,若A 是锐角,则sin sin cos cos A B A B <,cos cos sin sin cos()0A B A B A B -=+>,,A B 是三角形内角,∴02A B π<+<,从而()2C A B ππ=-+>,C 为钝角,三角形仍然为钝角三角形. 故选:C . 【点睛】易错点睛:本题考查三角形形状的判断.解题过程中,由sin sin cos cos A BB A<常常直接得出sin sin cos cos A B A B <,然后可判断出C 是钝角,三角形是钝角三角形,也选择了正确答案,但解题过程存在不全面.即应该根据A 角是锐角还是钝角分类讨论.实际上就是不等式性质的应用要正确.4.D解析:D 【分析】由()24f x x π⎛⎫=+ ⎪⎝⎭,向左平移12π个单位长度得到()5212g x x π⎛⎫=+ ⎪⎝⎭,再令52122x k πππ+=+求解. 【详解】因为函数()sin 2cos 224f x x x x π⎛⎫=+=+ ⎪⎝⎭,由题意得()5212g x x π⎛⎫=+ ⎪⎝⎭,所以52122x k πππ+=+, 解得1,224x k k Z ππ=+∈, 故选:D5.B解析:B 【分析】对A ,根据解析式可直接求出最小正周期;对B ,令242,262k x k k Z πππππ-+≤+≤+∈可求出单调递增区间;对C ,计算6f π⎛⎫⎪⎝⎭可判断; 对D ,计算24f π⎛⎫⎪⎝⎭可判断.【详解】 对于A ,()2sin 46f x x π⎛⎫=+ ⎪⎝⎭,∴()f x 的最小正周期为242T ππ==,故A 错误;对于B ,令242,262k x k k Z πππππ-+≤+≤+∈,解得,26212k k x k Z ππππ-≤≤+∈,∴()f x 的单调递增区间为(),26212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,故B 正确;对于C ,2sin 412666f πππ⎛⎫⨯+=≠± ⎪⎝=⎭⎛⎫ ⎪⎝⎭,∴()f x 的图象不关于直线6x π=对称,故C 错误;对于D ,2sin 4026244f πππ⎛⎫⨯⎛⎫= +=≠ ⎪⎭⎭⎪⎝⎝,∴()f x 的图象不关于点,024π⎛⎫⎪⎝⎭对称. 故选B. 【点睛】方法点睛:判断正弦型函数()()=sin f x A x ωϕ+对称轴或对称中心的方法: (1)利用正弦函数的性质求出对称轴或对称中心,令()2x k k Z πωϕπ+=+∈可求得对称轴,令()x k k Z ωϕπ+=∈可求得对称中心;(2)代入求值判断,若()()00=sin f x A x A ωϕ+=±,则0x x =是对称轴;若()()00=sin 0f x A x ωϕ+=,则()0,0x 是对称中心. 6.D解析:D 【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .7.D解析:D 【分析】由辅助角公式可直接计算得到结果. 【详解】()6sin15cos152sin 15452sin 60+=+==. 故选:D.8.B解析:B 【分析】根据正弦型函数图象性质确定函数()f x 的最小正周期T ,再根据最高点与最低点的距离是55=,从而解得A 的值. 【详解】解:函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+的最小正周期2263T πππω=== 函数()()ππ36sin 0f x A x A ⎛⎫=> ⎪⎝⎭+在它的一个最小正周期内的图像上,最高点与最低点的距离是5,5=,解得2A =.故选:B. 【点睛】对于三角函数,求最小正周期和最值时可先把所给三角函数式化为()sin y A ωx φ=+或()cos y A x ωϕ=+的形式,则最小正周期为2T ωπ=,最大值为A ,最小值为A -;奇偶性的判断关键是解析式是否为sin y A x ω=或cos y A x ω=的形式.9.C解析:C 【分析】利用诱导公式先化简整理函数()f x ,再利用诱导公式求值即可. 【详解】 由sin()cos(2)()cos()tan x x f x x xπππ--=--,利用诱导公式得:sin cos ()cos cos tan x xf x x x x==--,所以31311cos cos 103332f ππππ⎛⎫⎛⎫⎛⎫-=--=---=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; 故选:C.10.D解析:D 【分析】由弧长公式求出3r =,再由扇形的面积公式求出答案. 【详解】扇形的圆心角322l r r ππθ===,所以3r =,则扇形的面积113932224S lr ππ==⨯⨯=. 故选:D. 11.A解析:A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+ ⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【详解】 由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A 12.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】 因为2cos 432θπ⎛⎫=⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C二、填空题13.【分析】求出在两个直角三角形中表示出再在直角梯形中建立等量关系解得【详解】首先山高为长度根据图可得∴解得故答案为:解析:150【分析】PQ h =,求出CQ ,在两个直角三角形中表示出,BC AQ ,再在直角梯形AQCB 中建立等量关系,解得h . 【详解】首先sin15sin(4530)sin 45cos30cos 45sin30︒=︒-︒=︒︒-︒︒2321622-=⨯-⨯=, cos15cos(4530)cos 45cos30sin 45sin30︒=︒-︒=︒︒+︒︒2321622+=⨯+⨯=, 31tan 45tan 303tan 75tan(4530)231tan 45tan 3031+︒+︒︒=︒+︒===+-︒︒-, 山高h 为PQ 长度,根据图可得,()200sin155062CQ =︒=-,3tan 603h AQ h ==︒,tan 75PCBC =︒()506223h --=+()()23503652h =---, ∴()()()323503652200cos1550623h h --+-=︒=+,解得()15062h =+.故答案为:()15062+.14.【分析】利用诱导公式化简得出根据的代换结合齐次式化简计算得出函数值【详解】由已知得:则故答案为:解析:35【分析】利用诱导公式化简得出tan 3α=-,根据”1”的代换结合齐次式化简计算得出函数值. 【详解】由已知得:cos 2cos 3cos sin αααα--=-=,则tan 3α=-222222sin sin cos tan tan 933sin sin cos sin cos tan 1915ααααααααααα++-+====+++故答案为:3515.【分析】由题意可得:利用已知条件可以求出利用即可求解【详解】因为角和角的始边均与轴正半轴重合终边互相垂直所以若角的终边与单位圆交于点所以则故答案为:解析:13±【分析】由题意可得:,2k k Z πϕθπ=++∈,利用已知条件可以求出1sin 3θ=,利用 cos sin ϕθ=±即可求解.【详解】因为角θ和角ϕ的始边均与x 轴正半轴重合,终边互相垂直, 所以,2k k Z πϕθπ=++∈,若角θ的终边与单位圆交于点01,3P x ⎛⎫ ⎪⎝⎭,所以1sin 3θ=, 则1cos sin 3ϕθ=±=±, 故答案为:13±16.【分析】原方程化为关于的一元二次方程求得即可求解【详解】由得即解得或(舍去)所以故答案为: 解析:{}2,x x k k Z ππ=+∈【分析】原方程化为关于cos x 的一元二次方程,求得cos 1x =-,即可求解. 【详解】由2sin 2cos 20x x ++= 得21cos 2cos 20x x -++=, 即2cos 2cos 30x x --=,解得cos 1x =-或cos 3x =(舍去), 所以2,x k k Z ππ=+∈故答案为:{}2,x x k k Z ππ=+∈17.【分析】由结合利用两角和的正切公式求解【详解】故答案为:解析:13-【分析】 由tan tan 3124πππαα⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,结合tan 212πα⎛⎫+=- ⎪⎝⎭,利用两角和的正切公式求解. 【详解】tan tan1124tan tan 312431tan tan 124ππαπππααππα⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭+=++==- ⎪ ⎪⎛⎫⎝⎭⎝⎭-+ ⎪⎝⎭,故答案为:13-18.【分析】先根据函数平移变换得平移后的解析式为再根据其图象关于原点中心对称得进而计算得【详解】解:根据题意得函数的图像向左平移个单位后得到的函数解析式为:由函数图象关于原点中心对称故即所以故答案为:【解析: 【分析】先根据函数平移变换得平移后的解析式为sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,再根据其图象关于原点中心对称得,6k k Z πϕπ=-+∈,进而计算得sin 2ϕ=. 【详解】解:根据题意得函数sin(2)y x ϕ=+的图像向左平移12π个单位后得到的函数解析式为:sin 26y x πϕ⎛⎫=++ ⎪⎝⎭,由函数sin 26y x πϕ⎛⎫=++ ⎪⎝⎭图象关于原点中心对称, 故,6k k Z πϕπ+=∈,即,6k k Z πϕπ=-+∈所以sin 2sin 2sin 332k ππϕπ⎛⎫⎛⎫=-+=-=- ⎪ ⎪⎝⎭⎝⎭.故答案为: 【点睛】三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x 而言. 函数()sin ,y A x x R ωϕ=+∈是奇函数()k k Z ϕπ⇔=∈ ; 函数()sin ,y A x x R ωϕ=+∈是偶函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是奇函数2()k k Z πϕπ⇔=+∈;函数()cos ,y A x x R ωϕ=+∈是偶函数()k k Z ϕπ⇔=∈.19.3【分析】由平方关系求出用两角和的正弦公式求得再得然后可得【详解】∵∴∴∴故答案为:3【点睛】关键点点睛:本题考查平方关系两角和的正弦公式三角函数求值问题需确定已知角和未知角的关系以确定先用的公式象解析:3 【分析】由平方关系求出cos 4πα⎛⎫-⎪⎝⎭,用两角和的正弦公式求得sin α,再得cos α,然后可得tan α.【详解】 ∵0,2πα⎛⎫∈ ⎪⎝⎭,∴,444πππα⎛⎫-∈- ⎪⎝⎭,cos 4πα⎛⎫-==⎪⎝⎭, ∴sin sin sin cos cos sin 44444422ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=-+=-+-==⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,∴cos 10α==, sin tan 3cos ααα==. 故答案为:3. 【点睛】 关键点点睛:本题考查平方关系,两角和的正弦公式.三角函数求值问题,需确定已知角和未知角的关系,以确定先用的公式.象本题观察得到44ππαα⎛⎫=-+ ⎪⎝⎭,需要用用两角和的正弦(余弦)公式求值,因此先用平方关系求得cos 4πα⎛⎫- ⎪⎝⎭,这就要确定4πα-的范围.以确定余弦值的正负.20.或【分析】根据两角差的余弦公式和余弦的二倍角展开再进行平方再根据正弦的二倍角公式可答案得【详解】由得即所以或当时两边同时平方得所以解得;当时所以所以所以故答案为:或解析:1-或12【分析】根据两角差的余弦公式和余弦的二倍角展开,再进行平方,再根据正弦的二倍角公式可答案得. 【详解】由πcos cos 24αα⎛⎫-= ⎪⎝⎭,得)22cos +sin cos sin 2αααα=-,即)()()cos +sin cos sin cos +sin 2αααααα=-,所以cos sin =αα-或cos +sin 0αα=,当cos sin αα-时,两边同时平方得112sin cos =2αα-,所以11sin2=2α-.解得sin 2α=12; 当cos +sin 0αα=时,tan 1α=-,所以()+,4k k Z παπ=-∈所以()2+2,2k k Z παπ=-∈所以sin 21α=-,故答案为:1-或12. 三、解答题21.(Ⅰ)2=3απ或53π;(Ⅱ){|24x x ππ-≤≤-或}122x ππ≤≤.【分析】(Ⅰ)化简得()2sin()13f x x π=++,则可得sin(+)03πα=,即可求出;(Ⅱ)由题可得2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,不等式化为21sin(2)32x π+≤,利用正弦函数的性质即可求解. 【详解】解:(Ⅰ)由()sin 2sin()131f x x x x π=++=++,由()=2sin()113f παα++=,得sin(+)03πα=,又[0,2]απ∈, 得2=3απ或53π; (Ⅱ)由题知,2sin(23(2)1)x f x π+=+2()2sin 2++12sin 2+1633g x x x πππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 由()2g x ≤,得21sin(2)32x π+≤, ∴72+22+2,636k x k k Z πππππ-≤+≤∈, 22x ππ-≤≤,252333x πππ-≤+≤, ∴22336x πππ-≤+≤,或5252633x πππ≤+≤, ∴24x ππ-≤≤-,或122x ππ≤≤, 即所求x 的集合为{|24x x ππ-≤≤-或}122x ππ≤≤. 【点睛】关键点睛:本题考查三角函数的性质,解题的关键是根据图象变换得出2()2sin 2+13g x x π⎛⎫=+ ⎪⎝⎭,将不等式化为21sin(2)32x π+≤,即可根据正弦函数的性质求解.22.(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2){}0,6ππ⎡⎤⋃⎢⎥⎣⎦.【分析】(1)由图可得:A =724123T πππω=-=可求ω的值,再令2(21)3k πϕπ⨯+=+()k Z ∈结合[)0,2ϕπ∈可求ϕ的值,进而可求()f x 的解析式;(2232x π⎛⎫+≥ ⎪⎝⎭,可得sin 232x π⎛⎫+≥ ⎪⎝⎭,所以结合正弦函数的图象和[]0,x π∈即可求解.【详解】(1)由题意知:A =741234T πππ=-=, 所以2T ππω==即=2ω,所以2(21)3k πϕπ⨯+=+,02ϕπ≤<,所以=3πϕ,所以()23f x x π⎛⎫=+ ⎪⎝⎭,(2232x π⎛⎫+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭ 所以()2222333k x k k Z πππππ+≤+≤+∈, 令0k =可得22333x πππ≤+≤,解得06x π≤≤,令1k =可得2222333x πππππ+≤+≤+,解得:76x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或x π=,即{}0,6x ππ⎡⎤∈⋃⎢⎥⎣⎦ 【点睛】关键点点睛:利用五点法求函数解析式,关键是3x π=是下降零点,所以2(21)3k πϕπ⨯+=+,结合[)0,2ϕπ∈即可求ϕ232x π⎛⎫+≥ ⎪⎝⎭可得()2222333k x k k Z πππππ+≤+≤+∈对k 取值,再与[]0,x π∈求交集即可. 23.(1)0;(2)[]1,2. 【分析】(1)本题可直接将56x π=代入函数()f x 中,通过计算即可得出结果; (2)本题首先可根据两角和的正弦公式将函数()f x 转化为()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,然后根据0,4x π⎡⎤∈⎢⎥⎣⎦得出52,336x πππ⎡⎤+∈⎢⎥⎣⎦,最后根据正弦函数的性质即可得出结果. 【详解】(1)555sin 063322f πππ⎛⎫==-+=⎪⎝⎭,(2)()sin 222sin 23f x x x x π⎛⎫=+=+⎪⎝⎭,当0,4x π⎡⎤∈⎢⎥⎣⎦时,52,336x πππ⎡⎤+∈⎢⎥⎣⎦, 则1sin 2,132x π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,函数()f x 的取值范围为[]1,2.24.(1)1ω=;(2)最大值为1;最小值为. 【分析】(1)根据三角函数的倍角公式以及辅助角公式将函数进行化简即可. (2)求出角的取值范围,结合三角函数的最值性质进行判断求解即可. 【详解】解:(1)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+12cos22x x ωω=+ πsin(2)6x ω=+,所以()f x 的最小正周期2ππ2T ω==,0>ω, 解得1ω=.(2)由(1)得π()sin(2)6f x x =+. 因为7π12x ≤≤0,所以ππ4π2663x +≤≤. 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1;当π4π263x +=,即7π12x =时,()f x 取得最小值为.25.(1)5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2). 【分析】(1)利用三角恒等变换化简()23f x x π⎛⎫=+ ⎪⎝⎭,再整体代入求单调递增区间;(2)由已知得233f απα⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,求出sin 3πα⎛⎫+ ⎪⎝⎭的值,再利用倍角公式求12f πα⎛⎫-⎪⎝⎭的值;【详解】(1)1()cos2cos 2cos2cos22322f x x x x x x π⎛⎫=+-=++ ⎪⎝⎭3cos22223x x x π⎛⎫=+=+ ⎪⎝⎭ 当22,2,322x k k k Z πππππ⎡⎤+∈-+∈⎢⎥⎣⎦,函数()f x 单调递增, 所以()f x 的单调递增区间5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2)由已知得23f απα⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以1sin 33πα⎛⎫+= ⎪⎝⎭,而2221263f πππααα⎛⎫⎛⎫⎛⎫-=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭212sin 3πα⎤⎛⎫=-+= ⎪⎥⎝⎭⎦.【点睛】求正弦型三角函数的单调区间,常用整体代入法,但要注意保证x 的系数为正,才比较不容易出错;求三角函数值时,要注意整体观察角. 26.(1)3cos 5α=;(2)6365. 【分析】(1)根据二倍角的正切公式以及同角三角函数的关系,可求得结果; (2)由3cos 5α=求出4sin 5α,由5sin()13αβ+=求出12cos()13αβ+=-,再根据[]sin sin ()βαβα=+-以及两角差的正弦公式可得结果.【详解】(1)因为1tan22α=,所以22tan42tan 31tan 2ααα==-, 所以22sin 4cos 3sin cos 1αααα⎧=⎪⎨⎪+=⎩,0,2πα⎛⎫∈ ⎪⎝⎭,解得3cos 5α=.(2)由已知得322ππαβ<+<,又5sin()13αβ+=,所以12cos()13αβ+==-,又24sin 1cos 5αα, sin sin[()]βαβα=+-sin()cos cos()sin αβααβα=+-+531246313515565⎛⎫=⨯--⨯= ⎪⎝⎭. 【点睛】本题考查了同角三角函数间的关系,二倍角的公式,两角差的正弦公式,关键在于观察,用已知角表示待求的角,属于中档题.。

人教版九年级下册数学锐角三角函数单元测试卷附详细解析

人教版九年级下册数学锐角三角函数单元测试卷附详细解析

人教版九年级下册数学锐角三角函数单元测试卷附详细解析一、单选题(共10题;共30分)1.(3分)tan30°的值等于()A.√3B.√33C.√22D.12.(3分)如图,PA、PB分别切⊙O于A,B,⊙APB=60°,⊙O半径为2,则PB的长为()A.3B.4C.2√3D.2√23.(3分)已知Rt⊙ABC中,⊙C=90°,⊙A=50°,AB=2,则AC=()A.2sin50°B.2sin40°C.2tan50°D.2tan40°4.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=4,tanA=34.以点C为圆心,CB长为半径的圆交AB于点D,则AD的长是()A.1B.75C.32D.25.(3分)如图,在扇形AOB中,⊙AOB=90°,以点A为圆心,OA的长为半径作OC⌢交AB⌢于点C,若OA=2,则阴影部分的面积为()A.23π−√3B.√3−13πC.13πD.√3+13π6.(3分)如图,一艘轮船在小岛A的西北方向距小岛40√2海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东60°的B处,则该船行驶的路程为()A.80海里B.120海里C.(40+40√2)海里D.(40+40√3)海里7.(3分)如图,A,B,C是小正方形的顶点,且每个小正方形的边长为1,则sin⊙ABC的值()A.√22B.1C.√33D.√28.(3分)在⊙ABC中,(2cosA-√2)2+| √3-tanB|=0,则⊙ABC一定是()A.直角三角形B.钝角三角形C.等腰三角形D.锐角三角形9.(3分)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin⊙OBD=()A.12B.34C.45D.3510.(10分)如图(1)所示,E为矩形ABCD的边AD上一边,动点P,Q同时从点B出发,点P 沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒,设P、Q同时出发t秒时,⊙BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分)则下列结论正确的是()A.AB:AD=3:4B.当⊙BPQ是等边三角形时,t=5秒C.当⊙ABE⊙⊙QBP时,t=7秒D.当⊙BPQ的面积为4cm2时,t的值是√10或475秒二、填空题(共5题;共15分)11.(3分)cos245∘−tan30∘⋅sin60∘=.12.(3分)如图,在5×4的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,则tan∠ABC的值为.13.(3分)如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是cm.14.(3分)如图,在Rt⊙ABC中,⊙ACB=90°,CD是高,如果⊙A=α,AC=4,那么BD=.(用锐角α的三角比表示)15.(3分)如图,Rt⊙AOB中,⊙OAB=90°,⊙OBA=30°,顶点A在反比例函数y=−4x图象上,若Rt⊙AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为.三、解答题(共8题;共78分)16.(8分)先化简,再求代数式(aa2−1−1a+1)⋅(a−1)的值,其中a=tan60°−2sin30°.17.(9分)居庸关位于距北京市区50余公里外的昌平区境内,是京北长城沿线上的著名古关城,有“天下第一雄关”的美誉某校数学社团的同学们使用皮尺和测角仪等工具,测量南关主城门上城楼顶端距地面的高度,下表是小强填写的实践活动报告的部分内容:请你帮他计算出城楼的高度AD(结果精确到0.1m,sin35°≈0.574,cos35°≈0.819,tan35°≈0.700)18.(9分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20 √2海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:√2≈1.41,√3≈1.73)19.(9分)如图,从甲楼AB的楼顶A,看乙楼CD的楼顶C,仰角为30°,看乙楼(CD)的楼底D,俯角为60°;已知甲楼的高AB=40m.求乙楼CD的高度,(结果精确到1m)20.(10分)如图,两幢楼高AB=CD=30m,两楼间的距离AC=24m,当太阳光线与水平线的夹角为30°时,求甲楼投在乙楼上的影子的高度.(结果精确到0.01,√3≈1.732,√2≈1.414)21.(10分)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊙AB于E,设⊙ABC=α(60°≤α<90°).(1)当α=60°时,求CE的长;(2)当60°<α<90°时,①是否存在正整数k,使得⊙EFD=k⊙AEF?若存在,求出k的值;若不存在,请说明理由.②连接CF,当CE2-CF2取最大值时,求tan⊙DCF的值.22.(11分)如图,1号楼在2号楼的南侧,两楼高度均为90m,楼间距为AB.冬至日正午,太阳光线与水平面所成的角为32.3°,1号楼在2号楼墙面上的影高为CA;春分日正午,太阳光线与水平面所成的角为55.7°,1号楼在2号楼墙面上的影高为DA.已知CD=42m.(1)(5分)求楼间距AB;(2)(6分)若2号楼共30层,层高均为3m,则点C位于第几层?(参考数据:sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)23.(12分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx﹣4与x轴交于点A(﹣4,0)和点B(2,0),与y轴交于点C.(1)(4分)求该抛物线的表达式及点C的坐标;(2)(4分)如果点D的坐标为(﹣8,0),联结AC、DC,求⊙ACD的正切值;(3)(4分)在(2)的条件下,点P为抛物线上一点,当⊙OCD=⊙CAP时,求点P的坐标.答案解析部分1.【答案】B【解析】【解答】解:tan30°=√33. 故答案为:B【分析】利用特殊角的三角函数值直接求解即可。

人教版高二第一章三角函数单元测试精选(含答案)1

人教版高二第一章三角函数单元测试精选(含答案)1

人教版高二第一章三角函数单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.tan 600o =( )A .B .-C D .【来源】甘肃省平凉市静宁县第一中学2017-2018学年高一下学期期末考试数学(文)试题 【答案】C2.函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( )A .B .C .D .【来源】2008年高考江西卷理科数学试题 【答案】D3.要得到函数y =cos 23x π⎛⎫+ ⎪⎝⎭的图象,只需将函数y =cos2x 的图象( )A .向左平移π个单位长度 B .向左平移π个单位长度C .向右平移6π个单位长度 D .向右平移3π个单位长度 【来源】浙江省金华十校2017-2018学年高一上学期期末调研考试数学试题 【答案】B4.已知0>ω,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( ) A .15[,]24B .13[,]24C .1(0,]2D .(0,2]【来源】2012年全国普通高等学校招生统一考试理科数学(课标卷带解析) 【答案】A5.已知cos cos θθ=,tan tan θθ=-|,则2θ的终边在( ) A .第二、四象限B .第一、三象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上【来源】辽宁省营口市2017-2018学年高一4月月考数学试题 【答案】D6.记0cos(80)k -=,那么0tan100=( )A .B .C D .【来源】2010年普通高等学校招生全国统一考试(全国Ⅰ)理科数学全解全析 【答案】B7.在ABC ∆中,tan tan tan A B A B ++=,则C 等于( )A .6π B .4π C .3π D .23π 【来源】广西宾阳县宾阳中学2017-2018学年高一5月月考数学试题 【答案】C8.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B9.如图,在平面直角坐标系xOy 中,质点M N ,间隔3分钟先后从点P ,绕原点按逆时针方向作角速度为6π弧度/分钟的匀速圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( )A .37.5分钟B .40.5分钟C .49.5分钟D .52.5分钟【来源】福建省福州格致中学2017-2018学年高一下学期第四学段质量检测数学试题 【答案】A10.函数sin(2)3y x π=+图象的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷) 【答案】D11.函数y =的定义域是( )A .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()22,233k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,266k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【来源】2019年一轮复习讲练测 4.3三角函数的图象与性质 【答案】D12.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关【来源】2019高考备考一轮复习精品资料 专题十八 三角函数的图象和性质 教学案 【答案】B象关于y 轴对称,则m 的最小值是( ) A .6π B .3π C .23π D .56π 【来源】2011届江西省湖口二中高三第一次统考数学试卷 【答案】C14.若tan 3α=,4tan 3β=,则tan()αβ-= A .3B .3-C .13D .13-【来源】北京市清华附中2017-2018学年高三数学十月月考试题(文) 【答案】C 15.若sin cos 1sin cos 2αααα+=-,则tan 2α等于( )A .34-B .34C .43-D .43【来源】2012年全国普通高等学校招生统一考试文科数学(江西卷带解析) 【答案】B16.函数()sin()f x x ωϕ=+(其中2πϕ<)的图象如图所示,为了得到()sin g x xω=的图象,则只要将()f x 的图象A .向右平移个单位长度B .向右平移个单位长度C .向左平移个单位长度D .向左平移个单位长度【来源】2015届福建省八县(市)一中高三上学期半期联考文科数学试卷(带解析) 【答案】A17.曲线sin (0,0)y A x a A ωω=+>>在区间2π0,ω⎡⎤⎢⎥⎣⎦上截直线2y =及1y =-所得的弦长相等且不为0,则下列对A ,a 的描述正确的是( ). A .12a =,32A >B .12a =,32A ≤ C .1a =,1A ≥ D .1a =,1A ≤【来源】广东省华南师范大学附属中学2016-2017学年高一上学期期末考试数学试题 【答案】A价y (单位:元/平方米)与第x 季度之间近似满足关系式:()()500sin 95000y x ωϕω=++>.已知第一、二季度的平均单价如下表所示:则此楼盘在第三季度的平均单价大约是( ) A .10000B .9500C .9000D .8500【来源】第一章全章训练 【答案】C19.函数5sin(2)2y x π=+的图象的一条对称轴方程是( ) A .2x π=-B .4πx =-C .8x π=D .54x π=【来源】2012-2013学年黑龙江省集贤县第一中学高一上学期期末考试数学试题(带解析) 【答案】A 20.已知-2π<θ<2π,且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是( ) A .-3B .3或13C .-13D .-3或-13【来源】浙江省温州中学2016-2017学年高一下学期期中考试数学试题 【答案】C 21.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D 22.1cos()2πα+=-,322παπ<<,()sin 2πα-的值为( )A .B .12C .±D .2【来源】江西省上饶市“山江湖”协作体2018-2019学年高一下学期统招班第一次月考【答案】D23.若0<α<β<π4,sinα+cosα=a,sinβ+cosβ=b,则( ).A .a <bB .a >bC .ab <1D .ab >2【来源】河北省石家庄市辛集中学2015-2016学年高一下学期综合练习(三)数学试题 【答案】A24.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3a =,7c =,60C =︒,则b = ( ) A .5B .8C .5或-8D .-5或8【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】B25.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7sin()6πα+的值是( )A .5-B .5C .45-D .45【来源】广东省广州市执信中学2018-2019学年度上学期高三测试数学(必修模块)试题 【答案】C26.将函数sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增 B .在区间,04π⎡⎤-⎢⎥⎣⎦ 上单调递减 C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增 D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 【来源】黑龙江省牡丹江市第一高级中学2017-2018学年高二下学期期末考试数学(文)试题 【答案】A27.若α是第三象限的角, 则2απ-是( )A .第一或第二象限的角B .第一或第三象限的角C .第二或第三象限的角D .第二或第四象限的角【来源】浙江省杭州第二中学三角函数 单元测试题28.已知函数()()0,0,2f x Asin x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则函数()f x 的解析式为 ( )A .()sin()84f x x ππ=+B .()sin()84f x x ππ=-C .3()sin()84f x x ππ=+D .3()sin()84f x x ππ=-【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】A29.曲线cos 2y x =与直线y =在y轴右侧的交点按横坐标从小到大依次记为1P ,2P ,3P ,4P ,5P ,…,则15PP 等于 ( )A .πB .2πC .3πD .4π【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B二、填空题30.若sin(+θ)=25,则cos2θ= . 【来源】2017届福建福州外国语学校高三文上学期期中数学试卷(带解析) 【答案】31.已知直线l :mx +y +3m −√3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与y 轴交于C ,D 两点,若|AB|=2√3,则|CD|=__________. 【来源】2016年全国普通高等学校招生统一考试理科数学(全国3卷参考版) 【答案】432.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【答案】二33.设定义在R 上的函数()()0,122f x sin x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭,给出以下四个论断:①()f x 的周期为π; ②()f x 在区间,06π⎛⎫-⎪⎝⎭上是增函数;③()f x 的图象关于点,03π⎛⎫⎪⎝⎭对称;④()f x 的图象关于直线12x π=对称.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题(写成“p q ⇒”的形式)______________.(其中用到的论断都用序号表示) 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】①④⇒②③ 或①③⇒②④ 34.关于下列命题:①若,αβ是第一象限角,且αβ>,则sin sin αβ>; ②函数sin()2y x ππ=-是偶函数;③函数sin(2)3y x π=-的一个对称中心是(,0)6π;④函数5sin(2)3y x π=-+在,]1212π5π[-上是增函数,所有正确命题的序号是_____.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题 【答案】②③ 35.在ABC ∆中,若B a bsin 2=,则A =______.【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】30o 或150o36.若sin()2cos(2),αππα-=-则sin()5cos(2)3cos()sin()παπαπαα-+----的值为____________.【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】35-37.若函数f (x )=sin 2x+cos 2x ,且函数y=f 2x ϕ⎛⎫+ ⎪⎝⎭(0<φ<π)是一个偶函数,则φ的值等于_____.【答案】π4三、解答题38.已知函数()3sin(2)3f x x π=-,(1)请用“五点作图法”作出函数()y f x =的图象;(2)()y f x =的图象经过怎样的图象变换,可以得到sin y x =的图象.(请写出具体的变换过程)【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】(1)见解析;(2)变换过程见解析.39.在△ABC 中,222a c b +=(1)求B 的大小;(2)求cos A +cos C 的最大值.【来源】浙江省嘉兴市第一中学2017-2018学年高二10月月考数学试题 【答案】(1)π4(2)140.已知A 、B 、C 是△ABC 的三个内角,向量m =(-1,n =(cos A ,sin A ),且m ·n =1. (1)求角A ; (2)若221sin 2cos sin BB B+-=-3,求tan C . 【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3【答案】(1)3π;(2) . 41.已知函数()()()sin 0,0,02f x A x A ωϕωϕπ=+>><<的部分图象如图所示,且()506f f π⎛⎫=⎪⎝⎭.(1)求函数()f x 的最小正周期;(2)求()f x 的解析式,并写出它的单调递增区间. 【来源】第一章全章训练【答案】(1)π;(2)()22sin 23f x x π⎛⎫=+⎪⎝⎭;单调递增区间为7,,1212k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z .42.已知函数()f x =4tan xsin (2x π-)cos (3x π-)-.(Ⅰ)求f (x )的定义域与最小正周期; (Ⅱ)讨论f (x )在区间[,44ππ-]上的单调性.【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3 【答案】(Ⅰ){|,}2x x k k Z ππ≠+∈,π;(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 43.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷)【答案】(Ⅰ)见解析(Ⅱ)函数()f x 在区间[,]122ππ-上的值域为[ 44.设函数()sin(2)()3f x A x x R π=+∈的图像过点7(,2)12P π-.(2)已知10()21213f απ+=,02πα-<<,求1cos()sin()2sin cos 221sin cos ππαααααα-++-+++的值; (3)若函数()y g x =的图像与()y f x =的图像关于y 轴对称,求函数()y g x =的单调区间.【来源】浙江省杭州第二中学三角函数 单元测试题【答案】(1)()223f x sin x π⎛⎫=+ ⎪⎝⎭;(2)713-;(3)单减区间为15(,)()1212k k k z ππππ-+∈, 单增区间为511(,)()1212k k k z ππππ++∈. 45.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值;(2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离与y 轴的距离之比为3∶4,求2sin α+cos α的值.【来源】第3章章末检测-2018-2019版数学创新设计课堂讲义同步系列(湘教版必修2)【答案】(1)-25(2)见解析(3)见解析 46.是否存在实数a ,使得函数y =sin 2x +acosx +5a 8−32在闭区间[0,π2]上的最大值是1?若存在,求出对应的a 值;若不存在,请说明理由.【来源】重庆市万州二中0910年高一下学期期末考试【答案】f max (t)=f(a 2)=a 42+58a −12=1, 47.A,B 是单位圆O 上的点,点A 是单位圆与x 轴正半轴的交点,点B 在第二象限,记∠AOB =θ,且sinθ=45.(1)求点B 的坐标;(2)求sin (π+θ)+2sin(π2−θ)2tan (π−θ)的值.【来源】2015-2016学年广西钦州港开发区中学高二上第一次月考理科数学试卷(带解析)【答案】(1)(−35,45);(2)−53. 48.已知函数()sin 214f x x π⎛⎫=++ ⎪⎝⎭(1)用“五点法”作出()f x 在7,88x ππ⎡⎤∈-⎢⎥⎣⎦上的简图; (2)写出()f x 的对称中心以及单调递增区间;(3)求()f x 的最大值以及取得最大值时x 的集合.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题【答案】(1)见解析;(2)k ππ,028⎛⎫+ ⎪⎝⎭,k Z ∈,最大值为2,此时,,8x k k ππ=+∈Z . 49.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,5c =,3cos 5B =. (1)求b 的值;(2)求sin C 的值.【来源】正余弦定理 滚动习题(三) [ 范围 1 ]【答案】(1; (2.50.已知函数f (x )=4sin π-3x ⎛⎫ ⎪⎝⎭cos . (1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 区间在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.【来源】人教A 版2018-2019学年高中数学必修4第三章三角恒等变换测评【答案】(1)T=π,递增区间为π5ππ-,π1212k k ⎡⎤+⎢⎥⎣⎦(k ∈Z).(2) m ∈-3.。

高中数学北师大版必修4《第一章三角函数》单元测试卷含试卷分析详解

高中数学北师大版必修4《第一章三角函数》单元测试卷含试卷分析详解

所示,则当t =1100s 时,电流强度是( )A .-5 AB .5 AC .5 3 AD .10 A 答案:A解析:由图像知A =10,T 2=4300-1300=1100,∴T =150,∴ω=2πT=100π,∴I =10sin(100πt+φ).又⎝⎛⎭⎫1300,10在图像上,∴100π×1300+φ=π2+2k π,k ∈Z .又0<φ<π2,∴φ=π6 .∴I =10sin ⎝⎛⎭⎫100πt +π6,当t =1100 s 时,l =-5 A ,故选A. 7.下列四个命题:①函数y =tan x 在定义域内是增函数;②函数y =tan(2x +1)的最小正周期是π;③函数y =tan x 的图像关于点(π,0)成中心对称;④函数y =tan x 的图像关于点⎝⎛⎭⎫-π2,0成中心对称.其中正确命题的个数是( ) A .0 B .1 C .2 D .3 答案:C解析:对于①,函数y =tan x 仅在区间⎝⎛⎭⎫k π-π2,k π+π2(k ∈Z )内递增,如π4<5π4,但tan π4=tan 5π4,所以①不正确;对于②,其最小正周期是π2,所以②也不正确;观察正切曲线可知命题③④都正确.8.要得到函数y =sin2x 的图像,只需将函数y =cos(2x -π4)的图像( )A .向左平移π8个单位B .向右平移π8个单位C .向左平移π4个单位D .向右平移π4个单位答案:B解析:将函数y =cos(2x -π4)向右平移π8个单位,得到y =cos ⎝⎛⎭⎫2⎝⎛⎭⎫x -π8-π4=cos ⎝⎛⎭⎫2x -π2=sin2x ,故选B.9.在△ABC 中,若sin A sin B cos C <0,则△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .锐角或钝角三角形 答案:C解析:正弦函数在区间(0,π)的函数值都为正,故cos C <0,角C 为钝角.10.已知定义在区间⎣⎡⎦⎤0,3π2上的函数y =f (x )的图像关于直线x =3π4对称,当x ≥3π4时,。

第一章三角函数测试题 (含详细答案)

第一章三角函数测试题 (含详细答案)

必修四第一章三角函数单元测试 一、选择题1.设A ={小于90°的角},B ={第一象限的角},则A ∩B 等于( ). A .{锐角}B .{小于90° 的角}C .{第一象限的角}D .{α|k ·360°<α<k ·360°+90°(k ∈Z ,k ≤0)} 2.终边在直线y =-x 上的角的集合是( ). A .{α|α=45°+k ·180°(k ∈Z )} B .{α|α=135°+k ·180°(k ∈Z )} C .{α|α=45°+k ·360°(k ∈Z )}D .{α|α=-45°+k ·360°(k ∈Z )}3. 已知sin α=54,α∈(0,π),则tan α等于( ). A .34B .43 C .34±D .43±4.已知角 α 的终边经过点P (4,-3),则2sin α+cos α的值等于( ). A .-53 B .54 C .52 D .-52 5.已知sin α=-22,2π<α<23π,则角 α 等于( ). A .3πB .32πC .34πD .45π6.已知tan 14°≈41,则tan 7°约等于( ). A .17+4B .17-4C .17+2D .17-27.α是三角形的内角,则函数y =cos 2α-3cos α+6的最值情况是( ). A .既有最大值,又有最小值 B .既有最大值10,又有最小值831 C .只有最大值10 D .只有最小值831 8.若f (x )sin x 是周期为π的奇函数,则f (x )可以是( ). A .sin xB .cos xC .sin 2xD .cos 2x9.设4π<α<2π,sin α=a ,cos α=b ,tan α=c 则a ,b ,c 的大小关系为( ). A .a <b <cB .a >b >cC .b >a >cD .b <a <c10.已知sin α>sin β,那么下列命题成立的是( ). A .若α,β是第一象限角,则cos α>cos β B .若α,β是第二象限角,则tan α>tan β C .若α,β是第三象限角,则cos α>cos β D .若α,β是第四象限角,则tan α>tan β 二、填空题11.已知扇形的半径是1,周长为π,则扇形的面积是 . 12.已知集合A ={α|2k π≤α≤(2k +1)π,k ∈Z },B ={α|-4≤α≤4}, 求A ∩B = .13.已知点P (tan α,cos α)在第三象限,则角 α 的终边在第 象限. 14.已知cos (π+α)=-53,sin αcos α<0,则sin (α-7π)的值为 . 15.函数y =x sin log 21的定义域是 .16.函数y =a +b sin x 的最大值是23,最小值是-21,则a = ,b = . 三、解答题17.设 α 是第二象限的角,sin α=53,求sin (637π-2α)的值.18.求下列函数的周期: (1)y =cos 2(πx +2),x ∈R ; (2)y =cos 4x -sin 4x ,x ∈R ; (3)y =sin x ·cos x +3cos 2x -23,x ∈R .19.已知x ∈[-3π,4π],f (x )=tan 2x +2tan x +2,求f (x )的最大值和最小值,并求出相应的x 值.20.求函数y =1tan tan 1tan tan 22+++-x x x x 的值域.第一章 三角函数参考答案一、选择题 1.D解析:A 集合中包含小于90°的正角,还有零角和负角,而B 集合表示终边落在第一象限的角.二者的交集不是A ,B ,C 三个选项.2.B解析:先在0°~360°内找终边在直线y =-x 上的角分别为135°或315°,所以终边在直线y =-x 上的所有角为k ·360°+135°,或k ·360°+315°,k ∈Z .k ·360°+135°=2k ·180°+135°,k ·360°+315°=(2k +1)180°+135°,由此得答案为B . 3.C解析:∵sin α=54,α∈(0,π),∴cos α=±53,∴tan α=±34. 4.D解析:∵r =22)3(4-+=5,∴sin α=ry =-53,cos α=r x =54.∴2sin α+cos α=2×(-53)+54=-52. 5.D 解析:∵sin 45π=sin (π+4π)=-sin 4π=-22,且2π<45π<23π,∴α=45π. 6.B解析:设tan 7°=x ,则tan 14°=2-12xx ≈41. 解得x ≈-4±17(负值舍去), ∴x ≈17-4. 7.D解析:∵y =cos 2α-3cos α+6=2cos 2α-3cos α+5=2(cos α-43)2+831,又 α 是三角形的内角,∴-1<cos α<1. 当cos α=43时,y 有最小值831.8.B解析:取f (x )=cos x ,则f (x )·sin x =21sin 2x 为奇函数,且T =π. 9.D解析:在单位圆中做出角 α 的正弦线、余弦线、正切线得b <a <c . 10.D解析:若α,β是第四象限角,且sin α>sin β,如图,利用单位圆中的三角函数线确定α,β的终边,故选D .二、填空题 11.答案:12-π. 12.答案:A ∩B ={α|-4≤α≤-π 或0≤α≤π }.解析:在集合A 中取k =…,-1,0,1,…得到无穷个区间…,[-2π,-π],[0,π],[2π,3π],…将这些区间和集合B 所表示的区间在数轴上表示如图:由图可知A ∩B ={α|-4≤α≤-π 或0≤α≤π }. 13.答案:二.解析:因为点P (tan α,cos α)在第三象限,因此有⎩⎨⎧ ,tan α<0⇒α在二、四象限,cos α<0⇒α在二、三象限(包括x 轴负半轴),所以 α 为第二象限角.即角 α 的终边在第二象限.14.答案:54. 解析:∵cos (π+α)=-cos α=-53,∴cos α=53. 又∵sin αcos α<0,∴sin α<0,α为第四象限角,∴sin α=-54=-cos 12α-,∴sin (α-7π)=sin (α+π-8π)=sin (π+α)=-sin α=54. 15.答案:(2k π,2k π+π)(k ∈Z ).解析:由x sin log 21≥0,得0<sin x ≤1,∴2k π<x <2k π+π(k ∈Z ).tan α<0cos α<0(第12题)(第10题`)16.答案:21,±1. 解析:当b >0时,得方程组⎪⎩⎪⎨⎧21=--23=+b a b a 解得⎪⎩⎪⎨⎧1=21=b a 当b <0时,得方程组⎪⎩⎪⎨⎧21=-+23=-b a b a 解得⎪⎩⎪⎨⎧1=-21=b a 三、解答题 17.答案:32512+507. 解:∵sin α=53,α是第二象限角, ∴cos α=-54,sin 2α=2sin αcos α=-2524, ∴cos 2α=1-2sin 2α=257, 故sin (637π-2α)=sin (6π-2 α)=21×257-23(-2524)=32512507+.18.答案:(1)1;(2)π;(3)π. 解:(1)y =cos 2(πx +2)=21[1+cos (2πx +4)] =21cos (2πx +4)+21. ∴T =ππ22=1. (2)y =cos 4x -sin 4x=(cos 2x +sin 2x )(cos 2x -sin 2x ) =cos 2x -sin 2x =cos 2x . ∴T =22π=π. (3)y =sin x ·cos x +3cos 2x -23 =21sin 2x +3·22cos +1x-23=21sin 2x +23cos 2x=sin (2x +3π).∴T =22π=π. 19.答案:x =-4π时y min =1,x =4π时y max =5.解析:f (x )=tan 2x +2tan x +2=(tan x +1)2+1.∵x ∈[-3π,4π],∴tan x ∈[-3,1]. ∴当tan x =-1,即x =-4π时,y 有最小值,y min =1;当tan x =1,即x =4π时,y 有最大值,y max =5.20.答案: [31,3].解析:将原函数去分母并整理得(y -1)tan 2x +(y +1)tan x +y -1=0. 当y ≠1时,∵tan x ∈R ,∴方程是关于tan x 的一元二次方程,有实根. ∴判别式△=(y +1)2-4(y -1)2≥0, 即3y 2-10y +3≤0.解之31≤y ≤3.而tan x =0时,y =1,故函数的值域为[31,3].。

三角函数综合测试题(含答案)

三角函数综合测试题(含答案)

三角函数综合测试题一、选择题(每小题 5 分,共70 分)1.sin2100 =A.32 B.-32C.12D.-122.是第四象限角,tan512,则sinA.15B.15C.513D.5133. (cos sin ) (cos sin ) =12 12 12 12A.- 3 B.-2 12C. 12D. 324.已知sin θ=35,sin2 θ<0,则tan θ等于A.-34B.34C.-34或34D.455.将函数y sin( x ) 的图象上所有点的横坐标伸长到原来的 2 倍(纵坐标不变),再3将所得的图象向左平移个单位,得到的图象对应的僻析式是3A.1y sin x B.21y sin( x )2 2C.1y sin( x ) D. y sin(2 x )2 6 66. 2tan x cot x cos xA.tan x B.sin x C. c o x s D.cot x7.函数y = sin x sin x 的值域是A. { 0 }B. [ -2 , 2 ]C. [ 0 , 2 ]D.[ -2 , 0 ]8.已知sin cos 18,且(0,) ,则sin +cos 的值为25 5 5 3A. B. - C. D.2 2 2 29. 2y (sin x cos x)1是A .最小正周期为 2π的偶函数B .最小正周期为 2π的奇函数C .最小正周期为 π的偶函数D .最小正周期为 π的奇函数10.在 ( 0,2 ) 内,使 sin xcos x 成立的 x 取值范围为55 53)( ,,(, ) (,A . ( , )B . (, ) C . ( )D .)4 24 44444211.已知,函数 y =2sin( ωx +θ为) 偶函数 (0<θ<π)其图象与直线y =2 的交点的横坐标为 x 1,x 2,若 | x 1-x 2|的最小值为 π,则A .ω= 2,θ=B . ω=21 2,θ=2C .ω=1 2, θ=4D .ω=2,θ=45 4.设a sin ,72bcos,72 ctan,则 7A . abcB . a c bC . b c aD . bac13.已知函数 f ( x ) sin(2 x ) 的图象关于直线x对称,则可能是8A.B.C.D.2443 414. 函数 f(x)= 1cos 2 cos x xA .在 0, 、 , 22上递增,在3 3 上递减,、, 222B .在 0, 、23 , 上递增,在, 2 23、 ,2 上递减 2C .在 , 23、 ,2 上递增,在 20, 、23 , 上递减2D .在3 3上递增,在,、, 2 220,、, 22上递减二.填空题(每小题5 分,共 20 分,)10. 已知, ,求使 sin= 222 3成立的 =16.sin15° cos75°+cos15°sin105°=_________17.函数y=Asin( x+ )( >0,| |<,x∈R)的部分图象如图,则2函数表达式为18.已知, 为锐角,且cos = 19.给出下列命题:17cos ( ) =1114, 则cos =_________(1)存在实数,使sin cos 1 (2)存在实数,使sin cos 3 23(3) 函数y ) 是偶函数(4 )若、是第一象限的角,且,则sin( x2sin .其中正确命题的序号是________________________________sin三.解答题(每小题12 分,共60 分,)15.已知函数y=3sin ( x )2 4(1)用五点法在给定的坐标系中作出函数一个周期的图象;(2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心.6.已知sin( k ) -2 cos( k ) k Z求:(1)45 sincos23cossin; (2)14sin22 cos522 的最大值为0,最小值为-4,试求a 与 b 的值,22.设a 0 ,若y cos x a sin x b 并求y 的最大、最小值及相应的x 值.7.已知1tan( ) ,21tan ,且, ( 0, ) ,求2 的值.72 (其中>0,a R ),且f(x)的图象在8.设函数 f ( x) 3 cos x sin x cos x ay 轴右侧的第一个最高点的横坐标为. 6(1)求的值;5(2)如果 f ( x) 在区间][ , 的最小值为 3 ,求a 的值.3 6测试题答案.一.DDDA,CDDA,DCAD,CA二arcsin23 1 y= -4 sin( x )8 412(3)三、解答题:111.已知函数y=3sin )( x2 4(1)用五点法作出函数的图象;(2)求此函数的振幅、周期和初相;(3)求此函数图象的对称轴方程、对称中心. 解(1)列表:x32 25272921 2 x 043 22 213sin )( x 0 3 0 -3 02 4描点、连线,如图所示:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5(2)周期T= 2 = 2 =4 ,振幅A=3,初相是12- . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.84(3)令 12 x =4 2+k (k∈Z),得x=2k + 32(k ∈Z), 此为对称轴方程.令12 x- =k (k∈Z)得x= +2k (k ∈Z).4 2对称中心为,0)( 2 k2(k ∈Z)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..129.已知sin( +k )=-2cos( +k ) (k ∈Z).求:(1) 45 sincos23cossin;(2) 142 +sin252 .cos解:由已知得cos( +k ) ≠0,∴tan( +k )=-2(k ∈Z),即tan =-2 (2)(1)4 5 sincos23cossin45tan3 tan210 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯71(2)42 +sin252 =cos1 2 1 22 2 2sin cos tan4 5 4 5=2 2 2sin tan 1cos725⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.12222.设a≥0,若y=cos x-asinx+b 的最大值为0,最小值为-4,试求a与b 的值,并求出使y 取得最大、最小值时的x 值.为解:原函数变形y=-(sin2a 2 ax ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2) 1 b2 4∵-1≤sinx≤1,a≥0∴若0≤a≤2,当sinx=- a 时2y max=1+b+ 2 a =0 ①4当sinx=1 时,y min=-(1 a2)2a21 b4=-a+b=-4 ②联立①②式解得a=2,b=-2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7y 取得最大、小值时的x 值分别为:x=2kπ-(k ∈Z),x=2kπ+(k∈Z)2 2若a>2 时, a2∈(1,+∞)2a a∴y max=- 2 a b =0 ③(1 ) 1 b2 42a ay min=- 42 a b(1 ) 1 b2 4④由③④得a=2 时,而a =1 (1,+∞)舍去⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 2故只有一组解a=2,b=-2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..1210.已知tan( α-β=)12,tan β=- 17,且α、β∈(0,),求2α-β的值.解:由tan β=- 17 β∈(0,π) 得β∈( , π) ①⋯⋯⋯⋯⋯⋯⋯⋯⋯22由tan α=tan[( α-β+)β=] 13α∈(0,π) ∴0<α<⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.6 2∴0<2α<π由tan2 α= 34 >0 ∴知0<2α<2②∵tan(2 α-β=)tan12tan 2tantan=1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..10由①②知2α-β∈(-π,0)WORD文档专业资料3∴2α-β=-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.12 42 (其中ω>0,a∈R),且f(x) 的图象在y 11.设函数f( x)3 cos x sin x cos x a轴右侧的第一个最高点的横坐标为.6(1)求ω的值;5 x(2)如果 f ( x ) 在区间][ ,3 6的最小值为3,求 a 的值.解:(1) f(x) = 32 cos2 x+12sin2 x+ 32+a⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.2=sin(2 x+3 )+ 3 +a⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..42依题意得 2 ·+=解得=6 3 2 12⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯.6(2) 由(1)知f(x) =sin(2 x+)+33 +a 2又当x∈,3 56时,x+∈370 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8,6故- 12 ≤sin(x+) ≤1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯..103从而f(x) 在,3 56上取得最小值- 12+ 3 +a2因此,由题设知- 1 +23 +a= 3 故a=2321⋯⋯⋯⋯⋯⋯⋯.12。

三角函数习题及答案

三角函数习题及答案

任意角的三角函数一、选择题:1.使得函数有意义的角在()(A)第一,四象限(B)第一,三象限(C)第一、二象限(D)第二、四象限2.角α、β的终边关于У轴对称,(κ∈Ζ)。

则(A)α+β=2κπ(B)α-β=2κπ(C)α+β=2κπ-π(D)α-β=2κπ-π3.设θ为第三象限的角,则必有()(A)(B)(C)(D)4.若,则θ只可能是()(A)第一象限角(B)第二象限角(C)第三象限角(D)第四象限角5.若且,则θ的终边在()(A)第一象限(B)第二象限(C)第三象限(D)第四象限二、填空题:6.已知α是第二象限角且则2α是第▁▁▁▁象限角,是第▁▁▁象限角。

7.已知锐角α终边上一点A的坐标为(2sina3,-2cos3),则α角弧度数为▁▁▁▁。

8.设则Y的取值范围是▁▁▁▁▁▁▁。

9.已知cosx-sinx<-1,则x是第▁▁▁象限角。

三、解答题:10.已知角α的终边在直线上,求sinα及cot的值。

11.已知Cos(α+β)+1=0, 求证:sin(2α+β)+sinβ=0。

12.已知,求ƒ(1)+ƒ(2)+ƒ(3)+……+ƒ(2000)的值。

同角三角函数的基本关系式及诱导公式一、选择题:1.化简结果是()(A)0 (B)(C)22.若,且,则的值为()或3. 已知,且,则的值为()4. 已知,并且是第一象限角,则的值是()5. 化简的结果是()6. 若且,则角所在的象限是()(A)一、二象限(B)二、三象限(C)一、三象限(D)一、四象限填空题:7.化简▁▁▁▁▁▁。

8.已知,则的值为▁▁▁▁▁▁。

9.=▁▁▁▁▁。

10.若关于的方程的两根是直角三角形两锐角的正弦值,则▁▁▁▁。

解答题:11.已知:,求的值。

12.已知,求证:13.已知,且,求的值。

14.若化简:两角和与差的三角函数1.“”是“”的()(A)充分必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件2.已知且为锐角,则为()或非以上答案3.设则下列各式正确的是()4.已知,且则的值是()二、填空题:5.已知则的值为6.已知且则7.已知则8.在中,是方程的两根,则三、解答题:9.求值。

(12)三角函数 单元测试题

(12)三角函数 单元测试题

三角单元测试题一、选择题:(每小题5分,计50分)1.(2006 (A )关于x 轴对称 (B )关于y 轴对称 (C )关于原点对称(D )关于直线x =2π对称2. (2008全国Ⅱ卷文).若sin 0α<且tan 0α>是,则α是( ) A .第一象限角 B . 第二象限角 C . 第三象限角 D . 第四象限角3.(2008北京文)已知△ABC 中,a =2,b =3,B =60°,那么角A 等于( ) (A )135° (B)90° (C)45° (D)30°4.(2006江西文)函数4sin 21y x π⎛⎫=++ ⎪3⎝⎭的最小正周期为( ) A.π2B.π C.2πD.4π5.(2008福建文)函数cos ()y x x R =∈的图像向左平移2π个单位后,得到()y g x =的图像, 则()g x 的解析式为( )A.sin x - B.sin x C.cos x - D.cos x6.(2008全国Ⅱ卷文)函数x x x f cos sin )(-=的最大值为( ) A .1B .2 C .3D .27.(2003全国文)函数sin()(0)y x R ϕϕπϕ=+≤≤=是上的偶函数,则( ) (A )0 (B )4π (C )2π(D )π8.( 2007广东文)已知简谐运动()2sin()(||)32f x x ππϕϕ=+<的图象经过点(0,1),则该简谐运动的最小正周期T 和初相ϕ分别为( )9.(2004辽宁)若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则ϕω和的取值是( )A .3,1πϕω==B .3,1πϕω-==C .6,2ϕω==D .6,2ϕω-==10.(2007江西文)若tan α=3,tan β=34,则tan(α-β)等于( ) A .-3 B .-31 C .3 D .31二.填空题: (每小题5分,计20分)11.(2006重庆文)已知sin 5α=,2παπ≤≤,则tan α= 。

北师大版数学八年级上第一章三角函数单元检测题含答案

北师大版数学八年级上第一章三角函数单元检测题含答案

北师大版数学八年级上第一章三角函数单
元检测题含答案
一、选择题
1. 下面那个角不是锐角?
A. 40°
B. 75°
C. 120°
D. 160°
答案:D
2. 在一个三角形中,如果一个角是直角,则其余两个角的和是多少度?
A. 45°
B. 90°
C. 120°
D. 180°
答案:C
二、填空题
1. 在单位圆上,角θ对应的弧长为$\frac{\pi}{6}$,则$\sinθ$的值是\_\_\_\_\_\_\_。

答案:0.5
2. 若$\cosθ = -0.8$,则角θ的终边位于哪个象限?
答案:第二象限
三、解答题
1. 已知直角三角形的一条直角边的长度为5cm,斜边的长度为13cm,求另一个直角边的长度。

答案:12cm
2. 已知$\sinθ = \frac{3}{5}$,求$\cosθ$和$\tanθ$的值。

答案:$\cosθ = \frac{4}{5}$,$\tanθ = \frac{3}{4}$
四、计算题
1. $\sin30° + \cos45°$的值等于\_\_\_\_\_\_\_。

答案:$\frac{\sqrt{2} + 1}{2}$
2. $\sin(30° + 45°)$的值等于\_\_\_\_\_\_\_。

答案:$\frac{\sqrt{6} + \sqrt{2}}{4}$
以上是北师大版数学八年级上第一章三角函数单元检测题的内容和答案。

希望对你有帮助!。

人教版高中数学必修第一册第五单元《三角函数》测试题(有答案解析)(2)

人教版高中数学必修第一册第五单元《三角函数》测试题(有答案解析)(2)

一、选择题1.已知5π2sin 63α⎛⎫+= ⎪⎝⎭,则πcos 23α⎛⎫-= ⎪⎝⎭( )A .B .19-C .3D .192.已知α为第二象限角,且π3cos 25α⎛⎫-= ⎪⎝⎭,则tan α=( ). A .34-B .43-C .53-D .45-3.已知函数()sin()(0)f x x ωω=>在区间,123ππ⎛⎤- ⎥⎝⎦上单调递增,在区间5,312ππ⎡⎫⎪⎢⎣⎭上单调递减,则ω=( )A .362k -,k ∈N B .362k +,k ∈N C .32D .34.计算cos 20cos80sin160cos10+=( ).A .12B C .12-D . 5.已知3sin 7a π=,4cos 7b π=,3tan()7c π=-,则a ,b ,c 的大小关系为( ) A .a b c <<B .b c a <<C .c b a <<D .c a b <<6.把函数sin y x =的图象上所有的点向左平行移动6π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数解析式是( ) A .sin 23y x π⎛⎫=- ⎪⎝⎭B .sin 26x y π⎛⎫=+⎪⎝⎭ C .sin 26y x π⎛⎫=-⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭7.sin 20cos10cos160sin10-=( )A .B .12C .12-D .28.若1sin 63πα⎛⎫-= ⎪⎝⎭,则2cos 23πα⎛⎫+ ⎪⎝⎭等于( ).A .79-B .13-C .13D .799.若将函数3sin(2)3y x π=+的图象向左平移6π个单位长度,则平移后图象的一个对称中心是( ) A .,06π⎛⎫ ⎪⎝⎭B .,06π⎛⎫-⎪⎝⎭C .,012π⎛⎫⎪⎝⎭D .,03π⎛⎫⎪⎝⎭10.刘徽是中国魏晋时期杰出的数学家,他提出“割圆求周”方法:当n 很大时,用圆内接正n 边形的周长近似等于圆周长,并计算出精确度很高的圆周率 3.1416π≈.在《九章算术注》中总结出“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”的极限思想,可以说他是中国古代极限思想的杰出代表.运用此思想,当π取3.1416时可得cos89︒的近似值为( ) A .0.00873B .0.01745C .0.02618D .0.0349111.已知tan 2α=,则sin sin 44ππαα⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭( ) A .310-B .310 C .35D .3512.已知2cos 432θπ⎛⎫= ⎪⎝⎭-,则sin θ=( ) A .79 B .19C .-19D .-79二、填空题13.已知()sin()cos()1f x a x b x παπβ=++-+,其中α,β,a ,b 均为非零实数,若()20202f =,则()2021f =________.14.已知函数sin cos y x x =-,其图象的对称轴中距离y 轴最近的一条对称轴方程为x =________.15.已知锐角α满足1cos()35πα+=,则sin α=______. 16.若()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,则()()tan 06g x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为______.17.已知1tan()3πα+=-,则sin 2cos 5cos sin αααα+=-______. 18.已知tan 2α=,则cos2=α__. 19.已知tan 2α=,则cos 22πα⎛⎫-= ⎪⎝⎭___________.20.若2sin 63πα⎛⎫+= ⎪⎝⎭,则sin 26πα⎛⎫-= ⎪⎝⎭________. 三、解答题21.已知函数2()2sin 23sin cos 1f x x x x =++.求: (1)()f x 的最小正周期; (2)()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最值. 22.已知函数()cos f x x =.(1)已知α,β为锐角,()5f αβ+=-,4tan 3α=,求cos2α及()tan βα-的值;(2)函数()()321g x f x =+,若关于x 的不等式()()()2133g x a g x a ≥+++有解,求实数a 的最大值.23.如图为一个观览车示意图,该观览车圆半径为4.8m ,圆上最低点与地面距离为0.8m ,60秒转动一圈.图中OA 与地面垂直,以OA 为始边,逆时针转动θ到OB .设B 点与地面的距离为h .(1)求h 与θ的函数关系式;(2)设从OA 开始转动,经过10秒到达OB ,求h . 24.已知函数25()23cos()2cos (0)32f x wx wx wx w π=+-+>的图像上相邻的两个最低点的距离为π. (1)求w 的值;(2)求函数()f x 的单调递增区间. 25.已知函数2()sin(2)2cos 1(0)6f x x x πωωω=-+->的最小正周期为π,(1)求ω的值 (2)求()f x 在区间70,12π⎡⎤⎢⎥⎣⎦上的最大值和最小值.26.已知α∈(0,)2π,tan α=12,求tan 2α和sin ()4πα-的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】先用诱导公式化为5cos 2cos 233ππαα⎛⎫⎛⎫-=+⎪ ⎪⎝⎭⎝⎭,再用二倍角公式计算. 【详解】225521cos 2cos 212sin 1233639a a πππα⎛⎫⎛⎫⎛⎫⎛⎫-=+=-+--⨯= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.故选:D 2.A解析:A 【分析】 由已知求出3sin 5α=,即可得cos α,进而求出所求. 【详解】 ∵π3cos 25α⎛⎫-=⎪⎝⎭,∴3sin 5α=,∵α为第二象限角,∴4cos 5α==-, ∴sin 3tan cos 4ααα==-. 故选:A .3.C解析:C 【分析】 由题意知,当3x π=时,函数()f x 取得最大值,可求得362k ω=+,k ∈N .再由函数的单调区间得出不等式组,解之可得选项. 【详解】由题意知,当3x π=时,函数()f x 取得最大值,所以232k ππωπ⋅=+,k Z ∈.得362k ω=+,k ∈N .因为()f x 在区间,123ππ⎛⎤-⎥⎝⎦上递增,在5,312ππ⎡⎫⎪⎢⎣⎭上递减,所以312πππω≥+且5123πππω≥-, 解得1205ω<≤.因此32ω=.故选:C.4.A解析:A 【分析】将160化为20,10化为80后,利用两角差的余弦公式可求得结果. 【详解】cos 20cos80sin160cos10+cos 20cos80sin 20sin80=+()cos 8020=-cos60=12=. 故选:A .5.C解析:C 【分析】3sin07a π=>,4cos 07b π=<,a b >且均属于()1,1-,而1c <-,大小关系即可确定. 【详解】 解:3sin7a π=>;427πππ<<, 4cos coscos 72πππ∴<<,即10b -<<. 又正切函数在(0,)2π上单调递增,347ππ<; 3tantan 174ππ∴>=;33tan()tan 177c ππ∴=-=-<-, 01a b c ∴>>>->,故选:C. 6.D解析:D 【分析】根据三角函数的图象变换规律可得解析式. 【详解】函数sin y x =的图象上所有的点向左平行移动6π个单位长度,得sin 6y x π⎛⎫=+ ⎪⎝⎭,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),可得sin 26y x π⎛⎫=+ ⎪⎝⎭. 故选:D .7.B解析:B 【分析】利用诱导公式cos160cos 20=-,再利用两角和的正弦公式即可求解. 【详解】sin 20cos10cos160sin10-()sin 20cos10cos 18020sin10=-- sin 20cos10cos 20sin10=+()sin 2010=+sin30=12=故选:B8.A解析:A 【分析】 根据1sin 63πα⎛⎫-=⎪⎝⎭,利用诱导公式得到cos 3πα⎛⎫+ ⎪⎝⎭,再由2cos 2cos 233ππαα⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,利用二倍角公式求解. 【详解】 因为1sin sin 6233πππαα⎛⎫⎛⎫⎛⎫-=-+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1cos 33πα⎛⎫+=⎪⎝⎭, 所以227cos 2cos 22cos 13339πππααα⎛⎫⎛⎫⎛⎫⎛⎫+=+=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,故选:A9.A解析:A 【分析】先求出平移后的解析式为23sin 23y x π⎛⎫=+ ⎪⎝⎭,令()223x k k Z ππ+=∈解方程即可求解. 【详解】将函数3sin(2)3y x π=+的图象向左平移6π个单位长度得:23sin 23sin 2633y x x πππ⎡⎤⎛⎫⎛⎫=++=+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令()223x k k Z ππ+=∈,解得:()32kx k Z ππ=-+∈, 当1k =时,326x πππ=-+=,所以平移后图象的一个对称中心为,06π⎛⎫⎪⎝⎭,故选:A10.B解析:B 【分析】根据cos89sin1︒=,将一个单位圆分成360个扇形,由这360个扇形的面积之和近似为单位圆的面积求解. 【详解】因为()cos89cos 901sin1︒=-=,所以将一个单位圆分成360个扇形,则每一个扇形的圆心角为1︒, 所以这360个扇形的面积之和近似为单位圆的面积,即2136011sin112π⨯⨯⨯⨯≈,所以 3.1416sin10.01745180180π≈≈≈, 故选:B11.B解析:B【分析】利用两角和与差的正弦公式、同角三角函数的基本关系式化简所求表达式,由此求得所求表达式的值. 【详解】sin sin sin cos cos sin sin cos cos sin 444444ππππππαααααα⎛⎫⎛⎫⎛⎫⎛⎫-+=-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()22222211sin cos sin cos 22sin cos αααααα-=-=⨯+ 221tan 114132tan 124110αα--=⨯=⨯=++. 故选:B12.C解析:C 【分析】根据题中条件,由诱导公式,以及二倍角公式,即可求出结果. 【详解】 因为2cos 432θπ⎛⎫=⎪⎝⎭-, 所以241sin cos 2cos 12124299ππθθθ⎛⎫⎛⎫=-=--=⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选:C二、填空题13.0【分析】由题设条件结合周期性及诱导公式运算即可得解【详解】由题意所以所以故答案为:0解析:0 【分析】由题设条件结合周期性及诱导公式运算即可得解. 【详解】由题意,()sin(2020)cos(2020)1sin cos()12020a b a b f παπβαβ++-++-=+=sin cos 12a b αβ=++=,所以sin cos 1αβ+=a b ,所以()sin(2021)cos(202)201211f a b παπβ++-+=sin()cos()1sin cos 1110a b a b παπβαβ==++-+-+=-+=-.故答案为:0.14.【分析】函数令求解【详解】已知函数令解得所以其图象的对称轴中距离轴最近的一条对称轴方程为故答案为:解析:4π-【分析】函数4y x π⎛⎫=- ⎪⎝⎭,令42x k πππ-=+求解.【详解】已知函数sin cos 4y x x x π⎛⎫=-=- ⎪⎝⎭,令,42x k k Z πππ-=+∈,解得 3,4x k k Z ππ=+∈, 所以其图象的对称轴中距离y 轴最近的一条对称轴方程为x =4π-. 故答案为:4π-15.【分析】利用余弦的两角和公式展开结合代入计算即可【详解】解得根据代入计算解得故答案为:【分析】利用余弦的两角和公式展开,结合22sin cos 1αα+=,代入计算即可. 【详解】1cos cos 2513πααα⎛⎫+=⋅= ⎪⎝⎭,解得2cos 5αα=+,根据22sin cos 1αα+=,代入计算,解得sin α=. 16.【分析】先由的最小正周期求出的值再由的最小正周期公式求的最小正周期【详解】的最小正周期为即则所以的最小正周期为故答案为:解析:8π 【分析】 先由()f x 的最小正周期,求出ω的值,再由()tan y x ωϕ=+的最小正周期公式求()g x的最小正周期. 【详解】()()2sin 03f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期为4π,即24ππω=,则8ω=所以()tan 86g x x π⎛⎫=+ ⎪⎝⎭的最小正周期为8T π=故答案为:8π 17.【分析】由已知条件求出再根据同角公式弦化切可解得结果【详解】故答案为:【点睛】关键点点睛:弦化切求解是解题关键 解析:516【分析】由已知条件求出1tan 3α=-,再根据同角公式弦化切可解得结果. 【详解】1tan()3πα+=-,1tan 3α∴=-,sin 2cos tan 25cos sin 5tan αααααα++∴=--123153-+=⎛⎫-- ⎪⎝⎭516=. 故答案为:516【点睛】关键点点睛:弦化切求解是解题关键.18.【分析】利用余弦的倍角公式和三角函数的基本关系式即可求解【详解】由又由故答案为: 解析:35【分析】利用余弦的倍角公式和三角函数的基本关系式,即可求解. 【详解】由tan 2α=,又由22222222cos sin cos 2cos sin cos sin 1tan 1431tan 145ααααααααα--===-++-=-==+. 故答案为:35. 19.【分析】本题首先可通过三角恒等变换将转化为然后代入即可得出结果【详解】因为所以故答案为:【点睛】关键点点睛:本题考查给值求值问题能否合理利用同角三角函数关系诱导公式二倍角公式是解决本题的关键考查计算解析:45【分析】本题首先可通过三角恒等变换将cos 22πα⎛⎫- ⎪⎝⎭转化为22tan tan 1αα+,然后代入tan 2α=即可得出结果. 【详解】 因为tan 2α=, 所以2222sin cos 2tan 4cos 2sin 22sin cos tan 15παααααααα⎛⎫-==== ⎪++⎝⎭, 故答案为:45. 【点睛】关键点点睛:本题考查给值求值问题,能否合理利用同角三角函数关系、诱导公式、二倍角公式是解决本题的关键,考查计算能力,是中档题.20.【分析】由结合诱导公式和二倍角公式得出答案【详解】故答案为:解析:19-【分析】 由sin 2sin 2632πππαα⎡⎤⎛⎫⎛⎫-=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,结合诱导公式和二倍角公式得出答案. 【详解】2sin 63πα⎛⎫+= ⎪⎝⎭,21cos 212sin 369ππαα⎛⎫⎛⎫∴+=-+= ⎪ ⎪⎝⎭⎝⎭.22326πππαα⎛⎫+=+- ⎪⎝⎭, 1sin 2sin 2cos 263239ππππααα⎡⎤⎛⎫⎛⎫⎛⎫∴-=+-=-+=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:19-三、解答题21.(1)π;(2)最小值为1,最大值为4. 【分析】(1)由二倍角降幂,由两角差的正弦公式化函数为一个角的一个三角函数形式,然后结合正弦函数性质可求得最小正周期; (2)求出26x π-的范围,然后由正弦函数性质得最值.【详解】(1)因为2()2sin cos 1f x x x x =++1cos2cos 1x x x =-++2cos 22x x =-+2sin 226x π⎛⎫=-+ ⎪⎝⎭,所以()f x 的最小正周期22T ππ==. (2)因为02x π≤≤,所以52666x πππ-≤-≤. 所以1sin 2126x π⎛⎫-≤-≤ ⎪⎝⎭. 所以()2sin 22[1,4]6f x x π⎛⎫=-+∈ ⎪⎝⎭.即()f x 的最小值为1,最大值为4. 【点睛】方法点睛:本题考查两角差的正弦公式,二倍角公式,考查正弦函数的性质.此类问题的解题方法是:利用二倍角公式降幂,利用诱导公式、两角和与差的正弦(余弦)公式展开与合并,最终把函数化为()sin()f x A x m ωϕ=++形式,然后结合正弦函数性质求解. 22.(1)7cos 225α=-,()2tan 11βα-=;(2)a 的最大值为3. 【分析】(1)利用二倍角公式,求出cos2α,然后分别求出()cos αβ+,sin()αβ+,进而求出()tan αβ+,最后,利用()()tan tan 2βααβα-=+-求解即可(2)由()()[]3213cos212,4g x f x x =+=+∈-,得关于x 的不等式()()()2133g x a g x a ≥+++有解,化简得,即()()()213g x a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解即可【详解】解:(1)∵4tan 3α=,∴222222cos sin cos 2cos sin cos sin ααααααα-=-=+2222411tan 73251tan 413αα⎛⎫- ⎪-⎝⎭===-+⎛⎫+ ⎪⎝⎭,∵α,β为锐角,即α,0,2πβ⎛⎫∈ ⎪⎝⎭, ∴()20,απ∈,()0,αβπ+∈.22422tan 243tan 21tan 7413ααα⨯===--⎛⎫- ⎪⎝⎭, ∵()cos f x x =,∴()()cos 5f αβαβ+=+=-, ∴()sin αβ+==,∴()()()sin tan 2cos αβαβαβ++==-+, ∴()()()()242tan tan 227tan tan 2241tan tan 211127αβαβααβααβα-++--=+-===+++⨯. 综上,7cos 225α=-,()2tan 11βα-=. (2)()()[]3213cos212,4g x f x x =+=+∈-, 关于x 的不等式()()()2133g x a g x a ≥+++有解,即()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,则[]1,7t ∈,()()231t a t -≥+有解,即916a t t+≤+-有解, max97a t t ⎛⎫+≤+ ⎪⎝⎭,设()9h t t t =+,则()h x 在[)1,3上单调递减,在(]3,7上单调递增,则()(){}max9max 1,710t h h t ⎛⎫+== ⎪⎝⎭, ∴3a ≤,故实数a 的最大值为3. 【点睛】关键点睛:(1)利用二倍角公式,以及正切函数的两角和差公式求解; (2)通过化简,把问题转化为()()()213gx a g x ≥++⎡⎤⎣⎦有解,令()3t g x =+,然后,利用对勾函数的性质求解;主要考查学生的转化化归思想以及运算能力,属于中档题 23.(1) 5.6 4.8cos h θ=-;(2)3.2m. 【分析】(1)建立平面直角坐标系,结合条件求出点B 的坐标后可得h 与θ间的函数关系式; (2)由60秒转动一圈,易得点A 在圆上转动的角速度是/30rad s π,再计算出经过10秒后转过的弧度数为3π,然后代入(1)中所求函数解析式计算即可得到答案. 【详解】(1)以圆心O 原点,建立如图所示的坐标系,如下图所示,则以Ox 为始边,OB 为终边的角为2πθ-,故点B 坐标为 4.8cos ,4.8sin 22ππθθ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴ 5.6 4.8sin 5.6 4.8cos 2h πθθ⎛⎫=+-=- ⎪⎝⎭; (2)点A 在圆O 上逆时针运动的角速度是/30rad s π,∴经过t 秒后转过的角度30t πθ=,则经过10秒后转过的角度为3πθ=,∴ 5.6 4.8cos 5.6 2.4 3.23h π=-=-=(m ).【点睛】关键点点睛:本题考查的知识点是在实际问题中建立三角函数模型,在建立函数模型的过程中,以圆心O 为原点,以水平方向为x 轴方向,以竖直方向为y 轴方向建立平面直角坐标系,是解决本题的关键. 24.(1)1;(2)()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.【分析】本题考查三角函数的图像和性质、三角恒等变换,根据三角恒等变换公式()f x 化简函数解析式,根据图像和性质求单调递增区间. 【详解】(1)5()23(cos cossin sin )(1cos 2)332f x wx wx wx wx ππ=--++23sin 23sin cos 222wx wx wx =--+1cos 2323cos 222wx wx wx -=-⨯-+12cos 22wx wx =+ sin(2)6wx π=+又因为()f x 图象上相邻的两个最低点间的距离为π,0w >, 所以22w,解得1w =.(2)据(1)求解知,()sin(2)6f x x π=+令222()262k x k k Z πππππ-+≤+≤+∈,所以()36k x k k Z ππππ-+≤≤+∈,所以所求的单调递增区间是()36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,.【点睛】思路点睛:三角恒等变换综合应用的解题思路:(1)利用降幂、升幂公式将()f x 化为sin cos a x b x 的形式;(2)构造())f x x x +;(3)和差公式逆用,得())f x x ϕ=+ (其中ϕ为辅助角,tan b aϕ=);(4)利用())f x x ϕ=+研究三角函数的性质; (5)反思回顾,查看关键点、易错点和答题规范.25.(1)1ω=;(2)最大值为1;最小值为. 【分析】(1)根据三角函数的倍角公式以及辅助角公式将函数进行化简即可. (2)求出角的取值范围,结合三角函数的最值性质进行判断求解即可. 【详解】解:(1)因为2π()sin(2)(2cos 1)6f x x x ωω=-+-ππ(sin 2cos cos 2sin )cos 266x x x ωωω=-+12cos22x x ωω=+ πsin(2)6x ω=+,所以()f x 的最小正周期2ππ2T ω==,0>ω, 解得1ω=.(2)由(1)得π()sin(2)6f x x =+. 因为7π12x ≤≤0,所以ππ4π2663x +≤≤. 所以,当ππ262x +=,即π6x =时,()f x 取得最大值为1; 当π4π263x +=,即7π12x =时,()f x取得最小值为. 26.an 2α=43,sin ()4πα-=. 【分析】 先由tan α=12可得tan 2α=43,再由sin cos αα=12,结合角的范围可得sin α和cos α的值,再由in ()4πα-的展开求解即可.【详解】∵tan α=12,∴tan 2α=22tan 1tan a a -=122114⨯-=43. 且sin cos αα=12,即cos α=2sin α. 又sin 2α+cos 2α=1,∴5sin 2α=1.而α∈(0,)2π,∴sin α,cos α. ∴sin ()4πα-=sin αcos4π-cos αsin 4π。

完整版)高中三角函数测试题及答案

完整版)高中三角函数测试题及答案

完整版)高中三角函数测试题及答案高一数学必修4第一章三角函数单元测试班级:__________ 姓名:__________ 座号:__________评分:__________一、选择题:共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的。

(48分)1、已知$A=\{\text{第一象限角}\}$,$B=\{\text{锐角}\}$,$C=\{\text{小于90°的角}\}$,那么$A$、$B$、$C$ 关系是()A.$B=A\cap C$B.$B\cup C=C$C.$A\cap D$D.$A=B=C$2、将分针拨慢5分钟,则分钟转过的弧度数是A。

$\frac{\pi}{3}\sin\alpha-\frac{2}{3}\cos\alpha$ B。

$-\frac{\pi}{3}$C。

$\frac{\pi}{6}$D。

$-\frac{\pi}{6}$3、已知 $\tan\alpha=-5$,那么 $\tan\alpha$ 的值为A。

2B。

$\frac{1}{6164}$C。

$-\frac{1}{6164}$D。

$-\frac{2}{3}$4、已知角 $\alpha$ 的余弦线是单位长度的有向线段,那么角 $\alpha$ 的终边()A。

在 $x$ 轴上B。

在直线 $y=x$ 上C。

在 $y$ 轴上D。

在直线 $y=x$ 或 $y=-x$ 上5、若 $f(\cos x)=\cos 2x$,则 $f(\sin 15^\circ)$ 等于()A。

$-\frac{2}{3}$B。

$\frac{3}{2}$C。

$\frac{1}{2}$D。

$-\frac{1}{2}$6、要得到 $y=3\sin(2x+\frac{\pi}{4})$ 的图象只需将$y=3\sin 2x$ 的图象A。

向左平移 $\frac{\pi}{4}$ 个单位B。

向右平移 $\frac{\pi}{4}$ 个单位C。

人教A版 必修1 第5章 三角函数 单元测试卷(解析版)

人教A版 必修1 第5章 三角函数 单元测试卷(解析版)

第5章三角函数单元测试卷一、选择题(共9小题).1.已知sin x cos y=,则cos x sin y的取值范围是()A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣1,1]2.已知函数f(x)=sin(2x+φ),若,且,则f(x)取最大值时x的值为()A.B.C.D.3.已知A是函数f(x)=sin(2018x+)+cos(2018x﹣)的最大值,若存在实数x1,x2使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A•|x1﹣x2|的最小值为()A.B.C.D.4.若函数f(x)=sin x cos x﹣cos2x+(x∈R)的图象上所有点纵坐标不变,横坐标伸长到原来的2倍,再向左平行移动个单位长度得函数y=g(x)的图象,则函数y=g (x)﹣在区间[﹣2π,4π]内的所有零点之和为()A.B.C.3πD.4π5.已知函数f(x)=2sin(ωx﹣)(ω>0)和g(x)=3cos(2x+φ)+1(|φ|<)的图象的对称轴完全相同,则下列关于g(x)的说法正确的是()A.最大值为3B.在()单调递减C.()是它的一个对称中心D.x=﹣是它的一条对称轴6.已知函数f(x)=sin(ωx+)(ω>0)在区间[﹣,]上单调递增,则ω的取值范围为()A.(0,]B.(0,]C.[,]D.[,2]7.定义运算=ad﹣bc、若cosα=,=,0<β<α<,则β等于()A.B.C.D.8.函数y=x cos x+sin x的图象大致为()A.B.C.D.9.函数y=sin x2的图象是()A.B.C.D.二、填空题10.已知2sinθ﹣cosθ=1,则=.11.将函数f(x)=a sin x+b cos x(a,b∈R,a≠0)的图象向左平移个单位长度,得到一个偶函数图象,则=.12.已知函数f(x)=4cos(ωx+φ)(ω>0,0<φ<π)为奇函数,A(a,0),B(b,0)是其图象上两点,若|a﹣b|的最小值是1,则f()=.13.若0,﹣<β<0,cos()=,sin(+)=,则cos (2α+β)=.14.定义在[0,π]上的函数y=sin(ωx﹣)(ω>0)有零点,且值域M⊆,则ω的取值范围是.三、解答题15.已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,y=f(x).(1)求证:tan(α+β)=2tanα;(2)求f(x)的解析式;(3)若角α是一个三角形的最小内角,试求函数f(x)的值域.16.已知函数f(x)=cos x(sin x﹣cos x)+.(1)求的值;(2)将函数y=f(x)的图象向左平移后得到函数y=g(x),若时,不等式c<g(x)<c+2恒成立,求实数c的取值范围.17.已知函数f(x)=A sin(ωx+φ),x∈R(其中A>0,ω>0,﹣<φ<0)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为M(1)求函数f(x)的最小正周期和对称中心;(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得到的图象向左平移个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在区间上的值域.参考答案一、选择题(共9小题,每小题0分,满分0分)1.已知sin x cos y=,则cos x sin y的取值范围是()A.[﹣,]B.[﹣,]C.[﹣,]D.[﹣1,1]【分析】由题意可得﹣1≤sin(x+y)≤1,sin(x+y)=+cos x sin y,由此求得cos x sin y 的取值范围.再根据﹣cos x sin y=sin(x﹣y),且﹣1≤sin (x﹣y)≤1,求得cos x sin y 的范围,再把这两个范围取交集,即得所求.解:由于﹣1≤sin(x+y)≤1,sin x cos y=,sin(x+y)=sin x cos y+cos x sin y=+cos x sin y,再根据sin x cos y﹣cos x sin y=sin(x﹣y),且﹣1≤sin (x﹣y)≤1,结合①②可得﹣≤cos x sin y≤故选:A.2.已知函数f(x)=sin(2x+φ),若,且,则f(x)取最大值时x的值为()A.B.C.D.【分析】由,可知函数关于x=对称,结合正弦函数的性质可求φ=n,然后结合,可求f(x)的表达式,进而可求解:∵f(x)=sin(2x+φ),满足,函数关于x=对称,∴φ=,n∈z,∵,∴f(x)取最大值时,2x=,k∈z,故选:C.3.已知A是函数f(x)=sin(2018x+)+cos(2018x﹣)的最大值,若存在实数x1,x2使得对任意实数x总有f(x1)≤f(x)≤f(x2)成立,则A•|x1﹣x2|的最小值为()A.B.C.D.【分析】利用三角恒等变换化f(x)为正弦型函数,由此求出A、T以及|x1﹣x2|的最小值,从而可得答案.解:f(x)=sin(2018x+)+cos(2018x﹣),=sin2018x+cos2018x+cos2018x+sin2018x,=2sin(2018x+),又存在实数x1,x2,对任意实数x总有f(x1)≤f(x)≤f(x2)成立,|x1﹣x3|的最小值为T=,又A=2,故选:B.4.若函数f(x)=sin x cos x﹣cos2x+(x∈R)的图象上所有点纵坐标不变,横坐标伸长到原来的2倍,再向左平行移动个单位长度得函数y=g(x)的图象,则函数y=g (x)﹣在区间[﹣2π,4π]内的所有零点之和为()A.B.C.3πD.4π【分析】运用正弦函数的图象变换可得g(x)=sin x,再由正弦函数的图象和性质,解方程可得所求和.解:函数f(x)=sin x cos x﹣cos2x+=sin2x﹣cos2x=sin(2x﹣),f(x)的图象上所有点纵坐标不变,横坐标伸长到原来的3倍,可得y=sin(x﹣),函数y=g(x)﹣在区间[﹣2π,4π]内的所有零点,可得x=﹣3π+arcsin,﹣π﹣arcsin,arcsin,π﹣arcsin,2π+arcsin,4π﹣arcsin,故选:C.5.已知函数f(x)=2sin(ωx﹣)(ω>0)和g(x)=3cos(2x+φ)+1(|φ|<)的图象的对称轴完全相同,则下列关于g(x)的说法正确的是()A.最大值为3B.在()单调递减C.()是它的一个对称中心D.x=﹣是它的一条对称轴【分析】根据两个函数的对称轴相同求出ω和φ的值,结合三角函数的最值性,单调性,对称性分别进行判断即可.解:∵两个函数的图象的对称轴完全相同,∴两个函数的周期相同,即ω=2,由2x﹣=kπ+得x=+,即f(x)的对称轴为x=+,k∈Z,得kπ++φ=mπ,∵|φ|<,∴当m﹣k=1时,φ=π﹣=,当<x<时,<2x+<,此时f(x)不单调,故B错误,g(x)的对称轴为x=+,k∈Z,则当k=﹣1时,对称轴为x=﹣+=﹣,故D正确,故选:D.6.已知函数f(x)=sin(ωx+)(ω>0)在区间[﹣,]上单调递增,则ω的取值范围为()A.(0,]B.(0,]C.[,]D.[,2]【分析】根据正弦函数的单调性,结合在区间[﹣,]上单调递增,建立不等式关系,即可求解.解:函数f(x)=sin(ωx+)(ω>0)在区间[﹣,]上单调递增,∴,k∈Z∵ω>0,故选:B.7.定义运算=ad﹣bc、若cosα=,=,0<β<α<,则β等于()A.B.C.D.【分析】根据新定义化简原式,然后根据两角差的正弦函数公式变形得到sin(α﹣β)的值,根据0<β<α<,利用同角三角函数间的基本关系求出cos(α﹣β),再根据cosα求出sinα,利用β=[α﹣(α﹣β)]两边取正切即可得到tanβ的值,根据特殊角的三角函数值即可求出β.解:依题设得:sinα•cosβ﹣cosα•sinβ=sin(α﹣β)=.又∵cosα=,∴sinα=.=×﹣×=,故选:D.8.函数y=x cos x+sin x的图象大致为()A.B.C.D.【分析】给出的函数是奇函数,奇函数图象关于原点中心对称,由此排除B,然后利用区特值排除A和C,则答案可求.解:因为函数y=x cos x+sin x为奇函数,所以排除选项B,由当x=时,,由此可排除选项A和选项C.故选:D.9.函数y=sin x2的图象是()A.B.C.D.【分析】判断函数的奇偶性排除选项,利用特殊值判断选项即可.解:函数y=sin x2是偶函数,排除A、C,当x2=,即x=时,函数取得最大值6,因为,x=时,y=sin≈sin2.5≈0.04,故选:D.二、填空题10.已知2sinθ﹣cosθ=1,则=0或2.【分析】由已知结合同角平方关系可求sinθ,cosθ,代入即可求解.解:由题意可得2sinθ﹣1=cosθ,两边同时平方可得,4sin8θ﹣4sinθ+1=cos2θ=1﹣sin2θ,∴sinθ=0,cosθ=﹣1,或sinθ=,cosθ=,或sinθ=,cosθ=,则=2.故答案为:0或2.11.将函数f(x)=a sin x+b cos x(a,b∈R,a≠0)的图象向左平移个单位长度,得到一个偶函数图象,则=.【分析】直接利用三角函数关系式的恒等变变换,函数关系式的平移变换和伸缩变换的应用求出结果.解:因为f(x)=a sin x+b cos x(a,b∈R,a≠0)的图象向左平移单位长度,得到偶函数图象,所以,所以.故答案为:12.已知函数f(x)=4cos(ωx+φ)(ω>0,0<φ<π)为奇函数,A(a,0),B(b,0)是其图象上两点,若|a﹣b|的最小值是1,则f()=﹣2.【分析】首先根据题意易得函数是为奇函数,根据奇函数性质可以求出φ,再结合与x 轴任意交点之间距离的最小值为1,则半个周期为1,进而求出ω,从而求出f(x)的解析式,进而求出f()=﹣2.解:∵函数f(x)=4cos(ωx+φ)为奇函数,且0<φ<π,则f(0)=4cosφ=8,A(a,0),B(b,0)是其图象上两点,则,∴,则.故答案为:﹣2.13.若0,﹣<β<0,cos()=,sin(+)=,则cos (2α+β)=.【分析】利用两角和的正弦函数公式,余弦函数公式,二倍角公式化简已知等式,可求sin2α,sinβ,进而利用同角三角函数基本关系式可求cosβ的值,利用二倍角的余弦函数公式可求cos2α,利用两角和的余弦函数公式即可计算求值得解.解:∵cos()=(cosα﹣sinα)=,可得:cosα﹣sinα=,①∴两边平方可得,1﹣sin2α=,解得:sin2α=,∴由①②解得:cos2α=(cosα﹣sinα)(cosα+sinα)=,∴cos(6α+β)=cos2αcosβ﹣sin2αsinβ=×﹣×(﹣)=.故答案为:.14.定义在[0,π]上的函数y=sin(ωx﹣)(ω>0)有零点,且值域M⊆,则ω的取值范围是[].【分析】首先利用函数的定义域求出ωx﹣,进一步利用函数的零点和值域建立,最后求出ω的范围.解:由于x∈[0,π]时,所以ωx﹣.所以,所以ω的取值范围是[].故答案为:[].三、解答题15.已知sin(2α+β)=3sinβ,设tanα=x,tanβ=y,y=f(x).(1)求证:tan(α+β)=2tanα;(2)求f(x)的解析式;(3)若角α是一个三角形的最小内角,试求函数f(x)的值域.【分析】(1)利用两角和差的正弦公式化简条件可得4cos(α+β)sinα=2sin(α+β)cosα,从而证得要证得等式成立.(2)由条件根据tanβ=tan[(α+β)﹣α],利用两角差的正切公式,求得函数f(x)的解析式.(3)利用条件可得0<α<,tanα∈(0,),即x∈(0,),由此求得函数f (x)==,利用基本不等式以及函数的单调性,求得函数f(x)的值域.解:(1)证明:∵sin(2α+β)=3sinβ,∴sin[(α+β)+α]=3sin[(α+β)﹣α],展开可得sin(α+β)cosα+cos(α+β)sinα=4sin(α+β)cosα﹣3cos(α+β)sinα,(2)∵tanα=x,tanβ=y,y=f(x),即函数f(x)的解析式y=f(x)=.则函数f(x)==≤=,当且仅当x=时,取等号.当x趋于零时,f(x))=趋于2,当x趋于时,f(x))=趋于,故函数f(x)的值域为(0,].16.已知函数f(x)=cos x(sin x﹣cos x)+.(1)求的值;(2)将函数y=f(x)的图象向左平移后得到函数y=g(x),若时,不等式c<g(x)<c+2恒成立,求实数c的取值范围.【分析】(1)直接利用三角函数关系式的变换和正弦型函数的性质的应用求出结果.(2)直接利用平移变换的应用求出函数的关系式,进一步利用函数的值域和恒成立问题的应用求出结果.解:(1)==,所以.(2),所以,整理得,所以实数c的取值范围为.17.已知函数f(x)=A sin(ωx+φ),x∈R(其中A>0,ω>0,﹣<φ<0)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为M(1)求函数f(x)的最小正周期和对称中心;(2)将函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得到的图象向左平移个单位长度,得到函数y=g(x)的图象,求函数y=g(x)在区间上的值域.【分析】(1)利用函数的图象和关系式的变换的应用求出函数的解析式,进一步求出函数的最小正周期和对称中心.(2)利用函数的图象的平移变换和伸缩变换的应用和利用函数的额=的定义域求出函数的值域.解:已知函数f(x)=A sin(ωx+φ),(其中A>0,ω>0,﹣<ϕ<0)的图象与轴的交点中,相邻两个交点之间的距离为,所以:周期T=π,且图象上一个最低点为M,所以:f(x)=2sin(2x﹣),解得:x=(k∈Z),(2)函数y=f(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的,再把所得到的图象向左平移个单位长度,得到函数y=g(x)=2sin(4(x+)﹣)=2cos4x的图象,故:,所以:﹣1≤g(x)≤4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《三角函数》单元测试卷A(含答案)一、选择题(本大题共10小题,每小题5分,共50分)
1.已知点P(tanα,cosα)在第三象限,则角α的终边在()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.集合M={x|x=kπ
2
±
π
4
,k∈Z}与N={x|x=

4
,k∈Z}之间的关系是
()
A.M N
B.N M
C.M=N
D.M∩N=
3.若将分针拨慢十分钟,则分针所转过的角度是()
A.60°
B.-60°
C.30°
D.-30°4.已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的角是()
A.(1)(2)
B.(2)(3)
C.(1)(3)
D.(2)(4)5.设a<0,角α的终边经过点P(-3a,4a),那么sinα+2cosα的值等于()
A. 2
5
B.-
2
5
C.
1
5
D.-
1
5
6.若cos(π+α)=-1
2

3
2
π<α<2π,则sin(2π-α)等于
()
A.-
3
2
B.
3
2
C.
1
2
D.±
3
2
7.若α是第四象限角,则π-α是()
A.第一象限角
B.第二象限角
C.第三象限角
D.第四象限角
8.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()
A.2
B.
2
sin1
C.2sin1
D.sin2
9.如果sin x+cos x=1
5
,且0<x<π,那么cot x的值是
()
A.-4
3 B.-
4
3
或-
3
4
C.-
3
4
D.
4
3
或-
3
4
10.若实数x满足log2x=2+sinθ,则|x+1|+|x-10|的值等于()
A.2x-9
B.9-2x
C.11
D.9
二、填空题(本大题共6小题,每小题5分,共30分)
11.tan300°+cot765°的值是_____________.
12.若sinα+cosα
sinα-cosα
=2,则sinαcosα的值是_____________.
13.不等式(lg20)2cos x>1,(x∈(0,π))的解集为_____________.
14.若θ满足cosθ>-1
2
,则角θ的取值集合是_____________.
15.若cos130°=a,则tan50°=_____________. -
16.已知f(x)=1-x
1+x
,若α∈(
π
2
,π),则f(cosα)+f(-cosα)可化简
为___________.
三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分12分)设一扇形的周长为C(C>0),当扇形中心角为多大时,它有最大面积?最大面积是多少?
18.(本小题满分14分)设90°<α<180°,角α的终边上一点为P(x, 5 ),且cosα=
2
4
x,求sinα与tanα的值.
19.(本小题满分14分)已知π
2
≤θ≤π,sinθ=
m-3
m+5
,cosθ=
4-2m
m+5
,求m的
值.
20.(本小题满分15分)已知0°<α<45°,且lg(tanα)-lg(sinα)=lg(cosα)-lg(cotα)+2lg3
-3
2
lg2,求cos3α-sin3α的值.
21.(本小题满分15分)已知sin(5π-α)= 2 cos(7
2
π+β)和 3 cos(-α)=
- 2 cos(π+β),且0<α<π,0<β<π,求α和β的值.
三角函数单元复习题(一)答案
一、选择题(本大题共10小题,每小题5分,共50分)
1.B 2.A 3.A 4.C 5.A 6.B 7.C 8.B 9.C 10.C
二、填空题(本大题共6小题,每小题5分,共30分)
11.1- 3 12.310 13.(0,π2 ) 14.{θ|2kπ-23 π<θ<2kπ+2
3
π,
k ∈Z }
15.-
1-a 2
a
16.
2
sin α
三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)
17.(本小题满分12分)设一扇形的周长为C (C >0),当扇形中心角为多大时,它
有最大面积?最大面积是多少?
【解】 设扇形的中心角为α,半径为r ,面积为S ,弧长为l ,则l +2r =C 即
l =C -2r .
∴S =12 lr =12 (C -2r )·r =-(r -C 4 )2+C 2
16
.
故当r =C 4 时S max =C 2
16 , 此时,α=l r =C -2r r =C -C 2
C
r
=2.
∴当α=2时,S max =
C 2
16
.
18.(本小题满分14分)设90°<α<180°,角α的终边上一点为
P (x , 5 ),
且cos α=
2
4
x ,求sin α与tan α的值. 【解】 由三角函数的定义得:cos α=
5
2
x x
又cos α=
24x ,∴x x 2+5
=2
4x ,解得x =± 3 .
由已知可得:x<0,∴x=- 3 .
故cosα=-
6
4
,sinα=
10
4
,tanα=-
15
3
.
19.(本小题满分14分)已知π
2
≤θ≤π,sinθ=
m-3
m+5
,cosθ=
4-2m
m+5
,求m的
值.
【解】由sin2θ+cos2θ=1得(m-3
m+5
)2+(
4-2m
m+5
)2=1,整理得m2-8m=0
∴m=0或m=8.
当m=0时,sinθ=-3
5
,cosθ=
4
5
,与
π
2
≤θ≤π矛盾,故m≠0.
当m=8时,sinθ=
5
13
,cosθ=-
12
13
,满足
π
2
≤θ≤π,所以m=8.
20.(本小题满分15分)已知0°<α<45°,且lg(tanα)-lg(sinα)=lg(cosα)-lg(cotα)+2lg3
-3
2
lg2,求cos3α-sin3α的值.
【分析】这是一道关于对数与三角函数的综合性问题,一般可通过化简已知等式、用求值的方法来解.
【解】由已知等式得lg tanα
sinα
=lg
9cosα
2 2 cotα
∴9sinαcosα=2 2 ,-2sinαcosα=-42
9
,(sinα-cosα)2=
9-42
9
.
∵0°<α<45°,∴cosα>sinα,∴cosα-sinα=22-1
3
cos3α-sin3α=(cosα-sinα)(cos2α+sinαcosα+sin2α)=22-1
3
×(1
+22
9
)=
162-1
27
.
21.(本小题满分15分)已知sin(5π-α)= 2 cos(7
2
π+β)和 3 cos(-α)=
- 2 cos(π+β),且0<α<π,0<β<π,求α和β的值.
【分析】运用诱导公式、同角三角函数基本关系式及消元法.在三角关系中,一般可利用平方关系进行消元.
【解】由已知得sinα= 2 sinβ①
3 cosα= 2 cosβ ②
由①2+②2得sin2α+3cos2α=2.
即sin2α+3(1-sin2α)=2,解得sinα=±
2
2
,由于0<α<π
所以sinα=
2
2
.故α=
π
4


4
.
当α=π
4
时,cosβ=
3
2
,又0<β<π,∴β=
π
6
当α=3π
4
时,cosβ=-
3
2
,又0<β<π,∴β=

6
.
综上可得:α=π
4
,β=
π
6
或α=

4
,β=

6
.。

相关文档
最新文档