刘恩科半导体物理习题答案本

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体物理习题解答

(河北大学电子信息工程学院 席砺莼)

1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为:

2222

00(1)()3C h k h k k E k m m -=+和2222100

3()6v h k h k E k m m =-

; m 0为电子惯性质量,k 1=1/2a ;a =。试求:

①禁带宽度;

②导带底电子有效质量; ③价带顶电子有效质量;

④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg

根据dk k dEc )(=0232m k h +0

12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值:

k min =

14

3

k , 由题中E C 式可得:E min =E C (K)|k=k min =

2

10

4k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0;

并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =2

02

48a m h =11

28282

2710

6.1)1014.3(101.948)1062.6(----⨯⨯⨯⨯⨯⨯⨯= ②导带底电子有效质量m n

0202022382322

m h m h m h dk

E d C =+=;∴ m n =022

283/m dk E d h C

= ③价带顶电子有效质量m ’

022

26m h dk E d V -=,∴022

2'61/m dk E d h m V

n

-== ④准动量的改变量

h △k =h (k min -k max )= a

h k h 83431=

[毕]

1-2.(P 33)晶格常数为的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。 [解] 设电场强度为E ,∵dk

F qE dt

==hg

(取绝对值) ∴dt dk qE =h

∴120

12t

a h h t dt dk qE qE a

=

==⎰

g 代入数据得: t =E

⨯⨯⨯⨯⨯⨯--10

19-34105.2106.121062.6=E 6

103.8-⨯(s ) 当E =102 V/m 时,t =×10-

8(s );E =107V/m 时,t =×10-

13(s )。 [毕]

3-7.(P 81)①在室温下,锗的有效状态密度Nc =×1019cm -3,Nv =×1018cm -3

,试求锗的载流子有效质量m n *和m p *

。计算77k 时的Nc 和Nv 。已知300k 时,Eg =。77k 时Eg =。求这两个温度时锗的本征载流子浓度。②77k ,锗的电子浓度为1017

cm -3

,假定浓度为零,而Ec -E D =,求锗中施主浓度N D 为多少

[解] ①室温下,T=300k (27℃),k 0=×10-23J/K ,h=×10-34

J·S,

对于锗:Nc =×1019cm -3,Nv=×1018cm -3

: ﹟求300k 时的Nc 和Nv : 根据(3-18)式:

Kg T k Nc h m h T k m Nc n n 3123

32

19

234032

2

*32

3

0*

100968.5300

1038.114.32)21005.1()10625.6(2)2()2(2---⨯=⨯⨯⨯⨯⨯⨯=⋅=⇒⋅=ππ根据(3-23)式:

Kg T k Nv h m h T k m Nv p p 3123

3

2

18

234032

2

*32

3

0*1039173.3300

1038.114.32)2107.5()10625.6(2)2()2(2---⨯=⨯⨯⨯⨯⨯⨯=⋅=⇒⋅=ππ﹟

求77k 时的Nc 和Nv :

191923

23'233

2

30*3

2

30*'10365.11005.1)30077()'(;)'()

2(2)

'2(2⨯=⨯⨯===⋅⋅=c c n n c c N T T N T T h T k m h T k m N N ππ 同理:

17182

3

23

'

1041.7107.5)300

77()'(⨯=⨯⨯==v v

N T T N

﹟求300k 时的n i :

13181902

11096.1)052

.067

.0exp()107.51005.1()2exp()(⨯=-⨯⨯⨯=-

=T k Eg NcNv n i 求77k 时的n i :

7

2319181902

110

094.1)77

1038.12106.176.0exp()107.51005.1()2exp()(---⨯=⨯⨯⨯⨯⨯-⨯⨯⨯=-=T k Eg NcNv n i ②77k 时,由(3-46)式得到:

Ec -E D ==××10-19;T =77k ;k 0=×10-23;n 0=1017;Nc =×1019cm -3

相关文档
最新文档