半导体物理学刘恩科习题答案权威修订版(DOC)

合集下载

半导体物理学刘恩科课后习题解答

半导体物理学刘恩科课后习题解答

半导体物理学第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

(2)理想半导体是纯净不含杂质的,实际半导体含有若干杂质。

(3)理想半导体的晶格结构是完整的,实际半导体中存在点缺陷,线缺陷和面缺陷等。

2. 以As掺入Ge中为例,说明什么是施主杂质、施主杂质电离过程和n型半导体。

As有5个价电子,其中的四个价电子与周围的四个Ge原子形成共价键,还剩余一个电子,同时As原子所在处也多余一个正电荷,称为正离子中心,所以,一个As 原子取代一个Ge原子,其效果是形成一个正电中心和一个多余的电子.多余的电子束缚在正电中心,但这种束缚很弱,很小的能量就可使电子摆脱束缚,成为在晶格中导电的自由电子,而As原子形成一个不能移动的正电中心。

这个过程叫做施主杂质的电离过程。

能够施放电子而在导带中产生电子并形成正电中心,称为施主杂质或N型杂质,掺有施主杂质的半导体叫N型半导体。

3. 以Ga掺入Ge中为例,说明什么是受主杂质、受主杂质电离过程和p型半导体。

Ga有3个价电子,它与周围的四个Ge原子形成共价键,还缺少一个电子,于是在Ge 晶体的共价键中产生了一个空穴,而Ga原子接受一个电子后所在处形成一个负离子中心,所以,一个Ga原子取代一个Ge原子,其效果是形成一个负电中心和一个空穴,空穴束缚在Ga原子附近,但这种束缚很弱,很小的能量就可使空穴摆脱束缚,成为在晶格中自由运动的导电空穴,而Ga原子形成一个不能移动的负电中心。

这个过程叫做受主杂质的电离过程,能够接受电子而在价带中产生空穴,并形成负电中心的杂质,称为受主杂质,掺有受主型杂质的半导体叫P型半导体。

4. 以Si在GaAs中的行为为例,说明IV族杂质在III-V族化合物中可能出现的双性行为。

Si取代GaAs中的Ga原子则起施主作用; Si取代GaAs中的As原子则起受主作用。

半导体物理学(刘恩科第七版)前五章课后习题解答

半导体物理学(刘恩科第七版)前五章课后习题解答

半导体物理学(刘恩科第七版)前五章课后习题解答( ) 半导体物理学(刘恩科第七版)前五章课后习题解答第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量Ec(k)和价带极大值附近能量EV(k)分别为:h 2 k 2 h 2 ( k ? k1 ) 2 h 2 k 21 3h 2 k 2 Ec= + , EV (k ) = ? 3m0 m0 6m 0 m0 m0 为电子惯性质量,k1 =(1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化解:(1)导带:由2? 2 k 2? 2 (k ? k1 ) + =0 3m0 m0π, a = 0.314nm。

试求:a3 k14 d 2E 2? 2 2? 2 8? 2 又因为:2c = + = >0 3m0 m0 3m0 dk 得:k = 所以:在k = 价带:3 k处,Ec取极小值4dEV 6? 2 k =? = 0得k = 0 dk m0 d 2 EV 6? 2 又因为=? < 0, 所以k = 0处,EV 取极大值m0 dk 22 k123 因此:E g = EC ( k1 ) ? E V (0) = = 0.64eV4 12m0 ?2 = 2 d EC dk 2 3 = m0 83 k = k1 4(2)m* nC* (3)mnV =2 d 2 EV dk 2=?k = 01m0 6(4)准动量的定义:p = ?k 所以:?p = (?k )3 k = k1 43 ? (?k ) k =0 = ? k1 ? 0 = 7.95 × 10 ? 25 N / s 42. 晶格常数为0.25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:f = qE = h ? (0 ??k ?t 得?t = ??k ? qEπ ) a ?t1 = = 8.27 × 10 ?8 s ?19 2 ? 1.6 × 10 × 10 π ? (0 ? ) a ?t 2 = = 8.27 × 10 ?13 s ?19 7 ? 1.6 × 10 × 10第二章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

半导体物理学练习题(刘恩科)

半导体物理学练习题(刘恩科)

半导体物理学练习题(刘恩科)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。

即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。

解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。

例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。

试求:(1)能带的宽度;(2)能带底部和顶部电子的有效质量。

解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。

当时,代入(2)得:对应E(k)的极大值。

根据上述结果,求得和即可求得能带宽度。

故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发温度越高,本征激发的载流子越多,为什么试定性说明之。

2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。

3 试指出空穴的主要特征。

4 简述Ge、Si和GaAs的能带结构的主要特征。

5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。

求:(1)能带宽度;(2)能带底和能带顶的有效质量。

6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同原子中内层电子和外层电子参与共有化运动有何不同7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此为什么10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。

《半导体物理学》刘恩科、朱秉生_课后答案

《半导体物理学》刘恩科、朱秉生_课后答案

cos θ =
1 2
对 [ 011] , ⎡ ⎣0 11⎤ ⎦,⎡ ⎣01 1 ⎤ ⎦,⎡ ⎣0 1 1 ⎤ ⎦ 方向上的旋转椭球得:
cos θ = 0
当 cos θ =
1 1 时, cos 2 θ = 2 2
2ml mt + ml
sin 2 θ =
1 2
* 得: mn = mt t
当 cos θ = 0 时: cos 2 θ = 0
故: Z=1000π 3L3
2 ⎛ h2 ⎞ 2 × × ⎜ 100 ∗ 2 ⎟ 3 ⎝ 8mn L ⎠
7. ①在室温下,锗的有效状态密度 Nc=1.05×1019cm-3,Nv=5.7×1018cm-3,试 求锗的载流子有效质量 mn*和 mp*。计算 77k 时的 Nc 和 Nv。已知 300k 时,Eg= 0.67eV。77k 时 Eg=0.76eV。求这两个温度时锗的本征载流子浓度。②77k,锗 17 -3 的电子浓度为 10 cm ,假定浓度为零,而 Ec-ED=0.01eV,求锗中施主浓度 ND
第三章
热平衡时半导体中载流子的统计分布
⎛ h2 ⎞ 1.计算能量 E = Ec 到 E = Ec + 100 ⎜ ∗ 2 ⎟ 之间单位体积中的量子态数。 ⎝ 8mn L ⎠
[解]导带底 Ec 附近单位能量间隔量子态数:
gc g c 即状态密度。
( 2mdn ) ( E ) = 4π V
h3
32
( E − Ec ) 2
3. 如果 n 型半导体导带峰值在[110]轴上及相应对称方向上,回旋共振实验结果应 如何? [解] 根据立方对称性,应有下列 12 个方向上的旋转椭球面:
[110] , [101] , [011] , ⎡ ⎣ 1 10 ⎤ ⎦,

半导体物理学(刘恩科)课后习题解第四章答案

半导体物理学(刘恩科)课后习题解第四章答案

σ = nqu n + pqu p = ni q(u n + u p ) = 1×1010 ×1.602 ×10 -19 × (1350+500) = 3.0 ×10 -6 S / cm
1 1 金钢石结构一个原胞内的等效原子个数为 8 × + 6 × + 4 = 8 个,查看附录 B 知 Si 8 2
ρ i = 1/ σ i =
1 ni q(u n + u p )
=
1 = 12.5Ω ⋅ cm 5 ×10 ×1.602 × 10 −19 × ( 400 + 600)
14
11. 截面积为 10-3cm2, 掺有浓度为 1013cm-3 的 p 型 Si 样品,样品内部加有强度为 103V/cm的电场,求; ①室温时样品的电导率及流过样品的电流密度和电流强度。 ②400K 时样品的电导率及流过样品的电流密度和电流强度。 解: ①查表 4-15(b)知室温下,浓度为 1013cm-3的p型Si样品的电阻率为 ρ ≈ 2000Ω ⋅ cm , 则电导率为 σ = 1 / ρ ≈ 5 ×10 −4 S / cm 。 电流密度为 J = σE = 5 ×10 −4 ×10 3 = 0.5 A / cm 2 电流强度为 I = Js = 0.5 ×10 −3 = 5 ×10 −4 A ②400K时,查图 4-13 可知浓度为 1013cm-3的p型Si的迁移率约为 u p = 500cm 2 /(V ⋅ s ) , 则电导率为 σ = pqu p = 1013 ×1.602 ×10 −19 × 500 = 8 ×10 −4 S / cm 电流密度为 J = σE = 8 ×10 −4 ×10 3 = 0.8 A / cm 2
n = p0 + N D = 2 × 1013 + 8.4 × 1014 = 8.6 × 1014 cm −3

半导体物理学(刘恩科)课后习题解第五章答案

半导体物理学(刘恩科)课后习题解第五章答案

6. 画出 p 型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和 光照时的准费米能级。
Ec Ei EF Ev
Ec Ei EFn
Ev
EFp
光照前
光照后
7. 掺施 主浓度 ND=1015cm-3 的 n 型硅,由于光的照射产生了非平衡载流子 ∆n=∆p=1014cm-3。试计算这种情况下的准费米能级位置,并和原来的费米能级 作比较。 解: 强电离情况,载流子浓度 n = n0 + ∆n = 1015 + 1014 = 1.1 × 1015 / cm 3 p = p 0 + ∆p = = ni + 1014 ND
从价带俘获空穴rn pnt 由题知,rn nt ni e Et − Ei = r p pnt koT Ei − E F k oT
小注入:∆p << p 0 p = p 0 + ∆p ≈ ni e rn ni e
Et − Ei E − EF = r p ni e i ; k oT k oT
rn ≈ rp ∴ Et − Ei = Ei − E F no , p1很小。n1 = p 0 代入公式
σ = nqµ n + pqµ p
= n0 qµ n + p 0 qµ p + ∆nq( µ n + µ p ) ≈ 2.16 + 1014 × 1.6 × 10 −19 × (1350 + 500) = 2.16 + 0.0296 = 2.19 s / cm (注:掺杂1016 cm −13的半导体中电子、 空穴的迁移率近似等于本征 半导体的迁移率)
U= =
N t rn rp (np − ni2 ) rn (n + n1 ) + rp ( p + p1 ) − N t rn rp ni2

半导体物理学刘恩科习题答案权威修订版

半导体物理学刘恩科习题答案权威修订版

半导体物理学 刘恩科第七版习题答案---------课后习题解答一些有错误的地方经过了改正和修订!第一章 半导体中的电子状态1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:220122021202236)(,)(3Ec m k m k k E m k k m k V0m 。

试求:为电子惯性质量,nm a ak 314.0,1(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:10911010314.0=ak (1)J m k m k m k E k E E m k k E E k m dk E d k m kdk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17312103402120122021210122022202173121034021210202022210120210*02.110108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 43038232430)(232因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nCs N k k k p k p m dk E d mk k k k V nV/1095.71010054.14310314.0210625.643043)()()4(6)3(251034934104300222*11所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkqE f得qE k ts a t s a t 137192821993421911028.810106.1)0(1028.810106.11025.0210625.610106.1)0(第二章 半导体中杂质和缺陷能级7. 锑化铟的禁带宽度Eg=0.18eV ,相对介电常数 r =17,电子的有效质量*n m =0.015m 0, m 0为电子的惯性质量,求①施主杂质的电离能,②施主的弱束缚电子基态轨道半径。

半导体物理学刘恩科课后习题解答

半导体物理学刘恩科课后习题解答

半导体物理学刘恩科课后习题解答半导体物理学是研究半导体材料的电学、热学和光学性质的学科。

它是现代电子技术和光电子技术的基础,对于理解和应用半导体器件和集成电路有着重要的意义。

以下是刘恩科《半导体物理学》课后习题的解答:1.请简述半导体材料的能带结构和载流子的概念。

半导体材料的能带结构是指半导体中电子的能级分布情况。

在半导体中,电子可以占据价带或导带中的能级。

价带是指最高填充电子的能级,导带是指最低未填充电子的能级。

两者之间的能级称为禁带(带隙),禁带的宽度决定了半导体的导电性能。

载流子是指在半导体中参与电荷运动的带电粒子。

在固体中,载流子可以是电子或空穴。

电子是带有负电荷的粒子,其带负电荷的能力使其成为半导体中的载流子。

空穴是带有正电荷的粒子,它是由电子从价带跃迁到导带留下的,因此也可以参与电荷运动。

2.请解释半导体的n型和p型材料是如何形成的。

n型半导体是指掺杂了能够提供自由电子的杂质的半导体材料。

通常使用磷(P)、砷(As)等元素来掺杂硅(Si)或锗(Ge)材料。

这些杂质原子在半导体晶体中取代了一部分硅或锗原子,形成了额外的电子。

这些额外的电子成为自由电子,增加了半导体的导电性能。

p型半导体是指掺杂了能够提供自由空穴的杂质的半导体材料。

通常使用硼(B)、铝(Al)等元素来掺杂硅或锗材料。

这些杂质原子在半导体晶体中取代了一部分硅或锗原子,形成了缺电子的空位。

这些空位称为空穴,它们可以参与电荷运动,增加了半导体的导电性能。

3.请解释pn结的形成原理和特性。

pn结是由n型半导体和p型半导体的结合形成的。

当n型和p型半导体接触时,由于两者之间的能带结构不同,会形成一个电势差,这个电势差被称为内建电势。

内建电势的产生是由于在接触面上发生了电子和空穴的扩散,使得电子从n区域扩散到p区域,空穴从p区域扩散到n区域。

pn结的特性包括正向偏置和反向偏置。

正向偏置是指在外加电源的作用下,将正电压施加在p区域,负电压施加在n区域,使得电子从n区域向p区域移动,空穴从p区域向n区域移动,电流得以通过。

半导体物理学(刘恩科)第七版-课后题答案

半导体物理学(刘恩科)第七版-课后题答案

第一章习题1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:E c =0220122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2) 导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:(1)eV m k E k E E E k m dk E d k m kdk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064338232430)(2320212102220202020222101202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC===sN k k k p k p m dk E d mk k k k V nV/1095.7043)()()4(6)3(25104300222*11-===⨯=-=-=∆=-== 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:t k hqE f ∆∆== 得qEk t -∆=∆ sat sat 137192821911027.810106.1)0(1027.810106.1)0(----⨯=⨯⨯--=∆⨯=⨯⨯--=∆ππ补充题1分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先画出各晶面内原子的位置和分布图)Si 在(100),(110)和(111)面上的原子分布如图1所示:(a )(100)晶面 (b )(110)晶面(c )(111)晶面补充题2一维晶体的电子能带可写为)2cos 81cos 87()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求(1)布里渊区边界; (2)能带宽度;(3)电子在波矢k 状态时的速度;(4)能带底部电子的有效质量*n m ;(5)能带顶部空穴的有效质量*p m解:(1)由0)(=dk k dE 得 an k π= (n=0,±1,±2…) 进一步分析an k π)12(+= ,E (k )有极大值,214221422142822/1083.7342232212414111/1059.92422124142110/1078.6)1043.5(224141100cm atom a a a cm atom a a a cm atom a a ⨯==⨯+⨯+⨯⨯==⨯⨯+⨯+⨯=⨯==⨯+-):():():(222)mak E MAX =( ank π2=时,E (k )有极小值所以布里渊区边界为an k π)12(+=(2)能带宽度为222)()ma k E k E MIN MAX =-( (3)电子在波矢k 状态的速度)2sin 41(sin 1ka ka ma dk dE v -== (4)电子的有效质量)2cos 21(cos 222*ka ka mdkEd m n-== 能带底部 an k π2=所以m m n 2*= (5)能带顶部 an k π)12(+=, 且**n p m m -=,所以能带顶部空穴的有效质量32*mm p =半导体物理第2章习题1. 实际半导体与理想半导体间的主要区别是什么?答:(1)理想半导体:假设晶格原子严格按周期性排列并静止在格点位置上,实际半导体中原子不是静止的,而是在其平衡位置附近振动。

《半导体物理学(刘恩科第七版)》第五章习题解(DOC)

《半导体物理学(刘恩科第七版)》第五章习题解(DOC)

第五章习题1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。

计算空穴的复合率。

2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为,空穴寿命为τ。

(1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。

3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω∙cm 。

今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3∙s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?s cm pU s cm p Up 3171010010313/10U 100,/10613==∆=====∆-⨯∆-ττμτ得:解:根据?求:已知:τττττg p g p dtp d g Aet p g p dt p d L L tL=∆∴=+∆-∴=∆+=∆+∆-=∆∴-.00)2()(达到稳定状态时,方程的通解:梯度,无飘移。

解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p pn p n p n pn L /06.396.21.0500106.1101350106.11010.0:101:1010100.1916191600'000316622=+=⨯⨯⨯+⨯⨯⨯+=∆+∆++=+=Ω=+==⨯==∆=∆=+∆-----μμμμμμσμμρττ光照后光照前光照达到稳定态后4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几?5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度∆n=∆p=1014cm -3。

计算无光照和有光照的电导率。

%2606.38.006.3500106.1109.,..32.01191610''==⨯⨯⨯=∆∴∆>∆Ω==-σσρp u p p p p cm 的贡献主要是所以少子对电导的贡献献少数载流子对电导的贡 。

半导体物理学练习题(刘恩科)

半导体物理学练习题(刘恩科)

第一章半导体中的电子状态例1.证明:对于能带中的电子,K状态和-K状态的电子速度大小相等,方向相反。

即:v(k)= -v(-k),并解释为什么无外场时,晶体总电流等于零。

解:K状态电子的速度为:(1)同理,-K状态电子的速度则为:(2)从一维情况容易看出:(3)同理有:(4)(5)将式(3)(4)(5)代入式(2)后得:(6)利用(1)式即得:v(-k)= -v(k)因为电子占据某个状态的几率只同该状态的能量有关,即:E(k)=E(-k)故电子占有k状态和-k状态的几率相同,且v(k)=-v(-k)故这两个状态上的电子电流相互抵消,晶体中总电流为零。

例2.已知一维晶体的电子能带可写成:式中,a为晶格常数。

试求:(1)能带的宽度;(2)能带底部和顶部电子的有效质量。

解:(1)由E(k)关系(1)(2)令得:当时,代入(2)得:对应E(k)的极小值。

当时,代入(2)得:对应E(k)的极大值。

根据上述结果,求得和即可求得能带宽度。

故:能带宽度(3)能带底部和顶部电子的有效质量:习题与思考题:1 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说明之。

2 试定性说明Ge、Si的禁带宽度具有负温度系数的原因。

3 试指出空穴的主要特征。

4 简述Ge、Si和GaAs的能带结构的主要特征。

5 某一维晶体的电子能带为其中E0=3eV,晶格常数a=5×10-11m。

求:(1)能带宽度;(2)能带底和能带顶的有效质量。

6原子中的电子和晶体中电子受势场作用情况以及运动情况有何不同?原子中内层电子和外层电子参与共有化运动有何不同?7晶体体积的大小对能级和能带有什么影响?8描述半导体中电子运动为什么要引入“有效质量”的概念?用电子的惯性质量描述能带中电子运动有何局限性?9 一般来说,对应于高能级的能带较宽,而禁带较窄,是否如此?为什么?10有效质量对能带的宽度有什么影响?有人说:“有效质量愈大,能量密度也愈大,因而能带愈窄。

半导体物理刘恩科答案(可编辑)

半导体物理刘恩科答案(可编辑)

半导体物理刘恩科答案(可编辑)半导体物理刘恩科答案(可编辑)第⼀题:摩尔定律:⼀个芯⽚上的晶体管数⽬⼤约每⼗⼋个⽉增长⼀倍。

噪声容限:为了使⼀个门的稳定性较好并且对噪声⼲扰不敏感,应当使“0”和“1”的区间越⼤越好。

⼀个门对噪声的灵敏度是由低电平噪声容限NML和⾼电平噪声容限NMH来度量的,它们分别量化了合法的“0”和“1”的范围,并确定了噪声的最⼤固定阈值:NML VIL - VOLNMH VOH - VIH沟道长度调制:在理想情况下,处于饱和区的晶体管的漏端与源端的电流是恒定的,并且独⽴于在这两个端⼝上外加的电压。

但事实上导电沟道的有效长度由所加的VDS调制:增加VDS将使漏结的耗尽区加⼤,从⽽缩短了有效沟道的长度。

开关阈值:电压传输特性(VTC)曲线与直线Vout Vin的交点。

扇⼊:⼀个门输⼊的数⽬。

传播延时:⼀个门的传播延时tp定义了它对输⼊端信号变化的响应有多快。

它表⽰⼀个信号通过⼀个门时所经历的延时,定义为输⼊和输出波形的50%翻转点之间的时间。

由于⼀个门对上升和下降输⼊波形的响应时间不同,所以需定义两个传播延时。

tpLH定义为这个门的输出由低⾄⾼翻转的响应时间,⽽tpHL则为输出由⾼⾄低翻转的响应时间。

传播延时tp定义为这两个时间的平均值:tp tpLH+tpHL /2。

设计规则:定义设计规则的⽬的是为了能够很容易地把⼀个电路概念转换成硅上的⼏何图形。

设计规则的作⽤就是电路设计者和⼯艺⼯程师之间的接⼝,或者说是他们之间的协议。

设计规则是指导版图掩膜设计的对⼏何尺⼨的⼀组规定。

它们包括图形允许的最⼩宽度以及在同⼀层和不同层上图形之间最⼩间距的限制与要求。

速度饱和效应:对于长沟MOS管,载流⼦满⾜公式:υ -µξ道的电场达到某⼀临界值ξc时,载流⼦的速度将由于散射效应(即PN结反偏漏电和亚阈值漏电。

动态功耗的表达式为:Pdyn CLVdd2f。

可见要减⼩动态功耗可以减⼩Vdd,CL及f。

半导体物理 刘恩科 第五章习题解答

半导体物理 刘恩科 第五章习题解答

(
)
dp 1015 18 −4 = − = − 3.3 × 10 cm ( ) dx 3 × 10−4
空穴扩散电流密度,
Jp = −qD p
dp = 1.6 ×10−19 ×10.4 × 3.3 ×1018 = 5.5 ( A / cm 2 ) dx
15.
ρ = 1Ω ⋅ cm, N t = 1015 cm −3 , (∆n )0 = 1010 cm −3,µ n = 1350cm 2 / (V ⋅ s )
p=0
所以,
ni2 1.5 × 1010 =− ∆p = p − p 0 = − p 0 = − ND 1016
(
)
2
= −2.3 × 10 4 cm −3
达到稳态时,少子产生率,
G = −R = −
∆p
τp
2.3 × 10 4 9 −3 cm = = × ⋅s 2 . 3 10 −5 10
(
)
13.
p n = ∆p + p n 0 ≈ 0, n ≈ nn 0
np < ni2 , U < 0 —— 净产生
在 n = p >> ni 的半导体区域,
np > ni2 , U > 0 (净复合)
12.
N D = 1016 cm −3,τ p = 1 × 10 −5 s, E t = Ei
解:因为少子空穴的浓度,
τ n = 3.5 × 10 −4 s, µ n = 3600cm 2 / (V ⋅ s )
解:由爱因斯坦关系式,得到电子扩散系数,
Dn
µn
k 0T k 0T = → Dn = µn q q
电子扩散长度,
k 0T Ln = Dnτ n = q µ nτ n

半导体物理学(刘恩科)课后习题解第四章答案

半导体物理学(刘恩科)课后习题解第四章答案

0.1×1000 = 18.8cm 3 ; 5.32
3.2 ×10 −9 ×1000 Sb 掺杂的浓度为: N D = × 6.025 ×10 23 / 18.8 = 8.42 ×1014 cm 3 121.8 查图 3-7 可知,室温下 Ge 的本征载流子浓度 ni ≈ 2 × 1013 cm −3 ,属于过渡区
qτ n 知平均自由时间为 mc
τ n = m n mc / q = 0.1× 0.26 × 9.108 ×10 -31 /(1.602 ×10 -19 ) = 1.48 ×10 -13 s
平均漂移速度为
v = m n E = 0.1×10 4 = 1.0 ×10 3 ms −1
平均自由程为
l = v τ n = 1.0 × 10 3 × 1.48 × 10 −13 = 1.48 × 10 −10 m
' σ ' ≈ N D qu n = 5 ×1016 ×1.602 ×10 -19 × 800 = 6.4 S / cm
比本征情况下增大了
σ' 6.4 = = 2.1 × 10 6 倍 σ 3 × 10 −6
3. 电阻率为 10Ω.m 的 p 型 Si 样品,试计算室温时多数载流子和少数载流子浓度。 解: 查表 4-15(b)可知, 室温下, 10Ω.m的p型Si样品的掺杂浓度N A 约为 1.5 × 1015 cm −3 , 查表 3-2 或图 3-7 可知,室温下Si的本征载流子浓度约为 ni = 1.0 ×1010 cm −3 , N A >> ni p ≈ N A = 1.5 ×1015 cm −3
1 1 或ρ = pqu p nqu n
13.掺有 1.1×1016硼原子cm-3和 9×1015磷原子cm-3的S i样品,试计算室温时多数载流 子和少数载流子浓度及样品的电阻率。 解:室温下,Si 的本征载流子浓度 ni = 1.0 ×1010 / cm 3 有效杂质浓度为: N A − N D = 1.1×1016 − 9 ×1015 = 2 ×1015 / cm 3 多数载流子浓度 p ≈ N A − N D = 2 × 1015 / cm 3 n 1×10 20 少数载流子浓度 n = i = = 5 ×10 4 / cm 3 p0 2 ×1015 总 的 杂 质 浓 度 N i ≈ N A + N D = 2 × 1016 / cm 3 , 查 图 u p� � ≈ 400cm 2 / V ⋅ s , u n� � ≈ 1200cm 2 / V ⋅ s 电阻率为 4-14 ( a ) 知 ,

(完整版)半导体物理学刘恩科习题答案权威修订版

(完整版)半导体物理学刘恩科习题答案权威修订版

半导体物理学 刘恩科第七版习题答案---------课后习题解答一些有错误的地方经过了改正和修订!第一章 半导体中的电子状态1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:220122021202236)(,)(3Ec m k m k k E m k k m k V0m 。

试求:为电子惯性质量,nm a ak 314.0,1(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:10911010314.0=ak (1)J m k m k m k E k E E m k k E E k m dk E d k m kdk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17312103402120122021210122022202173121034021210202022210120210*02.110108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 43038232430)(232因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nCs N k k k p k p m dk E d mk k k k V nV/1095.71010054.14310314.0210625.643043)()()4(6)3(251034934104300222*11所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:tkqE f得qE k ts a t s a t 137192821993421911028.810106.1)0(1028.810106.11025.0210625.610106.1)0(第二章 半导体中杂质和缺陷能级7. 锑化铟的禁带宽度Eg=0.18eV ,相对介电常数 r =17,电子的有效质量*n m =0.015m 0, m 0为电子的惯性质量,求①施主杂质的电离能,②施主的弱束缚电子基态轨道半径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体物理学 刘恩科第七版习题答案---------课后习题解答一些有错误的地方经过了改正和修订!第一章 半导体中的电子状态1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为:220122021202236)(,)(3Ec m k m k k E m k k m k V -=-+= 0m 。

试求:为电子惯性质量,nm a ak 314.0,1==π(1)禁带宽度;(2)导带底电子有效质量; (3)价带顶电子有效质量;(4)价带顶电子跃迁到导带底时准动量的变化 解:10911010314.0=-⨯==ππak (1)J m k m k m k E k E E m k k E E k m dk E d k m kdk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17312103402120122021210122022202173121034021210202022210120210*02.110108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 43038232430)(232------=⨯⨯⨯⨯==-=-===<-===-==⨯⨯⨯⨯===>=+===-+= 因此:取极大值处,所以又因为得价带:取极小值处,所以:在又因为:得:由导带:043222*83)2(1m dk E d mk k C nC=== s N k k k p k p m dk E d mk k k k V nV/1095.71010054.14310314.0210625.643043)()()4(6)3(251034934104300222*11----===⨯=⨯⨯⨯=⨯⨯⨯⨯=-=-=∆=-==ππ 所以:准动量的定义:2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

解:根据:t kqE f ∆∆==得qEk t -∆=∆ s a t s a t 137192821993421911028.810106.1)0(1028.810106.11025.0210625.610106.1)0(-------⨯=⨯⨯--=∆⨯=⨯⨯-⨯-⨯⨯=⨯⨯--=∆ππππ第二章 半导体中杂质和缺陷能级7. 锑化铟的禁带宽度Eg=0.18eV ,相对介电常数εr =17,电子的有效质量*n m =0.015m 0, m 0为电子的惯性质量,求①施主杂质的电离能,②施主的弱束缚电子基态轨道半径。

nm r m m m q h r nmm q h r eV E m m q m E eV J q m E n rn r r n r n D 60053.010108.9)10602.1(10854.8)10*625.6(101.7176.13015.0)4(26.1310602.11018.21018.21075.21099.5)10*054.1()10854.84(2)10602.1(10108.9)4(20*0*20231219122340202042200*2204*1918188810623421241931220400====⨯⨯⨯⨯⨯⨯==⨯=⨯===∆=⨯⨯=⨯=⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯==--------------επεεππεεεπεππε :解:根据类氢原子模型8. 磷化镓的禁带宽度Eg=2.26eV ,相对介电常数εr =11.1,空穴的有效质量m *p =0.86m 0,m 0为电子的惯性质量,求①受主杂质电离能;②受主束缚的空穴的基态轨道半径。

eV E m m q m E r P r P A 096.01.116.1386.0)4(22200*2204*=⨯===∆εεπε :解:根据类氢原子模型nm r m m m q h r nm m q h r Pr P r 68.0053.010108.9)10602.1(10854.8)10*625.6(0*0*202312191223402020====⨯⨯⨯⨯⨯⨯==----επεεππε第三章 半导体中载流子的统计分布1. 计算能量在E=E c 到2*n22C L 2m 100E E π+= 之间单位体积中的量子态数。

解:3. 当E-E F 为1.5k 0T ,4k 0T, 10k 0T 时,分别用费米分布函数和玻耳兹曼分布函数计算电子占据各该能级的概率。

3222233*22100E 21233*22100E 0021233*2310002100)(32221)(221)(1Z VZ Z )(Z )(22)(2322C22C L E l m E E E m dE E E m dE E g Vd dEE g d E E m V E g cn c C nlm E C nlm E C nn c n c πππππππ=+-=-====-=*++⎰⎰)()(单位体积内的量子态数)(5. 利用表3-2中的m *n ,m *p 数值,计算硅、锗、砷化镓在室温下的N C , N V 以及本征载流子的浓度。

Nc(立方厘米) Nv(立方厘米) ni1.05E+19 G e 3.91E+18 G e 1.50E+13 G e2.81E+19 S i 1.14E+19 S i 6.95E+09 S i 4.44E+17 G aAs 8.08E+18 G aAs 1.90E+06 G aAs6. 计算硅在-78 o C ,27 o C ,300 o C 时的本征费米能级,假定它在禁带中间合理吗?相比较300K 时Si 的 Eg=1.12eV所以假设本征费米能级在禁带中间合理,特别是温度不太高的情况下。

⎪⎪⎩⎪⎪⎨⎧=========⎪⎪⎪⎩⎪⎪⎪⎨⎧===******-**ev E m m m m A G ev E m m m m si ev E m m m m G e N N n h T k m N h T k m N g p n s a g p n g p n e koT E v c i p v n C g428.1;47.0;068.0:12.1;59.0;08.1:67.0;37.0;56.0:)()2(2)2(2500000022123202320ππ[]eV kT eV kT K T eVkT eV kT K T eV m m kT eV kT K T m m kT E E E E m m m m Si Si npV C i F p n 022.008.159.0ln 43,0497.0573012.008.159.0ln 43,026.03000072.008.159.0ln 43,016.0195ln 43259.0,08.1:322201100-===-===-===+-====****时,当时,当时,当的本征费米能级,7. ①在室温下,锗的有效态密度Nc =1.05⨯1019cm-3,NV=3.9⨯1018cm-3,试求锗的载流子有效质量m*n m*p。

计算77K时的NC和NV。

已知300K时,Eg=0.67eV。

77k时Eg=0.76eV。

求这两个温度时锗的本征载流子浓度。

②77K时,锗的电子浓度为1017cm-3 ,假定受主浓度为零,而Ec -ED=0.01eV,求锗中施主浓度ND为多少?317231823'318231923'23''/1007.530077109.330077/1037.1300771005.130077)(30077772cmNNcmNNTTKNKNNNKVVCCCCVC⨯=⨯⨯=∙=⨯=⨯⨯=∙=∴=)()()()()()(、时的)(31718170066.001.0173777276.0211718313300267.0211819221/1066.1)1037.11021(10)21(212121exp21/1010.1)1007.51037.1(77/105.1)109.31005.1()()3(cmeNnenNNneNeeNeNNnncmenKcmeneNNnCoTkEDCoTkEDTkEETkEEDTkEEEEDTkEEDDkikikoTEgvciDDFCcDFCcDFD⨯=⨯∙+=∙+=∴∙+=∙+=+=+==⨯=⨯⨯⨯=⨯=⨯⨯⨯==∆∆-----+----+-⨯-⨯--时,室温:kgmNTkmkgmNTkmTmkNTmkNvpcnpvnc31312231322232232106.229.022101.556.022)2(2)2(21.7-*-***⨯==⎥⎦⎤⎢⎣⎡=⨯==⎥⎦⎤⎢⎣⎡===ππππ得)根据(8. 利用题 7所给的Nc 和NV数值及Eg=0.67eV,求温度为300K和500K时,含施主浓度ND =5⨯1015cm-3,受主浓度NA=2⨯109cm-3的锗中电子及空穴浓度为多少?⎪⎩⎪⎨⎧⨯=⨯==⎪⎩⎪⎨⎧⨯=⨯≈=⎥⎦⎤⎢⎣⎡+-+-=⎥⎦⎤⎢⎣⎡+-+-=∴=---→⎩⎨⎧==+--⨯==⨯=⨯=⨯==--31531531031521222122222315221''318'319'313221/1079.3/1079.8500/1050.4/105300)2(2)2(2)(/1077.5)(/1039.8;/1026.2500/105.1)(300.8cmpcmnKTcmpcmnKTnNNNNpnNNNNnnNNnnnpnNNpncmeNNncmNcmNKcmeNNnKiDADAiADADiADiADTkEVCiVCTkEVcigg时:时:根据电中性条件:时:时:9.计算施主杂质浓度分别为1016cm 3,,1018 cm -3,1019cm -3的硅在室温下的费米能级,并假定杂质是全部电离,再用算出的的费米能级核对一下,上述假定是否在每一种情况下都成立。

计算时,取施主能级在导带底下面0.05eV 。

%90211%102111%10%,9005.0)2(27.0.0108.210ln 026.0;/10086.0108.210ln 026.0;/1021.0108.210ln 026.0;/10ln /1002.1/108.2,300,ln ,ln.900191931919183181916316031031900≥+=≤+==-=⨯-=-==⨯-=-==⨯-=-=-=-⎪⎩⎪⎨⎧⨯=⨯==+=+=--+-是否或是否占据施主为施主杂质全部电离标准时或离区的解假设杂质全部由强电Tk E E DDTk E E DDD C F c D F c D F c D CDF c i C iD i F C D c F F F D F D eN n e N n eV E E eVE E cm N eV E E cm N eVE E cm N N NT k E E cmn cmN K T N NT k E E N N T k E E E 没有全部电离全部电离小于质数的百分比)未电离施主占总电离杂全部电离的上限求出硅中施主在室温下)(不成立不成立成立317191831716317026.005.0026.005.0'026.0023.019026.0037.018026.016.0026.021.0161005.210,101005.210/1005.221.0%,10221.0%10()2(2%10%832111:10%10%332111:10%10%42.021112111:10cm N cm N cm e N N e N N D eN N e N N D e N n D N e N n D N e e N n D N D D C D C D koT EC D koTE C D D D D D D D E E DDD DD CD ⨯〉=⨯=⨯=≤⇒≤=≤⇒≤=>=+===>=+===<==+=+===--∆-∆----+--10. 以施主杂质电离90%作为强电离的标准,求掺砷的n 型锗在300K 时,以杂质电离为主的饱和区掺杂质的浓度范围。

相关文档
最新文档